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ABSTRACT OF THE DISSERTATION

Fixed-Width Stopping Procedures for Markov Chain Monte Carlo

by

Lei Gong

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, August 2015

Dr. James M. Flegal, Chairperson

Markov chain Monte Carlo (MCMC) simulations are commonly employed for esti-

mating features of a target distribution, particularly for Bayesian inference. A fundamental

challenge is determining when these simulations should stop. This dissertation begins by

introducing relevant MCMC basics and discussing several existing techniques to terminate

an MCMC simulation: the convergence diagnostics, using the effective sample size (ESS)

as a stopping rule, and the fixed-width stopping rule (FWSR).

This dissertation continues by proposing the relative FWSRs that terminate the

simulation when the width of a confidence interval is sufficiently small relative to the size of

the target parameter. Specifically, we introduce two sequential stopping rules: the relative

magnitude and the relative standard deviation FWSR in the context of MCMC. In each

setting, we develop conditions to ensure the simulation will terminate with probability one

and the resulting confidence intervals will have the proper coverage probability. The results

are applicable in such MCMC estimation settings as expectation, quantile, or simultaneous

multivariate estimation. We investigate the finite sample properties through a variety of

examples, and provide some recommendations to practitioners.

New challenges present when the relative FWSRs are applied to terminate high-

dimensional MCMC simulations. To this end, we propose using a modified relative standard

deviation FWSR that terminates the simulation when the computational uncertainty is

small relative to the posterior uncertainty. Further, we show this stopping rule is equivalent

to stopping when the effective sample size is sufficiently large. Such a stopping rule has

previously been shown to work well in settings with posteriors of moderate dimension. We
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further illustrate its utility in high-dimensional simulations while overcoming some current

computational issues. As examples, we consider two complex Bayesian analyses on spatially

and temporally correlated datasets. The first involves a dynamic space-time model on

weather station data and the second a spatial variable selection model on fMRI brain

imaging data. The results show the modified sequential stopping rule is easy to implement,

provides uncertainty estimates, and performs well in high-dimensional settings.

As a novel application, we propose using Bayesian model selection on linear mixed-

effects models to compare multiple treatments with a control. A fully Bayesian approach

is implemented to estimate the marginal posterior inclusion probability for each treatment,

along with the model-averaged posterior distributions. It automatically traverses the model

space and identifies subsets of predictors with nonzero fixed-effects coefficients; that is, it

locates the model with the highest posterior probability. The resulting marginal inclusion

probabilities provide a straightforward measure of the differences between treatments and

the control. Default priors are proposed for model selection and a component-wise Gibbs

sampler is developed for posterior computation. The proposed method is shown to work

well using simulated data and the experimental data from a longitudinal study of mouse

weight trajectories.
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Chapter 1

Introduction

1.1 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are commonly employed in a Bayesian

context to estimate features of complex and often high-dimensional posterior distributions,

especially the Metropolis-Hastings algorithm (Hastings, 1970; Metropolis et al., 1953) and

the Gibbs sampler (Gelfand and Smith, 1990; Geman and Geman, 1984). Properly im-

plemented, MCMC techniques allow exploration of intractable probability distributions by

constructing a Markov chain whose stationary distribution equals the desired distribution.

Simply put, it is used to produce an estimate of some characteristics of a target distribution

that is too complex to directly sample from.

Let π denote a probability distribution having support X ⊆ Rd, d ≥ 1, about which

we wish to make inference. This inference is usually based on various features (parameters)

of π. For example, if g : X→ R, we may need to calculate

µg := Eπ[g(X)] =

∫
X
g(x)π(dx) ,

or if W ∼ π, then we might require quantiles of the distribution of V = h(W ) where

h : X → R. Specifically, if FV denotes the cumulative distribution function of V , then we

want to calculate

ξq := F−1
V (q) = inf{v : FV (v) ≥ q} .

In general, we denote θ ∈ Rp, p ≥ 1 as a target parameter of interest with respect to

π. Note that p can be smaller or larger than d, with large values of either indicating a
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high-dimensional setting. Unfortunately, in most practically relevant settings we cannot

calculate θ directly. Thus we are faced with a classical statistical problem; given a proba-

bility distribution π we want to estimate a fixed unknown feature.

Frequently π is such that MCMC is the only viable technique for estimating θ. The

basic MCMC method entails constructing a time-homogeneous Harris ergodic Markov chain

X =
{
X(0), X(1), . . .

}
on state space X with σ-algebra B = B(X) and invariant distribution

π. The popularity of MCMC methods result from the ease with which X can be simulated

(Robert and Casella, 2004).

A major challenge for practitioners is determining how long to run an MCMC

simulation. It is often difficult to decide when it is reasonable to believe that the samples are

truly representative of the underlying stationary distribution of the Markov chain (Cowles

and Carlin, 1996). On one hand, we definitely do not want premature termination that

results in less reliable posterior inference; on the other hand, running an MCMC simulation

too long is a waste of time and computational resources, especially in high-dimensional

settings. Many experiments employ a fixed-time rule to terminate the simulation; that is,

the procedure terminates after n iterations, where n is determined heuristically. Indeed,

some simulations are so complex that this is the only practical approach, but that is not so

for most experiments. This approach is unsatisfactory since practitioners would not have

any confidence in the quality of the resulting estimates.

Alternatively, graphical methods are often utilized to evaluate if the chain has been

run long enough. These include scatterplots, histograms, time series plots, autocorrelation

plots and running mean plots (for a review see Geyer, 2011). In multivariate settings, a d-

dimensional Markov chain is simulated to simultaneously estimate p-dimensional vector θ of

π. These graphical techniques are obviously problematic when either d or p is large (Flegal

and Jones, 2011). That is, good performance in marginal plots does not necessarily infer

convergence in joint target distribution. Moreover, these plots soon become impractical to

examine individually if either d pr p is large, which is often the case in modern Bayesian

analysis.

