
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title

The Cancer Genomics Hub (CGHub): overcoming cancer through the power of torrential data

Permalink

https://escholarship.org/uc/item/37g2137w

Journal

Database, 2014(0)

ISSN

1758-0463

Authors

Wilks, Christopher
Cline, Melissa S
Weiler, Erich
et al.

Publication Date

2014-09-29

DOI

10.1093/database/bau093

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/37g2137w
https://escholarship.org/uc/item/37g2137w#author
https://escholarship.org
http://www.cdlib.org/

Original article

The Cancer Genomics Hub (CGHub):

overcoming cancer through the power of

torrential data

Christopher Wilks1,*, Melissa S. Cline2, Erich Weiler2, Mark Diehkans2,

Brian Craft2, Christy Martin3, Daniel Murphy3, Howdy Pierce4,

John Black4, Donavan Nelson4, Brian Litzinger3, Thomas Hatton3,

Lori Maltbie3, Michael Ainsworth3, Patrick Allen3, Linda Rosewood1,

Elizabeth Mitchell1, Bradley Smith5, Jim Warner5, John Groboske1,

Haifang Telc1, Daniel Wilson1, Brian Sanford1, Hannes Schmidt1,

David Haussler2 and Daniel Maltbie3

1Biomolecular Engineering, School of Engineering, University of California Santa Cruz, Santa Cruz, CA,

USA, 2Center for Biomolecular Science and Engineering, School of Engineering, University of California

Santa Cruz (UCSC), Santa Cruz, CA 95064, USA, 3Annai Systems Inc., 2100 Palomar Airport Road, Suite

210 Carlsbad, California 92011, USA, 4Cardinal Peak, LLC, 1380 Forest Park Circle, Suite 202 Lafayette,

CO 80026, USA and 5Information Technology Services, University of California Santa Cruz (UCSC),

Santa Cruz, CA 95064, USA

*Corresponding author: Tel: þ1 831 459 4222; Fax: þ1 831 459 5357; Email: cwilks@soe.ucsc.edu

Citation details: Wilks,C., Cline,M.S., Weiler,E., et al. The Cancer Genomics Hub (CGHub): overcoming cancer through the

power of torrential data. Database (2014) Vol. 2014: article ID bau093; doi:10.1093/database/bau093

Received 23 June 2014; Revised 8 August 2014; Accepted 26 August 2014

Abstract

The Cancer Genomics Hub (CGHub) is the online repository of the sequencing programs

of the National Cancer Institute (NCI), including The Cancer Genomics Atlas (TCGA), the

Cancer Cell Line Encyclopedia (CCLE) and the Therapeutically Applicable Research to

Generate Effective Treatments (TARGET) projects, with data from 25 different types of

cancer. The CGHub currently contains >1.4 PB of data, has grown at an average rate of

50 TB a month and serves >100 TB per week. The architecture of CGHub is designed to

support bulk searching and downloading through a Web-accessible application program-

ming interface, enforce patient genome confidentiality in data storage and transmission

and optimize for efficiency in access and transfer. In this article, we describe the design

of these three components, present performance results for our transfer protocol,

GeneTorrent, and finally report on the growth of the system in terms of data stored

and transferred, including estimated limits on the current architecture. Our

Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US. Page 1 of 10
(page number not for citation purposes)

Database, 2014, 1–10

doi: 10.1093/database/bau093

Original article

http://www.oxfordjournals.org/

experienced-based estimates suggest that centralizing storage and computational

resources is more efficient than wide distribution across many satellite labs.

Database URL: https://cghub.ucsc.edu

Introduction and background

When the first human genome draft sequence was built in

the year 2000, its in silico representation was made pub-

licly available as a File Transfer Protocol (FTP) download

from the University of California, Santa Cruz (1). Its data

size was �2.5 GB, and its initial download rate reached an

aggregate spike of �60 megabits per second (Mbps). In

2012, the Cancer Genomics Hub (CGHub) opened offi-

cially for downloads (2), with sequence and alignment data

from the genomes of >3300 cancer patients. This time, the

data size was 170 TB and the aggregate download rate

spiked to >4 gigabits per second (Gbps) in the first year. In

the 2þ years since CGHub came online, >400 cancer re-

searchers have initiated downloads of �20 PB of cancer se-

quence data derived from >10 000 cancer patients, with

peaks of >14 Gbps aggregate download traffic.

