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ABSTRACT

New Marine Siderophores: Discovery, Characterization, and Origin of Hydrolysis Products

by

Aneta Maria Jelowicki

Iron is an essential nutrient required for many organisms, however, obtaining ferric iron
becomes challenging due to its low solubility. One strategy that bacteria have evolved to obtain
iron is the production of siderophores, low molecular weight organic compounds that bind
Fe(I11) with high affinity. These siderophores coordinate Fe(lll) and are taken up by the cell
through outer membrane receptor proteins. Iron is then released for utilization by the microbe.
This work focuses on the structural characterization of siderophores containing the catecholate
Fe(l11)-binding functional group found in several bacterial strains.

Due to the organization of non-ribosomal peptide synthetases (NRPS) into distinct
domains with predictable functions and amino acid substrates, genome mining has enabled the
prediction and discovery of many new siderophore structures. The analysis of genome
sequences revealed Marinomonas mediterranea MMB-1 possessing two putative siderophore
biosynthesis gene clusters, one with high similarity to acinetobactin biosynthesis in
Acinetobacter baumannii ATCC 19606, and one with high similarity to turnerbactin
biosynthesis in Teredinibacter turnerae T7901. However, analysis of the second biosynthetic

gene cluster reveals a two-module NRPS consistent with a triscatechol siderophore (DHB-

viii



DAA-SSer). The first module contains an epimerization domain, suggesting production of a D-
amino acid in this siderophore, however, a specific amino acid was not predicted by the
Stachelhaus code. After bacterial culture isolation and characterization, mediterraneabactin,
with the same molecular weight as turnerbactin (m/z 1030.40 [M+H]* was found. Through
derivatization with Marfey’s reagent, the presence of POrn was established, making
mediterraneabactin a diastereomer to turnerbactin with “Orn. The identification of this
siderophore with POrn is novel and completes the combinatoric suite of triscatecholate
siderophores. The stereochemical variation has an effect on the chirality around the metal
center, which in turn hints at the importance of chirality during the iron uptake process in
bacteria.

Amphi-enterobactin is an amphiphilic siderophore initially isolated from Vibrio
campbellii ATCC BAA-1116 (formerly V. harveyi BAA-1116). . Like enterobactin, amphi-
enterobactin is a triscatecholate siderophore, however it is framed on an expanded tetralactone
core comprised of four L-Ser residues, of which one L-Ser is appended by a fatty acid and the
remaining L-Ser residues are appended by 2,3-dihydroxybenzoate (DHB). The biosynthesis
and structural characterization of amphi-enterobactin has been studied, as well as the outer
membrane recognition of the Fe(l1l)-amphi-enterobactin complex. While it is established that
amphi-enterobactins are produced by several Vibrio harveyi and V. campbellii strains,
fragments of these amphi-enterobactins composed of 2-Ser-1-DHB-FA and 3-Ser-2-DHB-FA
are present in the culture supernatant. Fragments may originate from premature release due to
an inefficient biosynthetic pathway, or an enzymatic/non-enzymatic hydrolysis after
biosynthesis of the siderophore. Tandem mass spectrometry analysis was used to determine if

selected fragments originate from hydrolysis of the amphi-enterobactin macrolactone




siderophore. Unique masses in the tandem MS analysis establish that certain fragments isolated
from the culture supernatant must originate from hydrolysis of the amphi-enterobactin
macrolactone, while others cannot be distinguished from premature release during biosynthesis

or hydrolysis of amphi-enterobactin.
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1. Introduction: Siderophore-Mediated Iron Acquisition

1.1. Environmental Need of Iron

Iron is a cofactor required by many enzymes involved in essential cellular processes
within an organism to survive. However, at neutral pH in aerobic environments obtaining iron
becomes challenging due to its low solubility [Ks, of Fe(OH)s = 10°°]. One strategy that
bacteria have evolved to obtain iron is the biosynthesis of siderophores, low molecular weight
organic compounds that coordinate Fe(l11) with high selectivity and stability.! 2 ® Siderophore-
mediated iron acquisition begins with the biosynthesis of the small molecule that is then
secreted into the environment to scavenge for iron(l11). Fe(lll)-siderophore complexes are
recognized by a specific outer membrane receptor on the cell surface and transported into the
cell via an active transport mechanism (Figure 1.1). In Gram-negative bacteria, uptake into the
cell involves an outer membrane receptor, a periplasmic binding protein, and an inner

membrane ATP-binding cassette transporter.
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Figure 1.1 Siderophore-mediated iron acquisition in bacteria. Siderophores are biosynthesized
then secreted into the environment, where the small molecule chelates Fe(lll). The Fe(ll)-
siderophore complex is taken up by the bacterial cell upon recognition by the outer membrane
receptor and iron is released.
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1.2. Siderophore Structural Features

Over 500 structurally diverse secondary metabolites have been classified as
siderophores.* Despite the structural variety, these siderophores most commonly chelate ferric
iron in either a bidentate or hexadentate fashion. Siderophores typically use hard donor atoms,
most commonly charged oxygens, but on some occasions, nitrogen, or sulfur act as the donor
atom as well. * The higher the charge on the donor atom, the tighter the interaction between
iron(111) and the siderophore. Siderophores are classified by their Fe(l11) binding groups. Some
of the most common groups include catechols, hydroxamic acids, a-hydroxy carboxylic acids,
and B-hydroxyaspartic acids (Figure 1.2).% ® Siderophores can have one or more of the three
types of binding groups for iron coordination. These siderophores function in either a

hexadentate or a tetradentate fashion with varying affinities for Fe** chelation.’
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Figure 1.2. Common iron(l11) binding functional groups found in siderophores.

1.2.1. Catecholate Siderophores

Catechol as a functional group has high affinity for iron(l11) because it contains two

phenolate oxygens with a high charge density.* Enterobactin, the most well studied catechol

siderophore isolated by Pollak and Neilands in 1970,8 is composed a macrolactone of tris-(N-

2,3-dihydroxy-benzoyl-L serine) that coordinates iron(l11) with three 2,3-dihydroxybenzoate

(DHB) catechol groups in a hexadentate fashion. The three catecholate OO’ donors bind

iron(I11) in a A configuration at the metal center,® and has a proton independent stability

constant of 10*°, making the complex thermodynamically stable.°

Other tris-catecholate siderophores similar in structure to enterobactin have been

isolated and characterized from various bacterial species (Figure 1.3). Bacillibactin is a




hexadentate catecholate siderophore produced by Bacillus subtilis, and is thought to be the
enterobactin equivalent for Gram-positive bacteria.!! . Bacillibactin is similar to enterobactin
in that the two siderophores contain a trilactone macrocycle amide linked to three 2,3-
catecholate units that coordinate iron(lll) in a hexadentate fashion. The differing structural
feature in bacillibactin is the trilactone core made up of threonine residues instead of serines
as are found in enterobactin. ° This siderophore also has a glycine spacer between the trilactone
core and the catechol functional group.® Salmonella enterica, a Gram-negative human
pathogen, produces the siderophore salmochelin, a C-glucosylated enterobactin.'> The
salmochelin siderophore is the first glucosylated siderophore found and its structure contains
three catechol functional groups with either one, two, or three of the 2,3-dihydroxybenzoly
serine groups glucosylated.’> Unlike enterobactin, salmochelins have the ability to evade
siderocalin, a mammalian protein used to prevent iron acquisition in pathogenic bacteria.*3
Amphi-enterobactin is another siderophore that is structurally similar to enterobactin.
It is a triscatecholate siderophore, with two distinct structural features, a fatty acid tail and an
expanded tetralactone core.!* This siderophore was initially isolated from Vibrio harveyi
BAA-1116, but has also been produced by several Vibiro harveyi and Vibrio campbellii strains.
1415 Amphi-enterobactins are produced in a suite of varying fatty acid chains, ranging in length
from Cio to Ci4, hydroxylation, and saturation.’* The biosynthesis of amphi-enterobactin is

discussed in a later section.
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Figure 1.3. Examples of cyclic and linear tris-catechol siderophores.

Other tris-catecholate siderophores incorporate an additional amino acid spacer
between the L-Ser and catechol moiety, in turn constructing a 2,3-DHB-XX-L-Ser motif. In
the following examples, the spacer residues are the cationic amino acids arginine, lysine, and
ornithine. Vanchrobactin from Vibrio anguillarum,® is a monomeric unit composed of 2,3-
DHB-D-Arg-L-Ser, and chrysobactin from Dickeya dadantii 3937, is a monomer unit

composed of 2,3-DHB-D-Lys-L-Ser. The following siderophores are composed of three units




of the 2,3-DHB-XX-L-Ser motif. Trivanchrobactin, from Vibrio campbellii DS40M4,8 is a
trimer composed of 2,3-DHB-D-Arg-L-Ser, cyclic trichrysobactin from Dickeya chrysanthemi
EC16, 1° is a trimer composed of 2,3-DHB-D-Lys-L-Ser, and turnerbactin from Teredinibacter
turnerae T7901,% is a trimer of 2,3-DHB-L-Orn-L-Ser (Figure 1.3).

Not all catecholate siderophores resemble enterobactin or fall into the serine-
catecholate family of siderophores that have been depicted above. The amonabactins isolated
from Aeromonas hydrophila, is an example of a different linear catecholate siderophore.??
This bis-catecholate siderophore has four structural variations and is composed of an amino
acid backbone containing two lysines, and varies with the incorporation of either a
phenylalanine or a tryptophan and an optional glycine. 2*?® Other linear catecholate

siderophores, all produced by Azotobacter vinelandii include protochelin, azotochelin, and

aminochelin (Figure 1.4).24-%
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Figure 1.4. Examples of other types of linear catecholate siderophores.

1.2.2. Hydroxamate Siderophores

The hydroxamate functional group is a bidentate ligand produced by the hydroxylation
and acylation of a primary amine.?” Desferrioxamines are a well-studied family of
siderophores, with the hydroxamate moiety composed of units of succinic acid and a
monohydroxylated diamine (N-hydroxycadaverine or N-hydroxyputrescine). This siderophore
can either be linearized or cyclized. Hexadentate Fe(lll)-coordination of desferrioxamine is
provided by three hydroxamate moieties, but the siderophore itself can have from two to four
hydroxamate functional groups.?82° Most common hydroxamates in peptidic siderophores are
formed through the hydroxylation and acylation of the side chain amine in ornithine. First the

ornithine is N°>-hydroxylated by a flavin-dependent monooxygenase.®! Then an acyltransferase
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catalyzes the formation of &-N-acyl-N-hydroxyornithine, forming either a 3-N-acetyl-N-
hydroxyornithine (AcOHOTrn) or 3-N-formyl-N-hydroxyornithine (fFOHOrn). Known peptidic
siderophores containing the hydroxamate moiety include amphibactins, produced by
Alcanivorax borkumensis SK2 and by several Vibrio species.®?3* At this point, the modified
ornithine residue can also undergo cyclization of the 8-N-hydroxyornithine to form cyclic
hydroxyornithine (cOHOrn). Delftibactin produced by Delftia acidovorans contains an

ornithine the undergoes N°-hydroxylation and cyclization.®

1.2.3. B-Hydroxyaspartate Siderophores

B-Hydroxyaspartate (B-OHAsp) is found in many peptidic siderophores and provides
bidentate OO’ coordination to Fe(III).*® The first siderophore structurally characterized
containing a B-OHAsp Fe(l11)-binding group was pseudobactin, a member of the pyoverdine
siderophore family produced by Pseudomonas B10.3” Examples of B-OHAsp siderophores
include acidobactins,®® alterobactins,®® delftibactin,® and malleobactins.*® ' Other examples
include B-OHAsp siderophores that are acylated and have been isolated from both marine and
terrestrial bacteria. Some acyl peptidic siderophores with the B-OHAsp Fe(l11)-binding group
include aquachelins,®? loihichelins,* marinobactins,*® crochelins* and variobactins.*

B-OHAsp siderophores are synthesized by NRPS and a key step in the formation of
this residue is the hydroxylation of aspartic acid. Different from other amino acids, 3-OHAsp
has two chiral centers, one at the a-carbon and the other at the 3-carbon and in turn creating
the possibility of stereoisomers, L-threo (2S, 3S), D-threo (2R, 3R), L-erythro (2S, 3R), or D-

erythro (2R, 3S) (Figure 1.5). Most 3-OHAsp siderophores are either L-threo or D-threo, and




on occasion L-erythro, however D-erythro 3-OHAsp residue has not yet been identified in a

siderophore.

OH O OH O OH O OH O
HONOH HONOH HONOH HONCH
O NH, O NH, O NH, O NH,

L-threo D-threo L-erythro D-erythro

Figure 1.5. Diastereomers of B-OHAsp. Stereoisomers L-threo, D-threo, and L-erythro have
been observed in siderophores, while D-erythro has not yet been observed.

1.2.4. Amphiphilic Siderophores

Another structural feature commonly found in marine siderophores is the incorporation
of a lipophilic fatty acid tail attached to a hydrophilic Fe(l11)-binding headgroup, resulting in
an amphiphilic compound.®? Production of amphiphilic siderophores encompasses a wide
range of bacterial species ranging from marine bacteria to certain human pathogens. These
amphiphilic siderophores can be hydrophobic and remain associated with the cell or can be
hydrophilic and are isolated from the supernatant of harvested cultures. Amphibactins, isolated
from Alcanivorax borkumensis SK2,% are hydrophobic acyl siderophores with short peptides
(4 amino acids) and long fatty acyl chains (> C16).3% 34

Hydrophilic siderophores contain longer peptidic headgroups but can still have fatty
acid chains that range in length, hydroxylation, and degree of unsaturation. Two amphiphilic
siderophores considered quite hydrophilic are aquachelins and loihichelins (Figure 1.6).3> 42
Marinobactins produced by Marinobacter sp. DS40M6, have a six amino acid headgroup with
a suite of varying fatty acid chain length (12-18 carbons).3> % The length of the fatty acid does
have an effect on hydrophobicity of the siderophore, where the longer chained marinobactins

associate with the bacterial cell membrane while the shorter fatty acid chains are released into
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the environment.*® The majority of marine siderophores have been isolated as suites of
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Figure 1.6. Structures of amphiphilic marine siderophores.1# 32 42.48
Amphi-enterobactin originally isolated from the marine bioluminescent bacterium

Vibrio harveyi BAA-1116 (reclassified as Vibrio campbellii) is a fatty acid derivative related
to enterobactin.’* Further studies have identified that this amphiphilic siderophore is produced
by a variety of microbial Vibrio species.”® Like enterobactin, amphi-enterobactin is a

triscatecholate siderophore, however it is framed on an expanded tetralactone core comprised
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of four L-Ser residues, of which one L-Ser is appended by a fatty acid while the remaining L-

Ser residues are appended by 2,3-dihydroxybenzoate (DHB).

1.3. Stability of Ferric Siderophore Complexes

The coordination chemistry properties of siderophores includes forming
thermodynamically stable complexes due to the extraordinary specificity for binding Fe(ll11).
The proton-independent Fe(l11) stability constant (Ks) represents the stability of the Fe(lll)-
siderophore complex and are among the highest known Fe(111) stability constants.'% 4 To offer
a meaningful, more physiologically-relevant visual of complex stability, the pFe scale was
developed. The pFe is defined as -log[Fe(H20)s*] at a defined set of experimental conditions,
where [Felot = 1 pM, [L] = 10 uM, and pH 7.4.5° The stability constants of selected
siderophores are shown in Table 1.1 below.

Table 1.1. Fe(lll)-siderophore stability constants and pFe measurements of selected Fe(l11)-
siderophore complexes along with Fe(l11)-EDTA.

Siderophore logKs  pFe'"
Enterobactin®® 490 343
Bacillibactin®! 476  33.1
Desferrioxamine B> 305 25
Marinobactin® 31.8 25.8
Acetohydroxamic acid® | 28.3  14.8
Vibrioferrin®® 24.02 18.4
EDTAS® 25.2 23.4

Hexadentate siderophores form more stable complexes in comparison to bidentate or
tetradentate siderophores. The proton independent stability constant of acetohydroxamic acid
is K=10%23, while for desferrioxamine B it is Ki =105, in turn illustrating this effect. The
proton independent Fe(lll) stability constant for enterobactin is Kf = 10%°, making this

hexadentate siderophore the most powerful ferric ion complexing agent.'® The trilactone core
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helps make it a stable complex and in turn makes it difficult for reductases to directly reduce
and release the iron from the Fe(l11)-enterobactin complex. Hydrolysis of the trilactone core to
(DHB-1Ser); was found to substantially lower the stability complex to 10*.” This less stable
complex then allows for easier removal of iron that can then be used in other metabolic
processes.

Reduction potentials of Fe(lll)-siderophore complexes are quite negative. Ferric
enterobactin exhibits an exceptionally low reduction potential (-1.0 V above pH 10),
suggesting the ligand must first be hydrolyzed to improve the iron release process.’® At a
pH>10, ferric enterobactin has a formal reduction potential (Ef) of -986mV vs the normal
hydrogen electrode, and shows a reversible one-electron wave.®® From the pH dependence of
this potential, the study estimated that at pH 7, ferric enterobactin would have a reduction
potential of -750 mV.%® Both of these values are well below the range of physiological reducing
agents like NADPH, suggesting a chemical modification such as hydrolysis to the siderophore

is necessary to allow iron to be released via ferric ion reduction.

1.4. Chirality of Fe(l11)-Siderophore Complexes

Upon Fe(l1l) coordination, the metal center of the hexadentate Fe(lll)-siderophore
complex becomes chiral. Two enantiomers are possible: the right-handed (A) configuration,
and the left-handed (A) configuration (Figure 1.7). Circular dichroism (CD) spectroscopy and
X-ray crystallography are used to determine the chirality of the metal center. The overall
structure of the ligand affects the chirality of the Fe(lll)-center, and the smallest change can
affect the chirality. The chirality of the metal center can in turn have an affect on siderophore

recognition and uptake.® 5°-6!
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Figure 1.7. Enantiomers of Fe(ll1) coordinated by three bidentate ligands with either a A or A
configuration.

Two well-known triscatechol siderophores, enterobactin (Ent), a trimeric macrolactone
of 2,3-dihydroxybenzoate (DHB)--Ser, and bacillibactin (BB), a cyclic trimeric ester of 2,3-
DHB-Gly--Thr, coordinate Fe(lll) in a hexadentate fashion with the catecholate ligands. On
top of the different residues in the macrolactone core, BB contains a glycine residue acting as
a spacer between each L-Thr and DHB. The chirality at the metal center of these two similar

siderophores are opposite of one another, where Fe(111)-Ent®> adopts the A configuration,®? 5

while Fe(111)-BB* adopts the A configuration.®? Enantioenterobactin was synthesized with D-
Ser in the macrolactone core and formed the A complex when coordinated to Fe(111).6* Other
triscatechol siderophores containing a chiral amino acid inserted between the oligoester
backbone and DHB have also adopted enantiomeric configurations at the Fe(lll) site (Table
1.2). For instance, cyclic trichrysobactin a triscatechol oligoester (DHB-PLys-Ser)s produced
by Dickeya chrysanthemi EC16,'° and frederiksenibactin, a linear triscatechol ester (DHB-
LLys-tSer)s, produced by Yersinia frederiksenii ATCC 33641, bind Fe(lll) in A and A
configurations, respectively.%® Another example of siderophores forming pair opposite
configurations are trivanchrobactin (DHB-PArg--Ser)s and ruckerbactin (DHB--Arg--Ser)3.5
These four siderophores contain the cationic amino acids, ®“Lys or ®“Arg, and are considered

diastereomers. There is one other triscatechol siderophore, turnerbactin, (DHB--Orn-tSer)z,?
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with the cationic amino acid “Orn. However, a diastereomer with POrn has not yet been
reported.

Table 1.2. Stereochemistry of amino acids and the chirality around the Fe(l11) metal center of
selected hexadentate Fe(l11)-siderophore complexes.

1t Loaded 2" Loaded

Siderophore Amino Acid Amino Acid Chirality
Enterobactin L-Ser A
Enantioenterobactin D-Ser A
Frederiksenibactin L-Lys L-Ser A
Cyclic trichrysobactin D-Lys L-Ser A
Ruckerbactin L-Arg L-Ser A
Trivanchrobactin D-Arg L-Ser A
Turnerbactin L-Orn L-Ser A
Unidentified D-Orn L-Ser

1.5. Biosynthesis of Siderophores

Siderophores compromised of an assortment of proteogenic and non-proteogenic
amino acids depend on NRPS for biosynthesis.®” % A secondary biosynthesis pathway for
siderophores is a NRPS independent (NIS) pathway that assembles siderophores composed of
alternating dicarboxylic acid and diamine or amino alcohol components.®® However, the focus

here will be on the NRPS dependent biosynthesis.

1.5.1. General NRPS Mediated Biosynthesis

Peptidic siderophores are assembled by a thiol-templated catalytic mechanism carried
out by non-ribosomal peptide synthetases (NRPS). NRPS is a modular enzyme that uses an
assembly line approach to synthesize the peptidic metabolites. "° ”* The modules that make up
NRPS are each responsible for activating and incorporating a single amino acid into the

growing peptide chain. The NRPS module at a minimum is composed of a condensation (C)
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domain, an adenylation (A) domain, and a thiolation (T) domain (often referred to as the
peptidyl carrier protein, or PCP domain) (Figure 1.8). "* > The A domain is responsible for
selecting the desired substrate, either a specific amino acid or a hydroxy acid, and activating it
to form the corresponding amino acyl-adenylate through a reaction of the selected substrate
with ATP.”® ™ The newly formed amino acyl-adenylate is then loaded by the A domain onto
the terminal thiolate of the prosthetic 4’-phosphopantetheinyl arm bound to the thiolation
domain, allowing for further reactivity of the substrate.” Once the amino acids are covalently
linked to the 4-phosphopantetheinyl arm, the condensation (C) domain catalyzes the coupling
between two thiolation domain-bound substrates, forming the first amide bond.’® This process
is repeated until all residues have been incorporated and the complete product is transferred to
the thioesterase (TE) domain, which catalyzes the release of the final product through
hydrolysis, generating the free acid, or through intramolecular cyclization, generating a
lactone.”” ® Once released from the assembly line, the siderophore can undergo further
tailoring or be exported into the environment.

Other additional domains found in NRPS add complexity to the siderophore structure
and bioactivity of the peptide. These domains provide modifications to the amino acids that
are not commonly found in ribosomally produced peptides.”® A few examples of these
additional domains include domains that provide substrate modifications such as oxidation,®
N-methylation, 8 & N-formylation,”? cyclization,”? and reduction.”> The epimerization
domain, which will be discussed in Chapter 2, is responsible for the racemization of L- to D-
amino acids.®® Other tailoring enzymes responsible for modifying the peptide before, during,
or after chain elongation, are often found near the biosynthetic gene cluster of that

siderophore.®
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Figure 1.8. The basic enzymatic domains in a NRPS protein: A —adenylation; T — thiolation;
C — condensation.

1.5.2. Biosynthetic Origins of Several Chelating Groups

15.2.1. 2,3-Dihydroxybenzoate (DHB)

2,3-dihydroxybenzoate (2,3-DHB) is synthesized from chorismate in a three-step

biosynthesis catalyzed by three proteins, an isochorismate synthase, isochorismatase, and a
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2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase. "> 8 For incorporation into a peptidyl
siderophore, the synthesized 2,3-DHB needs to be activated by a DHB-AMP ligase, which is
then transferred to the specified NRPS aryl carrier protein (Figure 1.9).72 8 In the case of
enterobactin biosynthesis, EntA is the 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase, the
N-terminus of EntB is an isochorismatase, and EntC is an isochorismate synthase. Once DHB
is synthesized it is activated by adenylation by the protein EntE.’?> 8 The 2,3-DHB found in

siderophores is made by EntABCE homologs. 2 &

EntB
"0 0 ‘0.0 "0._0 0.0 AMP-O___O ®T
WOH WOH OH OH g
EntC EntB EntA EntE EntE
0 —>» o —> — —_— —> O S
T 0 (o) OH OH OH
OH (0} fo) OH
Chorismate Isochorismate 2,3-Dihydro-2,3- 2,3-Dihydroxy- 2,3-DHB
dihydroxybenzoate benzoate (2,3-DHB) adenylate OH

Figure 1.9. Synthesis and activation of 2,3-DHB by proteins EntABCE. IC — isochorismatase;
T — thiolation domain.

15.2.2.  B-Hydroxyaspartate

B-hydroxylation of a residue can happen to aspartic acids and histidines via a family of
non-heme Fe(ll)/a-ketoglutarate dependent B-hydroxylases (Figure 1.10).8 These enzymes
are thought to act on the aspartic acid or histidine when it is tethered to the thiolation domain

of a NRPS, due to the homology of these enzymes to a syringomycin aspartyl p-hydroxylase.8

NRPS F‘NRPS
S S OH
o aKG/Fe(ll) )%ro-
Oét\l/\lr B-Hydroxylase O
NH, 0 ——» NH, O
Aspartate B-Hydroxyaspartate
(B-OHAsp)

Figure 1.10. Biosynthesis of B-hydroxyaspartate.
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1.5.2.3. Hydroxamate

The hydroxamate chelating group comes from the hydroxylation and acylation of a
primary amine. Hydroxamates are commonly found in siderophores with the nonproteinogenic
amino acid ornithine. The ornithine is N°>-hydroxylated by a flavin-dependent monooxygenase,
then followed by either an acyltransferase, which catalyzes the formation of (8-N-acyl-N-
hydroxy)ornithine, either as (3-N-formyl-) or (5-N-acetyl-5-N-hydroxy)ornithine (Figure
1.11).31 Cyclic N-hydroxyornithine is formed through the lactamization of &-N-

hydroxyornithine (Figure 1.12).

le) NS5-hydroxyornithine
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Figure 1.11. Biosynthesis of N5-acetyl-N5-hydroxyornithine via a FAD-dependent
monooxygenase followed by a N5-hydroxyornithine acetyltransferase.
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Figure 1.12. Biosynthesis of the hydroxamate chelating group in ornithine.
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1.5.3. Biosynthesis of Enterobactin

The biosynthesis of enterobactin has been studied extensively.’? Proteins involved in
the biosynthesis are EntABCDEF. EntA is a 2,3-dihydro-2,3-dihydroxybenzoate
dehydrogenase, the N-terminus of EntB is an isochorismatase, and EntC is an isochorismate
synthase. These three proteins are involved in the synthesis of 2,3-dihydroxybenzoate (DHB)
and once synthesized is activated by adenylation by the protein EntE."? 8 EntF, the iterative
NRPS is where each ester and amide bond found in enterobactin is formed. EntD is the 4’-
phosphopantetheinyl transferase required in activating the T domains of EntB and EntF. For
the biosynthesis of enterobactin, first the A domain in EntF recognizes and adenylates L-Ser
and then transferred to the 4’-phosphopantetheinyl (P-pant) arm of the T domain. The
formation of the first DHB--Ser amide bond is catalyzed by the C domain. The DHB-'Ser is
transferred to the thioesterase (Te) domain, and the following iteration follows. Once the trimer

is formed, macrocyclization occurs and the final enterobactin product is released (Figure 1.13).