Convergences diagnostics are also widely used among MCMC practitioners (for

a review see Cowles and Carlin, 1996) to determine if n is sufficiently large. They assess

the convergence of a chain statistically via outputs produced by the algorithm. Some of

them are available in popular statistical softwares, e.g. R package boa (Smith, 2005) and

coda (Best et al., 1995). Although ”convergence diagnostic” was the central keyword of the
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nineties in this area (Ceperley et al., 2012), these methods are mute about the quality of

the resulting estimates (Flegal et al., 2008) and are essentially univariate. Moreover, they

can introduce bias directly in to the estimates (Cowles et al., 1999).

In addition, some researchers use the effective sample size (ESS) as a run length

diagnostic for MCMC simulations. The ESS, originally defined in survey sampling, measures

the “effective number of independent sample” with respect to the correlated sample from

an MCMC simulation. That is, it measures the size of an independently and identically

distributed (i.i.d.) sample with the same standard error. A simulation is terminated once

the ESS estimates are greater than a pre-specified threshold K (for e.g. see Atkinson et al.,

2008; Drummond et al., 2006). Although the intuition behind this rule is clear, we are

not aware of any theoretical discussions of the validity of using it as a stopping criteria for

MCMC simulations.

Recently, a sequential fixed-width stopping rule (FWSR) is proposed by Jones et al.

(2006) for MCMC. The FWSR terminates the simulation when an estimate is sufficiently

accurate for the analytic purpose that motivates the inquiry. Intuitively, the simulation

is terminated the first time a confidence interval width for a desired quantity is smaller

than a user-specified absolute measure ε. Note that specifying a meaningful ε requires

prior knowledge of the size of the quantity. It is an automated procedure and the total

simulation effort will be random. Moreover, Flegal et al. (2008) and Jones et al. (2006)

show this stopping rule is superior to using convergence diagnostics as a stopping criteria.

However, it is impractical to require the users to know the size of the parameter of interest

in advance and this becomes even more challenging in multivariate settings where a vector

of ε’s is needed.

Despite that the FWSR is theoretical validity and only constrained by a few as-

sumptions, its implementation in practice is largely limited by the requirement of a pre-

specified, absolute measure ε. To this end, we propose two variants of the FWSR, known

as the relative FWSRs, that terminate a simulation once the width of a confidence interval

is small relative to the size of the parameter. Specifically, we consider two measures of size,

i.e. magnitude and standard deviation. The tuning parameter in the relative FWSRs is a

relative measure ε that eliminates the requirement of the prior knowledge of the size of a

desired quantity. Furthermore, practitioners only need to specify a single ε in multivariate

settings.

We advocate the use of the relative standard deviation FWSR that terminates the

3



simulation when computational uncertainty is relatively small to the posterior uncertainty.

Since modern Bayesian analysis often involves complex and high-dimensional posterior in-

ference, we propose several modifications to improve the performance of the stopping rule,

e.g. a strongly consistent variance estimator that significantly reduces memory usage and

computational time. Also, we establish a connection between the relative standard devia-

tion FWSR and using the ESS as a stopping rule, which justifies the theoretical validity of

the latter.

The performance of the proposed stopping criterion is investigated and validated

using several numerical examples, ranging from toy examples with a few parameters to a

spatial Bayesian dynamic model with hundreds of parameters and a Bayesian fMRI model

with thousands of parameters. A novel linear mixed-effects model that utilize Bayesian

model selection techniques to compare multiple treatments to a control is proposed and

studied using an experimental dataset from a longitudinal study of mouse weight trajecto-

ries.

The rest of this dissertation is organized as follows. Chapter 2 introduces two rel-

ative FWSRs that eliminate the requirement of the prior knowledge of the size of a desired

quantity, and investigates the procedures for estimating expectation and quantiles. Chap-

ter 3 proposes modifications for the relative standard deviation FWSR on high-dimensional

settings, along with establishing the connection between the FWSR and using the ESS as

a stopping criteria. Chapter 4 considers a novel application that utilizes Bayesian model

selection techniques on linear mixed-effects model to compare multiple treatments with a

control for a longitudinal study of mouse weight trajectories.

1.2 Existing Stopping Rules

Some details are given for the existing stopping rules introduced in Section 1.1

that include their theoretical assumptions, formulations and practicality of implementation.

Specifically, three popular convergence diagnostics are described, i.e. Gelman and Rubin’s

diagnostic (Gelman and Rubin, 1992), Geweke’s diagnostic (Geweke, 1992) and Raftery and

Lewis’s diagnostic (Raftery and Lewis, 1992b); so are using the ESS as a stopping rule and

the fixed-width procedure.

Specificity requires some notation. Suppose we simulate X for n iterations, where

n is finite. Define Zn as an estimator of θ from the observed chain. Outside of toy examples,
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no matter how long our simulation, there will be an unknown Monte Carlo error, Zn − θ.
While it is impossible to assess this error directly, we can obtain its approximate sampling

distribution if a Markov chain central limit theorem (CLT) holds. That is, if

√
n (Zn − θ)

d→ N(0, σ2
θ) (1.1)

as n→∞ where σ2
θ ∈ (0,∞). Let λ2

θ denote the posterior variance associated with θ. That

is, if an i.i.d. sample from π is available then λ2
θ is the asymptotic variance in the CLT

associated with θ. It is important to note that due to the correlation present in a Markov

chain σ2
θ 6= λ2

θ, except in trivial cases.