Sequencing technology has made significant advances

in the past 14 years, allowing an explosion in the size

and number of genomics projects. The rate of decrease in

sequencing cost has outstripped Moore’s law, which states

that the cost of transistors in digital electronics will

decrease by a factor of 2 every 2 years (3). However, these

advances in sequencing come with significant costs in com-

putational and data management resources. A key example

is the National Center for Biotechnology Information

(NCBI), the central repository of genomics data in the

USA. The NCBI was created both as a public archive

and to ease the strain on the research community from

accessing and transferring genomics ‘Big Data’. It grows

at �4 TB a day or �1.4 PB a year as reported in 2013 by

David Lipman, director of NCBI.

The CGHub stores data for a more focused set of infor-

mation made up of cancer genomes. These data specifically

come from sequencing projects that are managed by the

National Cancer Institute (NCI), including The Cancer

Genome Atlas (TCGA), the Cancer Cell Line Encyclopedia

(CCLE) and the Therapeutically Applicable Research to

Generate Effective Treatments (TARGET) project, among

others. The TARGET project in particular focuses on

pediatric cancer cases. The amount of cancer data these

projects have generated and are still generating makes

CGHub the largest repository of broadly available cancer

genomics data in the world (by size measured in terabytes).

This article will (i) focus on the development and results

of the CGHub repository in terms of its technical

infrastructure, (ii) review the design and results of the

GeneTorrent (GT) protocol for securely transferring large

amounts of genomic data out of CGHub and (iii) seek to

extrapolate the lessons learned from CGHub to future

repositories for storing and computing over large genomics

data.

Methods

In CGHub, we have brought together large amounts of

raw research data (cancer genomes) and information

technology best practices for storing nontrivial-sized

data and querying the associated metadata, combining

them into a single repository that complies with the

NCI-required Federal Information Security Management

Act (FISMA). CGHub is classified as ‘FISMA Low with

Enhancements’. The technical design of CGHub addresses

three key challenges in building the kind of repository that

stores patient-related data:

1. Data organization and search (e.g. metadata)

2. Security (e.g. confidentiality of patients’ sequence data)

3. Efficient large data transfer (moving the bytes from the

repository to the researchers)

Data organization and search (metadata)

The size of genomics data and the number of variables

associated with any particular sequence file (e.g. disease,

sample type, sequencing type) make managing and

querying it challenging. A genomics data repository

must therefore provide accurate and detailed metadata in a

well-supported format that is easy to search and retrieve.

We chose to leverage the Sequence Read Archive Metadata

XML schema (currently at version 1.5) provided by the

NCBI, which was already in use within the cancer gen-

omics community. The schema is stored as a set of XML

Schema Definitions (XSDs) that are updated periodically

by the staff of the NCBI and referenced by CGHub via

the Web.

A related objective to storing correct and useful meta-

data was a Web-accessible query interface for search and

bulk retrieval. We addressed this by storing the metadata

in a relational database, indexing it with the Apache Solr

Web query engine and presenting it in XML format via a

consistent set of Web service interfaces (WSIs). These Web

Page 2 of 10 Database, Vol. 2014, Article ID bau093

https://cghub.ucsc.edu
iga
ytes
Megabits
more than
Terabytes (
s
)
more than
Gigabits
more than
approximately
Petabytes (
s
)
more than
,
over
l
Law
nited
tates
,
``
''
approximately
erabyte
s
e
tabyte
s
ancer
enomics
which
,
paper
1
2
 the
,
3
Information
T
's
 (IT)
-
``
''
ancer
enomics
, etc…
,
Service
Interfaces

services are a custom-built REST-based interface for public

metadata search and retrieval (the metadata are not pro-

tected, as they are not patient-identifiable information).

These WSIs make up the primary application programming

interface of CGHub. To query and retrieve the metadata,

we provide a command line script (cgquery) and a Web-

based GUI, which supports searching and filtering via

the Solr Web query engine (the CGHub data browser).

The integration of these tools with the CGHub system is

referenced in Figure 1.