19



EntB EntF @ EntF @ EntF EntF
©r W o»c Q

S HS
o o
HNW NH
HO  NH HO  NH OH

o) o~ O

HO OH  Ho
OH

HO HO

EntF EntF

HO Cyclization
and release
HO
07 "NH
o (0]
OH  Enterobactin

OH

Figure 1.13. Biosynthesis of enterobactin by NRPS. C - condensation domain; A —
adenylation domain; T — Thiolation domain; Te — thioesterase domain; IC — isochorismatase.

1.5.4. Biosynthesis of Amphi-enterobactin

Amphi-enterobactin was initially isolated from Vibrio harveyi BAA-1116, a model
bacterium for quorum sensing because of its quorum-regulated bioluminescence.®” Vibrio
harveyi BAA-1116 contains genes homologous to the biosynthetic cluster of enterobactin
(Figure 1.14), but instead produces an amphiphilic derivative of enterobactin called amphi-
enterobactin (Figure 1.6).2* Amphi-enterobactin is a triscatecholate siderophore and resembles
enterobactin with three 2,3-DHB groups, however it is distinguished by an expanded

tetralactone core, and is decorated by a fatty acid appended at the amine of the additional L-
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Ser.’* The 3-hydroxydodecanoate is the most prevalent fatty acid, but these fatty acid

appendages can range in length (C10-C16), degree of unsaturation, and hydroxylation.'4 1>
Escherichia coli K12
e“’& e“& e“’& e&c K?/Qq’ e"\@ \GQO ‘\@QG ,@Q(‘ K?»QQ’ e‘\{(
< KK < HID-@THID D@
2,3-DHB synthesis and activation NRPS
Vibrio harveyi BAA-1116
'béo() ’béov‘ 'aéog ,ée‘,é(' 'aéo% ’bé'é( (bejoo ‘\’va
D/ meT Ot > D@ HED-

FACL 2,3-DHB synthesis and activation NRPS
|:| Catechol Biosynthesis |:| Siderophore Assembly D Transporters DPutative Esterase

Figure 1.14. Biosynthesis gene clusters of enterobactin in E. coli K12 and of amphi-
enterobactin in V. harveyi BAA-1116.

The genome of V. harveyi BAA-1116 contains a nonribosomal peptide synthetase
(NRPS) gene cluster (aebF) that resembles that of enterobactin biosynthesis.!* However,
nearby this NRPS gene cluster, a gene, aebG, encoded for long-chain fatty acid CoA ligase
(FACL) is present.!* Along with structurally characterizing this novel siderophore, the
biosynthetic genes of amphi-enterobactin were reported (Figure 1.14).1* The proposed amphi-
enterobactin biosynthetic pathway (Figure 1.15) involves six genes (aebA-F), where aebF
encodes for NRPS that catalyzes amide and ester bond formation and cyclization of the lactone
backbone. The aebG gene is responsible for activating the fatty acids to fatty acyl-CoA
thioesters.}* After activation, the fatty acyl-CoA is condensed onto L-serine as the first iteration
of the NRPS. Similar to EntF, the following three iterations involve the addition of three DHB-
LSer monomers to the fatty acyl--Ser bound to the thioesterase.!* Despite the similarity of
AebF to EntF, the condensation domain of AebF recognizes two donors: 2,3-DHB-P-pant-

AebB and fatty acyl-CoA thioester, to catalyze the DHBA amidation and fatty acid acylation
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of L-Ser-S-P-pant-AebF. On the other hand, the condensation domain of EntF catalyzes amide
bond formation between 2,3-DHB-P-pant-EntB and L-Ser-S-P-pant-EntF. This unique feature
of AebF, where the condensation domain recognizes two different donors, is the first
demonstration of a condensation domain with this level of substrate flexibility. Studies on the
amphi-enterobactin biosynthetic machinery revealed that a knockout mutation of aebG
disturbs amphi-enterobactin biosynthesis.!* Furthermore, the fatty acyl-CoA must be
condensed in the first iteration or else recombinant AebF will not react with DHB-P-pant-

AebB .
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Figure 1.15. Proposed biosynthesis of amphi-enterobactins. AebG activates a fatty acid that is
then condensed with L-serine as the first iteration of AebF. The next three iterations condense
2,3-DHB to L-Serine, followed by cyclization and release of the siderophore. C — condensation
domain; A — adenylation domain, T — thiolation domain; Te — thioesterase domain; IC —
isochorismatase.

1.6. Occasions of Premature Release of Siderophores during Biosynthesis

Premature release of siderophores during biosynthesis would occur when the
nonribosomal peptide synthetase is exposed to solvent molecules and in turn hydrolytically
terminating the growing siderophore (Figure 1.16). There have not been many occasions
documented about siderophores being prematurely released in the environment, however a few
studies have shown premature release precursors in cell-free reconstitution studies. For
instance, premature release precursors were identified during a cell-free reconstitution of
cyclosporine synthetase, which is believed to be caused by the absence of an essential factor

to complete the overall synthesis.%
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In a study by Guo et. al., a large number of enterobactin linear precursors were
prematurely released during an in vitro reconstitution of the nonribosomal enterobactin
synthetase. & The group investigated the factors influencing the cause of this premature
release.®® The study noted that previous investigations focused on a cell-free reconstitution of
NRPS, a condition that differs substantially from a highly crowded intracellular environment.*
Therefore, Guo et. al. created in vitro crowding conditions in attempt to mimic the intracellular
environment and found that macromolecular crowding (mimicking the intracellular
environment) suppresses the premature release of the linear precursors from enterobactin
NRPS biosynthesis.®® This study is the first experimental evidence of how macromolecular
crowding and mimicking the intracellular environment is essential during in vitro
reconstitution to have a normally functioning nonribosomal peptide synthetase.®® Further
studies on the structural changes of the enterobactin synthetase in a crowded environment
emphasize that macromolecular crowding is an important physiological factor for normal
function of NRPSs.®* Overall, occasions of premature release of siderophores can occur,
however it is highly more likely during cell-free in vitro reconstitution of the NRPS
biosynthesis rather than spontaneous hydrolytic termination in a normal intracellular

environment.
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Figure 1.16. Representation of the premature release products in enterobactin biosynthesis if
premature hydrolytic termination with water occurred. C — condensation domain; A —
adenylation domain; T — Thiolation domain; Te — thioesterase domain; IC — isochorismatase.
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1.7. Siderophore Transport and Iron Release

1.7.1. Siderophore Export

Once siderophores are biosynthesized, these natural products are actively transported
into the environment. Enterobactin, for example, is first translocated into the periplasm by an
active efflux pump, EntS,% then excreted into the environment through TolC, an outer
membrane channel protein that is used by other efflux systems as well.®® Further studies
identified that deletion of tolC eliminates enterobactin export, while deletion of entS reduces
enterobactin export. The biosynthesis and uptake pathways of siderophores has been well

studied, but many questions still remain about siderophore export pathways.

1.7.2. Uptake of Fe(l111)-Siderophore Complexes

Fe(l11)-siderophore complexes are too large for diffusion through the outer membrane
and need to be actively transported. The complexes follow the overall pathway of recognition
by the outer membrane receptor, transport by the periplasmic binding proteins to a cytoplasmic
membrane permease, typically an ATP binding cassette (ABC) transporter, and translocation
into the cytoplasm (Figure 1.17). Uptake is specific to the bacterial strain and the Fe(lll)-
siderophore complex being transported, whether it be the native siderophore or a
xenosiderophore. The following sections will cover recognition by the outer membrane
receptors, key points for transport by periplasmic binding proteins and iron(l1l) release by
either esterases or reductases.

Enterobactin produced by Escherichia coli is a macrolactone trimer of N-2,3-

dihydroxy-benzoyl-L-serine that coordinates iron(l11) with three 2,3-diydroxybenzoate (DHB)
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catechol groups. The proton independent Fe(111) stability constant for enterobactin is K= 10%°,
making this siderophore the most powerful ferric ion complexing agent.’® When iron binds to
enterobactin in the environment, the complex is first recognized by a TonB-dependent outer
membrane receptor, FepA, and transported into the periplasm.®* % Then FepB, a periplasmic
binding protein, transports the complex to the inner membrane via recognition of an ABC-type
transporter (FepCDG) and ultimately ends up in the cytoplasm.®* % 97

Iron release from Fe(l11)-bound enterobactin then requires a two-step process, where
first the trilactone esters are enzymatically hydrolyzed by the cytoplasmic esterase Fes and
then reduced by the NADPH-dependent reductase for iron release. > % % The Fes esterase
hydrolyzes the lactone core of enterobactin into three molecules of 2,3-DHB, which lowers the
iron stability constant and allows iron release by the YqgjH-mediated reduction of Fe(lll) to
Fe(11).58 100 101 The ferrous ion is now liberated and used for necessary cellular metabolic

pathways.
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Figure 1.17. General iron-siderophore acquisition model in Gram-negative bacteria. Iron-
siderophore complex is recognized by the outer membrane receptor (OMR; blue), interacts
with a periplasmic binding protein (PBP, yellow), and transported into the cytoplasm via
cytoplasmic ATP-binding proteins (ABC, red).

1.7.2.1. Enterobactin as a Xenosiderophore

Enterobactin is used in a strategy known as siderophore piracy as the xenosiderophore
amongst microorganisms that do not contain the genes that encode for enterobactin
biosynthesis. For iron release from the Fe(l11)-enterobactin complex, hydrolysis by an esterase
and reduction of Fe(lll) to Fe(ll) must occur. In E. coli, where enterobactin is the native
siderophore, an esterase called Fes, catalyzes the hydrolysis of both apo- and ferric
enterobactin ester linkages.* Therefore, microorganisms that do not produce enterobactin but
utilize it as a xenosiderophore need to express the esterase specific for macrolactone
hydrolysis.

The following bacteria use enterobactin as an xenosiderophore: Pseudomonas

aeruginosa, Vibrio anguillarum, V. cholerae, V. parahaemolyticus, and Campylobacter jejuni.
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102 103 104 105 106 107 These strains synthesize native siderophores, but also use enterobactin as an
additional iron-chelating metabolite. Enterobactin is taken up by these microorganisms in
diverse ways. A stark difference among these five strains is that two strains, P. aeruginosa and
V. anguillarum utilize cyclic enterobactin, while the remaining three are only able to utilize

the linearized enterobactin.

1.7.2.2.  Outer Membrane Receptors

Outer membrane receptors are the first recognition sites of the ferric siderophore
complex. Selection of siderophore uptake begins at this point and can be the rate-limiting step
in the iron uptake mechanism.% For example, the OMR in E. coli, FepA, is able to recognize
both Fe(lll)-enterobactin and Fe(I11)-enantioenterobactin.’®® FepA has been structurally
characterized and crystallized (Figure 1.18).1° Other outer membrane receptors including
FhuA (ferrichrome/hydroxamates) in E. coli, FpvA (pyoverdine) and FptA (pyochelin) in P.
aeruginosa have also been characterized by X-ray crystallography.*'1® These siderophore
receptor proteins consist of B-barrel domain and a plug, where the plug sits within the B-barrel
domain, creating a seal when the channel is not actively transporting Fe(ll1)-siderophore
complexes.!'113 Within the outer membrane protein, in this case for FepA, there are two
binding sites for Fe(lll)-enterobactin. Recognition of the iron(l11)-siderophore complex is
dependent on the triscatechol functional groups and the amide linkage interacting with certain

aromatic residues within the binding domain of FepA.1®
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Figure 1.18. Crystal structure of the OMR FepA. The B-barrel domain is depicted in the red,
orange, and green, while the plug is blue. (PDB cod 1FEP).110

The first step of iron(ll1)-siderophore uptake is the recognition and binding of the
complex by its specific outer membrane receptor. Every OMR is able to recognize and
transport a specific siderophore, and sometimes a structurally related siderophore, however, it
will not recognize a chemically different siderophore.* 115 116 117 Eor example, Vibrio cholerae
synthesizes vibriobactin, the native triscatecholate siderophore with a nonhydrolyzable
backbone to import iron, but the strain also utilizes linear derivatives of enterobactin as
xenosiderophores.*® 1% The recognition and uptake of these two siderophores differs at the
outer membrane receptor. Vibriobactin is transported across the outer membrane by ViuA,

while the linear derivatives of enterobactin are recognized by VctA and IrgA.'*® 120 This
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phenomena is also predicted in Vibrio parahaemolyticus where genes homologous to the OMR
genes in V. cholerae, irgA and vctA, were identified.'®” However, the study of receptor
specificity has not been completed for V. parahaemolyticus and it is unknown if the OMRs
function similarly to the ones identified in V. cholerae. ** Models for Fe(lll)-enterobactin
acquisition as a xenosiderophore in five Gram-negative bacterial strains are shown in Figure

1.19.
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Figure 1.19. Models for Fe-ENT acquisition and release in Gram-negative bacteria. The outer
membrane receptors are shown in blue, periplasmic binding proteins are shown in yellow,
esterases are shown purple, and the cytoplasmic ATP-binding proteins are shown in red. Fe-L
stands for Fe(l11)-enterobactin. Questions marks point to unidentified/uncharacterized parts of
the uptake mechanism. Uptake systems are shown for (A) P. aeruginosa; (B) V. anguillarum;
(C) V. cholerae and V. parahaemolyticus; and (D) C. jejuni.
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1.7.2.3.  Periplasmic Binding Proteins

Certain OMRs have evolved to bind a variety of siderophores that have similar
chemical structures. Periplasmic binding proteins on the other hand may be more specific
towards certain siderophores and can be a point of exclusion. Interaction with these proteins is
a key component in the iron uptake mechanism of Gram-negative bacteria. After transport into
the periplasm, the Fe(lll)-siderophore complex interacts with a periplasmic binding protein
(PBP), which brings the complex to the ABC-transporter embedded in the inner membrane
and the complex is translocated to the cytoplasm (Figure 1.17).

In E. coli, the periplasmic binding protein is FepB which binds to cyclic enterobactin.®*
Pseudomonas aeruginosa on the other hand does not have a PBP specific for Fe(lll)-
enterobactin because iron release occurs in the periplasm. The PBP involved in transport of
enterobactin in Vibrio cholerae, VctB, differs in comparison to the PBPs of E. coli and V.
anguillarum, in the sense that VctB recognizes only the linearized enterobactin complexes,
whereas FepB (E. coli PBP) and FvtB (V. anguillarum PBP) recognizes cyclic enterobactin.'%
Since the iron transport system shows homology to V. cholerae the same observation is
suspected in V. parahaemolyticus.'%’

Unlike many bacterial strains, Campylobacter jejuni does not produce its own
siderophores, but instead depends on xenosiderophores for iron acquisition.*?* Originally, it
was proposed that Fe(l11)-bound cyclic enterobactin was transported into the periplasm, then
recognized by the PBP CeuE, and ultimately transported into the cytoplasm. 2! 122 123
However, further research has demonstrated that C. jejuni utilizes enterobactin hydrolysis
products for the uptake of iron. 121 124 125126 The OMR’s of C. jejuni are able to recognize

cyclic enterobactin and transport the complex into the periplasm. The sole trilactone esterase
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in C. jejuni is located in the periplasm.*?* Further analysis of this Fe(l11) acquisition model has
shown that the PBP, CeuE, binds to the enterobactin dimer hydrolysis product,

[Fe(bisDHBS)]? with higher affinity than [Fe(Ent)]*.%

1.7.3. lIron Release from Catechol Siderophores

Mechanisms of iron release from siderophores falls under three possible pathways: an
enzymatic chemical modification, proton-assisted dissociation of the complex, or reduction via
a reductase of the Fe(l11) center.®® 127 Reduction of Fe(lll) is a common strategy for releasing
iron from the Fe(lll)-siderophore complex because reduction lowers the affinity of the

siderophore for Fe(Il) and in turn releasing it.*? 129

1.7.3.1.  Catechol Siderophore that Require an Esterase

Fe(l11)-enterobactin being a stable complex, the Fe(l11) is unable to be directly reduced
by a reductase and released from the complex. Instead, once Fe(l1l) binds to enterobactin and
transported into the cell, the siderophore trilactone core is enzymatically hydrolyzed by the
esterase Fes into three equivalent molecules of 2,3-DHB-Ser.* The reduction potential of
Fe(l11)-enterobactin is -750 mV at pH 7, well outside the range of physiological reducing
agents such as reductases.®® Once the trilactone backbone of Fe(l11)-enterobactin is hydrolyzed,
the reduction potential becomes -350 mV, now within the range of physiological reducing
agents.>® % The reductase involved in reducing Fe(l1l) bound to enterobactin is YqjH in
Escherichia coli.®® % % 100 More information is covered in the following sections. Iron release
has been studied for enterobactin, but other siderophores, like amphi-enterobactin, not much

is known.
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Fes is the most well-known esterase that hydrolyzes enterobactin. Other esterases that
fall into the same class as Fes include IroD and IroE that hydrolyze salmochelin in Salmonella
enterica and BesA that hydrolyzes bacillibactin in Bacillus subtilis. % °° %9 In strains that take
up enterobactin as an xenosiderophore, there have been three esterases identified: PfeE for P.
aeruginosa,*® VabH for V. anguillarum,'%* 132 and Cee for C. jejuni (Figure 1.19).1%4

The esterase in P. aeruginosa is located in the periplasm and once ferric-enterobactin
is transported by the outer membrane into the periplasm, the siderophore is hydrolyzed by
PfeE."! Interestingly, the gene encoding this esterase is localized next to the pfeA gene
(encodes the OMR), and transcription of both of these genes are regulated by the presence of
enterobactin. 3

Iron(I11)-enterobactin uptake in V. anguillarum follows the same uptake pathway as for
its native siderophore vanchrobactin.'®® 1% Once the Fe(ll1)-bound cyclized enterobactin is
transported into the cytoplasm, it undergoes a chemical modification to allow for the release
of iron. It is suggested that VabH is the acting esterase involved in the hydrolysis of both the
xenosiderophore enterobactin and the native siderophore vanchrobactin due to the structural
similarities of the two siderophores. 193 104

C. jejuni has a sole trilactone esterase, Cee, located in the periplasm.'?* Cee hydrolyzes
the Fe(lll)-bound cyclized enterobactin and these tetradentate hydrolysis products
(Fe(bisDHBS)]?) are then transported via the PBP, CeuE, to the ABC-transporter CeuBCD,

and ultimately into the cytoplasm.!?*
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1.7.3.2. Iron Release via Reductase

The essentiality of esterases has been revealed in many studies about Fes, IroD, and
BesA, the three trilactone hydrolases known to hydrolyze iron(l11) bound enterobactin,

salmochelin, bacillibactin, respectively. % 99 99

However, successive events following the
hydrolysis of the ferric trilactone scaffolds, specifically the process of iron release is not yet
fully understood. Focusing on the ferric enterobactin complex, after hydrolysis of the complex,
the formation constant of the hydrolysis product still favors complex formation over iron
dissociation, thus emphasizing the need for a reductase.*?” *?° Once the ferric siderophore is
hydrolyzed, the stability constant is lowered, and the reduction potential of Fe(lll) falls into
the same range as for ferric hydroxamate siderophores. 27 12° These ferric hydroxamate
siderophores involve a ferric reductase for iron release.*?” 12° After the reduction of Fe(ll1),
Fe(l) is released from the complex and used in other metabolic pathways. Very little is known
about Fe(lll)-siderophore dissociation involving reductases and only a few siderophore
pathways have been investigated. For Fe(l1l) release from enterobactin in E. coli, a NADPH-
dependent reductase, YqjH, directly follows hydrolysis and catalyzes iron release from
enterobactin.®

YqjH belongs to the ferredoxin reductase-like family but differs from a ferredoxin
reductase (FNR) in that YqjH favors the flow of electrons from NADPH to ferric substrates,
whereas a FNR transfers an electron from reduced ferredoxin to NADP*.1% This characteristic
shows that the goal of YqjH is iron assimilation rather than NADPH generation.'®

Another known reductase ViuB, found in V. cholerae, is known to reduce the Fe(lll)-

vibriobactin complex. % 19 |t is identified as a siderophore-interacting protein (SIP) and

belongs to the same SIP oxidoreductase family as YqjH. 1% 1° Vibriobactin is a triscatecholate
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siderophore with a nonhydrolyzable backbone therefore an esterase is not necessary to promote
iron release. These two known reductases already differ, where YqjH is efficient in reducing
the hydrolyzed siderophore while ViuB favors the intact ferric triscatecholate complex. This
differentiation is dependent on the reduction potential of the ferric complex itself and whether
or not hydrolysis is first required to improve the reduction potential. A summary of the

associated proteins involved in iron(111) uptake for these bacterial strains is found in Table 1.3.
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Table 1.3. A summary list of siderophores used by the selected bacterial species and the
associated proteins involved in iron(111) uptake.

Species and siderophore

Uptake Proteins and Esterases

Iron Release Notes

P. aeruginosa
Native Siderophores

Pyoverdine OMR  FpvA % Iron Released in periplasm
Pyochelin OMR  FptA 3415 Iron Release Unknown
Xenosiderophore
Enterobactin OMR  PfeA 102 Hydrolysis occurs in periplasm
Periplasmic esterase  PfeE **
V- angum:trisr:Siderophores Unknown, but suggf_ested an
o 136 NADPH-dependent ferric reductase
Anguibactin OMR  FatA is involved
PBP and ABC Transporter  FatBCDE **¢
Vanchrobactin OMR  FvtA ¥
PBP and ABC Transporter ~ FvtBCDE " FvtCDE has homology to FatCDE
Esterase  VabH %
Xenosiderophore
Enterobactin OMR  FvtA/FetA 1% VabH is suggested as the acting
PBP and ABC Transporter ~ FvtBCDE ™ esterase, but not yet confirmed
Esterase  VabH 102 104
V. cholerae
Native Siderophores PBP and ABC transporters
Vibriobactin OMR  ViuA 120119 ViuPDGC and Vct PDGC recognize
PBP and ABC Transporter ~ ViuPDGC % both vibriobactin and enterobactin
Reductase  ViuB 1016
Xenosiderophore Lacks OMR and esterase for cyclic
Enterobactin OMR  IrgA & VCctA 106105 enterobactin. OMRs IrgA and VctA
PBP and ABC Transporter  VctPDGC 1% only recognize linear enterobactin
Esterase  none (dimer/trimer)
V. parahaemolyticus
Native Siderophores
Vibrioferrin OMR  PvuA %1% | | throuah photolvsi
PBP and ABC Transporter PvuBCDE %5 1% ron refease througn photolysis
Xenosiderophore
IrgA, VctA, PeuA 27 *Shows homology to V. cholerae.
Enterobactin OMR 0 Esterase unknown, but has 74%
PBP and ABC Transporter ~ VctPDGC* %7 identity to Fes
Esterase  Unidentified
C. jejuni
Xenos'demph%ﬁterobawn OMR  CfrAB 122 141123 Utilizes only rI1in(ej§1r entsrc()jba::tiq.
Esterase  Cee 124 PBP prefers the dimer hydrolysis
PBP  CeuE 1% product.
ABC transporter  CeuBCD %
E. coli
Native Siderophore
Enterobactin OMR  FepA %% .
PBP and ABC Transporter FeEBCDE o Hydrolysis of ester backhone
Esterase  Fes 5 % 9 required for iron release
Reductase  YgjH %010
S. enterica
Native S'demphg;fmoche"n OMR  IroN 142 143 % Hydrolysi]i of_salmochelin required
PBP  IroC 142 143 96 or iron release
Esterase  IroD and IroE *° 12
B. subtilis
Native Siderophore
Bacillibactin PBP and ABC Transporter ~ FeuABC# YclQ binds petrobactin
PBP  YclQs
Esterase  BesA %
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1.8. Bioinformatic Techniques

Genome mining has become an important tool in natural product discovery and has
expanded the capabilities of bioinformatic tools for genomic analysis.** 4’ In turn, useful
information is extracted from biological databases and used for sequence or structural analysis.

A few techniques used for sequence analysis include BLAST, MUSCLE, and HMMR.