1.2.1 Convergence Diagnostics

There is an extensive literature on convergence diagnostics for MCMC simulations.

Cowles and Carlin (1996) provide an excellent review and we direct interested readers to

their paper for details. Due to their popularity in the statistical community and implemen-

taion in statistical software, we discuss the convergence diagnostics of Gelman and Rubin

(1992), of Geweke (1992) and of Raftery and Lewis (1992b).

Gelman and Rubin’s Diagnostic

The Gelman and Rubin diagnostic (Gelman and Rubin, 1992) is a two-step method

based on normal approximation to the posterior distribution. Before a simulation begins,

the diagnostic requires an over-dispersed estimate of the target distribution, and a set of

starting points for m independent chains. Suppose a simulation is run for 2n iterations, the

Gelman and Rubin’s method uses the last n iterations to re-estimate the target distribution

of the quantity as a Student’s t distribution that involves both the between-chain variance

and the within-chain variance. That is, the shrink factor

√
R̂ =

√(
n− 1

n
+
m+ 1

mn

B

W

)
df

df − 2
,

where B is the variance between the means from the m parallel chains, W is the average

of the m within-chain variances, and df is the degrees of freedom of the approximately t

distribution.
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Gelman and Rubin (1992) suggest iteratively increasing iterations for the parallel

chains and re-calculating the shrink factors for quantities of interest until all are near 1.

At termination, assuming each parallel chain is of length 2n, the posterior inference is

carried out using the combined values from the last n iterations from all chains. Although

the method is inherently univariate, the authors recommend to apply this procedure to

-2 times the log of the posterior density to summarize convergence of the joint posterior

density.

A few of the challenges faced with the implementation of the Gelman and Rubin di-

agnostic, e.g. its reliance on the user’s ability to find an over-dispersed starting distribution

and its inefficiency introduced by the requirement of multiple chains.

Geweke’s Diagnostic

The Geweke diagnostic (Geweke, 1992) is based on a hypothesis test that the

mean estimates of two non-overlapping parts of the Markov chain have converged. Unlike

Gelman and Rubin’s method, it requires only a single Markov chain. As a rule of thumb,

Geweke (1992) suggested to take first 0.1 and last 0.5 proportions of the Markov chain. The

resulting test statistic is univariate by its nature and the z-score is constructed as follows,

Z =
x̄1 − x̄2√

ŝ1(0)/n1 + ŝ2(0)/n2

,

where x̄1, x̄2 are the sample average and ŝ1(0), ŝ2(0) are spectral density estimates at zero

frequency for the two parts of the Markov chain, respectively. In multivariate settings, given

the hypothesis-testing nature of diagnostic, one way to confirm the convergence of the joint

density is to counteract the problem of multiple comparisons using Bonferroni correction.

A number of criticisms of the Geweke diagnostic, e.g. its sensitivity to the choice

of the spectral window and its lacking of detailed specification of the implementation by

the author.

Raftery and Lewis’s Diagnostic

The Raftery and Lewis Diagnostic (Raftery and Lewis, 1992b) is based on an

evaluation of the accuracy of estimation of the percentiles q. It reports the number of

samples needed to reach the desired accuracy of the percentiles. An initial chain of length

6



Nmin needs to be run, where Nmin is the minimum number of iterations to obtain the

desired accuracy of estimation if the samples were independent. The implementation of

this method in the R package coda (Best et al., 1995) takes in acceptable tolerance r for q

and a probability s of being within the given tolerance, and outputs the number of iterations

n that should be run and the length of the burn-in period necessary to satisfy the specified

conditions.

Disadvantages of the Raftery and Lewis diagnostic include its variability in esti-

mation given different initial chains for the same problem and its impracticality in requiring

re-diagnosis for every quantile of interest.

1.2.2 Effective Sample Size

Given n iterations in a Markov chain, the ESS measures the size of an i.i.d. sample

with the same standard error, or the ”effective number of independent samples”. This

quantity is frequently used by practitioners as a run length diagnostic, terminating the

simulation once ESS estimates are greater than a pre-specified threshold K (for e.g. see

Atkinson et al., 2008; Drummond et al., 2006).

Note that the ESS is not uniquely defined. One way to define ESS is described in

Kass et al. (1998) and Robert and Casella (2004),

ESSθ =
n

1 + 2
∑∞

k=1 ρk(g)
,

where ρk(g) is the autocorrelation of lag k for g. This calculation is implemented in many

R packages, such as coda (Best et al., 1995) and mcmcse (Flegal and Hughes, 2012).

An alternative approach to define ESS as in the custom of survey sampling (Kish,

1965; Liu et al., 1998), where

ESSθ =
n

σ2
θ/λ

2
θ

.

In practice, we estimate this quantity by replacing the parameters with their strongly con-

sistent estimates, i.e.

ÊSSn =
n

σ̂2
n/λ̂

2
n

. (1.2)

Therefore, the alternative approach provides a strongly consistent estimate of ESS.

In univariate settings, using ESS as a stopping rule is equivalent to terminating

the simulation when the estimated ESS is above the threshold K. That is, the time at
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which the simulation terminates is defined by

T̃ (K) = inf
{
n ≥ 0 : ÊSSn ≥ K

}
.

Although this stopping criteria is intuitively sound, its theoretical validity has

not been fully studied. Also, the ESS estimate most commonly implemented in statistical

softwares is not strongly consistent.

1.2.3 Fixed-width Procedure

Suppose a Markov chain CLT holds (1.1), one can construct a (1− δ)100% confi-

dence interval for θ with width

wδ = 2zδ/2
σ̂n√
n
, (1.3)

where zδ/2 is a critical value from a standard Normal distribution and σ̂2
n is a strongly

consistent estimator of σ2
θ . The width at (1.3) allows analysts to report the uncertainty in

their estimates and users to assess the practical reliability.