Both of these client query interfaces produce XML-for-

matted ‘manifest’ files, which can initiate a multi-genome

download via GT, our data transfer tool. The manifest

file provides basic information on each entry, such as file

name, size and MD5 checksum. Given this manifest

file, GT will download all selected genomic sequence

data files. Because all steps in this process can be scripted,

a user can construct automated pipelines to query and

download genomics data from CGHub.

Security: identity management

Confidentiality of patient-derived genomics data is a core

requirement of CGHub. Only authorized researchers are

allowed access to �98% of the CGHub genomics data.

Thus, before allowing downloads to be initiated, the sys-

tem must ensure proper authentication and authorization.

For simplicity, we decided to use a preexisting solution:

the NIH InCommon identity provider via the Internet2

Shibboleth middleware package. This allows for a single-

sign-on (SSO) architecture to be leveraged from the exist-

ing technology and infrastructure. This process is

illustrated in Figure 2. As a part of this, CGHub stores a

list of login names authorized for various NCI projects.

Figure 1. CGHub and GeneTorrent conceptual system design and flow. (1) Client retrieves a list of downloadable files from the CGHub Web services.

(2) Client uses GT to initiate a download. (3) Download is handed to GT distributor after proper security checks have passed. (4) Download is distrib-

uted to multiple transfer servers within a pool of available servers. (5) Servers announce themselves to the tracker as serving the requested file(s).

(6) Client gets list of servers from the tracker. (7) Client downloads data directly from assigned transfer servers. All sequence data are read from the

distributed GPFS.

Database, Vol. 2014, Article ID bau093 Page 3 of 10

is
it is
is
s
 (API)
``
''
GeneTorrent (
)
,
-
 (IdP)
(SSO)

The actual authorization for these logins is handled by

the NCI-appointed Data Access Committee (DAC), which

is distinct from CGHub.

Security: confidentiality and integrity

Cancer data confidentiality and integrity must be secured

both in storage and transfer. Other genomics databases

(EBI and NCBI) have chosen, at least in the past, to encrypt

these data independent of the network transfer. These

encrypted genomics files—mainly encrypted binary align-

ment/map (BAM) files (4)—are sent over unencrypted

network transfer protocols, and then decrypted offline by

the end user. If this decryption process fails after the file

has been downloaded, the transfer must be repeated,

at least partially, incurring significant cost in time to the

researcher. Although this approach keeps the data pro-

tected from unauthorized parties, it burdens the researcher

with the task of managing post-transfer decryption and

validation. Although GT does not necessarily reduce over-

all computational costs, because decryption and validation

still occur on the client end, it reduces administrative over-

head by running these operations automatically as part

of the transfer.

Figure 2. CGHub client security transaction: (1) CGHub retrieves the authorized list of users from the NCI DAC multiple times a day. (2) The client

accesses CGHub’s Web page to login and is redirected to NIH’s InCommon federated SSO authentication page over HTTPS where the client logs in

using previously issued NIH credentials. (3) A successful authentication is sent back to the client via Shibboleth. (4) The client then sends the authenti-

cation via Shibboleth to CGHub’s Web server. (5) CGHub’s Web server then generates a unique cryptographically encoded key for the client, which

has a 1-year expiration from the date of issuance, and sends it securely to the client over HTTPS. (6) The client then sends his\her file request with

its encrypted identity key from Step 5 over HTTPS to CGHub’s security service. (7) If the client’s key is recognized and authorized to download

the requested file, CGHub’s security service will send a signed temporary x509 certificate specific to the requested file back to the client over HTTPS.

(8) The client then sends the x509 certificate from Step 7 to the CGHub data server to prove the client’s identity and authorization to download the

requested file. (9) The CGHub data server verifies the certificate and establishes an SSL connection using AES-256 for encryption for the file transfer

to the client.