1.8.1. Genome Mining for NRPS Biosynthesis Pathways and Siderophore

Discovery

In chemistry-driven natural product discovery, genome mining has become an
important bioinformatic tool. For siderophore discovery, the NRPS biosynthetic pathway is an
ideal genome mining target because of its straightforward architecture, conservation of core
enzymatic features, and predictability of substrate specificities.!*® A software tool,
antiSMASH, is able to identify NRPS clusters in a genome and identify the component
modules and domains, and ultimately predict the substrates, which then allows for the
prediction of siderophore structure.'*® The sequence analysis of the adenylation domain in
NRPS can help predict the amino acid composition of the siderophore being synthesized
through comparison of its Stachelhaus codes.*®® A closer prediction improves the chances of
siderophore discovery and techniques like antiSMASH, BLAST, and MUSCLE pull together

information for structural predictions.
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1.8.2. BLAST: Pairwise Alignments

Pairwise alignment tools like BLAST (Basic Local Alignment Search Tool) to detect
sequence similarity is one of the most commonly used techniques in characterizing new

sequences. ! 152

It allows one to identify homologous genes or proteins based on the statistical
similarity.®™! Homology is identified when the pair of sequences has a high degree of similarity,

based on the percent identity output from BLAST.>

1.8.3. MUSCLE: Multiple Sequence Alignments

Protein sequence alignment is an important bioinformatic technique that provides
information for structure prediction and critical residue identification. A multiple sequence
alignment of homologous sequences allows for a visualization of conserved residues, in
particular critical residues like those that reside in catalytic sites. A popular algorithm that
generates alignments that was used in this work was MUSCLE (MUItiple Sequence

Comparison by Log-Expectation).'>3

1.9. Conclusions

The importance of iron and the scarcity of soluble Fe(l1l) in most environments has
pushed microbes to evolve and expand the iron acquisition strategies. The abundance and
accessibility of microbial genomic information has opened and facilitated the discovery of
novel siderophores as well as providing significant insight into siderophore biosynthetic and
regulatory pathways. Many siderophores are synthesized by nonribosomal peptide synthetases,
which allow for discovery of new siderophores through genome mining. The novel NRPS

biosynthesized siderophores that are isolated and characterized provide further information on
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how NRPS assembles these natural products. In turn, this new information allows for closer

predictions of other novel siderophores, including the specifics like the stereochemistry of the

amino acids that compose the siderophores. As the number of sequenced microbial genomes

increases, we expand our ability to uncover the factors and mechanisms governing iron

recognition and release from the Fe(l11)-siderophore complexes.
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2. Two Siderophores Produced by Marinomonas Mediterranea
MMB-1: Acinetobactin and Mediterraneabactin — A

Diastereomer of Turnerbactin

2.1. Introduction

Bacteria produce low molecular weight secondary metabolites called siderophores to
obtain iron necessary for growth. Siderophores bind Fe(111) with high affinity and these Fe(l11)-
siderophore complexes are taken up by the cell. This iron is then used as a cofactor by many
enzymes involved in cellular processes. Siderophores are biosynthesized by either non-
ribosomal peptide synthetase (NRPS)-dependent process or the NRPS-independent synthetase,
i.,e., the so-called NIS process. Siderophores are classified by their functional binding groups,
typically catechols, hydroxamic acids, and a -hydroxycarboxylic acids, although other Fe(I11)-
binding groups are known in siderophores. The chirality around the metal center of the Fe(l11)-
siderophore complex plays in important role in recognition, acquisition, and extraction of iron
from the complex.! 2

Two well-known triscatechol siderophores, enterobactin (Ent), a trimeric macrolactone
of 2,3-dihydroxybenzoate (DHB)--Ser, and bacillibactin (BB), a cyclic trimeric ester 2,3-
DHB-Gly--Thr, coordinate Fe(Ill) in a hexadentate fashion with the catechol ligands. On top
of the different residues in the macrolactone core, BB contains a glycine residue between each
L-Thr and DHB. The chirality at the metal center of these two similar siderophores are
enantiomers, where Fe(l11)-Ent> adopts the A configuration,® 4 while Fe(111)-BB* forms the A

configuration.® Other triscatechol siderophores containing a chiral amino acid inserted between
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the oligoester backbone and DHB have also adopted enantiomeric configurations at the Fe(l11)
site. For instance, cyclic trichrysobactin, a triscatechol oligoester (DHB-PLys-'Ser)s, produced
by Dickeya chrysanthemi EC16,> and frederiksenibactin, a linear triscatechol ester (DHB-
LLys-tSer)s, produced by Yersinia frederiksenii ATCC 33641, bind Fe(lll) in A and A
configurations, respectively.® Another pair of diastereomers that form opposite configurations
are trivanchrobactin (DHB-PArg-Ser)s; and ruckerbactin (DHB--Arg--Ser)s.” These four
siderophores are pairs of diastereomers containing either cationic amino acids, ®“Lys or
DILArg. However, the POrn diastereomer to turnerbactin, another triscatechol ester (DHB-
LOrn-LSer)s,8 has not yet been reported.

Marinomonas mediterranea MMB-1 is a marine bacterium isolated from the
Mediterranean Sea.® 1° It has an interesting feature not seen in other species of this genus,
where the bacterium synthesizes melanin pigments from L-tyrosine.!! Siderophore production
in M. mediterranea MMB-1 has not been studied until now.

While analysis of the mediterraneabactin gene cluster of M. mediterranea MMB-1 did
not initially lead to the predicted structure of mediterraneabactin (DHB-POrn-Ser)s, two
siderophores were discovered fortuitously. Mediterraneabactin is a diastereomer of
turnerbactin, (DHB--Orn-tSer)s. We report herein the structural characterization of
mediterraneabactin (1), a related biscatecholamide compound, (2), monocatecholamide
compound (3), and acinetobactin (4) (Figure 2.1). The cyclic mediterraneabactin product was
not detected or isolated. The stereochemistry of the Fe(l11)-mediterraneabactin complex was
compared to its diastereomer Fe(lll)-turnerbactin. Acinetobactin, originally isolated from
Acinetobacter baumannii ATCC 19606 was also isolated from M. mediterranea MMB-1,

where it is the first instance this siderophore is produced in a marine bacterium.
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Figure 2.1. Structures of siderophores identified in Marinomonas mediterranea MMB-1:
Mediterraneabactin (1), biscatecholamide compound (2), monocatecholamide compound (3),
and acinetobactin (4).

2.2. Statement of Chapter Objectives

The purpose of this study was to use a genome mining approach to isolate and
structurally characterize the siderophores produced by Marinomonas mediterranea MMB-1.
This marine bacterium has been found to produce a new triscatechol amide siderophore,
mediterraneabactin (1), a related biscatecholamide compound, (2), a related
monocatecholamide compound (3), and acinetobactin (4). Mediterraneabactin is a
diastereomer of the siderophore, turnerbactin. A related but distinct biosynthetic gene cluster
(BGC) of turnerbactin (DHB--Orn--Ser)s, was identified in the genome of the bacterium

Marinomonas mediterranea MMB-1. Isolation of the siderophore from M. mediterranea
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MMB-1 revealed the triscatechol oligoester (DHB-POrn-tSer)s. The mediterraneabactin
structure was elucidated through mass spectrometry, amino acid analysis, and circular
dichroism spectroscopy (CD). CD spectroscopy established that Fe(lll)-mediterraneabactin
and Fe(ll)-turnerbactin are formed in opposite enantiomeric configuration at the Fe(lll) site.
The cyclic mediterraneabactin product was not detected. Acinetobactin, a siderophore and
virulence factor, originally produced by A. baumannii ATCC 19606 was also isolated from M.
mediterranea MMB-1 and structurally characterized through 1D NMR analysis and mass
spectrometry. Overall, the analysis of the genome sequence revealed that M. mediterranea
MMB-1 possesses two biosynthesis gene clusters: one cluster with high similarity to genes
encoding turnerbactin in Teredinibacter turnerae T7901, while the other cluster with high

similarity to the BGC for acinetobactin.

2.3. Materials and Methods

2.3.1. General Experimental Procedures

UV-visible absorption spectra were obtained on an Agilent Cary 300 UV Vis
spectrophotometer. Electronic circular dichroism spectra were measured on a Jasco J-1500
circular dichroism spectropolarimeter. Mass spectrometry analysis was carried out on a Waters
Xevo G2-XS QTof with positive mode electrospray ionization coupled to an ACQUITY UPLC
H-Class system with a Waters BEH C18 column. Culture extracts were analyzed with a linear
gradient of 0% to 30% CH3CN (0.1% formic acid) in ddH2O (0.1% formic acid) over 10
minutes. For MSMS analysis, a collision energy profile of 20, 25, 30 kEV was employed.
Using MassLynx 4.1, chromatograms for masses of interest were generated and molecular ion

peaks quantified by integration (ApexTrack algorithm). The absorbance of the eluent was
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monitored at 215 nm. NMR spectroscopy was performed on a Bruker Advanced NEO 500
MHz, with a Prodigy BBO cryoprobe. Chemical shifts were referenced through residual

solvent peaks [*H (DMSO-ds) 2.50 ppm, *C (DMSO-ds) 39.51 ppm].

2.3.2. Genome Mining and Gene Cluster Annotation

The genome of Marinomonas mediterranea MMB-1 was accessed through NCBI and
analyzed with the NRPS cluster-predicting software PRISM and antiSMASH.*? 3 Genes
within the siderophore cluster and their corresponding amino acid sequences were analyzed

using BLAST and the PFAM database to predict function of proteins encoded by the cluster.

2.3.3. Bacterial Growth and Siderophore Isolation

Marinomonas mediterranea MMB-1, obtained from ATCC (ATCC 700492), was
cultured in artificial seawater medium (ASW) containing 15 g NaCl, 0.75 g KCI, 0.2
MgSO4-7H20, 0.1 g CaCl-2H20, 1 g NH4ClI, 5 g sodium succinate, and 3 g Na2HPO4-7H.0
per liter of doubly deionized water. The medium was adjusted to pH 7.0 and autoclaved. A
one-liter culture was grown on an orbital shaker (180 rpm) at 25°C for 7 days. The presence of
potential siderophores were monitored with the Fe(lll)- CAS solution assay for a color
change.* The cultures were harvested at 6,000 rpm for 30 minutes at 4°C and the supernatant
was kept for further siderophore extraction. The supernatant was incubated with Amberlite
XAD-4 resin for 3-4 hours at ambient temperature with mild agitation. The siderophores were
eluted from the resin with 90% methanol and concentrated by rotary evaporation.

Eluent was initially purified by semi-preparative HPLC on a YMC 20x250 mm C18-

AQ column, with a linear gradient of 10% MeOH in ddH20 (+0.1% trifluoroacetic acid) to
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80% MeOH in ddH.O (+0.1% trifluoroacetic acid) over 40 minutes. Samples were
ultrapurified on the same column with a gradient of 10% MeOH in ddHO (+0.1%
trifluoroacetic acid) to 40% MeOH in ddH20 (+0.1% trifluoroacetic acid) over 40 minutes for
mediterraneabactin, which eluted at 31.5 minutes. Acinetobactin was ultrapurified with a
gradient of 20% MeOH in ddH20 (+0.1% trifluoroacetic acid) to 60% MeOH in ddH»0 (+0.1%
trifluoroacetic acid) over 40 minutes and eluted at 25.1 minutes. The eluent was continuously
monitored (215 nm and 310 nm). Purified samples were lyophilized and stored at -20°C.
Extracts were analyzed through positive ion mode ESI-MS on a Waters Xevo G2-XS
QTof coupled to a Waters Acquity H-Class UPLC system. A Waters BEH C18 column was
used with a gradient of 0-100% water/acetonitrile (both with 0.1% w/v formic acid). Using
MassLynx 4.1, chromatograms for masses of interest were generated and molecular ion peaks
quantified by integration (ApexTrack algorithm). The absorbance of the eluent was monitored

at 215 nm.

2.3.4. Amino Acid Analysis of Mediterraneabactin with Marfey’s Reagent

Purified apo mediterraneabactin (0.61 mg) was dissolved in 6 M HCI, sealed in an
ampoule, and heated at 120°C for 17 hours to hydrolyze the siderophore. Hydrolysis using HI
is commonly used to reduce any modified amino acids like N5-hydroxyornithine or N5-acetyl-
N5-hydroxyornithine. Since the ornithine in mediterraneabactin is not modified, HCI is
sufficient for hydrolysis. The hydrolysis mixture was evaporated to dryness to remove HCI
and redissolved in doubly deionized water. Two additional cycles of evaporation and
dissolution in ddH2>O was repeated. Amino acid standards were prepared by dissolving D-Orn

(>98%), L-Orn (>98%), D-Ser (>98%), and L-Ser (>99%) in ddH.O at 1 mg/mL. The
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hydrolyzed siderophore samples and amino acid standards were then derivatized with 1-fluoro-
2-4-dinitrophenyl-5-L-alanine amide (Marfey’s reagent) by using standard procedures.®
Derivatized hydrolysis products were separated by HPLC on a YMC 4.6x250mm C18-AQ
column with a gradient from 10% to 45% CH3CN in triethylamine in phosphoric acid over 45
minutes. Derivatized hydrolysis products were co-injected with Marfey’s derivatized amino
acid standards to determine the stereochemistry of the amino acids in mediterraneabactin. The
stereochemical assignment was made by comparison with the retention times of Marfey’s

derivatized amino acid standards of D- and L- ornithine and D- and L- serine (Sigma-Aldrich)

using the method described above.

2.3.5. Electronic Circular Dichroism Spectroscopy of Fe(ll1) Siderophore

Complexes

The absolute configurations of Fe(lll)-mediterraneabactin and Fe(l1l)-turnerbactin
were evaluated by ECD spectroscopy. The ferric complexes of the diastereomers were
prepared in a citrate-phosphate buffer (50 mM, pH 7.40) by mixing a solution of FeCls [2.53
mM, 50 mM HCI (aq)] with 1.0 equivalent of the desired apo-ligand. Fe(lll)-complex
formation was tracked by UV-visible spectroscopy by following the absorbance at 498 nm.
Full CD spectra of the iron complexes and blank (50 mM citrate-phosphate buffer) were
obtained using the following parameters: 400-600 nm; 2 s D.L.T., 1 nm bandwidth, and 100

nm sscan speed and recorded on a Jasco J-1500 CD spectropolarimeter.
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2.4. Results

2.4.1. Analysis of the Mediterraneabactin Gene Cluster for Siderophore

Biosynthesis

Through bioinformatics and genome mining approaches applied to microbial genome
sequences, a distinct NRPS gene cluster surrounded by siderophore iron transport genes was
revealed (Figure 2.2). Proteins with closest similarity to the gene products of this cluster are
shown in Table 2.1. This biosynthetic gene cluster shows similarity to the tnb locus encoding
biosynthesis of turnerbactin in Teredinibacter turnerae T7901 (Figure 2.1, Table 2.1 - 2.2).8
Homologs of tnbCEBA encoding the biosynthesis and activation of 2,3-DHB for turnerbactin
were identified in M. mediterranea MMB-1. TnbC isomerizes chorismate into isochorismate,
then TnbB hydrolyzes isochorismate into 2,3-dihydro-DHB, which is oxidized by TnbA to
DHB. TnbE activates and transfers DHB to TnbB. These genes are also homologous to the
entCEBA genes involved in the biosynthesis of DHB for enterobactin. The full annotation of
the mediterraneabactin siderophore gene cluster in M. mediterranea MMB-1 with proposed
gene names is found in Table 2.3 with the graphical representation shown in Figure 2.3.

Focusing on the NRPS in M. mediterranea MMB-1, it is a two-module protein
consistent with a triscatechol siderophore (Figure 2.2). The Stachelhaus code of the first
adenylation domain did not have a strong prediction on incorporation of a certain amino acid
residue. The adenylation domain in the second module predicted incorporation of Ser (Figure
2.2b). Both of the NRPS in M. mediterranea MMB-1 and T. turnerae T7901 are composed of
two modules, however the distinction between the two NRPS occurs in the first module, where

an epimerization domain is present in the BGC for mediterraneabactin, responsible for
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converting “AA to PAA, while this domain is absent in the BGC for turnerbactin. The presence
of the epimerization domain in M. mediterranea MMB-1 then predicts the production of a
siderophore composed of (DHB-PAA-LSer)s, with similarities to turnerbactin.
al-nE}__B#
Nonribosomal peptide synthetase

6y 7/ 8 9 10 11 12 13 14

DHB synthesis and activation
Biosynthesis . Transporter/Receptor . Accessory Protein

b

Mediterraneabactin — M. mediterranea MMB-1

C C —(DHB-PLAA-'Ser),
module 1 module 2
Turnerbactin — T. turnerae T7901
C C —(DHB-tOrn-'Ser),

module 1 module 2

Figure 2.2. Biosynthetic gene cluster of two diastereomers of (DHB-""-Orn--Ser); found in
M. mediterranea MMB-1 and in T. turnerae T7901. (a) The genetic organization of the
mediterraneabactin biosynthetic gene cluster. (b) NRPS domain architecture involved in the
biosynthesis of the triscatechol siderophores mediterraneabactin and turnerbactin. The
adenylation domain is represented by the selected amino acid, in this case ornithine for T.
turnerae T7901 and unknown for M. mediterranea MMB-1.
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Table 2.1 Annotation of mediterraneabactin gene cluster in Marinomonas mediterranea
MMB-1, including predicted protein functions based on sequence analysis using Pfam and
BLAST. The sequence similarity of each gene to the corresponding homolog from the
turnerbactin gene cluster (Teredinibacter turnerae T7901) is indicated. I: identity, P: positives.

. Ref Seq homolo Homolo
Ref _Seq in Protein . qin ’ gene ing
M. mediterranea . Proposed function . 1/P %
MMB-1 Size Teredinibacter T. turnerae
turnerae T7901 T7901
WP 0136605311 689 lonB-dependent .\ 4158170551 24144
receptor
WP_013660532.1 485 Enterochelin /s 415816819.1 28/41
esterase
WP_013660533.1 69 Mb;':):;r:"y WP_015818593.1 48/63
WP_013660534.1 3,014 NRPS WP—O(‘ES'%‘;SB& tnbF 47/60
WP_013660535.1 440 Enterobactin —\yo 158197121 tnbS 49/68
transporter EntS
WP 013661956.1 388 isochorismate  WP_015819844.1 tnbC 44/59
synthase (tnbC)
(2,3
WP_013661955.1 571 dihydroxybenzoyl) Wp—l(?;éé§;814'l tnbE 51/67
adenylate synthase
WP 0136619541 301 isochorismatase  WP_015816823.1 tnbB 50/70
family protein (tnbB)
2,3-dihydro-2,3-
WP_013661953.1 285 dihydroxybenzoate WP_015818365.1 tnbA 47163
(tnbA)
dehydrogenase
efflux RND
WP_013660114.1 405 _ transporter WP_015817978.1 tnbD 37/57
periplasmic adaptor
subunit
Multidrug efflux
WP_013660115.1 1,035 RND transporter ~ WP_015817325.1 51/71

permease subunit
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Table 2.2. The sequence similarity of the mediterraneabactin biosynthetic genes to the
corresponding homolog from the enterobactin gene cluster (Escherichia coli K12) is indicated
as percent identity.

Protein Homolog in Homolog
Ref Seq . Proposed function - gene namein 1%
Size E. coli K12 -
E. coli K12
WP 0136605311 689 TonB-dependent
receptor
WP_013660532.1 485 Enterochelin esterase PSF24345.1 fes 35.04
WP_013660533.1 69 MbtH family protein WP_249568728.1 40.00
WP_013660534.1 3,014 NRPS WP_249568727.1 entF 42.67
WP 0136605351 440 E”tembacé':tgans"’o”er WP_090082098.1 ents 48.32
WP_013661956.1 388 isochorismate synthase =~ WP_249568723.1 entC 40.92
WP 0136619551 571 (&3-dihydroxybenzoyl) \\n 540560770 1 entE 52.59
- adenylate synthase -
WP 0136619541 301 'SOChO”Zr::t‘Z‘ff family  \wp 249568722.1 entB 51.85
2,3-dihydro-2,3-
WP_013661953.1 285 dihydroxybenzoate WP_249568721.1 entA 52.42
dehydrogenase
4'-phosphopantetheinyl
WP_013661952.1 232 transferase superfamily ~ WP_249568730.1 entD 31.07
protein
efflux RND transporter
WP_013660114.1 405 periplasmic adaptor
subunit
Multidrug efflux RND
WP_013660115.1 1,035 transporter permease

subunit
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Marinomonas mediterranea MMB-1, complete sequence

NCBI Reference Sequence: NC_015276.1
GenBank FASTA
ink To This View | Feedback

200K 400K 600K |BODK M [L200K 11,48;&,5@?( [,B00K |2M 2,200K |2,400K |2600K |2800K |3M |3,200K |3,400K |3,600K [3,800K |4M 4,200 K 4,684,316
IR I RN D TR I DR LT Y] R D DO L I A T DO O

9 S ne_o15276.1 + | Find: v L@ of, 1= B4 1522012 l A Tools + | ¥ Tracks » ¥, Download » 7 =
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Wp_0136605331 Il

3

1 200K (400K 600K 800K |IM |L200K |1400K |L6OOK [1800K |2M 2,200K |2,400K [2600K |2800K |3 r;m,zuu K |3,400K [3,600K [3,800K |4M [4,200K | 4,684,316
2 NC_015276.1 ~ | Find: v Q@ o 1= B A Tools « | ¥ Tracks » ¥, Download » @ 7 +
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Figure 2.3. Graphical representation of the mediterraneabactin gene cluster within the
Marinomonas mediterranea MMB-1 genome generated from the National Center for
Biotechnology Information (NCBI) website.

2.4.2. lsolation and Structural Characterization of Mediterraneabactin

Siderophores from M. mediterranea MMB-1 were extracted and purified from a low-
iron minimal medium. The CAS assay was used to track the siderophores throughout the
purification process.'* RP-HPLC revealed a total of five peaks displaying CAS activity (Figure
2.4). The following sections will cover each siderophore individually. Four of the five peaks

(1-4) are related to the siderophore mediterraneabactin.
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2.4.2.1. Structural Characterization of the Triscatechol

Mediterraneabactin

UPLC-ESIMS determined the mass of the molecular ion [M+H]*: (DHB-Orn-Ser)s (1),
m/z 1030.4014, corresponding to a molecular formula CssHeoN9O19 (calculated 1030.4000).
This mass is similar to that of turnerbactin, isolated from T. turnerae T7901.2 We have named
this new siderophore mediterraneabactin.

ESI tandem mass spectrometry (ESI-MS/MS) analysis of compounds 1 — 3 are
summarized in Table 2.4. The analysis revealed fragments in agreement with a DHB-Orn-Ser
core structure, which has been previously observed in the siderophore turnerbactin.® Loss of
the catechol was identified for compounds 1 — 3 by the fragment with am/z 137.07 (b1) (Figures
2.6, 2.9, 2.11, and 2.12). The MSMS analysis of mediterraneabactin (1) shown in Figure 2.6,
shows that the loss of the catechol gave rise to the 2-DHB-3-Orn-3-Ser fragment, m/z 894.36
(y1). For fragmentation between Orn and Ser in 1 formed the DHB-Orn fragment m/z 251.11
(b2) and the 2-DHB-2-Orn-3-Ser fragment, m/z 780.30 (y2). Signals originating from the
cleavage of the serine esters were identified in mediterraneabactin as m/z 675.25, m/z 338.14,
and m/z 693.27. Internal fragments of this compound, summarized in Table 2.4 are also
observed further confirming this structure. The structure of mediterraneabactin with the
fragment masses are depicted in Figure 2.7. The mass of the fragments that are correlated with
the loss of various constituents of the siderophore are indicated in Table 2.4. Fragment losses
refer to the parent ion identified in the table. All of these fragment losses are observed in the

MSMS of each compound.
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M. mediterranea Supernatant Crude; 10 to 80% MeOH at 2% min

na

Absorbance at 215 nm

10 20 30 40 50

Time (minutes)

Figure 2.4. HPLC of the MeOH XAD-4 extract from the supernatant of a M. mediterranea
MMB-1 culture. ESI-MS of peaks 1 — 3 are shown in Figure 2.5-2.8.

20220217 AMJ Mmedi Peak 2B 0-60 ACN LC-7 276 (2.483) 1: TOF MS ES+
100- 515.7074 4.12eb6
[M+2H]*
516.2048
[M+H]™*
1030.4014
344.1374
[M+3H]3*
=
+53
1031.400
.516.7070
644.2917
I | l 1083.3085
(o8 SO et mpieppiogpepbpepiopap - m/z

1200 400 600 800 1000 1200 1400 1600 1800
Figure 2.5. HR-ESI-MS spectrum of mediterraneabactin (1), m/z 1030.4014 [M+H]**.
Calculated exact mass for mediterraneabactin [M+H]** is m/z 1030.4000 (CasHgoNgO1o).
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Figure 2.6, full spectrum
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Figure 2.6. ESI-MSMS spectrum of mediterraneabactin (1) (m/z 1030.40; CsHsoN9O19), with
selected regions zoomed in for clarity. Collision energy profile of 20, 25, and 30 KEV employed
for optimal fragmentation.
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Figure 2.6. continued
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Figure 2.6. Continued
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Figure 2.7. Structure of mediterraneabactin (1), with b/y fragment masses.

Table 2.4. Molecular lons and Common Mass Fragments of Mediterraneabactin (1), (2), (3),
compared to Turnerbactin

Turnerbactin Mediterraneabactin  (DHB-Orn-Ser),  (DHB-Orn-Ser) Modified
[M+H]" Q) . ) . 3) X (DHB-Orn-+Ser)3 Fragment
[M+H] [M+H] [M+H] [M+H]

1030.4 1030.4 693.3 356.1 1012.4 Parent ion

780.3 780.3 762.3 Loss of DHB-Orn

693.3 693.3 675.2 675.2 Loss of DHB-Orn-Ser

530.2 530.2 Loss of DHB-Orn x2

443.2 443.2 443.2 425.2 Loss of DHB-Orn-Ser
& DHB-0Orn

356.1 356.1 356.1 338.1 Loss of DHB-Orn-Ser
X2

251.1 251.1 251.1 251.1 251.1 DHB-Orn

115.1 115.1 115.1 115.1 115.1 Orn
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2.4.2.2. Structural Characterization of the Biscatechol, Monocatechol, and

a Triscatechol Compound Related to Mediterraneabactin

Structural characterization was also completed of the related biscatechol unit (2),
monocatechol unit (3), and a modified triscatechol compound related to mediterraneabactin.
The ESI-MS of compounds 2 and 3 revealed molecular ions [M+H]" at m/z 693.2744,
corresponding to a molecular formula of CazoH41NsO13 (calculated 693.2732 ) and m/z
356.1537, corresponding to a molecular formula of C1sH22N3O7 (calculated 356.1457). The
modified triscatechol compound related to mediterraneabactin was also identified, with a
molecular ion [M+H]" at m/z 1012.4167, corresponding to a molecular formula C4sHsgNgO1s
(calculated 1012.3899), 18 amu less than mediterraneabactin.