Moreover, Jones et al. (2006) propose constructing a sequential fixed-width stop-

ping rule based on wδ for MCMC simulations. By controlling the width wδ, the stopping

criteria controls the computational uncertainty of the simulation. Under a few regularity

conditions (for a review see Flegal and Gong, 2015; Jones et al., 2006), the FWSR has been

proved to be theoretically valid, in the sense that the resulting confidence interval has the

right coverage probability 1− δ. Specifically, the FWSR terminates an MCMC simulation

the first wδ is below a pre-specified threshold ε, i.e.

T̃ (ε, δ) = inf
{
n ≥ 0 : 2zδ/2σ̂n/

√
n+ p(n) ≤ ε

}
.

Notice that p(n) is introduced in the stopping rule to prevent pre-mature termination due

to poorly behaved estimate σ̂n, when the sample size n is small. It is a positive function

that decreases monotonically such that p(n) = o(n−1/2) as n→∞ and let n∗ be the desired

minimum simulation effort (a reasonable default is p(n) = εI(n ≤ n∗) + n−1).

In addition, for such a stopping rule to work well, we need to have prior knowledge

of the size of the desired quantity θ, which is not always practical for real problems. In

multivariate settings, it becomes even harder to specify a threshold ε for each parameter

based on their sizes.
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Chapter 2

Relative Fixed-width Stopping

Rules

This chapter introduces two variants of the FWSR that eliminate the requirement

for the prior knowledge of the size of the parameter. Specifically, two relative FWSRs, i.e.

the relative magnitude FWSR and the relative standard deviation FWSR, are proposed

that terminate an MCMC simulation once the width of a confidence interval is sufficiently

small relative to the size of the target parameter. Conditions for asymptotic validity are

developed and finite sample properties are studies through a variety of simulations. The

content of this chapter is primarily contained in Flegal and Gong (2015).

2.1 Introduction

Markov chain Monte Carlo (MCMC) methods allow exploration of intractable

probability distributions by constructing a Markov chain whose stationary distribution

equals the desired distribution. A major challenge for practitioners is determining how

long to run an MCMC simulation. Many experiments employ a fixed-time rule to ter-

minate the simulation; that is, the procedure terminates after n iterations, where n is

determined heuristically. Indeed, some simulations are so complex that this is the only

practical approach, but that is not so for most experiments.

Alternatively, some practitioners use convergence diagnostics to determine if n is

sufficiently large (for a review see Cowles and Carlin, 1996). Although practical, these meth-

ods are mute about the quality of the resulting estimates (Flegal et al., 2008). Moreover,
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they can introduce bias directly in to the estimates (Cowles et al., 1999).

We instead advocate terminating the simulation when an estimate is sufficiently

accurate for the analytic purpose that motivates the inquiry. In other words, the simulation

is terminated the first time a confidence interval width for a desired quantity is sufficiently

small. We refer to such a procedure as a sequential fixed-width stopping rule and note the

total simulation effort will be random.

As we show later, fixed-width methods are especially desirable because they are

theoretically justified and constrained by few assumptions. The simplest fixed-width rule,

first studied in MCMC by Jones et al. (2006), stops the simulation when the width of a

confidence interval based on an ergodic average is less than a user-specified value, say ε.

Flegal et al. (2008) and Jones et al. (2006) show this stopping rule is superior to using

convergence diagnostics as a stopping criteria.

In this chapter, we introduce relative fixed-width stopping rules that eliminate the

need to specify an absolute value for ε. Specifically, the simulation is terminated the first

time the width of a confidence interval is sufficiently small relative to the size of a target

parameter. We consider two measures of size, magnitude and standard deviation. Further,

we illustrate the utility of these rules for simultaneous estimation of multiple parameters.

Specificity requires some notation. Let π denote a probability distribution having

support X ⊆ Rd, d ≥ 1, about which we wish to make inference. This inference is usually

based on various features (parameters) of π. For example, if g : X → R, we may need to

calculate

µg := Eπ[g(X)] =

∫
X
g(x)π(dx) ,

or if W ∼ π, then we might require quantiles of the distribution of V = h(W ) where

h : X → R. Specifically, if FV denotes the cumulative distribution function of V , then we

want to calculate

ξq := F−1
V (q) = inf{v : FV (v) ≥ q} .

In general, we denote θ ∈ R as a target parameter of interest with respect to π. Unfor-

tunately, in most practically relevant settings we cannot calculate θ directly. Thus we are

faced with a classical statistical problem; given a probability distribution π we want to

estimate a fixed unknown feature.

Frequently π is such that MCMC is the only viable technique for estimating θ. The

basic MCMC method entails constructing a time-homogeneous Harris ergodic Markov chain
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X =
{
X(0), X(1), . . .

}
on state space X with σ-algebra B = B(X) and invariant distribution

π. The popularity of MCMC methods result from the ease with which X can be simulated

(Robert and Casella, 2004).

Suppose we simulate X for n iterations, where n is finite. Define Zn as an estimator

of θ from the observed chain. Outside of toy examples, no matter how long our simulation,

there will be an unknown Monte Carlo error, Zn − θ. While it is impossible to assess this

error directly, we can obtain its approximate sampling distribution if a Markov chain central

limit theorem (CLT) holds. That is, if

√
n (Zn − θ)

d→ N(0, σ2
θ) (2.1)

as n→∞ where σ2
θ ∈ (0,∞).