Page 4 of 10 Database, Vol. 2014, Article ID bau093

an
,
this
,
While
While
ene
orrent
'

File integrity checking is accomplished through the

use of SHA-1 (160-bit) (5) hashing of each ‘piece’ of a

genome sequence file. These are precomputed on upload to

CGHub and are checked by the GT client during down-

load. If any piece fails the hash check, it is re-transferred

automatically. Encryption is implemented through a cus-

tom extension to the underlying BitTorrent (BT) library

using the well-known OpenSSL libraries for securing

Transmission Control Protocol (TCP) connections. GT

uses the asymmetric RSA algorithm for establishing a con-

nection and confirming the identity of the CGHub servers/

clients. The AES-256 (6) symmetric encryption algorithm

is then used for securing the data transfer. We chose the

combination of RSA with SHA-1 (5) hashing and AES (6)

using 2048-bit and 256-bit key strengths, respectively, to

achieve a reasonable bit strength within a recognized set of

security protocols (7).

Transfer

Transferring large amounts of data over wide area

networks (WANs) remains a challenge (8). Additionally,

security requirements exacerbate the problem owing to

the computational demand of encryption/decryption and

file integrity hashing. Commonly used applications such

as Rsync-over-SSH and secureFTP (sFTP) suffer from the

computational demands of encryption/decryption (9) and

from TCP protocol inefficiencies (10) when used for

high volume, and secure transfers over high-bandwidth

networks with long round trip times (‘long-fat networks’

or LFNs).

To address these limitations, we selected BT as a foun-

dational transfer protocol. BT is a common protocol for

data transfer over WANs. A major goal of BT was efficient

and robust transfer of large files to multiple nodes concur-

rently (11). BT has held a top position in its share of the

world’s bandwidth usage in the recent past with 27% of

total network usage in Asia and a nontrivial share in

Europe (12) and has been the subject of various research

papers (13, 14).

The CGHub repository makes use of the GT extension

of BT, developed by Annai Systems and based on the open-

source, TCP-based libtorrent-rasterbar version of BT

developed by Rasterbar Software. GT includes support

for SSL encrypted data channels, preauthentication and

authorization keys and genomic metadata integration.

The latter two components are integrated with Annai’s

proprietary Genomic Network Operating System (GNOS),

which also provides the aforementioned WSI in CGHub.

The CGHub was the first large-scale repository to use

Annai’s GT and provided input on its ongoing design and

development.

There are two additional factors that are critical in

using GT/BT to support high-performance transfers: BT’s

inherent parallelization and its provision for relatively

painless horizontal scaling (adding more concurrent down-

loads) to support a growing number of simultaneous users.

Parallelization allows more efficient utilization of the pre-

viously mentioned LFNs, over which our clients connect

to CGHub. These networks are provided by third-party

organizations such as Internet2 and are provisioned

with links often �1 Gbps but with round-trip times

>50 ms, depending on the client’s location.

The CGHub supports parallelization through both

hardware and software. The hardware supports highly par-

allelized data storage and transfer with many internal

10 Gbps Ethernet interconnects for both storage and trans-

fer nodes and a 10þ Gbps outbound connection to re-

search and public backbone networks. The GT software

supports parallelization intrinsically at multiple layers

of the transfer. Following on both of these features of

CGHub, horizontal scaling can be achieved with minor

additional administration cost.

GT’s parallel features are built on the piece-wise nature

of the underlying BT protocol, which allows for large files

to be handled as collections of independent segments that

can be transferred and verified via hashing individually.

In addition, BT leverages concurrent TCP connections

to maximize bandwidth usage for any given file transfer,

and it provides the ability to efficiently scale to support

increasing numbers of clients in aggregate with relatively

minimal system changes. The high aggregate transfer

rate is further supported at the storage system level by

CGHub’s use of IBM’s General Parallel File System

(GPFS). Figure 3 shows the distributed nature of the system

with the file storage subsystem (GPFS) using commodity

near-line SAS 7200 RPM hard drives attached to storage

servers (not shown), which are interconnected with all

the file servers by 10 Gbps Ethernet links.

GT provides multiple dynamically allocated download

servers and multiple concurrent client transfer processes—

each of which initiates a concurrent TCP connection to all

download servers—per download. Additionally, the GT

download servers are fronted by multiple 10 Gbps con-

nected firewalls, which are also part of the parallelization,

a requirement in the presence of the packet processing

load that 10 Gbps traffic places on a network filter device

such as a firewall. A single encrypted download is spread

across these layers of parallelization (Figure 3) to achieve

a more efficient use of network bandwidth and CPU pro-

cessing power than would be likely with a single encrypted

TCP stream.