ESI-MS/MS of these three compounds are depicted in Figures 2.9, 2.11, and 2.12. The
molecular ions and some of common mass fragments of mediterraneabactin are summarized
in Table 2.4 and the b/y fragment masses are shown along with the corresponding structures in
Figures 2.10 and 2.13. The fragment characteristic of Orn, with the ion m/z 115.09 is evident
in the mass spectra of biscatechol unit (2), monocatechol unit (3), and a modified triscatechol
compound. Further analysis of the b/y fragments showed that the loss of the catechol was
identified for these three compounds by the fragment with a m/z 137.07 (b1) (Figures 2.9, 2.11,
and 2.12). For compound 3, the monomer unit of mediterraneabactin, the loss of catechol gave
rise to the Orn-Ser fragment, m/z 220.13 (y1), while for compound 2, the dimer of
mediterraneabactin, the loss of the catechol gave rise to the 1-DHB-2-Orn-2-Ser fragment, m/z
557.27 (y1). Fragmentation between Ser-Orn for 3 produces the DHB-Orn fragment with m/z
251.11 (b2) and Ser fragment m/z 106.05 (y-). Fragmentation between Ser-Orn for 2 produces

the DHB-Orn fragment with m/z 251.11 (b,) and the 1-DHB-1-Orn-2-Ser fragment with m/z
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443.17 (y.). Signals originating from the cleavage of the serine ester in 2 were identified as
m/z 338.13 and m/z 356.14. Other common mass fragments seen in 2 include the loss of DHB-
Orn with m/z 443.17, and the loss of DHB-Orn-Ser with m/z 356.14 (Figure 2.10).

For the modified triscatechol compound, there are two possible structures, a dehydro-
alanine triscatechol compound, or cyclized mediterraneabactin. The loss of catechol in a
dehydro-alanine compound would give rise to the 2-DHB-3-Orn-2-Ser-1-(Dehydro-Ser)
fragment with m/z 876, however, this fragment is not observed in the ESI-MS/MS analysis.
Fragmentation between Orn and Ser formed the DHB-Orn fragment with m/z 251.10 (b,) and
the 2-DHB-2-0rn-2-Ser-1-(Dehydro-Ser) with m/z 762.31 (y2). One signal originating from
the cleavage of the serine esters in the modified triscatechol was identified as m/z 657.23.
Internal fragments of this compound, summarized in Table 2.4 are also observed. Due to the
overlap of similar fragments in the dehydro-alanine and cyclized mediterraneabactin
compound, it is difficult to differentiate between the two compounds by ESI-MSMS. The
distinguishing fragment for the dehydro-alanine triscatechol compound that would need to be
observed is m/z 876 to identify the presence of this compound. This fragment is not seen, but
the absence of this mass is not definitive evidence for the cyclic compound. Overall, the
molecular ion [M+H]" at m/z 1012.4167 could be a dehydro-alanine triscatechol compound or
cyclized mediterraneabactin. In the case of turnerbactin, the cyclic form was not observed,

while the dehydro-turnerbactin was isolated and structurally characterized.®
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Figure 2.8. (a) HR-ESI-MS spectrum of dimer unit (DHB-POrn--Ser), associated with
mediterraneabactin, m/z 693.2744 (C30H41NeO13). (b) HR-ESI-MS spectrum of the monomer

unit (DHB-POrn-LSer) associated with mediterraneabactin, m/z 356.1537 (C1sH22N307).
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Figure 2.9. ESI-MSMS spectrum of mediterraneabactin dimer unit (DHB-POrn-Ser), (m/z
693.2744), with selected regions zoomed in for clarity. Collision energy profile of 20, 25, and
30 KEV employed for optimal fragmentation.
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Figure 2.10. Structure of mediterraneabactin dimer unit (DHB-POrn-tSer), (2 - left), and
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77



20220623 AMJ Mmedi 2A 0-30 ACN LC-2 88 (1.155) Cm (87:92)

100- 115.0964 1.38e6
Figure 2.11
Full Spectrum
X
220.1396
| 251.1140
hoe.osgy o704 356.1575
0 "':I""‘>' 'I"["Il'"'I""llf"‘l'L'"l""l""I""I"u"l""l""l' m/Z
50 100 150 200 250 300 350 400

20220623 AMJ Mmedi 2A 0-30 ACN LC-2 88 (1.155) Cm (87:92) 20220623 AMJ Mmedi 2A 0-30 ACN LC-2 88 (1.155) Cm (87:92)

251.1140 2.54e5

- 70.0699 . 1.98e4 00 Figure2.11
Figure 2.11 190-260 m/z
50-110 m/z
<l 97.0829 <
87.0988 106.0583 233.1014 252.1073
205.1089 ‘ 7
0 T e e .|| T |..||.|'..||..|| P M2z
50 60 70 80 90 100 110 190 200 210 220 230 240 250 260
20220623 AMJ Mmedi 2A 0-30 ACN LC-2 88 (1.155) Cm (87:92) 20220623 AMJ Mmedi 2A 0-30 ACN LC-2 88 (1.155) Cm (87:92)
100, 1150964 ) 1.38¢6 , 0 Figure 2.11 338.1398 2.27e4
Figure 2.11 260-380 m/z
100-190 m/z 339.1302
& N
253.1058
137.0341 3211176 || ~201°7°
04~ — : F————————"_miz 0.‘.‘..“..!". P Mz
100 120 140 160 180 260 280 300 320 340 360 380

Figure 2.11. ESI-MSMS of the monomer unit (DHB-Orn-Ser) with a parent mass of m/z 356.1
[M+H]* (C15H22N307) with selected regions zoomed in for clarity. Collision energy profile of
20, 25, and 30 KEV employed for optimal fragmentation.
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Figure 2.12. ESI-MSMS of the compound with a parent mass of m/z 1012.41 [M+H]", 18 amu
less than mediterraneabactin (m/z 1030.40 [M+H]*) (DHB-Orn-Ser)s (C4sHssN9O1s), selected
regions zoomed in for clarity. Collision energy profile of 20, 25, and 30 kEV employed for
optimal fragmentation.
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Figure 2.13. Possible structure of compound with a parent mass of m/z 1012.41 [M+H]", 18
amu less than mediterraneabactin, with key peptide fragment masses (fragment with m/z in
red was not observed).

2.4.3. Chiral Amino Acid Analysis of Mediterraneabactin

The mediterraneabactin gene cluster (Figure 2.2) contains an epimerization domain
within the NRPS assembly line. Given the placement of the epimerization domain,
incorporation of POrn is expected. Chiral amino acid analysis reveals the difference in structure
of mediterraneabactin (1) and turnerbactin (Figure 2.14). This amino acid analysis of
mediterraneabactin established the presence of D-ornithine and L-serine. Mediterraneabactin
was acid hydrolyzed and subsequently derivatized with Marfey’s reagent (1-fluoro-2,4-
dinitrophenyl-5-L-alanine amide, FDAA).?® This chiral derivatizing reagent, FDAA, allows
for the differentiation between D- and L- isomers of amino acids and is very important in
siderophore characterization especially when differentiating between two siderophores where

the only difference is one chiral amino acid.
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Figure 2.14. Structure comparison of mediterraneabactin produced by M. mediterranea
MMB-1 to its diastereomer turnerbactin, produced by T. turnerae T7901.

Possible FDAA-derivatives of the hydrolysis products of mediterraneabactin are shown
in Figure 2.15. Figure 2.16a -e presents the HPLC chromatograms of Marfey’s assay for the
HCI hydrolysis products of mediterraneabactin. The derivatized samples were compared to
chiral amino acid standards prepared the same way (Figure 2.17ab). Assignments were
confirmed by co-injection of the derivatized siderophore sample with amino acid standards.
Retention times (minutes) of the FDAA-derivatized amino acids used as standards were PSer
(25.48, mono a-derivative), “Ser (23.67, mono a-derivative), P°Orn(19.28, mono a-derivative;
23.16, mono &-derivative, and 41.92, bis-derivative), “Orn (19.50, mono a-derivative; 23.16,
mono J-derivative, 44.76, bis-derivative). Retention times (minutes) of FDAA-derivatized
hydrolysis products of mediterraneabactin were POrn (18.79, mono a-derivative; 23.08, mono
S-derivative, and 41.61, bis-derivative) and “Ser (24.20, mono o-derivative).

HPLC separation of the FDAA-derivatized amino acids in the presence of added
FDAA-derivatized standards of POrn, Orn, PSer, and “Ser established the presence of POrn

and “Ser in mediterraneabactin. Therefore, this chiral amino acid analysis confirms the
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genomic prediction of °Orn and “Ser in mediterraneabactin, (DHB-POrn--Ser)s, making it the

diastereomeric siderophore to turnerbactin, (DHB--Orn--Ser)s.
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Figure 2.15. Possible FDAA-derivatives of amino acids serine and ornithine resulting in the

hydrolysis of mediterraneabactin siderophores.
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Figure 2.16. HPLC chromatograms of Marfey’s assay for HCIl hydrolysis product of
mediterraneabactin. (a). Mediterraneabactin. (b) Mediterraneabactin co-injected with D-
ornithine (c) Mediterraneabactin co-injected with L-ornithine (d) Mediterraneabactin co-
injected with D-serine (e) Mediterraneabactin co-injected with L-serine. Derivatized amino
acids from HCI hydrolysis product of mediterraneabactin was separated by HPLC on a YMC
4.6x250mm C18-AQ column with a gradient from 10% to 45% CH3CN in triethylamine in
phosphoric acid over 45 minutes at a flow rate of 1.0 ml/min. The absorbance was monitored
at 340 nm. Retention times are assigned as follows: D-ornithine (18.79, 23.08, 41.61), L-
ornithine (19.37, 23.08, 44.62), D-serine (25.48), L-serine (23.89), FDAA (37.14), unidentified
peak (38.93). Retention times varied slightly from one run to another.
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Figure 2.17. HPLC chromatograms of Marfey’s assay amino acid standards to use in
comparison of the HCI hydrolysis product of mediterraneabactin. (a). D-Ornithine and L-
Ornithine Standards (b) D-Serine and L-Serine Standards Derivatized amino acids were
separated by HPLC on a YMC 4.6x250mm C18-AQ column with a gradient from 10% to 45%
CH3CN in triethylamine in phosphoric acid over 45 minutes at a flow rate of 1.0 ml/min. The
absorbance was monitored at 340 nm. Retention times are assigned as follows: D-ornithine
(19.28, 23.16, 41.92), L-ornithine (19.50, 23.16, 44.76), D-serine (25.48), L-serine (23.89),
FDAA (37.23). Retention times varied slightly from one run to another.
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2.4.4. Chirality of Fe(I11)-Mediterraneabactin and Fe(l11)-Turnerbactin

A tris bidentate catechol siderophore will form an octahedral metal complex and can
result in either the A or the A configuration. The diastereomeric counter to Fe(lll)-
trivanchrobactin is Fe(I11)-ruckerbactin with “Arg and adopts the A configuration.” Similar
results are observed with PLys in Fe(ll1)-cyclic trichrysobactin directing the formation of the
A configuration, while “Lys in Fe(l11)-frederiksenibactin adopts the A configuration.® On top
of the trend already presented, enterobactin, a macrolactone of (DHB-'Ser)s, adopts the
A configuration,! while the synthetic enantiomer of enterobactin (DHB-PSer)s adopts the A
configuration.* These three sets of diastereomeric counters demonstrate the D-amino acids
direct the chirality of the Fe(l1l) complex toward the A configuration, while the L-amino acids
direct toward the A configuration. Now, the question arises whether POrn in
mediterraneabactin affects the chirality at the Fe(lll) center in Fe(lll)-mediterraneabactin in
the same manner that PArg in Fe(l11)-trivanchrobactin forms the A configuration.” Electronic
circular dichroism (ECD) spectroscopy was utilized to identify the chirality of Fe(lll)-
mediterraneabactin in comparison to Fe(lll)-turnerbactin and how the diastereomeric amino
acids, POrn and “Orn affect the chirality. The ECD spectra of Fe(l11)-mediterraneabactin and
Fe(ll)-turnerbactin both display four bands and are inverted in sign from each other (Figure
2.18, Table 2.5). The ECD spectra of the two Fe(l11)-bound diastereomeric siderophores appear
as near images of each other, where Fe(lll)-mediterraneabactin adopts the A configuration and
Fe(ll)-turnerbactin the A configuration, after comparison to the CD spectra of Fe(lll)-
enterobactin and Fe(lIl)-bacillibactin.® #. This result indicates an opposite configurational

preference around iron due to the opposite chirality of the amino acid ornithine. The opposing
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chirality for the ferric complexes is likely due to the stereochemistry of the Orn residue
adjacent to the catecholamide. We observe that the siderophores with the D-amino acid takes
on the A configuration, in this case Fe(lll)-mediterraneabactin, Fe(lll)-trivanchrobactin, and
Fe(lll)-cyclic trichrysobactin. The siderophores with the L-amino acid adjacent to the
catecholamide all take on the A configuration, Fe(lll)-turnerbactin, Fe(lll)-ruckerbactin,

Fe(111)-frederiksenibactin and Fe(I11)-enterobactin (DHB- Ser)s.

10

A

Fe(lll)-mediterraneabactin

CD [mdeg]
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Figure 2.18. ECD spectra of Fe(lll)-mediterraneabactin and Fe(ll1)-turnerbactin. Conditions:
approximately 50 uM Fe(l11)-mediterraneabactin (citrate-phosphate buffer, pH 7.4), and 50
uM Fe(l11)-turnerbactin (citrate-phosphate buffer, pH 7.4).

Table 2.5. Comparison of the molar ellipticity of the transitions in Fe(l11)-mediterraneabactin
and Fe(l11)-turnerbactin.

T -1 As T -1k As LMCT, As LMCT, As
Mediterraneabactin - 311 nm, (-6.01) 360 nm (2.89) 434 nm (-3.18) 565 nm (0.56)
Turnerbactin 309 nm, (6.39) 354nm (-9.67) 431 nm (2.61) 563 nm (-3.44)
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2.4.5. Analysis of the Acinetobactin Gene Cluster for Siderophore Biosynthesis

The acinetobactin gene cluster in A. baumannii ATCC 19606 responsible for the
biosynthesis, export, and uptake of acinetobactin was identified in studies by Yamamoto and
Actis.’® 17 18 Analysis of the M. mediterranea MMB-1 genome with antiSMASH*? does not
reveal a biosynthetic gene cluster associated with acinetobactin. However, according to in
silico predictions using BLAST comparisons to the acinetobactin BGC in A. baumannii ATCC
19606 (Table 2.6), we identified a cluster of genes within M. mediterranea MMB-1 with over
45% identity to the acinetobactin biosynthesis genes (Figure 2.19-20). A total of 18 genes are
involved in the biosynthesis, export, and uptake of acinetobactin in A. baumannii ATCC
19606. In M. mediterranea MMB-1, 16 out of the 18 genes were identified. The two genes that
were not identified in M. mediterranea MMB-1 are basH, which encodes an acinetobactin
biosynthesis thioesterase and bauF, an acinetobactin utilization protein. Interestingly, the
genes 13-15, and 17 (Table 2.6), with similarity to basB, bask, basF, and basl respectively,
are found further downstream from the cluster, and are the same genes in the BGC for

mediterraneabactin.
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a Acinetobactin gene cluster in M. mediterranea MMB-1
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Figure 2.19. Biosynthetic gene clusters of acinetobactin identified in (a) Marinomonas
mediterranea MMB-1 in comparison to the BGC in (b) Acinetobacter baumannii ATCC
19606.
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Figure 2.20. Graphical representation of the acinetobactin gene cluster within M. mediterranea
MMB-1. Genome generated from the National Center for Biotechnology Information (NCBI)
website.
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2.4.6. Isolation And Structural Characterization of Acinetobactin

Further isolation of siderophores from the supernatant extract of M. mediterranea
MMB-1, reveals a compound with a molecular ion mass of m/z 347.14 ([M+H]"). The structure
was elucidated by ESIMSMS, H NMR spectroscopy, identifying it as acinetobactin,
previously isolated and the most studied siderophore in the human pathogen A. baumannii
ATCC 19606. Acinetobactin is a virulence factor for the pathogenic strain and is composed of
2,3-dihydroxybenzoic acid, L-threonine, and N-hydroxyhistamine and features two key motifs,
a catechol oxazoline and a histamine connected by a hydroxamate bridge. MSMS analysis
displays the same fragmentation as those reported for acinetobactin produced by A. baumannii
ATCC 19606 (Figure 2.21).1° Structure analysis via NMR further confirmed the production of

acinetobactin (Figure 2.22-23, Table 2.7).
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Figure 2.22. Structure of acinetobactin.
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Table 2.7. NMR characterization data (500 MHz) of acinetobactin in DMSO-d6.

Atom 'H (ppm),
Position multiplets in Hz

2 -

3 7.54 (s, 1H)

5 9.01 (s, 1H)

6 3.03 - 2.94 (m, 2H)
7 3.89-3.80 (t, 2H)
9 -

2’ -

3’ 9.10 (d, 1H)

4 4.65 (dd, 1H)

5’ 4.46 - 4.40 (m, 1H)
6’ 1.36 (d, 3H)

1’ -

27’ -

3’ -

4> 6.95 (d, 1H)

5 6.74 — 6.71(m, 1H)

6 7.30 — 7.25 (d, 1H)

2.5. Discussion

In conclusion, we have predicted and structurally characterized the tris catechol
siderophore mediterraneabactin as the linear oligoester (DHB-POrn-tSer)s, along with the
biscatechol 2, (DHB-POrn-'Ser);, and monocatechol 3 (DHB-POrn-tSer) compounds.
Mediterraneabactin is identified as the diastereomer to turnerbactin, (DHB--Orn--Ser)s,
produced by the shipworm endosymbiont Teredinibacter turnerae T7901,2 based on the
Marfey’s amino acid analysis establishing POrn in mediterraneabactin and “Orn in
turnerbactin. Circular dichroism spectroscopy shows Fe(l11)-mediterraneabactin adopts the A
configuration, while Fe(111)-turnerbactin adopts the A configuration. These results establish the
chirality of the amino acid appended to 2,3-DHB in these siderophores influences the

configuration at the Fe(l11) center, where the siderophores containing D-amino acids adopt the
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A configuration. In this case, the siderophores with D-amino acids are Fe(lll)-
mediterraneabactin, (DHB-POrn-tSer)s, Fe(ll)-trivanchrobactin,” 2° (DHB-PArg--Ser)s, and
Fe(l11)-cyclic trichrysobactin,® ® (DHB-PLys--Ser)s. The diastereomeric siderophores, Fe(l11)-
turnerbactin,® (DHB--Orn-tSer)s, Fe(lll)-ruckerbactin,” (DHB--Arg--Ser)s, and Fe(ll)-
frederiksenibactin,® (DHB-Lys--Ser)s all adopt the A configuration.

The BGCs for mediterraneabactin in M. mediterranea MMB-1 and turnerbactin in T.
turnerae T7901 show homology. The BGC of M. mediterranea MMB-1 encodes a two-module
NRPS consistent with a triscatechol siderophore, and it was established that the first module
containing the epimerization domain loads a °Orn onto the growing siderophore, making it a
diastereomer of turnerbactin with “Orn. The presence of the epimerase domain is also seen in
the BGC of cyclic trichrysobactin (DHB-PLys-'Ser)s in D. chrysanthemi EC16, and
trivanchrobactin (DHB-PArg-'Ser); in V. campbellii DS40M4, thus producing the
diastereomeric siderophores of frederiksenibactin (DHB--Lys--Ser)s in Y. frederiksenii ATCC
3364 and ruckerbactin (DHB-PArg--Ser)s in Y. ruckeri YRB.® 7

The production of siderophores in M. mediterranea MMB-1 has not been identified
until now. Along with mediterraneabactin being produced, acinetobactin, a major siderophore
produced by the opportunistic pathogen Acinetobacter baumannii ATCC 19606,'° has been
structurally characterized. The two siderophores, turnerbactin and acinetobactin, were
originally produced by unrelated pathogens, T. turnerae T7901 and A. baumannii ATCC
19606, respectively. This fact highlights the “usability” of a single copy of genes for multiple
siderophores and the interchange of the siderophores between different bacteria. A different
bacterial strain, Aeromonas salmonicida subsp. salmonicida produces acinetobactin and

amonabactin and the synthesis of both of these siderophores depends on a single copy of genes
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encoding the synthesis of DHB.?! 22 Vibrio sp. DS40M4 on the other hand produces the
triscatechol amide siderophore, trivanchrobactin, and anguibactin, but it was not identified
whether the same genes encoding the synthesis of DHB are used in the synthesis of the
siderophores.?°

With the discovery of mediterraneabactin (D-Orn), we have now identified the full
combinatoric suite of triscatechol siderophores framed on a tri-L-Ser core with selected amino
acids: D/L-Orn, D/L-Arg, and D/L-Lys (Figure 2.24) The pairings of these diastereomeric
siderophores indicate the importance of chirality around the Fe(lll)-center to the siderophore
mediated microbial iron-uptake pathways. For example, the esterases, BesA and Fes that
hydrolyze Fe(ll1)-bacillibactin and Fe(l11)-enterobactin, respectively, have shown instances of
stereospecificity.> Chiral recognition occurs at the point of iron(l11) release, where BesA and
Fes are unable to cleave the enantiomer of enterobactin with a tri-D-serine lactone and in turn
do not promote growth. ! Overall, this complete combinatoric suite of triscatechol siderophores

shows the importance of chirality in the siderophore-mediated microbial iron-uptake pathway.
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Mediterraneabactin — M. mediterranea MMB-1
c JOfA PcP 'E c [S8f PCP Te|—(DHB-°Orn-'Ser),

Turnerbactin — T. turnerae 77901

c JOfAl PcP C |S8fI PCP 'Te| —(DHB-'Orn-'Ser),

Cyclic Trichrysobactin — D. chrysanthemi EC16
Cllys| PCP E C PCP 'Te — (DHB-PLys-'Ser),
Frederiksenibactin — Y. frederiksenii ATCC 3364

Cllys| PCP C PCP Te. — (DHB-'lys-'Ser),
Trivanchrobactin — V. campbellii DS40M4
ClArg PCP E C PCP 'Te — (DHB-PArg-'Ser),

Ruckerbactin — Y. ruckeri YRB

Cc PAr8) PCP C|SEFI PCP 'Te© — (DHB-'Arg-'Ser),

Figure 2.24. NRPS organization for mediterraneabactin, turnerbactin, cyclic trichrysobactin,
frederiksenibactin, trivanchrobactin, and ruckerbactin. C: condensation domain; PCP: peptidyl
carrier protein, E: epimerase domain, TE: thioesterase domain, and the adenylation domain,

represented by the selected amino acid for each NRPS.
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3. Amphi-enterobactin Production in Vibrio species: Origin of

catechol-based fragments

Sections of this chapter were published in: Jelowicki, A.M., Butler, A. On the origin of amphi-
enterobactin fragments produced by Vibrio campbellii species. J. Biol. Inorg. Chem. 27, 565-
572 (2022). https://doi.org/10.1007/s00775-022-01949-0 Copyright © 2022, Journal of
Biological Inorganic Chemistry

3.1. Introduction

Iron is a cofactor required by many enzymes involved in essential cellular processes.
However, obtaining iron becomes challenging due to the low solubility of iron (111). One
strategy that bacteria have evolved to obtain iron is the biosynthesis of siderophores, low
molecular weight organic compounds that bind Fe(lll) with high affinity. These Fe(lll)-
siderophore complexes are taken up by the cell through outer membrane receptor proteins.

Amphi-enterobactin (Fig. 3.1)}, was initially isolated from Vibrio campbellii ATCC
BAA-1116 (formerly V. harveyi BAA-1116), a model bacterium for quorum sensing because
of its quorum-regulated bioluminescence.? Enterobactin, utilized by many bacterial species, is
a macrolactone of tris-(N-2,3-dihydroxybenzoyl-L-serine) that coordinates iron(l11) with three
2,3-dihydroxybenzoyl (DHB) catechol groups. Amphi-enterobactin is a triscatecholate
siderophore resembling enterobactin, although distinguished by an expanded tetralactone core,
and decorated by a fatty acid appended at the amine of the additional L-Ser.! Multiple strains
of V. campbellii and V. harveyi have been shown to produce a suite of amphi-enterobactins

with varying fatty acyl groups.! ® These fatty acid appendages can range in length (C10-C16),
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degree of unsaturation, and hydroxylation.> 34 V. campbellii CAIM 519T produced the full
suite (C10-C16) amphi-enterobactins in greater amounts than V. campbellii BAA-1116.3

V. campbellii BAA-1116 contains a set of genes homologous to the biosynthetic gene
cluster (BGC) of enterobactin, entA-F (Figure 3.1), yet instead of enterobactin, the strain
produces amphi-enterobactin (Figure 3.1a).! In addition to the amphi-enterobactin aebA-F
genes, the gene aebG encoding a long-chain fatty acid Co-A ligase (FACL) is located nearby
this BGC.! The biosynthesis of 2,3-dihydroxybenzoic acid (2,3-DHBA) is carried out by
AebABCE. Zane et. al.! established that the biosynthesis of amphi-enterobactin begins by
appending an AebG-activated fatty acid to L-Ser loaded on AebF (Figure. 3.1b). FACL
enzymes are known to activate fatty acids to fatty acyl-CoA thioesters before integrating with
the nonribosomal peptides.> ® Thus, this FACL initiates the biosynthetic process of amphi-
enterobactin by appending the FA to the first loaded L-Ser residue on AebF NRPS. AebF
continues its bifunctional activity of catalyzing the formation of amide bonds between DHB
and another L-Ser, respectively. The thioesterase domain of AebF ultimately catalyzes the
release of amphi-enterobactin through intramolecular cyclization, generating the macrolactone
and releasing amphi-enterobactin from the NRPS.!