Let σ̂2
n denote an estimator of σ2

θ . This allows construction of a (1 − δ)100%

confidence interval for θ with width

wδ = 2zδ/2
σ̂n√
n

(2.2)

where zδ/2 is a critical value from a standard Normal distribution. The width at (2.2)

allows analysts to report the uncertainty in their estimates and users to assess the practical

reliability.

Moreover, we will use wδ to construct sequential fixed-width stopping rules. First,

we require a final bit of notation. Let λ2
θ denote the posterior variance associated with

θ. That is, if an i.i.d. sample from π is available then λ2
θ is the asymptotic variance in

the CLT associated with θ. It is important to note that due to the correlation present in

a Markov chain σ2
θ 6= λ2

θ, except in trivial cases. For estimation of µg it is easy to show

λ2
θ = Var[g(X)]. For estimation of ξq, we have λ2

θ = q(1 − q)/ (fV (ξq))
2 where fV is the

density associated with FV .

Our work advocates stopping the simulation the first time wδ is sufficiently small.

We consider three distinct stopping rules: (i) an absolute precision rule that terminates

when wδ < ε, (ii) a relative magnitude rule that terminates when wδ < ε |θ| and (iii) a

relative standard deviation rule that terminates when wδ < ελθ.

First, we investigate the theoretical properties of the three stopping rules. Previ-

ously, Glynn and Whitt (1992) established conditions for asymptotic validity of (i) and (ii).
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Asymptotic validity is important since it implies the simulation will terminate w.p.1 and

the resulting confidence intervals will have the right coverage probability. In this chapter,

we extend these results to establish asymptotic validity of the stopping rule (iii).

Next, we consider applying fixed-width stopping rules in MCMC simulations. Fle-

gal et al. (2008), Flegal and Jones (2010) and Jones et al. (2006) have previously investigated

(i) for MCMC expectation estimation. We are not aware of any prior use of fixed-width

methods for quantile estimation or any use of (ii) or (iii) as a stopping rule in MCMC. The

rule (iii) has significant promise in Bayesian applications since the simulation terminates

the first time the length of a confidence interval is less than an εth fraction of the magnitude

of the standard deviation of θ. In other words, the simulation stops when an estimate of

θ is sufficiently accurate relative to an associated posterior standard deviation. Another

substantial benefit of rule (iii) is it is easy to implement in multivariate settings since ε can

remain constant.

There are two main assumptions for asymptotic validity. First, we require a func-

tional central limit theorem (FCLT) for the Monte Carlo error. Fortunately, Markov chains

frequently enjoy a FCLT under identical conditions as those that ensure a CLT. Second,

we require a strongly consistent estimator of the associated asymptotic variance, that is

σ̂2
n → σ2

θ almost surely as n → ∞. Many commonly used MCMC estimators of σ2
θ can

satisfy this condition, see e.g. Flegal and Jones (2010), Doss et al. (2014), Hobert et al.

(2002), and Jones et al. (2006).

Finally, we investigate the finite sample properties of relative fixed-width stopping

rules through three examples. Our first example considers an independence Metropolis

sampler to explore an exponential random variable. Our second example considers exploring

a mixture of bivariate Normal distributions with Metropolis Hastings and Gibbs samplers.

While these are only toy examples, we will use true parameter values to illustrate the utility

of our stopping rules. Our final example considers a Bayesian version of a logistic regression

to model the presence or absence of the freshwater eel Anguilla australis.

Using these examples, we terminate the simulation with the three distinct fixed-

width stopping rules and calculate confidence intervals for a vector of target parameters.

Over replicated simulations, all the finite sample empirical coverage probabilities are close

to a specified nominal level. Thus, fixed-width stopping rules provide a theoretically valid

and practically accurate procedure to determine when to stop a MCMC simulation.

For Bayesian practitioners, we advocate the relative standard deviation fixed-width
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stopping rule (iii) since it is easy to implement and applicable in multivariate settings with-

out a priori knowledge of the target parameter size. Specifically in multivariate settings, one

can terminate the first time the length of a confidence interval is sufficiently small for each

parameter of interest. Given the natural appeal of such a stopping rule, some practitioners

have likely already adopted a similar informal approach. As our examples show, setting

ε = 0.02 provides excellent results in a wide variety of univariate and multivariate settings.

The rest of this chapter is organized as follows. Section 2.2 formally introduces rel-

ative fixed-width stopping rules and establishes asymptotic validity. Section 2.3 investigates

fixed-width stopping procedures when estimating expectations and quantiles. Section 2.4

studies the finite sample properties in three numerical examples and concludes with a dis-

cussion that provides some recommendations to practitioners.

2.2 Sequential fixed-width procedures

In this section, we obtain conditions that ensure asymptotic validity of fixed-width

procedures. The primary assumptions are the limiting process must satisfy a FCLT and

σ̂2
n → σ2

θ w.p.1 as n → ∞. Hence, our results can be applied very generally. Section 2.3

outlines checkable sufficient conditions for the most common MCMC settings, estimating

expectations and quantiles.

Recall our goal is to estimate a parameter θ ∈ R. To this end, we assume there

exists an R-valued stochastic process {Zn : n ≥ 1} called the estimation process for which

Zn → θ in probability. Asymptotic validity requires the estimation process satisfies a FCLT

as follows. For ease of exposition, we consider a slightly more general R-valued stochastic

process Z = {Z(t) : t ≥ 0} for which Z(t)→ θ in probability as t→∞. Let D(0,∞) denote

the space of right-continuous R-valued functions with left limits on the open interval (0,∞).

We assume that Z has sample paths in D(0,∞) and consider the family of scaled processes

in D(0,∞) for ε > 0

Zε(t) = ε−1/2 (Z(t/ε)− θ) , where t > 0.