Based on this, a certain amount of horizontal scaling

can be achieved with minor changes, simply by using

Database, Vol. 2014, Article ID bau093 Page 5 of 10

-
``
''
-
,
ene
orrent
-
-
due
-
-
``
''
'
BitTorrent (
)
it
orrent
it
orrent
it
orrent
World's
-
-
GeneTorrent (
)
it
orrent
ene
orrent
-
,
eb
ervices
nterface
ancer
enomics
,
equal to or greater than
s
greater than
ancer
enomics
ene
orrent
 on
ene
orrent
ene
orrent
ene
orrent
;
which

commodity hardware for additional download servers

and requiring only the GT server software to be installed.

The dynamic GT server distribution component (part of

GNOS), shown in Figure 1, is easily updated to handle

the additional servers in the pool of download machines.

A potential limiting factor to scaling horizontally is the

storage back end. However, adding additional storage

servers with attached disk arrays extending both the avail-

able storage and theoretically the parallel performance of

the system is feasible and has been done in practice without

extensive re-tooling in the CGHub system.

Results

Transfer performance comparison

To test network transfer performance, we ran GT with

varying numbers of TCP connections per server and the

number of servers using encrypted data channels via

OpenSSL as shown in Figure 4. We compared GT against

the nearly ubiquitous SSH secure File Transfer Protocol

(sFTP) program and the open-source GridFTP transfer pro-

gram (8) used as part of the Globus system that supports

multiple parallel encrypted TCP connections. For our tests,

all transfers were run reading an 8.88 GB cancer BAM file

from GPFS with server-side caching enabled. The sFTP

program supports only a single encrypted TCP connection

to a single server but is present in all the TCP connection

groups in the graph for consistency and comparison.

GridFTP was run as a single client connecting to a single

server for all tests, as GridFTP’s multi-server striping

mode requires the same number of servers and clients

participating in the transfer. Technical details such as hard-

ware specifications and software versions used, as well as

links to guides covering GT installation and firewall con-

figuration, are available in the Supplementary Data. In

addition, we have included in the Supplementary Data a

second performance comparison graph to demonstrate the

effect encryption has on GT transfer performance.

GT showed differences in performance with varying

number of TCP connections and servers simultaneously

serving the same download to the same client, where 12 is

the current maximum number of download servers pos-

sible in the CGHub production system. From the graph we

see that GT is fastest when running a medium number,

four, of concurrent TCP connections to the maximum

number of server instances (12 servers). This is most likely

owing to the CPU-bounded nature of encryption, as the

transfer rates are significantly lower than the line speed of

10 Gbps and the client disk IO has little or no consistent

deleterious performance impact. Spreading the transfer

across additional servers attains faster rates in all tests, as

more CPU cores are harnessed to perform encryption on

the server side for a single download. Conversely, maxi-

mizing the number of concurrent TCP connections without

raising the number of servers shows diminishing returns

with more than four connections and in some cases it sig-

nificantly decreases the performance of the transfer (8 and

20 connections).

The above result is most likely due to the increasing over-

head of additional concurrent TCP connections to a fixed

number of GT servers. GridFTP in constrast continues to

achieve better performance as the number of TCP connec-

tions is raised to a single server, demonstrating one potential

Figure 3. CGHub’s multi-layered parallelized transfer architecture using GT.

Page 6 of 10 Database, Vol. 2014, Article ID bau093

only
ene
orrent
,
GeneTorrent (
)
-
ene
orrent
secureFTP or
which
n
Gigabyte
 only
,
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bau093/-/DC1
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bau093/-/DC1
ene
orrent
ene
orrent
4
due
greater
4
ene
orrent

difference in how the two protocols operate. However, even

GridFTP should eventually see diminishing returns as more

concurrent TCP connections are added, according to its au-

thors (8). Further research would be required to say for cer-

tain what the actual root cause for the difference is, but it is

likely that BT does not attempt to optimize any specific TCP

connection, whereas GridFTP is most likely using each TCP

connection more efficiently. The added benefit of GT is then

primarly in its inherent ability to scale to an arbitrary num-

ber of servers (within some limit), which GridFTP cannot

currently do for a single client. In any case, there is clearly a

‘sweet spot’ for the configuration of the number of transfer

servers and the number of concurrent TCP connections con-

trolled from the GT client. These two variables represent the

primary tuning parameters of GT.