Several bacterial strains, V. campbellii BAA-1116, Burkholderia cepacian K56-2, and
V. vulnificus MO6-24/0 have been shown to engage in quorum-sensing regulation of
siderophore production, where high cell density leads to an accumulation of quorum sensing
molecules, which with the Fe(11)-Fur complex decreases siderophore production % 78 A
recent report explored the link between quorum sensing, siderophore production, and iron
uptake in V. campbellii BAA-1116% The study reported the presence of amphi-enterobactin-

related soluble fragments, particularly 2,3-dihydroxybenzoic acid (DHBA) and 2,3-
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dihydroxybenzoyl-L-serine (DHB-Ser), along with linearized amphi-enterobactin fragments
as confirmed by spectrometry *. DHBA and DHB-Ser were found to be more abundant in
comparison to amphi-enterobactin. McRose et al 4 propose two possible sources of DHBA and
DHB-Ser: premature release from the biosynthetic pathway or degradation of amphi-
enterobactins. Because of the accumulation of DHBA and DHB-Ser found in the supernatant
of V. campbellii BAA-1116, the study suggested an inefficient amphi-enterobactin
biosynthetic process. 4

Amphi-enterobactin hydrolysis products composed of two L-Ser residues, one 2,3-
dihydroxybenzoate (2,3-DHB) group, and a fatty acid, have been reported previously. »# In
this report, we use a shorthand notation for these fragments, based on a binary code % °, where
the number [1] depicts L-Ser appended by the fatty acid, and [0] represents the L-Ser appended
by DHB. In a 2-Ser-1-DHB-FA fragment where the fatty acid is appended to the C-terminal
L-Ser, the binary code is [01]. If the fatty acid is appended to the N-terminal L-Ser, the binary
code is [10]. The same designation is followed for 3-Ser-2-DHB-FA, where the fatty acid can
be appended to the terminal L-Ser [001], the internal L-Ser [010], or the N-terminal L-Ser
[100]. This binary nomenclature was originally used to describe the isomers of desferrioxamine
B and was adapted here to denote the position of the FA. % 10

We have investigated the origin of the amphi-enterobactin fragments present in the
culture supernatant of V. campbellii CAIM 519 in greater detail. Fragments associated with
premature release during biosynthesis could only be [01], [001], and [0001], where the fatty
acid is appended to the C-terminal Ser. If premature release from the NRPS is the only source
of the hydrolysis products, we would only see these three fragments. However, if hydrolysis

of the fully formed amphi-enterobactin macrolactone occurs, a mixture of fragments will be
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observed, including [10], [100] and [1000] which would have a unique tandem MS signature,
described below, that would not be present in fragments [01], [001], and [0001].

We report herein a mass fragmentation analysis that establishes these amphi-
enterobactin hydrolysis fragments arise from the full siderophore, although we cannot rule out
premature release. The amphi-enterobactin macrolactone siderophore is in fact produced as

supported by the tandem MS analysis of the hydrolysis products.
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Figure 3.1. Biosynthesis of amphi-enterobactin. a. The entABCDEF biosynthetic gene cluster.
b. The aebABCDEF biosynthetic gene cluster first identified in Vibrio harveyi BAA-1116 1.
Genes involved in siderophore biosynthesis and transport are represented by blue and orange
arrows, respectively. White arrows represent hypothetical proteins whose function has not yet
been determined. c. Biosynthesis of amphi-enterobactin catalyzed by NRPS AebF. The
potential points of pre-release of fragments in the biosynthesis of amphi-enterobactin are
indicated (blue arrows). Each potential early release product has the fatty acid appended to the
amine of a C-terminal L-Ser. C, condensation domain; A, adenylation domain; T, thiolation
domain; TE, thioesterase domain.

3.2. Statement of Chapter Objectives
Amphi-enterobactin is an amphiphilic siderophore isolated from a variety of microbial

Vibrio species. Like enterobactin, amphi-enterobactin is a triscatecholate siderophore, however

it is framed on an expanded tetralactone core comprised of four L-Ser residues, of which one
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L-Ser is appended by a fatty acid and the remaining L-Ser residues are appended by 2,3-
dihydroxybenzoate (DHB). Fragments of amphi-enterobactin composed of 2-Ser-1-DHB-FA
and 3-Ser-2-DHB-FA have been identified in the supernatant of Vibrio campbellii species. The
origin of these fragments has not been determined, although two distinct isomers could exist
for 2-Ser-1-DHB-FA and three distinct isomers could exist for 3-Ser-2-DHB-FA. The
fragments of amphi-enterobactin could originate from hydrolysis of the amphi-enterobactin
macrolactone, or from premature release due to an inefficient biosynthetic pathway. Unique
masses in the tandem MS analysis establish that certain fragments isolated from the culture
supernatant must originate from hydrolysis of the amphi-enterobactin macrolactone, while
others cannot be distinguished from premature release during biosynthesis or hydrolysis of
amphi-enterobactin. Further genomic investigations identify two potential putative esterases
that may be involved in the hydrolysis of amphi-enterobactin. A bioinformatic analysis of the
putative esterase sequences were conducted to elucidate further information about the
involvement in hydrolysis of the macrolactone.

Siderophore production in Vibrio natriegens CCUG 16371 was also studied to identify the
production of amphi-enterobactin. V. natriegens CCUG 16371 has the fastest growth rate of
any known organism!! and contains a similar biosynthetic gene cluster to that of amphi-
enterobactin producing species. The goal of working with V. natriegens CCUG 16371 was to

identify if this strain produces siderophores.
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3.3. Materials And Methods

3.3.1. General Experimental Procedures

A Varian Cary-Bio 300 UV-visible spectrophotometer was used to monitor microbial
growth at 600 nm. Analytical HPLC was used to analyze both the supernatant and cell pellet
extracts from V. campbellii CAIM 519 to identify the production of both the amphi-
enterobactin macrolactone and hydrolysis products. Mass spectrometry analysis was carried
out on a Waters Xevo G2-XS QTof with positive mode electrospray ionization coupled to an

ACQUITY UPLC H-Class system with a Waters BEH C18 column.

3.3.2. Cultivation of Vibrio campbellii CAIM 519 and Siderophore Isolation

V. campbellii CAIM 519 was cultured in low-iron artificial seawater medium
containing casamino acids (10 g/L), NHs«Cl (19 mM), Na:HPO4-7H.0O (4.6 mM),
MgSO4-7H20 (50 mM), CaCl, (10 mM), trace metal grade NaCl (0.5 M), glycerol (41 mM),
HEPES buffer (10 mM; pH 7.4), NaHCO3 (2 mM), biotin (8.2 uM), niacin (1.6 uM), thiamin
(0.33 uM), 4-aminobenzoic acid (1.46 uM), pantothenic acid (0.21 pM), pyridoxine
hydrochloride (5 uM), cyanocobalamin (0.07 uM), riboflavin (0.5 uM), and folic acid (0.5
uM). Two-liter cultures were grown in acid-washed 4L Erlenmeyer flasks on an orbital shaker
(180 rpm) at room temperature (ODsoo) While monitoring the growth until the culture reached
stationary phase.

The cultures were harvested by centrifugation (6000 rpm, 30 minutes, 4°C). The
supernatant was decanted and the cell pellet was resuspended in methanol (25 mL/pellet),

transferred into 50 mL conical tubes, and shaken overnight at 180 rpm, 4°C. The methanol
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extract was centrifuged (6000 rpm, 10 minutes, 4°C), filtered through a 0.22 um membrane,
and concentrated under vacuum to one-third the original volume.

Both the supernatant and the cell pellet extracts were purified with XAD resin. The cell
pellet extract was diluted with 4 times the volume with doubly deionized water (Milli-Q 1Q).
The supernatant and cell pellet extract were incubated with Amberlite XAD-2 resin for 4 hours
at 120 rpm, 25°C. After 4 hours, the XAD resin was washed with 2 L of doubly deionized
water. From the cell pellet extract, siderophores were eluted with 90% methanol. From the
supernatant, siderophores were eluted with 80% methanol. The eluent was concentrated under

vacuum to dryness and dissolved in 5 mL of methanol.

3.3.3. Cultivation of Vibrio natriegens CCUG 16371 and Siderophore Isolation

Vibrio natriegens were cultured separately in low-iron artificial seawater medium (2L)
containing casamino acids (10 g/L), NH4CI (1 g/L), glycerol phosphate (1 g/L), MgSO4 (12.35
g/L), CaCl, (1.45 g/L), trace metal grade NaCl (16.55 g/L), KCI (0.75 g/L), glycerol (41 mM),
HEPES buffer (10 mM; pH 7.4), NaHCO3 (2 mM), biotin (8.2 uM), niacin (1.6 uM), thiamin
(0.33 uM), 4-aminobenzoic acid (1.46 uM), pantothenic acid (0.21 uM), pyridoxine
hydrochloride (5 uM), cyanocobalamin (0.07 uM), riboflavin (0.5 uM), and folic acid (0.5
uM). Two-liter cultures were grown in acid-washed 4L Erlenmeyer flasks on an orbital shaker
(180 rpm) at room temperature (ODe0o) While monitoring the growth until the culture reached
stationary phase.

The cultures were harvested by centrifugation (6000 rpm, 30 minutes, 4°C). The
supernatant was decanted and the cell pellet was resuspended in methanol (25 mL/pellet),

transferred into 50 mL conical tubes, and shaken overnight at 180 rpm, 4°C. The methanol
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extract was centrifuged (6000 rpm, 10 minutes, 4°C), filtered through a 0.22 um membrane,
and concentrated under vacuum to one-third the original volume.
Both the supernatant and cell pellet extracts were purified with XAD resin as mentioned

in the section above for the cultivation of V. campbellii CAIM 519.

3.3.4. UPLC-MS And MS/MS Analysis of Extracts

Extracts were analyzed through positive ion mode ESI-MS on a Waters Xebo G2-XS
QTof coupled to a Waters Acquity H-Class UPLC system. The extracts of the culture
supernatant were analyzed with a linear gradient of 0-100% CH3CN (0.1% formic acid), while
the cell pellet extracts were analyzed with a linear gradient of 50-100% CH3CN (0.1% formic
acid) in ddH»0 (0.1% formic acid) over 10 minutes. For MSMS analysis, a collision energy
profile of 20, 25, 30 KEV was employed. Using MassLynx 4.1, chromatograms for masses of
interest were generated and molecular ion peaks quantified by integration (ApexTrack

algorithm).

3.3.5. Genome Mining of Amphi-Enterobactin Producers for Putative Esterases

Homologs of the amphi-enterobactin biosynthetic gene cluster were found with tblastn
(NCBI webserver)*? using the putative esterases AebH and Aebl, found embedded in the
amphi-enterobactin biosynthetic gene cluster, as a query against Vibrio species. Amino acid
sequences of the putative esterases from V. campbellii CAIM 519T, V. harveyi BAA-1116, V.
natriegens, and V. owensii were retrieved from NCBI RefSeq®® and aligned to the

erythromycin esterase EreA ([WP_032084014.1]) using MUSCLE (EMBL-EBI webserver).*

15
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3.3.6. SignalP Program used to Predict Presence of Signal Peptides

SignalP-5.0 was used to determine the presence of signal peptide sequences in the
putative esterases. The amino acid sequences of the putative esterases AebH and Aebl, found
embedded in the amphi-enterobactin biosynthetic gene cluster, were pasted into the main
server of SignalP-5.0 in FASTA format and processed.’® Outputs were analyzed by the
probabilities reported for SP(Sec/SPI) / LIPO(Sec/SPI1Il) / TAT(Tat/SPI), depending on the type
of signal peptide predicted, CS (the cleavage site), and OTHER (the probability the sequence

does not have a signal peptide.

3.3.7. Circular Dichroism Spectroscopic Measurements of Amphi-enterobactin

The ferric complex of amphi-enterobactin was prepared from a methanol stock solution
of the free ligand (0.25 mM, 403.2 uL) with iron trichloride (2.419 mM, 41.34 uL) and MOPS
(pH 7.4, 100 uL). The solutions were diluted with water to yield a final Fe(l11)-L concentration
of 0.1 mM. The spectra of the iron complex and blank (10 mM MOPS) were obtained in quartz
cuvettes (1 cm path length) and recorded on a Varian Cary-Bio 300 UV-visible
spectrophotometer. Full circular dichroism spectra were acquired with the following
parameters: 4 s D.1.T., 1 nm bandwidth, 50 nm/s scanning speed with a total of 3 accumulations

using a Jasco J-1500 CD spectrophotometer.
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3.4. Results and Interpretation

3.4.1. Origin of the Amphi-Enterobactin Fragments: Premature Release During

Biosynthesis or Macrolactone Ester Hydrolysis

While it has been established that Vibrio campbellii CAIM 519T produces a suite of
amphi-enterobactins, with fatty acids ranging from Cio to C14 which are either saturated or
monohydroxylated 3, fragments of these amphi-enterobactins are also present in the culture
supernatant of V. campbellii CAIM 519T (Figures 3.2-3.5). We have turned to tandem MS to
investigate whether selected fragments originate from hydrolysis of the amphi-enterobactin
macrolactone siderophore.

The four circled peaks (A-D) in the UPLC chromatogram (Fig. 3.2) correlate with
masses of amphi-enterobactin fragments identified in the supernatant. The species eluting at
4.3 min, labeled Peak A reveals a protonated mass of m/z 499 [M+H]", which matches the
composition of the amphi-enterobactin fragment with a C10:0-OH fatty acid, referred to as 2-
Ser-1-DHB-FACI0-0" peak C (m/z 527), eluting at 5.1 minutes, is analogous to Peak A
although with a C12:0-OH fatty acid, i.e., 2-Ser-1-DHB-FA®20-°H Two structural isomers are
possible with each of these compositions, depending on the positions of the fatty acid and 2,3-
DHB in reference to the serine ester backbone; the fatty acid may be appended to either the C-
terminal L-Ser, depicted by the binary code [01], or the N-terminal L-Ser, depicted by [10]
(Fig. 3.4 and 3.5).

The species eluting at 4.6 minutes and 5.4 minutes are associated with Peak B and Peak
D, respectively (Figure 3.2). Peak B reveals a protonated molecular mass of m/z 722 [M+H]",

consistent with the composition 3-Ser-2-DHB-FA®%OH ‘and peak D (m/z 750) is associated

115



with the equivalent C12:0-OH fatty acid derivative. Three structural isomers exist for 3-Ser-
2-DHB-FA (Figure 3.4 and 3.5) in which the fatty acid may be appended to the C-terminal L-
Ser [001], the internal L-Ser [010], or the N-terminal L-Ser [100]. The structural variability of
isomers [001], [010] and [100] prompted further considerations for the origin of these

fragments.

The protonated molecular masses at m/z 945.33 [M+H]*and m/z 973.35 [M+H]" in the
UPLC-MS is consistent with production of the 4-Ser-3-DHB-FA isomers for the C10:0-0n and
Cu2:0-0n fatty acids, respectively. Four potential isomers could be formed, i.e., [0001], [0010],
[0100], and [1000], however due to the trace quantity produced, tandem MS characterization
was not carried out. The complete set of isomers along with the associated binary nomenclature

is shown in Fig. 3.4 and 3.5.

Biosynthesis of amphi-enterobactin is initiated during fatty acyl-CoA thioester
acylation of L-Ser-S-P-pant-AebF 1. Thus, the carboxyl group interacting with the thioesterase
domain throughout the amphi-enterobactin biosynthesis will always be appended to the fatty
acid that was loaded onto L-Ser. Premature release of amphi-enterobactin fragments along the
biosynthetic pathway could potentially occur at the thioesterase domain of the NRPS, releasing
a fragment with the fatty acid appended to the C-terminal Ser, as in [01], [001], or [0001]
(Figure 3.1c).

Structural variation within fragments increases if hydrolysis products arise from the
fully formed amphi-enterobactin macrolactone. While this set of fragments may contain the
fatty acid appended to the C-terminal Ser, as in the premature release fragments [01], [001], or

[0001], other fragments with the fatty acid appended at each of the other Ser residues in the
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oligoserine backbone may be formed as well. Depending on the site of macrolactone
hydrolysis, all of the structures in Figure 3.4 and 3.5 may be considered hydrolysis products

from amphi-enterobactin.
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Figure 3.2. LC-MS of the Vibrio campbellii CAIM 519T supernatant. Peaks A-D correlate
to masses of predicted amphi-enterobactin fragments.
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Figure 3.3. MS spectra of Peaks A-D in V. campbellii CAIM 519T that correlate to masses of
predicted amphi-enterobactin fragments.
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Figure 3.4. The possible hydrolysis fragments from amphi-enterobactin with a C10:0-OH fatty
acid. Compounds [01], [001], [0001] are the only structural possibilities for premature release
during biosynthesis. A mixture of the compounds shown here, would suggest breakdown by
an esterase. The carboxylate of “Ser appended by the FA during biosynthesis is shown in red.
This carboxyl would be tethered to the thioesterase domain during biosynthesis.t
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Figure 3.5. The possible hydrolysis fragments from amphi-enterobactin with a C12:0-OH fatty
acid tail. Compounds [01], [001], [0001] are the only structural possibilities for premature
release. A mixture of compounds shown here, suggest breakdown by an esterase or by
molecular hydrolysis. The carboxylate of L-Ser appended by the FA during biosynthesis is
shown in red. This carboxyl would be tethered to the thioesterase domain.
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3.4.2. Structural Differentiation Among the 2-Ser-1-DHB-FA Fragments of

Amphi-enterobactin in V. campbellii CAIM 519T

Three distinct di-Ser hydrolysis fragments can be formed from dual ester hydrolysis of
the amphi-enterobactin macrolactone, only two of which would have a 2-Ser-1-DHB-FA
motif, [10] and [01] (Figs. 3.6, and 3.4-3.5 for the C10-0n and Ci2-oH fatty acids, respectively).
The third hydrolysis fragment would lack the fatty acid as 2-Ser-2-DHB, [00] (Fig. 3.6).
Tandem mass spectrometry analysis can be used to differentiate between structures [01] and
[10] based on unique MS/MS signature fragments (Figs. 3.7 and 3.8). Focusing first on the
Cio-on1 2-Ser-1-DHB-FA (m/z 499.28 [M+H]") in V. campbellii CAIM 519T the fragment with
a protonated mass of m/z 196 [M+H]" is specific to [01], while structure [10] would have a
fragment with a protonated mass of m/z 230 [M+H]".

The ESI-MS/MS spectrum of the product with a protonated mass of m/z value 499.28
[M+H]* (2-Ser-1-DHB-FAC10:0-0H) shows fragments at both m/z 196 and m/z 230 (Fig. 3.7).
The same pattern is observed for 2-Ser-1-DHB- FAC2:0-0H (m/z 527.34 [M+H]*) although
with analogous fragments at m/z 196 and m/z 258 (Fig. 3.8). The mixture of both unique
fragments is evidence that the amphi-enterobactin macrolactone is produced and is hydrolyzed
to [01] and [10], although the presence of both [01] and [10] does not rule out premature release

during the biosynthesis as the origin of some [01].
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Figure 3.6. The possible di-Ser®*®%°H fragments produced from ester hydrolysis of amphi-
enterobactin. Esters hydrolyzed directly opposite one another form the di-Ser fragments, [00],
[01], and [10].
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Figure 3.7. MS-MS of m/z 499.28 for differentiation between [01] and [10] in V. campbellii
CAIM 519T. A fragment ion of m/z 196 is consistent with premature release, while a fragment
ion of m/z 230 is consistent with the hydrolysis of the amphi-enterobactin macrolactone.
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Figure 3.8. Tandem MS of m/z 527.30 for differentiation between [01] and [10] in V.
campbellii CAIM 519T. A fragment ion of m/z 196 could result from premature release during
biosynthesis or from hydrolysis of the amphi-enterobactin macrolactone, while a fragment ion
of m/z 258 is consistent only with the hydrolysis of the amphi-enterobactin macrolactone.
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3.4.3. Structural Differentiation among the 3-Ser-2-DHB-FA Fragments of

Amphi-enterobactin in V. campbellii CAIM 519T

Along with 2-Ser-1-DHB-FA, 3-Ser-2-DHB-FA compounds were also observed. Four
distinct tri-Ser hydrolysis fragments could be formed from dual hydrolysis of adjacent esters
within the amphi-enterobactin macrolactone, only three of which would have a 3-Ser-2-DHB-
FA motif, [100], [010] and [001] (Figs. 3.9 and 3.4-3.5 for the C10-on and Ci2-on fatty acids,
respectively). The fourth hydrolysis fragment would lack the fatty acid, with 3-Ser-3-DHB,
[000] (Fig. 3.9), which is the equivalent of linear enterobactin.

Distinguishing among the three 3-Ser-2-DHB-FAC%-CH structural isomers (Fig. 3.10)
structures by tandem MS becomes more complex in comparison to the 2-Ser-1-DHB-FA
structural isomer analysis. Premature release during biosynthesis would produce the 3-Ser-2-
DHB-FAC100-0% jsomer [001], whereas all three isomers, [100], [010] and [001] would be
produced from hydrolysis of the amphi-enterobactin macrolactone. The fragmentation at the
N-terminal L-Ser is again the differentiating point among the isomers. Isomer [100] would
result in a unique MS/MS fragment at m/z 230 [M+H]*. Unfortunately, both [001] and [010]
isomers would produce a fragment with m/z 196 [M+H]" in the same location, making these
two isomers indistinguishable.

Tandem mass spectral analysis was carried out on the products with a protonated
molecular mass of m/z 722.27 [M+H]*, consistent with 3-Ser-2-DHB-FA®9-OH (Fig. 3.10) and
750.38 [M+H]*, consistent with 3-Ser-2-DHB-FAC12-CH (Fig. 3.11). Tandem MS shows both
of the fragments at m/z 196 and m/z 230. The m/z 230 ion confirms the presence of [100],
which can only arise from an amphi-enterobactin macrolactone hydrolysis product. The ion

fragment at m/z 196 was identified by tandem MS and could arise from both [001] and [010].
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These two products cannot be distinguished by tandem MS. However, a mixture of the 3-Ser-
2-DHB-FA products is present in both the C10:0 — OH and C12:0 — OH compounds. The
mixture of both fragments is evidence that amphi-enterobactin is produced and is hydrolyzed
to [100], and one of both of [010] and [001], although the presence of all three isomers does

not rule out the co-occurrence of premature release during biosynthesis.
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Figure 3.9. The possible tri-Ser®-%" fragments produced from ester hydrolysis of amphi-
enterobactin. Hydrolysis at two adjacent esters within the amphi-enterobactin macrolactone
would form the tri-Ser fragments, [000], [001], [010] and [100].

125



[001] [100]
e oy
[M+H]*y, = 722.27 [MeH]',y, = 72227 [M+HI', = 722.27
100, 224.0743
32_
258.1888
242.0837 481.2649
230.1915 463.2506
499.2753
196.0740 276.2014 3 722.3506
137.0317 /2/?21?9 447.1448 \
o ARl T | L 1 ‘ . .
50 100 = 150 = 200 250 300 350 400 = 450 500 550 600 650 700 750

Figure 3.10. Tandem MS of m/z 722.27 for potential differentiation among the [001], [010]
and [100] isomers in V. campbellii CAIM 519T. A fragment ion of m/z 196 is consistent with
premature release, while a fragment ion of m/z 230 is consistent with the hydrolysis of the
amphi-enterobactin macrolactone.
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Figure 3.11. Tandem MS of m/z 750.38 for potential differentiation among the [001], [010]
and [100] isomers in V. campbellii CAIM 519T. A fragment ion of m/z 196 could result from
premature release during biosynthesis or from hydrolysis of the amphi-enterobactin
macrolactone, while a fragment ion of m/z 258 is consistent only with the hydrolysis of the
amphi-enterobactin macrolactone.
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3.4.4. Vibrio natriegens CCUG 16371 Contains the Amphi-enterobactin

Biosynthetic Gene Cluster Identified Through Genome Mining

In Vibrio natriegens CCUG 16371, the putative amphi-enterobactin biosynthetic
cluster includes six genes (aebA-F) predicted to encode proteins that are homologous to the
previously characterized amphi-enterobactin biosynthetic genes and the well-characterized
enterobactin biosynthetic machinery (Figure 3.12, Table 3.1-3.2). Based on the homology to
the V. campbellii BAA-1116 (Table 3.2) amphi-enterobactin synthetase proteins, it is proposed
that Vibrio natriegens CCUG 16371 will produce the suite of amphi-enterobactin siderophores.
All of the genes in V. natriegens CCUG 16371 that may be involved in the biosynthesis of
amphi-enterobactin show high sequence similarity to the amphi-enterobactin biosynthesis
genes identified in Vibrio campbellii ATCC BAA-1116. The V. natriegens CCUG 16371
genome also contains a long chain fatty acid CoA ligase (FACL) in close proximity to the
predicted amphi-enterobactin biosynthetic gene cluster. These enzymes have been shown to
be involved in the biosynthesis of acylated peptides by activating the fatty acids to fatty acyl-
CoA thioesters which are then incorporated into acylated nonribosomal peptides.

Vibrio natriegens CCUG 16371 is an emerging marine bacterium as it is the fastest
growing non-pathogenic bacterium and is suggested to become the new alternative chassis
organism to Escherichia coli for synthetic biology and biotechnology.!! ¥ However, little is
still known about the genetics that are responsible for the record setting replication rate of V.

natriegens CCUG 16371. Siderophore production may have an impact on this fast growth rate.
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3.4.5. Bacterial Growth and Siderophore Production in V. natriegens CCUG

16371

V. natriegens CCUG 16371 was streaked onto CAS agar plates to determine if the
bacterium produced siderophores. After two days of growth on the CAS agar plate, yellow
hallows appeared around the bacterial colonies, indicating siderophore production is occurring
as V. natriegens CCUG 16371 grows.