We will say a FCLT holds if there exists a constant σθ > 0 such that as ε→ 0

Zε(t)
d→ σθB(t)/t ,

in D(0,∞) where B(t) denotes a standard Brownian motion process {B(t) : t ≥ 0}. Fortu-
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nately, in many situations a FCLT holds under the same conditions as those required for

an ordinary CLT (as we will discuss in Section 2.3).

Next, define an interval

C[n] =
(
Zn − zδ/2σ̂n/

√
n , Zn + zδ/2σ̂n/

√
n
)
.

If a CLT at (2.1) holds and σ̂n is weakly consistent for σθ, then C[n] achieves the nominal

coverage level as the sample size n→∞. Thus we have a valid confidence interval provided

the sample size is permitted to go to ∞.

Now consider a sequential procedure that terminates the simulation when the

length of a confidence interval drops below a prescribed level ε. We will refer to this type of

stopping rule as an absolute precision fixed-width stopping rule. For such a rule, the time

at which the simulation terminates is defined by

T̃ (ε) = inf
{
n ≥ 0 : 2zδ/2σ̂n/

√
n ≤ ε

}
.

Unfortunately, use of this stopping rule is insufficient because T̃ (ε) can terminate much too

early if σ̂n is poorly behaved for small n (Glynn and Whitt, 1992). Instead, suppose p(n)

is a positive function that decreases monotonically such that p(n) = o(n−1/2) as n → ∞
and let n∗ be the desired minimum simulation effort (a reasonable default is p(n) = εI(n ≤
n∗) + n−1). Then an absolute precision stopping rule terminates the simulation at

T1(ε) = inf
{
n ≥ 0 : 2zδ/2σ̂n/

√
n+ p(n) ≤ ε

}
.

The following result, an immediate consequence of Theorem 1 in Glynn and Whitt

(1992), yields asymptotic validity of the sequential stopping rule T1(ε). Note the desired

coverage probability will be obtained in an asymptotic sense as ε→ 0.

Proposition 1. Suppose a FCLT for the Monte Carlo error holds. If σ̂n → σθ w.p.1 as

n→∞, then as ε→ 0 the simulation will terminate w.p.1 and

Pr (θ ∈ C[T1(ε)])→ 1− δ .

Remark 2. Glynn and Whitt (1992) show weak consistency of σ̂n is not enough to ensure

asymptotic validity .
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The stopping rule T1(ε) has previously been used for estimating expectations in

MCMC (Flegal et al., 2008; Flegal and Jones, 2010; Jones et al., 2006). We further show this

rule works well for MCMC estimation of quantiles in the following section. The challenge

in both settings is finding a strongly consistent estimator of σθ.

One can consider a variant of the stopping rule T1(ε) known as a relative precision

stopping rule, which avoids having to choose an absolute value for ε. Simply put, the

simulation is run until the length of a confidence interval is less than an εth fraction of the

magnitude of the parameter of interest, θ. Using Zn as an estimator of θ yields the following

relative magnitude stopping rule

T2(ε) = inf
{
n ≥ 0 : 2zδ/2σ̂n/

√
n+ p(n) ≤ ε |Zn|

}
.

For large n, T2(ε) will behave like T1(ε|θ|). The following obtains asymptotic validity of

T2(ε), which is a direct consequence of Theorem 3 in Glynn and Whitt (1992).

Proposition 3. Suppose a FCLT for the Monte Carlo error holds and |θ| > 0. If Zn → θ

w.p.1 and σ̂n → σθ w.p.1 as n→∞, then as ε→ 0 the simulation will terminate w.p.1 and

Pr (θ ∈ C[T2(ε)])→ 1− δ .

Note that Proposition 3 requires Zn → θ w.p.1 along with necessary conditions of

Proposition 1. In general stochastic simulations, this condition does not immediately follow

from (2.1) (see Example 2 of Glynn and Whitt, 1988) but is readily available when θ is an

expectation via the Markov chain strong law of large numbers (SLLN).

While T2(ε) has some support in the operations research literature, it makes little

intuitive sense in Bayesian settings. Specifically, if θ = 0 then T2(ε) will be theoretically

invalid and poorly behaved in finite simulations. In addition, T2(ε) could be problematic

even when θ is not equal to zero, which we illustrate through example in Section 2.4.

Given the popularity of MCMC in Bayesian settings, it is useful to consider another

specifically designed variant of T1(ε). To this end, we propose a stopping rule that terminates

the simulation when the length of a confidence interval is less than an εth fraction of the

magnitude of λθ, i.e. the posterior standard deviation of θ. Suppose λ̂n is an estimator of
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λθ and consider the following stopping rule

T3(ε) = inf
{
n ≥ 0 : 2zδ/2σ̂n/

√
n+ p(n) ≤ ελ̂n

}
.

For large n, T3(ε) will behave like T1(ελθ). The benefit of using T3(ε) is that ε is selected

as a fraction rather than in the units of the target parameter. Hence, a single value of

ε would be appropriate for target parameters of any magnitude. Naturally, decreasing ε

would decrease the uncertainty of the resulting estimates and could be done simultaneously

for multiple parameters. The following establishes asymptotic validity of T3(ε), which we

prove in Section 2.5.1.

Theorem 4. Suppose a FCLT for the Monte Carlo error holds and λθ > 0. If λ̂n → λθ

w.p.1 and σ̂n → σθ w.p.1 as n→∞, then as ε→ 0 the simulation will terminate w.p.1 and

Pr (θ ∈ C[T3(ε)])→ 1− δ .