In practice, the performance impact of SSL/TLS encryp-

tion for Web sites has been largely alleviated by advances

in CPU speed and architecture (15). However, there is a

significant mismatch between the many-users-small-data

transfers of a typical Web application such as Gmail and

the few-users-huge-data transfers from a data repository

like CGHub. A single load of a Gmail page transfers on the

order of 1 MB of data, and even in the presence of attach-

ments, is limited to 25 MB per attachment. An average

user of CGHub will attempt to transfer 14 GB in a single

download. Our results therefore indicate that this negation

of the computational effect of encryption in the context of

much larger data than Web applications still requires

careful configuration and tuning on both the server and

the client side, as the scale of data being transferred per

user is approximately three orders of magnitude greater.

In the near future, we are not likely to see significant

improvement in general-purpose CPU performance for

cryptographic functions on a single core because chip

design is limited by power consumption and heat buildup

to current clock frequencies, and chip manufacturers have

multiplied the number of cores rather than raising individ-

ual core frequencies (16, 17). Special instruction sets, such

as Intel’s support of the symmetric cipher block algorithm

AES (AES-NI), require software support (e.g. newer ver-

sions of OpenSSL), but are one option for alleviating

the encryption burden. In general, GT, regardless of the

CPU architecture, and building off of BT’s parallelism,

load shares the computational work of a single encrypted

download across multiple systems, lowering the bottleneck

effect of encryption on transfer speeds. In light of the above

results, this appears to be an effective answer to the limita-

tions of current architectures for securing large transfers

efficiently.

CGHub usage statistics

The following graphs demonstrate the growth of CGHub’s

data footprint in terms of size and usage. All download

Figure 4. Comparison of transfer performance between sFTP, GridFTP and GT with varying numbers of TCP connections and GT server instances.

Database, Vol. 2014, Article ID bau093 Page 7 of 10

'
it
orrent
'
ile
 then
``
''
Megabyte
t
hese are
Megabytes
igabytes
ince
,
-
-
–
ene
orrent
it
orrent
-

numbers are estimates based on records of initiated down-

loads, including tests but excluding retries. This evidence

demonstrates that CGHub is not only operational but also

provides an ongoing source of cancer genomics data to

many research groups. Figure 5 shows that every metric has

increased by nearly a factor of 10 since CGHub’s inception.

This demonstrates a substantial increase in CGHub submis-

sions and downloads. Figure 6 shows the total size and

download usage cumulatively by month. Downloads total-

ing in aggregate of ~20 PB of data have been initiated while

the repository has grown to >1.4 PB in size with hundreds

of terabytes projected to still be uploaded.

Figure 5. CGHub growth measured by size (GB) of uploads, downloads and number of users per month. The y-axis is in log scale.

Figure 6. CGHub cumulative growth: downloaded vs. stored data.

Page 8 of 10 Database, Vol. 2014, Article ID bau093

,
over
petabytes
100's
Terabyte
B
s
of
project
s
ed
still

Discussion

We have presented an overview of the CGHub data reposi-

tory for storing and transferring petabytes of cancer gen-

omics data. We have emphasized our approach to security

and analyzed the file transfer performance of GT for ac-

cessing multi-gigabyte files over WANs via authenticated

and encrypted channels. The highly redundant nature

of the system at both the storage and the server level com-

bined with the scalability of parallel transfer algorithms

such as GT provides a working base to build on in the

quest to support the ever-growing amount of cancer-

related genomics data that need to be stored, accessed and

ultimately reasoned over in a secure manner. What follows

is a discussion of the limitations of the current approach

primarily for smaller less-built-out groups accessing the

data we store and the possible solution of an integrated

data storage repository with a computational analysis grid

in the same geographical location.

The current paradigm is to store genomics data cen-

trally and distribute them in large volumes to satellite

centers and labs for analysis. There are concerns about

the sustainability of this paradigm, and these concerns are

important in light of the large volumes of genomics data

currently being generated and expected in the future. Here

we provide additional insight into this matter by estimating

our capacity for handling future growth based on our 2þ
years of experience running CGHub, discussing the on-

going feasibility of researchers transferring these data to

their local systems, and suggesting a possible solution.