To isolate siderophores, V. natriegens CCUG 16371 was grown in iron-limited
minimal media. The culture reached stationary phase after approximately 20 hours of growth
at room temperature. When the culture was combined with liquid CAS solution, a color change
from blue to pink occurred, indicating that Vibrio natriegens CCUG 16371 was producing
siderophores.

Amphi-enterobactin is a cell-associated siderophore and is extracted from the bacterial
cell pellet. Working with a new strain, both the bacterial cell pellet and the supernatant were
both screened for siderophore production. After harvesting the bacterial culture, the cell-free

supernatant displayed CAS activity, while the cell pellet did not display CAS activity.

3.4.6. MS/MS Analysis of the Amphi-enterobactin Fragments found in the

Supernatant of V. natriegens CCUG 16371

The supernatant of V. natriegens CCUG 16371 on the other hand contains masses,
labeled peaks (A-D), which correlate with masses of amphi-enterobactin fragments (Figure
3.13 and Fig. 3.14). The species eluting at 4.3 minutes, labeled Peak A reveals a protonated
mass of m/z 499 [M+H]", which matches the composition of the amphi-enterobactin fragment

with a C10:0-OH fatty acid, referred to as 2-Ser-1-DHB-FAC%0-OH peak C (m/z 527), eluting
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at 5.1 minutes, is analogous to Peak A although with a C12:0-OH fatty acid, i.e., 2-Ser-1-DHB-
FAC120-08 " Similarly to the amphi-enterobactin fragments found in the supernatant of V.
campbellii CAIM 519T, two structural isomers are possible with each of these compositions,
depending on the positions of the fatty acid and 2,3-DHB in reference to the serine ester
backbone; the fatty acid may be appended to either the C-terminal L-Ser, depicted by the binary
code [01], or the N-terminal L-Ser, depicted by [10].

The species eluting at 4.6 minutes and 5.4 minutes are associated with Peak B and Peak
D, respectively (Figure 3.13). Peak B reveals a protonated molecular mass of m/z 722 [M+H]*,
consistent with the composition 3-Ser-2-DHB-FAC%0-CH ‘and peak D (m/z 750) is associated
with the equivalent C12:0-OH fatty acid derivative. Three structural isomers exist for 3-Ser-2-
DHB-FA (Fig. 3.4 and 3.5) in which the fatty acid may be appended to the C-terminal L-Ser

[001], the internal L-Ser [010], or the N-terminal L-Ser [100].
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Figure 3.13. LC-MS of the Vibrio natriegens CCUG 16371 supernatant. Peaks A-D correlate
to masses of predicted amphi-enterobactin fragments.
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Flgure 3 . 14 MS spectra ofPeaks A[;that correlatetomassesofpredlctedamphlenterobactl n
fragments in V. natriegens CCUG 16371, as seen in the chromatogram.

Four masses were identified in the supernatant of V. natriegens CCUG 16371 that
correlate with masses of amphi-enterobactin fragments. The first is a protonated mass of m/z
499 [M+H]*, which matches the composition of the amphi-enterobactin fragment with a
C10:0-OH fatty acid is referred to as 2-Ser-1-DHB-FAC0:0-0H,

Mass fragmentation analysis establishes the presence of amphi-enterobactin hydrolysis
fragments and suggest that they arise from the full siderophore, although premature release
cannot be ruled out. Again, tandem mass spectrometry analysis can be used to differentiate
between structures [01] and [10] based on the unique MS/MS signature fragments — m/z 196
[M+H]" specific to [01] and m/z 230 [M+H]" specific to [10].

The ESI-MS/MS spectrum of the product with a protonated mass of m/z 499 [M+H]*
(2-Ser-1-DHB-FACL00-0H) shows fragments at both m/z 196 and m/z 230 (Figure 3.15). The

same pattern is observed for the product with a protonated mass of m/z 527 [M+H]" (2-Ser-1-
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DHB-FAC20-0%) "although with analogous fragments at m/z 196 and m/z 258 (Figure 3.16).
The mixture of both unique fragments is evidence that the amphi-enterobactin macrolactone is
produced and hydrolyzed to [01] and [10]. However, the presence of both [01] and [10] does

not rule out premature release during the biosynthesis as the origin of some of [01].
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Figure 3.15. MS/MS of m/z 499.23 in V. natriegens CCUG 16371 for differentiation between
[01] and [10]. A fragment ion of m/z 196 is consistent with premature release, while a fragment
ion of m/z 230 is consistent with the hydrolysis of amphi-enterobactin macrolactone.
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Figure 3.16. MS/MS of m/z 527.26 in V. natriegens CCUG 16371 for differentiation between
[01] and [10]. A fragment ion of m/z 196 is consistent with premature release, while a fragment

ion of m/z 258 is consistent with the hydrolysis of amphi-enterobactin macrolactone.
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Along with 2-Ser-1-DHB-FA, 3-Ser-2-DHB-FA compounds were also observed. Four
distinct tri-Ser hydrolysis fragments could be formed from dual hydrolysis of adjacent esters
within the amphi-enterobactin macrolactone, only three of which would have a 3-Ser-2-DHB-
FA motif, [100], [010], [001] (Figure 3.9 and 3.4). The fourth hydrolysis fragment that would
lack the fatty acid, 3-Ser-3-DHB, [000]. Only two of the tri-Ser hydrolysis fragments were
observed, fragments with the protonated mass of m/z 722.28 [M+H]* (3-Ser-2-DHB-FAC0:0-
OH) and m/z 750.31 [M+H]" (3-Ser-2-DHB-FA®12:0-0H) (Fig. 3.13). However, due to the trace
quantity of the fragment with the protonated mass of m/z 750.31 [M+H]*, tandem MS
characterization was only carried out on the fragment with the protonated mass of m/z 722.28
[M+H]".

Tandem mass spectral analysis was carried out on the product with a protonated
molecular mass of m/z 722.28 [M+H]*, consistent with 3-Ser-2-DHB-FAC0:0-CH (Figure
3.17). Tandem MS shows both of the fragments at m/z 196 and m/z 230. The m/z 230 ion
confirms the presence of [100], which can only arise from an amphi-enterobactin macrolactone
hydrolysis product. The ion fragment at m/z 196 was also identified by tandem MS and could
arise from both [001] and [010]. The mixture of both fragments is evidence that in V. natriegens
CCUG 16371 amphi-enterobactin is produced and is hydrolyzed to [100], and one of both of
[010] and [001], although the presence of all three isomers does not rule out the co-occurrence

of premature release during biosynthesis.
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Figure 3.17. Tandem MS of m/z 722.27 for potential differentiation among the [001], [010],
[100] isomers in V. natriegens CCUG 16371. A fragment ion of m/z 196 is consistent with
premature release, while a fragment ion of m/z 230 is consistent with the hydrolysis of the
amphi-enterobactin macrolactone.
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3.4.7. Bioinformatic Analyses for Putative Esterases Found in the Biosynthetic

Gene Cluster of V. campbellii CAIM 519T and V. natriegens CCUG 16371

A BLAST search of fes within the genomes of V. campbellii CAIM 519T and V.
natriegens CCUG 16371 did not detect any homologs of this macrolactone esterase. However,
a more comprehensive sequence analysis search of the AebH and Aebl peptide sequence using
HMM scan through EMBL-EBI found distant homology to the EreA-like superfamily.’® EreA
is an erythromycin esterase from E. coli that enzymatically hydrolyzes the macrolactone ring
of erythromycin. ** 2° 2! The distant homology to a macrolactone esterase suggests that these
hypothetical proteins found within the amphi-enterobactin biosynthetic gene cluster may have
similar functionality in cleaving the macrolactone core of amphi-enterobactin.

Partial sequence alignment of AebH and Aebl found within both V. campbellii CAIM
519T and V. natriegens CCUG 16371 with the erythromycin esterases, EreA and EreB (from
E. coli) revealed that the strictly conserved residues (E43, H46, and E74) in EreA and EreB
are conserved in Aebl, while AebH has the H46 and E74 conserved residues (Figure 3.18).*°
Site-directed mutagenesis of E74A in EreA and EreB abolished the functional activity of the
erythromycin esterase, establishing this conserved residue as important in esterase activity.®
SignalP, a machine learning model that detects signal peptides (Teufel et al.),?? was used to
predict the cellular localization of the hypothetical proteins.?? AebH has both a putative signal
peptide and cleavage site suggesting a periplasmic localization, while Aebl is predicted to
reside in the cytoplasm. This sequence analysis of the hypothetical proteins AebH and Aebl in
both V. campbellii CAIM 519T and V. natriegens CCUG 16371 suggests AebH and Aebl may

be esterases and thus function in hydrolyzing the macrolactone ring of amphi-enterobactin.
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Figure 3.18. Location and comparison of genes aebH and aebl in V. campbellii CAIM 519T
and V. natriegens CCUG 16371. a. Amphi-enterobactin gene cluster. White arrows have been
named aebH (esterase 1) and aebl (esterase 2). b. Partial sequence alignment of AebH and
Aebl in both V. campbellii CAIM 519T and V. natriegens CCUG 16371 with E. coli’s EreA
and EreB active site residues. Stars active site residues and the blue boxes indicate the residues
conserved among the six proteins.

3.4.7.1.  Presence of Amphi-Enterobactin Genes in other Vibrio Species

Thode et al. compiled and visualized gene clusters for the biosynthesis of siderophores
in Vibrionaceae.? The study identified four Vibrio species potentially responsible for
producing amphi-enterobactin. Vibrio harveyi and V. campbellii have already been
characterized as amphi-enterobactin producers, while V. natriegens and V. owensii have not
yet been confirmed as amphi-enterobactin producers. However, there is evidence of amphi-
enterobactin fragments in V. natriegens CCUG 16371 indicating that the macrolactone is
produced however has not yet been isolated. The putative esterase sequences of these four
Vibrio species were used to construct an HMM. Among the 88 strains with matching esterase
sequences, all strains had the EreA/EreB esterase active site residues conserved (Figure 3.19).

Exploring the bacterial strains containing a positive match, one of the species,
Aeromonas veronii CN17A0102, a gram-negative human pathogen, has only one protein

homologous to one of the putative esterases found in Vibrio campbellii ATCC BAA-1116. A
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more thorough search around this homologous esterase gene showed genes similar to the
amphi-enterobactin biosynthesis genes.

A BLAST comparison evaluated the homology of the genes found adjacent to the one
putative esterase (Table 3.3). AebF and AebG in V. campbellii ATCC BAA-1116 is identical
to the gene in A. veronii CN17A0102 suggesting that this strain may produce amphi-
enterobactin. The genes found in Aeromonas veronii CN17A0102 were aligned to the amphi-
enterobactin gene cluster in V. campbellii ATCC BAA-1116 (Figure 3.20). SignalP predicted
cytoplasmic localization of the putative esterase in A. veronii CN17A0102, similar to Aebl
from V. campbellii ATCC BAA-1116. The putative esterase in A. veronii CN17A0102 is
adjacent to AebF in the gene cluster, just like in V. campbellii ATCC BAA-1116. The presence
of the amphi-enterobactin biosynthetic machinery suggests that Aeromonas veronii
CN17A0102 should produce amphi-enterobactin, however only contains one putative esterase
involved in amphi-enterobactin hydrolysis. These results indicate certain species may have
redundant putative amphi-enterobactin esterases and that at some point bacterial species

branched from two to one esterase.

142






Table 3.3. BLAST comparison results between Aeromonas veronii CN17A0102 and the
amphi-enterobactin biosynthesis genes of V. campbellii ATCC BAA-1116.

Gene name E-value | ldentities Positives
aebG 0.0 414/562 (74%) 483/562 (85%)
aebA 28 107/261 (41%) 140/261 (53%)
aebH / Esterase #1 | 3¢23 63/214 (29%) 100/214 (46%)
aebC 1e®0 152/384 (40%) 211/384 (54%)
aebE 207164 259/541 (48%) 334/541 (61%)
aebB 3% 140/298 (47%) 189/298 (63%)
aebF 0.0 1329/1329 (100%) | 1329/1329 (100%)
aebl / Esterase #2 | 3e3° 94/295 (32%) 144/295 (48%)
aebD n/a n/a n/a

fapA 207125 239/671 (36%) 362/671 (53%)

V. campbellii ATCC BAA-1116

A. veronii CN17A0102

Figure 3.20. Visual representation of the position of homologous amphi-enterobactin
biosynthesis genes found in A. veronii CN17A0102.
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3.4.7.2. Signal Peptides Found in Putative Esterase Peptide Sequence

(Cytoplasmic versus Periplasmic)

Signal peptides (SPs) are short amino acid sequences found in the amino terminus that
carry information for protein secretion and protein target location, particularly the destination
the protein is delivered.?* The presence of a signal peptide prompts the cell to translocate the
protein if needed. A signal peptide is does not consist of a strict consensus sequence, but rather
is composed of three main regions: 1) N-region: the positively-charged domain; 2) H-region:
the hydrophobic central region; and 3) C-region: the neutral, polar cleavage site.?® Proteins
without signaling regions are maintained in the cytoplasm, while those with signal peptides are
translocated to the periplasm.

The SignalP 5.0 server predicts the presence of signal peptides in proteins. This server
produces an output containing the highest probability. The protein can have a Sec signal
peptide (Sec/SPI), a Lipoprotein signal peptide (Sec/SPII), a Tat signal peptide (Tat/SPI), or
no signal peptide at all (other).2® If a signal peptide is reported, the position of the cleavage site
is also reported.®

Using the SignalP server, the amino acid sequences of both AebH and Aebl were
studied and compared to IroE, an enterobactin esterase, identified as a periplasmic protein due
to the presence of a signal peptide. The X-axis of the graph is the amino acid sequence labeled
numerically from the N-terminus and the Y-axis depicts the probability of the protein
containing the peptide sequence.

Aebl is predicted to have cytoplasmic localization due to the lack of a signal peptide
(Figure 3.21). As seen in the signal peptide analysis, Aebl has a high probability, 0.9968 for

OTHER, suggesting that this sequence does not contain a signal peptide.
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Esterase 2 (Aebl) is Cytoplasmic

Protein type Signal peptide (Sec/SPI) TAT signal peptide (Tat/SPI) Lipoprotein signal peptide (Sec/SPII) Other
Likelihood 0.002 0.0009 0.0003 0.9968
SP(Sec/SP1) —
TAT(Tat/sPI) ==
LIPO(Sec/SPIT) =

(=
OTHER
0.8

Probability
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Figure 3.21. Signal peptide probability prediction for Aebl. Visual representation of the
prediction probabilities at each position and the signal peptide type. CS, cleavage site.

AebH on the other hand does contain a signal peptide, however it is a lipoprotein signal
peptide. Analysis of the probability output (Figure 3.22) indicates that the lipoprotein signal
peptide has the highest probability for residues 1-22. A cleavage signal is observed right after
at residue 23. The signal peptide (Sec/SPI) probability is 0.0023, while the lipoprotein signal

(Sec/SPI1) is 0.9973.
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Esterase 1 (AebH) has a signal peptide
Protein type Signal peptide (Sec/SPI) TAT signal peptide (Tat/SPI) Lipoprotein signal peptide (Sec/SPII) Other

Likelihood 0.0023 0.0001 0.9973 0.0003

SP(Sec/SP1) —

TAT(Tat/sPI) ==

LIPO(Sec/SPII) =+
s

CS
OTHER
08

=

Probability
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0 20 40 60
Protein sequence

Figure 3.22. Signal peptide r;robability prediction for AebH. Visual representation of the
prediction probabilities at each position and the signal peptide type. CS, cleavage site.

LipoP 1.0 is a program used for the prediction of lipoproteins and for discerning
between lipoprotein signal peptides, other signal peptides, and N-terminal membrane helices
in Gram-negative bacteria. This method is described in Prediction of lipoprotein signal
peptides in Gram-negative bacteria by Sierakowska et al. 2 The first line of the output
summarizes the best prediction of where the cleavage site is to occur and the second line gives
the cut-off used. The columns represent the sequence ID, the type of prediction where Best
means the highest scoring class, margin gives the difference between the best and second-best
score, class gives the score of other classes, and signal lines contain predicted cleavage sites.
The next column is feature type where Spl means signal peptide, Spll is lipoprotein signal
peptide, TMH is N-terminal transmembrane helix, and CYT is cytoplasmic. Figure 3.24 shows
the output information for AebH, where we see a score of 3.6844 and a cleavage site between

residues 22-23, which matches with output from the SignalP-5.0 server. The LipoP 1.0 Server
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provides further confirmation that AebH though containing a signal peptide is more likely a
lipoprotein.

Lipoproteins are hydrophobic extracellular polypeptides that bind noncovalently to
lipids and transport through an aqueous environment. Knowing that amphi-enterobactin
contains a fatty acid chain and is hydrophobic, AebH may have lipoprotein functionality when
interacting with amphi-enterobactin. It remains unclear how a lipoprotein would relate to
putative esterase activity, however, AebH does contain a signal peptide indicating that it is
transported to the periplasm. In gram-negative bacteria, lipoproteins are typically attached to
the cytoplasmic membrane, the extracellular or peripheral side of the outer membrane.
Meaning that lipoproteins interact with the membrane, where it was hypothesized that amphi-
enterobactin may also interact with the membrane. The function of AebH still remains

unknown.

# WP_041853222.1 SpII score=3.64844 margin=3.465957 cleavage=22-23 Pos+2=E
# Cut-off=-3

WP_041853222.1 LipoP1.0@:Best SpII 1 1 3.64844

WP_041853222.1 LipoPl.@:Margin SpII 1 1 3.465957

WP_041853222.1 LipoP1.@:Class TMH 1 1 ©.182433

WP_041853222.1 LipoP1.@:Class CYT 1 1 -0.200913

WP_041853222.1 LipoP1.@:Class SpI 1 1 -0.306593

WP_041853222.1 LipoP1.0@:Signal CleavII 22 23 3.64844 # VGMAG|CEYLP Pos+2=E
WP_041853222.1 LipoP1.@:Signal CleavI 32 33 -1.35622 # HSAEV|DLPKQ
WP_041853222.1 LipoP1.0@:Signal CleavI 3@ 31 -1.78318 # LPHSA|EVDLP

Figure 3.23. Lipoprotein peptide signal prediction for AebH.
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3.4.8. Chirality of Fe(I11)-Amphi-Enterobactin

Amphi-enterobactin was purified by HPLC to remove contaminants. ESI-MS
confirmed the structure to be the 4-L-serine-3-DHB-FA (C12:0 OH) amphi-enterobactin with
a m/z value of 955. Circular dichroism (CD) measurements were obtained for the iron(l1)
complex of amphi-enterobactin. Similarly, like A-Fe(lll)-enterobactin complex, the ferric
amphi-enterobactin complex also has a A configuration (Figure 3.24 and Table 3.4). The CD
band at 270 nm corresponds to the carbonyl amide in the ligand, which the CD spectrum of
Fe(l11)-amphi-enterobactin contains. Ferric amphi-enterobactin also shows at band at 310 nm
representative of the chiral lactone scaffold, however in this case it is the tetralactone scaffold
while other siderophores like enterobactin and salmochelin contain a trilactone scaffold.
Ultimately in the CD spectrum one is looking for the bands arising from ligand-to-metal charge
transfer (LMCT) transitions, and in the case of amphi-enterobactin, they are the ferric catechol
transitions observed at around 435 nm and between 500 and 550 nm. These transitions are
sensitive to the chirality at the metal center.?” The tetralactone scaffold and fatty acyl chain in
amphi-enterobactin do not influence a change in chirality at the metal center when comparing
enterobactin’s trilactone scaffold and lack of fatty acid tail. In all, the chirality of ferric amphi-
enterobactin has been determined A. This configuration is the same for ferric enterobactin,
established by Karpishin, et. al.?® It will be interesting to see how microbial recognition is
affected, even though we see the same chiralities, will the structure be the ultimate deciding
factor. For comparison purposes, the Fe(l11)-amphi-enterobactin CD spectrum was compared
to the published CD spectra in Abergel et. al.?® of the following iron complexes: enterobactin,

D-enterobactin, Ser-Gly-Cam, D-Ser-Gly-Cam, and bacillibactin.
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Figure 3.24. (A) Circular dichroism spectrum of 100 uM Fe(l11)-bound amphi-enterobactin in
MOPS buffer (pH 7.4). (b) UV-visible absorbance of apo- vs Fe(lll)-amphi-enterobactin.

Table 3.4. Circular dichroism result of Fe(l11)-amphi-enterobactin.

LMCT transitions
Amax Ae
Ligand (nm)  [M'em™]
Amphi-enterobactin 526 -2.29

3.5. Discussion

In summary, tandem MS analysis of the hydrolysis fragments of amphi-enterobactin in
the culture supernatant of both V. campbellii CAIM 519T and V. natriegens CCUG 16371
establish that isomers [10] and [100] must arise from hydrolysis of the macrolactone amphi-
enterobactin siderophore as opposed to prerelease of di-Ser or tri-Ser fragments during
biosynthesis. Evidence for the [10] and [100] hydrolysis fragments is given by the unique
MS/MS fragment at m/z 230 [M+H]" arising from the Ci0.0 on derivatives (Figs. 3.7 and 3.10)
and m/z 258 [M+H]" arising from the C12.0 on derivatives (Figs. 3.8 and 3.11). These fragments
establish amphi-enterobactin is fully formed and then hydrolyzed. Identification of products
uniquely associated with prerelease, e.g., [1], [01], [001], and [0001] is not possible since the

fragments may also arise from hydrolysis of the amphi-enterobactin macrolactone.
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Future experiments involving an in vitro analysis of the biosynthesis proteins for
amphi-enterobactin could provide insight into the potential for premature release of incomplete
fragments along the biosynthetic pathway for amphi-enterobactin. Previous results from
reconstructing enterobactin synthetase activity reveal a pH dependence for the formation of
enterobactin hydrolysis products *. At pH 7.5, enterobactin was the only product synthesized
and released, while pH 8.8, the bis-catechol, bis L-Ser fragment, (DHB-L-Ser), was observed.
This (DHB-L-Ser), intermediate was a result of premature release of the incompletely
synthesized enterobactin from EntF at pH 8.8 rather than hydrolysis of enterobactin itself. As
a control, when the synthesized enterobactin is incubated in pH 8.8 Tris-HCI buffer,
enterobactin hydrolyzes to the DHB-Ser linear trimer, and no monomer or dimer. This study
suggests that premature hydrolysis is pH dependent, and that at physiological pH, in vitro, no
early release occurs.*

Campylobacter jejuni, a bacterial strain that does not itself produce siderophores,
contains a siderophore uptake system able to recognize and take up Fe(lll)-siderophores
produced by other bacterial species L. Further analysis of this uptake system identified the
periplasmic binding protein, CeuE, involved in the uptake of Fe(lll)-enterobactin showed a
preference for binding to the Fe(lll)-complex of the tetradentate hydrolysis product of
enterobactin, [Fe(l11)-(DHB-L-Ser),]*, [00] 2. The study rationalizes that utilizing the
enterobactin hydrolysis products provides C. jejuni a competitive advantage because it avoids
the metabolic costs associated with siderophore production. C. jeuni is able to recognize
Fe(lll)-enterobactin, but for the iron complex to enter the cytoplasm, the siderophore is

hydrolyzed by the trilactone esterase Cee to form [Fe(I11)-(DHB-L-Ser)]~ .
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During the NRPS mediated biosynthesis, the release of the siderophore is catalyzed by
the thioesterase domain either through hydrolysis, leading to a linear siderophore, or through
an intramolecular nucleophilic attack, leading to the cyclized siderophore 34. For hydrolysis to
occur, water becomes the competing nucleophile and in turn releases a linear siderophore. The
presence of linearized amphi-enterobactin has not yet been identified, but this does not
eliminate the option that hydrolysis can still occur at any point during the biosynthesis.

Thus overall, only the [01], [001] and [0001] the DHB-L-Ser fragments could originate
from premature release during biosynthesis of amphi-enterobactin due to an inefficient
biosynthetic pathway. The [10] and [100] fragments must arise from hydrolysis of the fully
formed amphi-enterobactin macrolactone, which could occur enzymatically by a Fes-type
esterase or non-enzymatically. The other possible fragment within the 3-Ser-3-DHB-FA
series, [010], is indistinguishable in the tandem MS analysis from the premature-release
fragment; thus, without sufficient quantity of each fragment for NMR structural
characterization, it is not possible to determine their origin. If fragments are prematurely
released during biosynthesis, it suggests that the NRPS pathway for amphi-enterobactin is
inefficient and not dependable. Further investigations may shed light on the fidelity of the
NRPS-catalyzed biosynthesis of amphi-enterobactin and the prevalence of incomplete

synthesis of NRPS natural products.
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4. Investigations of the Putative Esterases that Produce

Hydrolyzed Amphi-Enterobactin in Vibrio Species

Sections of this chapter were published in: Naka, H., Reitz, Z.L., Jelowicki, A.M. Butler, A.,
Haygood, M.G. Amphi-enterobactin commonly produced among Vibrio campbellii and Vibrio
harveyi strains can be taken up by a novel outer membrane protein FapA that also can transport
canonical  Fe(lll)-enterobactin. J Biol Inorg Chem 23, 1009-1022 (2018).
https://doi.org/10.1007/s00775-018-1601-5

4.1. Introduction

The marine bacteria Vibrio harveyi and Vibrio campbellii are phenotypically closely
related and share similar gene sequences.! It has been previously shown that V. campbellii
BAA-1116 and HYO1 (formerly V. harveyi  2) produce two siderophores, anguibactin and
amphi-enterobactin.® 4 Thode et al. compiled and visualized gene clusters for the biosynthesis
of siderophores in Vibrionaceae ° It was reported that homologs of the amphi-enterobactin
biosynthetic gene cluster can be found in the genome sequences of V. campbellii and V.
harveyi.> However, their analysis does not provide information on whether these amphi-
enterobactin biosynthetic genes are found in only certain strains or widespread among V.
campbellii and V. harveyi strains.