Note the only additional condition required for Theorem 4 is a strongly consistent

estimator of λθ. For expectations, an estimator is readily available via the Markov chain

SLLN. In the case of quantiles, we discuss a viable estimator in the following section.

The benefit of the stopping rule T3(ε) is twofold. First, one only needs to specify a

relative ε, and hence no knowledge about the magnitude is required. Second, when estimat-

ing multiple parameters a single ε will suffice to obtain estimates whose uncertainty will be

comparable relative to their standard deviations. In other words, we have developed a sim-

ple, yet informative, stopping criteria applicable in multivariate settings. In these settings,

one could address the issue of multiplicity by adjusting the critical value appropriately. We

illustrate this procedure via examples in Section 2.4, and show the resulting simultaneous

confidence regions obtain at least the nominal coverage probability.

Remark 5. Asymptotic validity of relative stopping rules can be established if a FCLT

is replaced by a more general R-valued stochastic process (Glynn and Whitt, 1992). The

generalization enables consideration of θ that follow non-Normal asymptotic distributions.

Remark 6. A more general relative stopping rule that terminates when wδ < ενθ can be

established for any νθ such that |νθ| > 0 provided there exists an estimator ν̂n → νθ w.p.1.

Thus, one could consider relative stopping rules setting νθ as the interquartile range, the

length of a Bayesian credible region, and so on.
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2.3 Applications

This section demonstrates that fixed-width stopping rules are appropriate for

MCMC estimation of expectations and quantiles. This is an important contribution since

we know of no other formal stopping criteria applicable in both settings. Raftery and Lewis

(1992a) propose a heuristic approach to terminating an MCMC simulation when the pri-

mary interest is quantile estimation. However, Brooks and Roberts (1999) argue “in the case

where quantiles themselves are not of interest, this method should be used with caution”.

First, we require a bit more notation to describe sufficient mixing conditions for

a Markov chain CLT and consistent estimation of the asymptotic variance. An interested

reader is directed to Meyn et al. (2009) and Roberts and Rosenthal (2004) for more on

Markov chain theory.

Recall X is a Harris ergodic Markov chain on state space X with σ-algebra B =

(X) and invariant distribution π. Denote the n-step Markov kernel associated with X as

Pn(x, dy) for n ∈ N. Then if A ∈ B(X) and k ∈ {0, 1, 2, . . .}, Pn(x,A) = Pr(Xk+n ∈
A|Xk = x). Let ‖ · ‖ denote the total variation norm. Let M : X 7→ R+ and γ : N 7→ R+ be

decreasing such that

‖Pn(x, ·)− π(·)‖ ≤M(x)γ(n) . (2.3)

Polynomial ergodicity of order m where m ≥ 0 means (2.3) holds with EπM < ∞ and

γ(n) = n−m for all X0 = x. Geometrical ergodicity means (2.3) holds with γ(n) = tn for

some 0 < t < 1 for all X0 = x. Uniform ergodicity means (2.3) holds with M bounded and

γ(n) = tn for some 0 < t < 1.

Establishing (2.3) directly can be challenging, but some constructive techniques

are available (Jarner and Roberts, 2002; Meyn et al., 2009). Most literature on MCMC

algorithms focuses on establishing geometric and uniform ergodicity, see e.g. Hobert (2011),

Jones and Hobert (2001), Johnson et al. (2013), Mengersen and Tweedie (1996), Roberts and

Tweedie (1996) and Tierney (1994). Less has been said concerning polynomial ergodicity,

but an interested reader is directed to Douc et al. (2004), Fort and Moulines (2000), Fort

and Moulines (2003), Jarner and Roberts (2002), Jarner and Roberts (2007) and Jarner

and Tweedie (2003).
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2.3.1 Expectations

For MCMC estimation of an expectation, one can obtain all the necessary condi-

tions for asymptotic validity of fixed-width stopping rules. Let g : X→ R, then we consider

estimation of

µg := Eπ[g(X)] =

∫
X
g(x)π(dx) .

Estimating µg is natural by appealing a Markov chain SLLN, a special case of the Birkhoff

Ergodic Theorem (p. 558 Fristedt and Gray, 1997). Specifically, if Eπ|g| <∞ then w.p.1

Zn := ḡn :=
1

n

n−1∑
i=0

g(X(i))→ µg as n→∞ .

Hence the SLLN yields strongly consistent estimators of µg and λ2
θ = Var[g(X)] (provided

Eπg
2 <∞) necessary for Proposition 3 and Theorem 4, respectively.

We can obtain an approximate sampling distribution for the Monte Carlo error

via a Markov chain CLT if
√
n(ḡn − µg)

d→ N(0, σ2
g) (2.4)

as n → ∞ where σ2
g ∈ (0,∞). Conditions that ensure (2.4) can be found in Chan and

Geyer (1994), Jones (2004), Meyn et al. (2009), Roberts and Rosenthal (2004) and Tierney

(1994). For example, if X is geometrically ergodic and Eπ|g|2+ε <∞ for some ε > 0, then

(2.4) holds. Fortunately, Markov chains frequently enjoy a FCLT under the same conditions

(Ibragimov, 1962; Jones et al., 2006; Oodaira and Yoshihara, 1972).

There are many strongly consistent variance estimation techniques applicable for

σ2
g in MCMC settings including batch means (Flegal and Jones, 2010; Jones et al., 2006),

spectral variance techniques (Flegal and Jones, 2010) and regenerative simulation (Hobert

et al., 2002; Mykland et al., 1995). We consider only non-overlapping batch means (BM)

because it is easy to implement and available in many software packages, e.g. the mcmcse

package available on CRAN.

