Lawrence Berkeley National Laboratory
Recent Work

Title
NUCLEAR SPIN OF SAMARIUM-153

Permalink
https://escholarship.org/uc/item/37f3t1cs

Authors
Cabezas, Amado
Lipworth, Edgar
Marrus, Richard
et al.

Publication Date
1959-06-01
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
NUCLEAR SPIN OF SAMARIUM-153

Amado Cabezas, Edgar Lipworth, Richard Marrus, and Joseph Winocur

June 1, 1959

Printed for the U.S. Atomic Energy Commission
NUCLEAR SPIN OF SAMARIUM-153*

Amado Cabezas, Edgar Lipworth, Richard Marrus, and Joseph Winocur

Department of Physics and Lawrence Radiation Laboratory
University of California
Berkeley, California

June 1, 1959

The nuclear spin of Sm153 has been established by atomic-beam magnetic resonance as $I = 3/2$.

An adequate beam of Sm153 can be produced from 50 mg of stable samarium metal irradiated for 8 hours in the Livermore pile at a flux of about 2×10^{13} neutrons/cm2-sec. After irradiation, the material is placed in a small oven machined from tantalum containing an inner crucible with a sharp lip (Fig. 1). With this oven arrangement it is found that creep is controlled up to the beam temperature of about 1300°C.

The apparatus used in this experiment employs the flop-in type of magnet arrangement first proposed by Zacharias.\(^1\) Radioactive detection of the samarium beam is employed. Platinum foils in the detector position are exposed to the samarium beam at a particular frequency setting of the rf oscillator used to power the hairpin. After a 5-minute exposure the foil is placed in a flow proportional β counter (background about 2 to 5 cpm), and the decay rate is observed. Typical resonance counting rates are about 15 cpm.

Optical spectroscopic measurements\(^2\) on samarium had established the ground-state configuration of this element to be $(4f)^6(6s)^2$ coupling to the ground-state term 7F. In this experiment, measurements were made on the

*Work done under the auspices of the U.S. Atomic Energy Commission and the Office of Naval Research.
states $J = 1$ and $J = 2$ that arise from this term. That these states are both present in the beam in sufficient quantities to enable measurements to be made is consistent with the optically measured fine structure. Three resonances were observed in a low-field search at 1.0 gauss. These were ascribed to the multiple-quantum transitions:

1. $I = 3/2, J = 1; F = 5/2$ \[m_f = 5/2 \]
 - $m_f = 3/2 \rightarrow F = 5/2, m_f = -5/2$
 - $m_f = 1/2 \rightarrow F = 5/2, m_f = -5/2$
 - $m_f = -1/2 \rightarrow F = 5/2, m_f = -5/2$

2. $I = 3/2, J = 2; F = 7/2$ \[m_f = 7/2 \]
 - $m_f = 5/2 \rightarrow F = 7/2, m_f = -7/2$
 - $m_f = 3/2 \rightarrow F = 7/2, m_f = -7/2$
 - $m_f = 1/2 \rightarrow F = 7/2, m_f = -7/2$
 - $m_f = -1/2 \rightarrow F = 7/2, m_f = -5/2$

and 3. $I = 3/2, J = 2; F = 5/2$ \[m_f = 5/2 \]
 - $m_f = 3/2 \rightarrow F = 5/2, m_f = -3/2$
 - $m_f = 1/2 \rightarrow F = 5/2, m_f = -3/2$

All the transitions corresponding to a given I, J, and F occur at the same frequency in the Zeeman region and contribute to the resonance intensity.

Each of these sets of transitions was observed at three fields, and resonance curves were traced out (Fig. 2). These resonances are characterized by three g_F values tabulated along with the observations in Table I.
Table I

Tabulation of all observed g_F values

<table>
<thead>
<tr>
<th>$\frac{\mu_0 H}{h}$ (Mc)</th>
<th>$J = 1, F = 5/2$</th>
<th>$J = 2, F = 7/2$</th>
<th>$J = 2, F = 5/2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>0.61 ± .05</td>
<td>0.91 ± .05</td>
<td>1.01 ± .05</td>
</tr>
<tr>
<td>1.985</td>
<td>0.60 ± .03</td>
<td>0.86 ± .02</td>
<td>0.94 ± .02</td>
</tr>
<tr>
<td>3.945</td>
<td>0.598 ± .010</td>
<td>0.855 ± .011</td>
<td>0.941 ± .013</td>
</tr>
<tr>
<td>Mean g_F</td>
<td>0.598 ± .010</td>
<td>0.856 ± .011</td>
<td>0.941 ± .010</td>
</tr>
<tr>
<td>Predicted g_F</td>
<td>0.600</td>
<td>0.857</td>
<td>0.943</td>
</tr>
</tbody>
</table>

($I = 3/2; g_J = 1.5$)
In Zeeman region, the g_F value is given by

$$g_F = g_J \frac{F(F+1) + J(J+1) - l(l+1)}{2F(F+1)},$$

where g_J is the electronic g value. A term of the order of the nuclear moment has been neglected.

The observed g_F values are fitted to well within the experimental error on the assumption that $I = 3/2$, that the states $J = 1$ and $J = 2$ are both present in the beam, and that the g_J value of both J states is 1.5, the value obtained from pure L-S coupling among the six 4f electrons.

The observed spin of $3/2$ is consistent with the beta decay from the ground state of Sm153. Interpretation of spin $3/2$ is difficult on the shell model. However, by use of the energy-level diagram of Nilsson, $I = 3/2$ can be explained by assuming large deformations and that the state of the 91st neutron is either $3/2 = [521]$ or $3/2 + [651]$, where the notation is that of Mottelson.
Acknowledgments

The authors are indebted to Fred Schon and the crew of the LPTR at Livermore for carrying out the irradiations. One of the authors (RM) would like to thank Professor B. R. Mottelson for a stimulating conversation concerning collective effects in the rare earth region.

References

Legends

Fig. 1. Cutaway view of oven used to produce samarium beams.

Fig. 2. Resonances observed in the $J = 1$ and $J = 2$ states of Sm153.
\[\frac{\mu_o H}{h} = 3.969 \]

\[\text{Sm}^{153} \]

\[J = 2 \]

\[F = \frac{5}{2} \]

\[J = 2 \]

\[F = \frac{7}{2} \]

\[J = 2 \]

\[F = \frac{7}{2} \]

% Direct beam

rf frequency (Mc)