The suite of amphi-enterobactins was initially isolated from Vibrio campbellii ATCC
BAA-1116 (formerly V. harveyi BAA-1116).2 As previously mentioned, amphi-enterobactin
is a triscatecholate siderophore resembling enterobactin, although distinguished by an
expanded tetralactone core, and decorated by a fatty acid appended at the amine of the
additional L-Ser.? Along with amphi-enterobactin, its hydrolysis products composed of two L-

Ser residues, on 2,3-dihydroxybenzoate (2,3-DHB) group, and a fatty acid, have been reported
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previously (Figure 4.1).> ® These hydrolysis products have been analyzed by ESI-MS/MS,
establishing these amphi-enterobactin hydrolysis fragments arise from the full siderophore.
The amphi-enterobactin macrolactone siderophore is in fact produced as supported by the
tandem MS analysis of the hydrolysis product.’

For enterobactin, salmochelin, and bacillibactin, esterases have been identified that are
responsible for cytoplasmic iron release.? ® 1 1! Fes is the esterase that catalyzes the hydrolysis
of apo- and Fe(l11)-enterobactin ester linkages, in turn producing dihydroxybenzoyl-L-serine.®
The tris-(hydroxybenzoyl)-L-serine-Fe(l11) complex now has a substantially reduced stability
constant for Fe(lll) and in turn releasing the iron from the Fe(ll1)-siderophore complex. The
mechanism of iron release from Fe(l11)-siderophores still has many questions.

An esterase for the hydrolysis of amphi-enterobactin has not yet been identified. The
genomes of amphi-enterobactin producing strains, in this case V. campbellii and V. harveyi,
were analyzed to discover an esterase that could selectively hydrolyze amphi-enterobactin.
Even though amphi-enterobactin and enterobactin are similar in structure, a homolog of Fes

was not identified in the V. campbellii and V. harveyi species.
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Figure 4.1. The amphi-enterobactins produced by V. campbellii and V. harveyi, along with the
amphi-enterobactin hydrolysis product hypothesized to be a product of an esterase.
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Siderophore-mediated iron acquisition needs to be understood to provide information
on the mechanism of iron release. Iron acquisition begins with Fe(l1l) chelation, forming the
Fe(l11)-siderophore complex. Once the Fe(ll1)-siderophore complex forms, it is recognized by
a specific outer membrane receptor (OMR), and transported across the cellular membrane by
the TonB-ExbB-ExbD system and energy is imparted by the proton motive force.!? 13 14
Dependent on the Gram stain result of the bacterium, the complex will then be either in the
periplasm or the cytoplasm. In a Gram-negative bacterium, the complex will be recognized by
a periplasmic binding protein (PBP) and delivered to a cytoplasmic membrane permease
known as an ATP binding cassette (ABC) transporter, and the Fe(ll1)-siderophore complex is
transported into the cytosol.!®

Recognition of this iron(l11)-siderophore complex is specific to the bacterial strain and
the siderophore it is taken up, whether it be the native siderophore or a xenosiderophore. This
additional Fe(lll)-xenosiderophore uptake further diversifies the proteins involved in
transporting the complex from the environment into the cytosol. Many bacterial strains produce
native siderophores but have the ability to take up xenosiderophores produced by other
microorganisms. The challenge of acquiring iron is improved by the use of xenosiderophores
as it provides the microorganism with the advantage of taking up a variety of siderophores
without the metabolic cost associated with siderophore biosynthesis. Bacterial genomes have
also shown to contain more siderophore uptake genes in comparison to siderophore
biosynthetic genes.'® A larger variety of siderophore uptake genes improves the chances of
recognizing different Fe(ll1)-siderophore complexes, which in turn increases the opportunities

of acquiring iron.
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Much less is known about the mechanism of iron release from the Fe(ll1)-siderophore
complex than the mechanisms of iron-siderophore acquisition.'” *® The location the Fe(l11)-
siderophore complex and how iron is released from the complex varies with each siderophore.
Certain siderophores with a macrolactone backbone are chemically modified through an
enzyme hydrolysis, producing fragments with reduced ferric stability constants.® Other
pathways of iron(lll) release involve a reductase reducing the Fe(lll) within a ferric
siderophore complex; and proton-assisted Fe(l11)-release in a reduced pH environment.
Overall, transport from the external environment into the cytosol of the bacterial cell requires
several key proteins, including the outer membrane receptor, the periplasmic binding protein,
and the ABC-transporter (Figure 1.19). Iron(111) release on the other hand is dependent on the
structure and whether an esterase is needed to chemically modify the structure or just the
reductase to promote iron release. We will be covering the key proteins involved in recognizing

and transporting enterobactin as a xenosiderophore in a few key bacterial species.

4.2. Statement of Chapter Objectives

Several strains of two closely related bacteria, V. campbellii and V. harveyi, were
studied to identify how widespread the amphi-enterobactin biosynthetic genes are among these
strains and understand siderophore-mediated iron(111) transport mechanisms.

Electrospray ionization mass spectrometry revealed that various V. campbellii and V.
harveyi strains produce a suite of amphi-enterobactins with various fatty acid appendages,
including several novel amphi-enterobactins. These results establish that amphi-enterobactin
production is a common phenotype among V. campbellii and V. harveyi strains. Along with

amphi-enterobactin, its hydrolysis products have been reported and analyzed. As previously
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mentioned, the mass fragmentation analysis established these amphi-enterobactin hydrolysis
fragments arise from the full siderophore, suggesting that an enzyme catalyzed hydrolysis is
involved in the production of the fragments.

The secondary goal is to identify the function of the hypothetical esterase genes and
how they play a role in the formation of amphi-enterobactin hydrolysis products. Gene deletion
experiments show that the genes encoding putative esterases, aebH and aebl, may play a role
in the formation of these hydrolyzed amphi-enterobactin products. Identifying an amphi-
enterobactin esterase would provide another example of how modifying the structure of a
siderophore can change the physical properties.

Lastly, it is important to understand the key proteins involved in recognizing and transporting
siderophores. Microorganisms have adapted their receptor and transport proteins to compete
with other strains. The goal is through genome mining identify the differences in the uptake
pathway of Fe(ll1), with a particular focus on enterobactin as a xenosiderophore and identify
the necessary residues involved in recognition/transport of this and similar Fe(l11)-catecholate

complexes.

4.3. Materials and Methods

4.3.1. General Experimental Procedures

A Varian Cary-Bio 300 UV-visible spectrophotometer was used for UV measurements
to monitor growth. Analytical HPLC was used to analyze both the supernatant and cell pellet
extracts from V. campbeliii CAIM 519 to identify the production of both the breakdown

products and the cyclized amphi-enterobactins. Mass spectrometry analysis was carried out on
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a Waters Xevo G2-XS QTof with positive mode electrospray ionization coupled to an

ACQUITY UPLC H-Class system with a Waters BEH C18 column.

4.3.2. Bacterial Strains of Amphi-Enterobactin Producers and Culture

Conditions

Bacterial strains used in this study are listed in Table 4.1. Strains were grown in a low-
iron artificial seawater medium containing casamino acids (10 g/L), NH4Cl (19 mM),
disodium hydrogen phosphate (4.6 mM), MgSO4-7H20 (50 mM), CaCl>(10 mM), trace metal
grade NaCl (0.3 M), KCI (10 mM), glycerol (41 mM), HEPES buffer (10 mM; pH 7.4),
NaHCOs3 (2 mM), biotin (8.2 uM), niacin (1.6 puM), thiamin (0.33 uM), 4-aminobenzoic acid
(1.46 uM), pantothenic acid (0.21 uM), pyridoxine hydrochloride (5 uM), cyanocobalamin
(0.07 uM), riboflavin (0.5 uM), and folic acid (0.5 uM).2 Cultures were grown at 100 mL
scale in 250-mL acid-washed erlenmeyer flasks on an orbital shaker (180 rpm). After 48 hours,
cultures were harvested by centrifugation (5400 RCF, 15 min).

The cell pellet was resuspended in ethanol (30 mL per pellet) and shaken overnight at
4 °C. The ethanol extract was centrifuged briefly (13,000 rpm, 5 min) and filtered through a
0.22-um membrane. Siderophores were extracted with XAD resin. The cell pellet was diluted
4 times the volume with doubly deionized water (Milli-Q 1Q) and incubated with Amberlite
XAD-2 resin for one hour at 120 rpm, 25°C. Afterwards, the XAD resin was washed with
doubly deionized water and the siderophores were eluted with 90% methanol. The eluent was

concentrated under vacuum to dryness and dissolved in 5 mL of 50% methanol.
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Table 4.1. Strains containing the amphi-enterobactin biosynthetic gene cluster that were tested
for amphi-enterobactin production.

Strains Characteristics Reference or source

V. campbellii strains

HYO01 Dead, luminescing shrimp isolate Ref. 20

HYO01lAaebF

42A Healthy coral (Mussismilia hispida) isolate  Ref. 21

CAIM 115 Shrimp  (Litopenaeus sp.) hemolymph Ref. 21
isolate

CAIM 198 Shrimp (Litopenaeus sp.) hepatopancreas Ref. 21
isolate

CAIM 519T Seawater isolate V. campbellii type strain Ref. 22
ATCC 25920

DS40M4 Seawater isolate Ref. 23

V. harveyi strains

CAIM 148 Diseased shrimp (Panaeus sp.) hemolymph Ref. 21
isolate

CAIM 513T Dead, luminescing amphipod (Talorchestia Ref. 24
sp.) isolate V. harveyi type strain ATCC
14126

CAIM 1075 Oyster (Crassostrea gigas) isolate Ref. 21

CAIM 1792 Diseased shrimp (Litopenaeus vannamei) Ref. 25

lesion isolate
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4.3.3. Detection of Amphi-enterobactin by Electrospray lonization Mass

Spectrometry

The eluent was concentrated under vacuum to dryness and dissolved in 5 mL of 50%
methanol. Extracts were analyzed through positive ion mode ESI-MS on a Waters Xevo G2-
XS QTof coupled to a Waters Acquity H-Class UPLC system. A Waters BEH C18 column
was used with a gradient of 50-90 or 100% acetonitrile/water (both with 0.1% w/v formic
acid). Using MassLynx 4.1, chromatograms for masses of interest were generated and

molecular ion peaks quantified by integration (ApexTrack algorithm).

4.3.4. Knockout Mutant of A1Q_ 1382 And A1Q 1377

The knockout mutants of A1Q_1382 (Aestl) and A1Q1377 (Aest2), associated with the
putative esterases AebH and Aebl, respectively, were kindly constructed and sent to us by our
collaborators Dr. Hiroaki Naka and Professor Margo Haygood. Double knockout mutants of
the angR gene (A1Q_2165) responsible for the production of anguibactin, and the putative
esterase genes were also constructed (Figure 4.2). Four mutants in total were constructed and

tested for amphi-enterobactin production: WTAest1, AangRAest1, WTAest2, and AangRAest2.

estl est2

Gene in
V. campbellii HY01

A1Q_1383 | A1Q_1382 | A1Q_1381 | A1Q_1380 | A1Q_1379 A1Q_1378 A10Q_1377 | A1Q_1376 | A1Q_1375

Figure 4.2. Amphi-enterobactin biosynthetic gene cluster and the gene locus tags in Vibrio
campbellii HYO01 associated with each gene. Genes aebH and aebl were knocked out for this
study.
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4.3.5. Siderophore Production of Deletion Mutants and Complements in Vibrio

Campbellii HY01

Our collaborators, Dr. Hiroaki Naka and Dr. Margo Haygood constructed deletion
mutants and complement strains in Vibrio campbellii HYO1 (Table 4.2). The deletion and
complement mutant strains, along with wild-type Vibrio campbellii HY01 were grown in AB
medium. The medium was pre-made and stored at room temperature until use. One liter of AB
medium contains 2.0 ¢g/L casamino acids, vitamin free (0.2% wi/v final), 12.3 g/L
MgS04-7H20 (50 mM final), 17.5 g/L. NaCl (0.3 M), pH adjusted to 7.5 and sterilized by
autoclaving. After sterilization, the following sterile ingredients were added to give the
following final concentrations: 1 mM L-arginine, 1% (v/v) glycerol, and 10 mM potassium
phosphate buffer (pH 7.0). The medium was supplemented with 1 mM IPTG and 10 ug/mL
chloramphenicol. The strains were grown in 100 mL of the medium on a rotary shaker at 180
rpm, 30°C, for 24 hours. The cultures were harvested at 6,000 rpm for 30 minutes at 4°C and
the supernatants were incubated with amberlite XAD-2 resin for 2 hours at room temperature
with mild agitation. The cell pellet was resuspended in 20 mL of methanol and shaken over
night at 180 rpm, 4°C. The cell pellet was filtered and incubated with 100 mL of ddH20O and
amberlite XAD-2 resin for 2 hours at room temperature. Siderophores were eluted from the
resin with 90% methanol and concentrated by rotary evaporation. The extracts were analyzed

by UPLC-MS.
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4.3.6. Genome Mining of Proteins Involved in Xenosiderophore Enterobactin

Uptake

The genomes of bacteria identified to use enterobactin as a xenosiderophore were
accessed through NCBI. The amino acid sequences of enterobactin outer membrane receptors
(FepA), periplasmic binding proteins (FepB), and esterase (Fes) were retrieved from NCBI
RefSeg?” and used in BLAST and the PFAM database to construct a percent identity
comparison table.?® 2" The amino acid sequences of the OMRs, PBPs, and esterases were

aligned to FepA, FepB, and Fes, respectively, using MUSCLE (EMBL-EBI webserver). 2° %

4.4. Results

4.4.1. Vibrio Strains Producing Amphi-enterobactin

Sections 4.4.1 and 4.4.2 contain my results that appear in the collaborative publication
“Amphi-enterobactin commonly produced among Vibrio campbellii and Vibrio harveyi strains
can be taken up by a novel outer membrane protein FapA that also can transport canonical
Fe(l11)-enterobactin, by Naka, H., Reitz, Z.L., Jelowicki, A.M., Butler, A., Haygood, M.G. 3

Thode et al. compiled and visualized gene clusters for the biosynthesis of siderophores
in Vibrionaceae.® The study identified four Vibrio species potentially responsible for
producing amphi-enterobactin. A couple strains of Vibrio harveyi and V. campbellii have
already been characterized as amphi-enterobactin producers. The analysis from Thode et al.,
however did not confirm that the amphi-enterobactin biosynthetic genes are found widespread

or if the genes are only found in specific strains among V. campbellii and V. harveyi.
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Amphi-enterobactin genes were identified in all eleven of the species below (Table 4.3),
however, production of amphi-enterobactin needed to be evaluated. The goal of identifying the
production of amphi-enterobactin in these strains is to further understand siderophore-
mediated iron transport mechanisms and identify the versatility of amphi-enterobactin among
other marine bacteria.

Table 4.3. Distribution of amphi-enterobactin biosynthesis and transport genes in V. harveyi
and V. campbellii strains used in the following experiments.

Strain Species Former species  Amphi-enterobactin genes
aebF aebG fapA
HYO01 V. campbellii V. harveyi + + +
BAA-1116 V. campbellii V. harveyi + + +
42A V. campbellii + + +
CAIM 115 V. campbellii + + +
CAIM 198 V. campbellii + + +
CAIM 519 V. campbellii + + +
DS40M4 V. campbellii  Vibrio sp. + + +
CAIM 148 V. harveyi + + +
CAIM 513 V. harveyi + + +
CAIM 1075 V. harveyi + + +
CAIM 1792 V. harveyi + + +

+, presence; -, absence. The genes aebF and aebG are essential for amphi-enterobactin
biosynthesis while the fapA gene is essential for ferric-amphi-enterobactin uptake

Strains were grown in a low-iron artificial seawater medium for 48 hours. Ethanolic
cell pellet extracts were analyzed through positive ion mode ESI — MS to identify production
of amphi-enterobactin. Amphi-enterobactins are usually produced as a suite of siderophores
comprised of three 2,3-dihydroxybenzoyl-L-serine residues and one acyl-L-serine of varying
chain lengths. The attached fatty acid in amphi-enterobactin varies in length (C10-C14), degree
of unsaturation, and whether or not the fatty acid is hydroxylated. Zane et. al. previously
identified and structurally characterized a total of seven macrolactone amphi-enterobactins

(Table 4.4).2
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Table 4.4. Masses and structure composition of previously identified amphi-enterobactins.®

Mass (m/z)  Composition Fatty Acid Tail
1 927 4-Ser-3-DHB-FA  C10:0 OH
2 953 4-Ser-3-DHB-FA  C12:1 OH
3 955 4-Ser-3-DHB-FA  C12:0 OH
4 981 4-Ser-3-DHB-FA  C14:1 OH
5 937 4-Ser-3-DHB-FA  Cl12:1
6 939 4-Ser-3-DHB-FA  C12:0
7 965 4-Ser-3-DHB-FA  C14:1

The presence of these amphi-enterobactins were tested after growth of the various
Vibrio campbellii and V. harveyi strains. All of the strains tested showed production of a suite
of amphi-enterobactins with varying fatty acid appendages. Not all seven were consistently
produced amongst each strain (Table 4.5).

For each strain, the bottom trace in Figure 4.3 is an ESI-MS total ion count (TIC) over
time. Using MassLynx 4.1, chromatograms for masses of interest were generated, shown
stacked above the TIC and the masses of interest shown to the right of each trace (Figure 4.3
a-k and Figure 4.4). Molecular ion peaks were quantified by integration (ApexTrack
algorithm). Integrated masses are labeled on each trace with, elution time, base peak, and
integration, from top to bottom respectively. The amount of amphi-enterobactins produced
varies among different strains. From Table 4.5, it is observed that V. campbellii CAIM 519 has
the highest abundance of amphi-enterobactin, among the ten strains tested, producing all
eleven amphi-enterobactins identified (C10:0 OH; C12:1 OH; C12:0 OH; C10:0; C14:1 OH,;
C12:1; C14:0 OH; C12:0; C14:1; C14:0; and C16:1). V. campbellii HY01 on the other hand
shows lowest abundance of amphi-enterobactins, producing only four out of the eleven
possible structures, C12:0; C14:1; C14:0; and C16:1, all of which are the non-hydroxylated.
V. harveyi CAIM 513 and CAIM 1792 also have low relative abundance of amphi-

enterobactins, again producing the same four structures as V. campbellii HYOL.
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a. V. campbellii HY01
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Figure 4.3. a-k: UPLC/ESI-MS analysis of Vibrio species. Ethanolic cell pellet extracts were
analyzed through positive ion mode ESI-MS on a Waters Xevo G2-XS QTof coupled to a
Waters Acquity H-Class UPLC system. A Waters BEH C18 column was used with an
acetonitrile/water (both with 0.1% wi/v formic acid) gradient shown at the top of each stacked
trace. For each strain, the bottom trace is an ESI-MS total ion count (TIC) over time. TIC peaks
are labeled with the elution time (top) and base peak (bottom). Chromatograms for masses of
interest were generated with MassLynx 4.1, shown stacked above the TIC. The mass of interest
is shown to the right of each trace. Molecular ion peaks were quantified by integration
(ApexTrack algorithm). Integrated masses are labeled with, from top to bottom, elution time,
base peak, and integration. Species not detected are not shown, with the exception of the

negative control HYO1 AaebF (stacked trace b).
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b. V. campbellii HY01AaebF
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c. V. campbellii 42A

LC-MS default positive 15 min 50-100%
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e. V. campbellii CAIM 198

LC-MS positive 15 min 50-100% 215/250
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f. V. campbellii CAIM 519

LC—ME{OSME 15 min 50-100% 215250

2018016 ZR AJ 519 LC-6 Sm (Mn, 2x3) 1: TOF MS ES+
100 3 993
122 17\ 9,105
s 82180 Area
c oy L S0 X 3 LA ' g | B0 T L 1 vy A T & 2 ) T T  © L) LA Ll 1 L) 1 L T ]
0.50 1.00 150 200 250 3.00 350 4.00 450 5.00 5.50 6.00 6.50
20180%16 ZR AJ 519 LC-6 Sm (Mn, 2x3) 1: TOF MS ES+
100- 520 967
967.39 256e6
2] 234337 Area
0 LN
“ T T T T ] T 1 T T 1 T 1 T 1 T T T T T T T 1 T T T T T
050 1.00 150 200 250 300 350 400 450 5.00 .50 6.00 650
20180416 ZR AJ 519 LC-6 Sm (Mn, 2x3) 1: TOF MS ES+
100- 442 965
965.38 5.4606
# 530887, Area
c L] LA Ll LA Ll LA T 1 L 1 L] T L} Ll T L T LA L) LA Ll 1 1 LA L} L L}
0.50 1.00 150 200 250 3.00 350 4.00 450 5.00 5.50 6.00 6.50
20180516 ZR AJ 519 LC6 Sm (Mn_ 2x3) 1. TOF MS ES+
1005 401 939
839.38 56526
S 901589, Area
e L) L} L L] L} L} L) L g, 1 1 Ll 1 T L \J Li L] LA Ll 1 L LA T L 1
050 1.00 150 200 250 3.00 350 400 450 500 550 6.00 6.50
20120416 2R AJ 519 LC-€ Sm (Mn, 23) 1. TOF MS ES»
100- 3907 983
93837 2.90e4
4 _—_~'/L_. 2298 ]\k Area
050 1.00 150 200 250 300 350 400 450 5.00 550 6.00 650
20180§16 ZR AJ 519 LC-6 Sm (Mn, 2x3) 1: TOF MS ES+
100- 337 937
937 34]\ 1.30e6
® 114087/ Area
A L b & D L LA B A B M B oA A AR LA LA Bass Laas e naas
0.50 1.00 150 200 250 3.00 350 4.00 450 5.00 5.50 6.00 6.50
20180%16 ZR AJ 519 LC-6 Sm (Mn, 2x3) 1. TOF MS ES+
100- 229 981
12210 8 6204
ES 7146 Asea
c Li Ll LA Ll LA Ll T L 1 Ll 1 T L L) T T LA T LA L] 1 Ll ) § T L Ll
050 1.00 150 200 250 3.00 350 400 450 5.00 550 6.00 650
20180316 ZR AJ 519 LC-6 Sm (Mn, 2x3) 1. TOF MS ES+
100+ 283 _ 91
95535 2145
9 18081 Asea
0 L T T LA L) L4 T 1 L) L T 1 T ! T T T L Ll LA Ll 1 Ll LA T 1 T
0.50 1.00 1.50 200 250 3.00 350 400 450 5.00 5.50 6.00 6.50
20180$16 ZR AJ 519 LC-6 Sm (Mn_ 2x3) 1: TOF MS ES+
100+ 279 955
462.30 5.09¢6
ES 470906, Asea
c L] Li L] L} L] L] A} 1 L 1 T 1 L} 1 T L) L} L} L} LA L] L L LA T 1 T
050 1.00 150 200 250 3.00 350 4.00 450 5.00 550 6.00 6.50
I01RNE1A 7R AL 5191 0-6 Sm (M. 2x3) 1 TOF MS FS+
100- 953
35504
2 —_/L 235,137.99,1002 A el
0
0 T T T ¥ ¥ ¥ Y T T T T T T T T T T Y T T T ¥ T ¥ y
0.50 1.00 150 200 250 3.00 350 400 450 5.00 5.50 6.00 6550
20180§16 ZR AJ 519 LC-6 Sm (Mn, 2x3) 1: TOF MS ES+
100 102 _ L34
Y 13799 2.45e5
" 24 21238 Arca
L B o A o B A M A AL A s MM B AL AR AR L AR A AL Lo LARAE AOAAS MARASASAs MARAE RaRAS AARLS
050 1.00 1.50 200 250 3.00 350 400 450 500 550 6.00 650
20180416 ZRAJ 519 LCH 1: TOF MS ES+
& 278 270 401 e
100+ 0.05 297 331 7
052 _ 45232 336 71631 93938 526 556 887  492e7
283.08 182 817
#] 15106 13799 /‘\f}’\” 93734 Bl 95739 122 10 w220 2N
0 T T T T T T T T T T T T T T T T T T T T T T T T T T T Time
050 1.00 150 200 250 3.00 350 400 450 5.00 550 6.00 650

Figure 4.3. continued.

174



g. V. campbellii DS40M4

LC-MS positive 12 min 50-90% 215/250
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h. V. harveyi CAIM 148

LC-MS positive 12 min 50-100% 215/250
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j. V. harveyi CAIM 1075

LC-MS positive 12 min 50-100% 215/250
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Figure 4.4. Molecular ions for each of the amphi-enterobactins found in Vibrio species.
Masses were collected in positive ion mode ESI-MS on a waters Xevo G2-XS QTof coupled
to a Waters Acquity H-Class UPLC system. Traces are shown in order of elution time (bottom
to top).
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4.4.2. Newly Identified Amphi-Enterobactins - C10:0, C14:0 OH, C14:0 and

C16:0 FA

Four amphi-enterobactin species (with fatty acid tails, C10:0, C14:0 OH, C14:0 and
C16:1) were newly identified, in addition to the other seven amphi-enterobactin siderophores
that were previously found in V. campbellii BAA-1116.2 The following strains produced all
four of the new amphi-enterobactin species: V. campbellii CAIM 198, CAIM 519, DS40M4,
and V. harveyi CAIM 1075 (Table 4.6 and Figure 4.5). The remaining strains only produced
two of the new species: C14:0 and C16:1. A suite of ten amphi-enterobactin siderophores were
also detected from V. campbellii DS40M4 which has been previously reported to produce
anguibactin, as well as mono, di- and trivanchrobactin.?

Table 4.6. Distribution of new amphi-enterobactin species produced by the following V.
harveyi and V. campbellii strains used in this study.

Strain Fatty acid tail: ~ 10:0 14.00H 14:.0 16:1
Species m/z911 m/z 983 m/z 967 m/z 993
HYO01 V. campbellii - - + +
42A V. campbellii - - + +
CAIM 115 V. campbellii - - + +
CAIM 198 V. campbellii + + + +
CAIM 519 V. campbellii + + + +
DS40M4 V. campbellii + + + +
CAIM 148 V. harveyi - - + +
CAIM 513 V. harveyi - - + *
CAIM 1075 V. harveyi + + + +
CAIM 1792 V. harveyi - - + +

+, production of new amphi-enterobactin; -, absence
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Figure 4.5. Structure of amphi-enterobactin with the newly reported fatty acid tails. At this
time, the identity of the specific fatty acids (i.e., the sites of hydroxylation or site of
desaturation) were not determined.