Future usage projections

We estimate an upper limit of CGHub’s aggregate out-

bound bandwidth to be between 20 and 30 Gbps given the

current hardware—CPU processing capacity and storage

internetworking—and GT transfer capabilities, assuming

upgraded network link(s) and additional firewalls, which

are currently limited to an aggregate of 15–20 Gbps. We

believe this upper limit could be realized with some soft-

ware optimization but without an architecture redesign.

Averaged bandwidth usage—overall peaks of �15 Gbps

and a 5 Gbps average in the past year—suggests that we

will not hit the 30 Gbps ceiling in the next 6–12 months

(Figure 7 shows averages over 2+ years).

In our performance comparison results, we showed that

a baseline secure transfer using sFTP would run no faster

than �496 Mbps. By current estimates, downloading

the entire CGHub repository at that speed would take �8

months (1.4 PB in 261 days) given that �98% of the data

would require encrypted transfers. Such a download would

still take �73 days of constant downloading at 1784 Mbps

even when using a highly optimized GT client and servers,

as presented in the Results section. Many users would

run multiple downloads in parallel but this would still be

dependent on their hardware and available network band-

width (496 Mbps is almost half of a 1 Gbps network link).

That said, we currently have users running parallel jobs

with GT. One client on the east coast of the USA reported

a download rate from CGHub’s location at the San Diego

Super Computing Center (SDSC) of �2 TB an hour

(�4444 Mbps) spread across �50 concurrent instances of

GT. In contrast, many other clients are limited to rates

much <496 Mbps due, at least in part, to constrained net-

work and IO capacity. It is also important to state here

that CGHub’s use of the BT-using GT is currently in a cli-

ent/server mode, not in the more common peer-to-peer

mode, thus partially obviating the potential performance

benefit of a many-to-many transfer scheme (there is still

some benefit in being able to scale the server ‘peers’ con-

trolled by CGHub). This limitation is in part because of

the restrictive data-sharing policy surrounding the

Figure 7. CGHub’s outbound firewall usage 1/2012–5/2014 (averaged 24-h intervals, some precision is lost).

Database, Vol. 2014, Article ID bau093 Page 9 of 10

ancer
enomics
Petabyte
B
,
ene
orrent
Gigabyte
ene
orrent
s
,
,
it
this
-
-
l
 to
Megabits per second (
)
petabytes
ene
orrent
ene
orrent
East
Coast
erabyte
s
ene
orrent
less than
'
it
orrent
tiliz
ene
orrent
``
''
due to

protected genomic data CGHub stores. If the data continue

to grow at the rates we have observed—and possibly even

at the present size of the repository—small-to-medium-

sized research groups will need to pursue alternative meth-

ods of accessing and computing on these data.

An immediate solution to this problem is to couple

the data in CGHub with colocated automated analysis

pipelines backed by high-performance compute cluster(s)

at the SDSC. This would allow a community involved in

high-throughput cancer genomics analysis to develop

around CGHub. There are already groups subscribing to

colocalized compute farms positioned near CGHub at the

SDSC. Longer-term solutions include the creation of a

few centers, each hosting a research computational cloud

made up of persistent high capacity storage, joined with

an extensive compute and networking infrastructure.

These centralized groups operating the clouds could then

optimize the sharing of large volumes of data between

themselves via an automatable tool such as GT using its

swarm approach to file transfer for rapid synchronization

of data sets. This consolidated approach would then

bring genomics back in line with the prevailing wisdom

in the big data world, which is to move computation to

the data rather than data to the computation (18).

Supplementary Data

Supplementary data are available at Database Online.

Acknowledgements
The authors thank the research community using CGHub who have

continuously encouraged our work and inspired us to do better. The

authors also thank the University of California, specifically staff at

the Santa Cruz and San Diego campuses for their continued support

of this project. The management of Leidos Biomedical Research, Inc

has been excellent partners in our efforts to assure that CGHub

meets the needs of our community. Diagrams were created using the

Gliffy Online service.