4.4.3. Qualitative Analysis of Siderophore Production in Knockout Strains

Newly discovered putative enzyme families are further studied in vivo, in V. campbellii
HYO01 knockout mutants. Our collaborators, Dr. Hiroaki Naka and Dr. Margo Haygood
constructed the deletion mutant strains in Vibrio campbellii HYO01 (Figure 4.2 and Table 4.2).
Wild-type Vibrio campbellii HY01 and the seven deletion mutant strains were grown in AB

medium.

443.1. Effect of Mutation on Siderophore Production Observed

Phenotypically

The chrome azurol sulphonate (CAS) agar plate assay was used to screen for

siderophore production. Colonies of the wild-type (WT) strain and the mutant strains
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(WTAestl, AangRAestl, WT Aest2, and AangRAest2) were grown overnight on the CAS agar
plate formed yellow halos (Figure 4.6). Genes encoding Esterase 1 (aebH) and Esterase 2
(aebl) are embedded in the amphi-enterobactin biosynthesis cluster (Figure 4.2). Due to the
homology of the unknown proteins to an erythromycin esterase, these two are hypothesized to
function as esterases, cleaving the macrolactone and in turn releasing the ferric iron.

Single and double mutants of the esterase genes, aebH and aebl were constructed using a
suicide plasmid with deletion fragments. Vibrio campbellii HY01 produces both anguibactin
and amphi-enterobactin.®® 3! There have been cases where one siderophore frequently affects
the other one due to competition between two siderophores. Therefore, a double mutant was
constructed from an anguibactin production minus strain, V. campbellii HY01AangR that
added the deletion of the esterase genes (AangRA4est1, and AangRAest2). The phenotype of the
mutant strains along with the wildtype were analyzed on CAS agar plates. The WT, WTAest1,
and WT 4est2 showed very little halo formation, with the halo appearing to be approximately
the same size. The halo around AangRAest1 appears to be the smallest, while the halo around
the AangR4est2 colony is larger than the WT and the other mutant strains. Larger halo
formation suggests siderophore uptake is not occurring as efficiently, which can have an effect

on growth rate.
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HYOI WT WTAest1 AangR Aestl WTAest2 AangR Aest2

Figure 4.6. Phenotypes of anguibactin and esterase mutants. Colonies left to right of wild type
(WT), WTAestl, AangRAestl, WTAest2, and AangRAest2 on CAS agar after one day of
inoculation on plate.

4.4.3.2. Effect of Mutation on Growth Rate

To investigate the effect of the mutations on growth rate of V. campbellii HY01,
the growth of each knockout mutant strain along with the wildtype was monitored under low-
iron conditions. It is hypothesized that removing the esterase responsible for hydrolyzing
amphi-enterobactin and releasing ferric iron would decrease the growth rate of the strain in
comparison to the wildtype V. campbellii HY01. The WTAestl and WTAest2 did not show a
diminished growth rate, while AangR4estl and AangRAest2 showed a slight decrease in
comparison to the wildtype (Figure 3.7). The diminished growth rate in AangRAestl and
AangRA4est2 is expected since the biosynthesis of anguibactin, the other siderophore produced
by V. campbellii HY01, has been mutated. Due to the sequence homology of AebH and Aebl,
these two proteins may be redundant, which may explain why the growth rate remains the same
for the WTAestl and WTAest2. Overall, the growth curves of V. campbellii HYO01 and the
mutant strains grew to similar optical density over the same amount of time, suggesting that
the knockout of the putative esterase genes do not have a direct effect on the growth of the

bacterial strain.
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d WT vs WTAestl1 vs AangRAestl vs WTAest2 vs AangRest2
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Figure 4.7. a-c: Growth curve analysis of putative esterase mutants. a. Growth of WT (blue),
WTAestl (purple), AangRAest1 (gray), WTAest2 (green), and AangRAest2 (orange) knockout
mutants in iron-depleted medium. b. Growth comparison of WT (blue), WTAest1 (purple), and
WTAest2 (gray). c. Growth comparison of WT (blue), AangRAest1 (green), and AangRAest2
(orange).
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Figure 4.7. continued.
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4.4.3.3. Detection of Siderophores in Mutant Strains

We next examined the production of amphi-enterobactin breakdown products in V.
campbellii HY01 WT and mutant strains by UPLC-MS. Ultimately, we want to identify the
function of the unknown genes embedded in the amphi-enterobactin biosynthesis gene cluster.
If these genes encode esterases, then knocking out these genes would eliminate the presence
of the amphi-enterobactin breakdown products.

While it has been established that Vibrio campbellii HY0O1 WT produces a suite of
amphi-enterobactins, with fatty acids ranging from Ci» to Ci, and either saturated or
monohydroxylated®!, fragments of these amphi-enterobactins are also present in the culture
supernatant (Figure 4.8). Supernatant extracts of V. campbellii HY01 WT and mutant strains
were analyzed through positive ion mode ESI-MS on a Waters Xebo G2-XS QTof coupled to
a Waters Acquity H-Class UPLC system.

The 2-Ser-1-DHB-FAC%-0" (m/z 499.2 [M+H]") elutes at 4.42 minutes while the 2-Ser-1-
DHB-FAC120-0% (m/z 527.2 [M+H]") elutes around 5.24 minutes. Three of the four mutant
strains, WTAestl, WTAest2, AangRAest2, and the wildtype show the presence of the 2-Ser-1-
DHB-FACI00-0H " protonated mass of m/z 499 [M+H]", and 2-Ser-1-DHB-FAC20-0H
protonated mass of m/z 527 [M+H]" (Figure 4.8, Table 4.7). The mutant strain AangRAest1

did not show the presence of the amphi-enterobactin hydrolysis products.
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Table 4.7. Distribution of amphi-enterobactin hydrolysis products observed in the V.
campbellii HY01 mutant strains.

Fatty acid tail: ~ 10:00H 12:0 OH
Mutant Strain ~ m/z499  m/z 527
WT HYO01 + +
WT Aestl + +
WTAest2 + +
AangR4estl - -
AangRAest2 + +
+, presence of amphi-enterobactin
hydrolysis products;
-, absence
a. Vibrio campbellii HY01 WT
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Figure 4.8. a-d: UPLC/ESI-MS analysis of Vibrio species. Ethanolic cell pellet extracts were
analyzed through positive ion mode ESI-MS on a Waters Xevo G2-XS QTof coupled to a
Waters Acquity H-Class UPLC system. A Waters BEH C18 column was used with an
acetonitrile/water (both with 0.1% wi/v formic acid) gradient shown at the top of each stacked
trace. For each strain, the bottom trace is an ESI-MS total ion count (TIC) over time. TIC peaks
are labeled with the elution time (top) and base peak (bottom). Chromatograms for masses of
interest were generated with MassLynx 4.1, shown stacked above the TIC. The mass of interest
is shown to the right of each trace.
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Figure 4.8. Continued.
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d. Vibrio campbellii HY01 AangRAest2
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Figure 4.8. Continued.
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443.4. Effect of Mutant and Complement Strains on Phenotypic

Siderophore Production

The chrome azurol sulphonate (CAS) agar plate assay was used to screen for
siderophore production. Colonies of the wild-type (WT) strain HYO01 grown overnight on the
CAS agar plate formed yellow halos. To determine if knocking out the esterase has an effect
on iron uptake, mutant and complement strains: WT+emp, Aestl+emp, Aestl+estl,
Aest2+emp, Aest2+est2, AestlAest2+emp, AestlAest2+estl, and AestlAest2+est2 were grown
on CAS agar plates. The size of the halo formation was compared to the WT colony (Figure
4.9). There is very little halo formation in any of the mutant or complement strains. These
results are inconclusive about the effect the mutation has on siderophore production.

Liquid cultures of the mutant and complement strains were grown with
chloramphenicol and IPTG and the production of amphi-enterobactin was observed. The
wildtype complement (WT+emp) did not show production of amphi-enterobactin, suggesting
the vector might be affecting amphi-enterobactin growth. The mutant and complement strains
also did not show amphi-enterobactin production. Further studies are necessary to confirm if
the estl and est2 genes are necessary for hydrolysis of amphi-enterobactin, or to identify the
function of these genes as they are embedded in the biosynthetic gene cluster for amphi-

enterobactin.
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Aest]lAest2 +emp
Aestl Aest2 + estl
Aest]l Aest2 + est2

1. WT+emp

2. Aestl +emp
. 3. Aestl+ estl

4. Aest2 +emp
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6.

7.
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Figure 4.9. Phenotypes of esterase mutants and complement strains with a conjugated vector.
Colonies of mutants and complement strains grown on CAS agar plates for one day. Colonies
are numbered left to right, top to bottom (1-8). 1. WT+emp; 2. Aestl+emp; 3. Aestl+estl; 4.
Aest2+emp; 5. Aestl+est2; 6. AestlAest2+emp; 7. AestlAest2+estl; 8. AestlAest2+est2

4.4.4. Periplasmic Binding Proteins that Interact with Fe(l11)-Enterobactin

The following sections used a BLAST search to identify and compare key proteins
involved in Fe(lll)-enterobactin uptake. The goal is to identify the trends among a wide range
of bacterial strains that utilize enterobactin as a xenosiderophore.

Interaction with a periplasmic binding protein (PBP) is a key component in the iron
uptake mechanism of Gram-negative bacteria. In E. coli, the periplasmic binding protein,
FepB, binds to Fe(l11)-enterobactin.3* The PBP involved in transport of enterobactin in Vibrio
cholerae, VctB, differs in comparison to the PBPs of E. coli and V. anguillarum, in the sense
that VVctB recognizes only the linearized enterobactin complexes, whereas FepB recognizes
cyclic enterobactin.®® The same is suspected in V. parahaemolyticus since the iron transport

system shows homology to V. cholerae.®
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For Campylobacter jejuni, it was originally proposed that once the Fe(l11)-bound cyclic
enterobactin was transported into the periplasm, this complex was recognized by the PBP
CeuE, and ultimately transported into the cytoplasm. 37 3 3° However, further research has
demonstrated that C. jejuni utilizes enterobactin hydrolysis products for the uptake of iron. '
40 41 42 The OMR’s of C. jejuni are able to recognize cyclic enterobactin and transport the
complex into the periplasm. The sole trilactone esterase is located in the periplasm and
hydrolyzes the Fe(l11)-enterobactin complex.*° Further analysis of this Campylobacter Fe(l11)
acquisition model has shown that the PBP CeuE has preference for the enterobactin hydrolysis
product, [Fe(bisDHBS)]?> with higher affinity than [Fe(Ent)]*.42

Low denticity siderophores can be used as a competitive advantage for the bacteria that
are able to use them. Further investigations of CeuE with other periplasmic binding proteins
like YclQ from Bacillus subtilis and VctP from Vibrio cholerae has shown similar traits.** It
was identified that two residues of Ceuk, His227 and Tyr 288, interact with the tetradentate
siderophore [Fe(bisDHBS)]*, and that these two residues are conserved among the three
periplasmic binding proteins, CeuE, YclQ, and VctP.*® When CeuE interacts with a
tetradentate siderophore, the two coordination sites of the octahedral Fe(l11) center that are left
open become occupied by the nitrogen atom of the nearby His227 and oxygen from Tyr288.4
Overall, these two residues are conserved among the periplasmic binding proteins that only
recognize linearized enterobactin.

The goal now is to identify if these residues are conserved among other periplasmic binding
proteins. A Needleman-Wunsch Global Alignment was completed to identify the percent
identity of each PBP to one another (Table 4.8). The three PBPs previously mentioned have a

precent identity ranging from 26% for CeuE with VctP and 39% for CeuE with YclQ. Of the
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strains that use enterobactin as an xenosiderophore, the highest percent identity is between V.
parahaemolyticus and V. cholerae with a 59% identity. Again, the OMR of Vibrio cholerae

does not recognize cyclic enterobactin but instead its linear products.
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Sequence alignment of the selected periplasmic binding proteins identified that Vibrio
parahaemolyticus and two strains of Vibrio campbellii, ATCC BAA-1116 and CAIM 519,
contain the same conserved residues as in C. jejuni, CeuE, B. subtilis YclQ, and V. cholerae
VctP (Figure 4.10). Since these two residues, His227 and Tyr288, are conserved in V.
parahaemolyticus, it suggests that the uptake mechanism for the xenosiderophore enterobactin
is most similar to V. cholerae, where the OMR does not recognize cyclic enterobactin but
rather the linearized products. There also may be a possible stronger preference for the
tetradentate siderophore [Fe(bisDHBS)]?) as was seen in C. jejuni. The two V. campbellii
strains, ATCC BAA-1116 and CAIM 519 produce amphi-enterobactins, a siderophore similar
to enterobactin.® 3! The uptake mechanism for amphi-enterobactin has not been thoroughly
studied, but this result of the conserved residues may provide insight that there is a preference
for the hydrolysis of the siderophore to occur in the periplasm and these hydrolysis products

are then transported into the cytoplasm via the ABC-transporter.
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4.45. Esterases that Interact with Enterobactin

Mechanisms of iron release from siderophores falls under three possible pathways: a
chemical modification, typically a hydrolysis of a macrolactone backbone, proton-assisted
dissociation of the complex, and/or a reductase mediated reduction Fe(l1l) to Fe(I1).Y’

Fes is the most well-known esterase that hydrolyzes serine-ester-containing catecholate
siderophores. Within this class of esterases, IroD and IroE in Salmonella enterica hydrolyze
salmochelin and BesA in Bacillus subtilis hydrolyzes bacillibactin.® ® 43 4 Of the strains
mentioned that take up enterobactin as an xenosiderophore, only three esterases have been
identified: PfeE for P. aeruginosa,*® VabH for V. anguillarum,*® 4" and Cee for C. jejuni.*

A Needleman-Wunsch Global Alignment was completed on the esterases discussed to
provide an average percent identity of the proteins. Pairwise global protein identities were
calculated by the Needleman-Wunsch algorithm (NCBI BLAST).%

There are four esterases with highest similarities to one another: Fes, IroD, VabH, and
“unknown” from V. parahaemolyticus (Table 4.9). The unknown protein in V.
parahaemolyticus does not have an assigned function but through a BLAST search was
identified as a potential esterase. All four of these esterases are localized in the cytoplasm, but
not all of them are solely enterobactin specific esterases. IroD also hydrolyzes salmochelin,
while VabH also hydrolyzes vibriobactin. Interestingly, the “unknown” putative esterase found
in V. parahaemolyticus has the highest percent identity (74%) to Fes and suggests that this
esterase may be able to hydrolyze cyclized enterobactin. The next highest percent identity to
Fes is VabH, an esterase in V. anguillarum with the ability to hydrolyze both the native

siderophore, vanchrobactin, and the xenosiderophore enterobactin. IroD, the last esterase of
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the four, has a 26% identity to Fes. The two periplasmic esterases, IroE and PfeE have 30%
similarity to one another.

Lastly, BesA, has the highest similarity to the periplasmic proteins IroE (25%) and
PfeE (27%). BesA is the esterase from Bacillus subtilus, a Gram-positive bacterium and has
the ability to hydrolyze its native siderophore bacillibactin and xenosiderophore enterobactin.

Overall, despite these proteins coming from different bacterial species, all have the
ability to hydrolyze Fe(l1l)-enterobactin along with hydrolyzing their native siderophores. The
function of the unknown esterase in V. parahaemolyticus has not been identified and require
further studies to determine if this putative esterase has the ability to hydrolyze the iron bound
cyclic enterobactin. The four strains P. aeruginosa, V. anguillarum, V. parahaemolyticus, and
V. cholerae do not contain the biosynthetic gene cluster for enterobactin but do express proteins
involved in recognizing Fe(lll)-enterobactin and promoting iron release from the complex

through hydrolysis.
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4.4.6. Reductases that Interact with Fe(l11)-Enterobactin

Successive events following the hydrolysis of the ferric trilactone scaffolds, specifically
the process of iron release is not yet fully understood. Focusing on the ferric enterobactin complex,
after hydrolysis of the complex, the formation constant of the hydrolysis product still favors
complex formation over iron dissociation, which emphasizes the need for a reductase.'’ # Once
the ferric siderophore is hydrolyzed, the stability constant is lowered, and the reduction potential
of Fe(l1l) falls into a range similar to that of ferric hydroxamate siderophores that are known to
involve a ferric reductase for iron release, thus suggesting a reductase mediated Fe(l11) reduction
and iron release. Unfortunately, very little is known about ferric-siderophore dissociation
involving reductases and only a couple siderophore pathways have been investigated. For the
hydrolyzed Fe(lll)-enterobactin complex, a NADPH-dependent reductase, YqjH, has been
identified. The reductase YqjH directly follows hydrolysis and is able to catalyze iron release from
enterobactin and several other iron chelators.*°

YqjH belongs to the ferredoxin reductase-like family but differs from a ferredoxin
reductase (FNR) in that YqgjH favors the flow of electrons from NADPH to ferric substrates,
whereas a FNR transfers an electron from reduced ferredoxin to NADP*.*® This characteristic
shows that the goal of YqjH is iron assimilation rather than NADPH generation.*® Substrate
binding studies have also shown that YqjH has high binding affinity to the ferric substrate and that
single alanine substitution of K55 and R130 identified that this lysine and arginine residues have
a strong impact on catalytic efficiency, in particular for the hydrolyzed ferric triscatecholate
substrates.*® Further deletion studies of both Fes and YqjH have revealed that YgjH does not act

in parallel, but rather downstream of Fes.*® This result further confirmed the need for either an
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esterase to hydrolyze ferric enterobactin or the presence of the already hydrolyzed ferric
triscatecholate species to acquire iron from the ferric substrate.

Iron-siderophore dissociation can occur in either the periplasm or cytoplasm. For E. coli,
dissociation occurs in the cytoplasm where the esterase is located, while the esterase in
Pseudomonas aeruginosa is located in the periplasm. Even though PfeE (esterase) contributes to
the dissociation of iron from the siderophore in P. aeruginosa, the entire dissociation process has
not been elucidated. The Fe(lll)-enterobactin complex still requires a reductase to complete the
dissociation, but unfortunately a reductase for enterobactin in P. aeruginosa has not yet been
identified.

Another known reductase ViuB, found in V. cholerae, is known to reduce the Fe(lll)-
vibriobactin complex.® %° It is also identified as a siderophore-interacting protein (SIP) and
belongs to the SIP oxidoreductase family along with YqjH. Vibriobactin is a triscatecholate
siderophore with a nonhydrolyzable backbone therefore an esterase is not necessary to promote
iron release. These two known reductases already differ, where YqjH is efficient in reducing the
hydrolyzed enterobactin, while ViuB favors the intact ferric triscatecholate complex.

There have not been many siderophore reductases characterized, but after a quick sequence
similarity search in the strains identified to take up enterobactin, we see that strains C. jejuni, S.
enterica, and V. parahaemolyticus show high sequence similarity (51 to 80%) to YqgjH (Table 5.4).
Interestingly, in this sequence similarity search, no putative reductases were found for Bacillus
subtilis and Vibrio anguillarum. A sequence-level analysis (Figure 5.5) of the putative reductases
revealed that the two amino acids, K55 and R130 that have a strong impact on catalytic efficiency,
are conserved among the aforementioned strains. Vibrio campbellii ATCC BAA-1116, an amphi-

enterobactin producing siderophore, despite it have a low sequence similarity (21%) (Figure 5.5)
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has K55 conserved, but not R130. These putative reductases most possibly fall into the same

ferredoxin reductase-like family as YqjH.

Table 4.10. Sequence similarity search of putative reductases similar to YqjH, the enterobactin
reductase.

PBP Needleman-Wunsch

Global Align
A E.coli | V.cholerae
Strain/PBP Ref. Seq. YgjH ViuB
E.coli | YdiH NP_417541.1 100 27
V. cholerae | VIUB | WP 000064348.1 27 100
V. parahaemolyticus KKF68733.1 80 25
C. jejuni VTQ52188.1 51 23
S. enterica GAS70983.1 75 25
S. enterica ECI4400604.1 100 27
V. campbellii ATCC BAA-1116 ARV75241.1 21 31
B. subtilis
V. anguillarum
t i ® ; el 9
C. jejuni |VTQ52188. 1/1-270 FKRIVLTGDELKGFTSRGFDDHIKILLFFPANPG
E. coli WP_417541.1/1-254 FQRIVLGGEALDGFTSRGFDDHSIKILFFP-QPD
S. enterica ECI4400604. 1/1-254 FQRIVLGGEALDGFTSRGFDDHSIK[LFFP-QPD
V. parahaemolyticus 68733.1/1-255 FQRIVLGGDALEGFNSRGFDDHS FFP-QPG
S. enterica |GAS70983. 1/1-257 FQRIVLGGDALDGFSSHGFDDHT FFP-EPG
V. cholerae |WP_000064348.1/1-271 LLRVTLTGEDL IGFPEDQNGSHI FFPNQAS
V. campbellii ATCC BAA-1116 V75241.1/1-272 MQRITLQGEALGNFPLDCEGSYV[KILILFN-EVG
120 130 140 150

C. jejuni |VTQ52188.1/1-270

1I10
QAHELTLDFYLH- -

' 1 ' ' '
---DGGVASEWAAGAKPGDKL | IGGPRG}SLI IPT

E. coli lNP_417541.1/1-254

LRHELAIDFFIH- -

---DGGVASGWAMQAQ PGDKLTVAGPRG:SLVVPE

S. enterica |EQI4400604. 1/1-254 LRHELAIDFFIH----- DGGVASGWAMOAQPGDKLTVAGPRG:SLVVPE
V. parahaemolyticus 68733.1/1-255 ARHELALDFFIH--- - - DGGVASRWAMKAREGDTLTIGGPRG:SLVVPE
S. enterica |GAS70983.1/1-257 ARHELALDFYIH- - - - - DGGVASTWAMNAREGDKLT IGGPRIGSLVVPE

V. cholerae |WP_000064348.14/1-271 QSNELD IDFVVH- - - -GEGTPGGGWALKAQTGSQLGLIGP G:PDPL 1E
V. campbellii ATCC BAA-1116 |JARV75241. 1/1-272 QACTIEVDFVRHITKDLQCGF AARWAMAAKVGDT ISIVGPBIS'ISNLNT

Figure 4.11. Sequence alignment of putative reductases along with YqjH (E. coli) and ViuB (V.
cholerae). Residues boxed/starred in blue indicate the conserved residues among the sequences
that have been previously identified as the two residues in YqjH that have a strong impact on
catalytic efficiency. The sequence for ViuB and the putative reductase in V. campbellii ATCC
BAA-1116 do not have the arginine residue conserved.
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4.5. Discussion

Amphi-enterobactin production was tested via ESI-MS analysis of extracts from various
V. campbellii and V. harveyi strains. All of these strains showed production of a suite of amphi-
enterobactins with various fatty acid appendages. The amount of amphi-enterobactin however,
varied among the V. campbellii and V. harveyi strains. In the course of this investigation, four new
amphi-enterobactin species, with fatty acid tails, C10:0, C14:0 OH, C14:0 and C16:1, were
identified, two of which were reported by McRose et al.® These results indicate the versatility of
the amphi-enterobactin biosynthetic gene cluster among the marine bacterial strains, V. campbellii
and V. harveyi.

The Fes esterase found in enterobactin-producing species catalyzes the hydrolysis of
Fe(l11)-enterobactin to promote iron release from the catechol ligands.® The amphi-enterobactin
hydrolysis products that have been characterized are likely coming from an enzymatic hydrolysis.
However, to this date, a homolog of Fes has not been identified in V. campbellii and V. harveyi
strains that produce amphi-enterobactin. Instead, two putative esterases embedded in the amphi-
enterobactin BGC, have shown homology to an erythromycin esterase. Knockout mutants of these
two putative esterases were constructed and tested for the presence of amphi-enterobactin
hydrolysis products. The hydrolysis products, m/z 499 and m/z 527, were identified in three of the
four mutant strains, WTAestl, WTAest2, and AangRAest2. In the mutant strain AangRAest1,
hydrolysis products were not observed. The experiments of the mutant and complement strains
were inconclusive and require further investigations. The control strain of V. campbellii HY01
with the plasmid did not produce amphi-enterobactin, therefore either the growth conditions may
be affecting siderophore production or the inserted plasmid. Future studies may focus on these

mutant and complement strains and identifying the presence of the hydrolysis fragments.
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In respect to the genome analysis of the iron acquisition mechanism of Fe(l11)-enterobactin
among varying bacterial strains, it was summarized that microorganisms have had to adapt to their
receptor and transport proteins to adjust to the evolution of diverse siderophores and compete with
other microorganisms.*

The iron uptake pathway in E. coli, especially for enterobactin has been the model mechanism in
the field and is thought that the molecular mechanism would apply to enterobactin as a
xenosiderophore in other Gram-negative bacteria. However, further findings have shown that even
the same siderophore may experience a different uptake pathway in other bacterial strains. In some
cases, like in P. aeruginosa and V. anguillarum, cyclic Fe(ll1)-enterobactin is recognized and the
two strains contain an esterase, either in the periplasm or the cytoplasm that helps hydrolyze the
complex. The other three strains, V. cholerae, V. parahaemolyticus, and C. jejuni have a stronger
preference for the hydrolysis products of enterobactin. In particular, V. cholerae and V.
parahaemolyticus lack the outer membrane receptors and esterase for cyclic enterobactin and
instead recognize the linear dimer/trimers. C. jejuni is able to recognize cyclic enterobactin, but
once the complex is in the periplasm, an esterase must hydrolyze the siderophore so that it can be
transported into cytoplasm and iron is released. Through bioinformatic analysis, key residues
previously identified as interacting with the tetradentate siderophore in C. jejuni is conserved

among other strains that utilize enterobactin hydrolysis products as xenosiderophores.
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