Funding

This project has been funded in whole or in part with Federal funds

from the National Cancer Institute, National Institutes of Health,

under Contract No. HHSN261200800001E. The content of this

publication does not necessarily reflect the views of policies of the

Department of Health and Human Services, nor does mention of

trade names, commercial products, or organizations imply endorse-

ment by the U.S. Government. Funding for open access charge: US

NCI (HHSN2611200800001E).

Conflict of interest: The core software for CGHub uses the GNOS

network repository software and is a commercial product provided

by Annai Systems. Cardinal Peak is a contract engineering services

company.

References

1. Kent,W.J. and Haussler,D. (2001) Assembly of the working

draft of the human genome with GigAssembler. Genome Res.,

11, 1541–1548.

2. Wilks,C., Maltbie,D., Diekhans,M., et al. (2013) CGHub:

Kick-starting the Worldwide Genome Web. Proc. Asia Pac. Adv.

Netw., 35, 1–13.

3. Moore,G. (1998). Cramming more components onto integrated

circuits. Proc IEEE, 86, 82–85.

4. Li,H., Handsaker,B., Wysoker,A., et al. (2009) The Sequence

alignment/map (SAM) format and SAMtools. Bioinformatics,

25, 2078–2079.

5. National Institute of Standards and Technology. (2012) Secure

Hash Standard, FIPS180-4. NIST, Gaithersburg, MD.

6. National Institute of Standards and Technology. (2001)

Advanced Encryption Standard (AES), FIPS197. NIST,

Gaithersburg, MD.

7. Al Hasib,A. and Haque,A.A.M.M. (2008) A comparative study

of the performance and security issues of AES and RSA cryptog-

raphy. In: Convergence and Hybrid Information Technology,

2008. ICCIT’08. Third International Conference on, Vol. 2.

IEEE Computer Society, Washington, DC, USA, pp. 505–510.

8. Allcock,W., Bresnahan,J., Kettimuthu,R., et al. (2005) The

Globus Striped GridFTP Framework and Server. In: Proceedings

of the 2005 ACM/IEEE conference on Supercomputing. IEEE

Computer Society, Washington, DC, USA, p. 54.

9. Khalil-Hani,M., Nambiar,V.P., and Marsono,M.N. (2010)

Hardware Acceleration of OpenSSL cryptographic functions

for high-performance Internet Security. In: Intelligent Systems,

Modelling and Simulation (ISMS), 2010 International

Conference on. IEEE Computer Society, Washington, DC, USA,

pp. 374–379.

10. Gu,Y. and Grossman,R.L. (2007) UDT: UDP-based data trans-

fer for high-speed wide area networks. Comput. Netw., 51,

1777–1799.

11. Cohen,B. (2003) Incentives build robustness in BitTorrent.

In: Workshop on Economics of Peer-to-Peer Systems, Vol. 6,

pp. 68–72.

12. Sandvine Incorporated. (2012) Global Internet Phenomena

Report: 1H 2012. Sandvine Incorporated ULC, Ontario, Canada.

13. Liogkas,N., Nelson,R., Kohler,E., et al. (2006) Exploiting bittor-

rent for fun (but not profit). In Proceedings of the 5th

International Workshop on Peer-to-Peer Systems (IPTPS’06).

14. Zhang,C., Dhungel,P., Wu,D., et al. (2011) Unraveling the

BitTorrent ecosystem. Parallel Distrib. Syst. IEEE Trans., 22,

1164–1177.

15. Langley,A., Modadugu,N., and Chang,W.T. (2010)

Overclocking ssl. In: Velocity: Web Performance and Operations

Conference.

16. Dongarra,J., Gannon,D., Fox,G., et al. (2007) The impact of mul-

ticore on computational science software. CTWatch Q., 3, 1–10.

17. Sutter,H. (2005) The free lunch is over: a fundamental turn

toward concurrency in software. Dr. Dobb’s J., 30, March 2005.

18. Schadt,E.E., Linderman,M.D., Sorenson,J., et al. (2010)

Computational solutions to large-scale data management and

analysis. Nat. Rev. Genet., 11, 647–657.

Page 10 of 10 Database, Vol. 2014, Article ID bau093

s
–
this
-
-
ene
orrent
http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bau093/-/DC1