In BM the output is broken into an batches where each batch is bn iterations in

length. Suppose the algorithm is run for a total of n = anbn iterations and define

Ȳj :=
1

bn

jbn∑
i=(j−1)bn+1

g(Xi) for j = 1, . . . , an .
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The BM estimate of σ2
g is

σ̂2
n =

bn
an − 1

an∑
j=1

(Ȳj − ḡn)2 . (2.5)

In general, the BM estimator at (2.5) is not a consistent estimator of σ2
g . However,

Jones et al. (2006) establish necessary conditions for σ̂2
n → σ2

g with probability 1 as n→∞
if the batch size and the number of batches are allowed to increase as the overall length

of the simulation increases. Setting bn = bnτc and an = bn/bnc, the regularity conditions

require that X be geometrically ergodic, Eπ|g|2+ε1+ε2 < ∞ for some ε1 > 0, ε2 > 0 and

(1 + ε1/2)−1 < τ < 1. A common choice of τ = 1/2 (i.e., bn = b
√
nc and an = bn/bnc) has

been shown to work well in applications (Flegal et al., 2008; Flegal and Jones, 2010; Jones

et al., 2006).

Remark 7. Most sampling plans require storing the entire Markov chain to allow for re-

calculations as the batch size increases with n. If storage is a concern, one could consider

increasing the batch size of the form bn ∈ {2, 4, 8, ..., 2k, ...} in an effort to reduce memory

usage. One can establish strong consistency for the BM variance estimator with such a

sampling plan using results in Jones et al. (2006) and Bednorz and Latuszyński (2007).

2.3.2 Quantiles

It is routine to estimate univariate quantiles associated with π, especially in

Bayesian applications. To this end, let W ∼ π and recall h : X → R. Setting V = h(W ),

we consider estimation of the quantiles associated with the univariate distribution of V .

Suppose FV denotes the cumulative distribution function of V , then our goal is to obtain

ξq := F−1
V (q) = inf{v : FV (v) ≥ q} .

We further suppose that FV (x) is absolutely continuous and has continuous density function

fV (x) such that 0 < fV (ξq) <∞.

Little has been formally said regarding MCMC estimation of quantiles, but we

outline the current state of understanding (for details see Doss et al., 2014). A natural

estimator of ξq is the inverse of the empirical distribution function given by

Zn := ξ̂n,q = Yn(j) where j − 1 < nq ≤ j , (2.6)
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where Yn(j) denotes the jth order statistic of {Y0, . . . , Yn−1} = {h(X0), . . . , h(Xn−1), }. If

X is Harris recurrent and then ξ̂n,q → ξq w.p.1 as n→∞ (Doss et al., 2014).

Under stronger mixing conditions on X, one can obtain a Markov chain CLT. To

this end, define

σ2(y) := Varπ [I(Y0 ≤ y)] + 2

∞∑
k=1

Covπ [I(Y0 ≤ y), I(Yk ≤ y)] .

Suppose X is polynomially ergodic of order m > 11 and σ2(ξq) > 0, then as n→∞

√
n(ξ̂n,q − ξq)

d→ N(0, γ2(ξq)) , (2.7)

where γ2(ξq) = σ2(ξq)/[fV (ξq)]
2 (Doss et al., 2014). A FCLT holds for uniformly ergodic

chains via sufficient conditions in Sen (1972) that can be verified with results in Jones

(2004). As a direction of future work, it is likely a FCLT holds under polynomial ergodicity

combining results in Doss et al. (2014) and Sen (1972).

Estimation of the variance from the asymptotic Normal distribution at (2.7) is

broken into two parts. First, we plug in ξ̂n,q for ξq and separately consider estimating

fV (ξ̂n,q) and σ2(ξ̂n,q). Estimating fV (ξ̂n,q) uses a kernel density approach with a gaussian

kernel, which we denote as f̂V (ξ̂n,q). There are well known conditions guaranteeing strongly

consistent estimation of the density at a point (see e.g. Kim and Lee, 2005; Yu, 1993).

We will use BM for estimating σ2(ξ̂n,q). Suppose we have n = anbn iterations,

then for k = 0, . . . , an − 1 define Ūk(ξ̂n,q) := b−1
n

∑bn−1
i=0 I(Ykbn+i ≤ ξ̂n,q). The BM estimate

of σ2(ξ̂n,q) is

σ̂2
BM (ξ̂n,q) =

bn
an − 1

an−1∑
k=0

(
Ūk(ξ̂n,q)− Ūn(ξ̂n,q)

)2
.

Combining f̂V (ξ̂n,q) and σ̂2
BM (ξ̂n,q), we estimate γ2(ξq) with

γ̂2(ξ̂n,q) :=
σ̂2
BM (ξ̂n,q)

[f̂V (ξ̂n,q)]2
.

This approach is implemented in the R package mcmcse which is used to perform the com-

putations in our examples. Doss et al. (2014) outline the conditions that ensure strong

consistency of this estimator.

The relative standard deviation fixed-width stopping rule of Theorem 4 requires a
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estimation of

λθ =

√
q(1− q)
fV (ξq)

.

We use the same kernel density estimate resulting in

λ̂n =

√
q(1− q)
f̂V (ξ̂n,q)

.

2.4 Numerical studies

This section investigates the finite sample properties of fixed-width stopping rules

through a variety of simulations. In each example, we independently repeat the MCMC

simulation to evaluate the resulting finite sample confidence intervals. Naturally, this eval-

uation requires the true parameter values. In our first two examples, the true values are

readily available. In our final example, the truth was estimated using an independent

long run of the MCMC sampler. Overall, the empirical coverage probabilities obtained via

fixed-width stopping rules are remarkably close to the nominal level.

Each simulation considered both expectations and quantiles with the following

common methodology. For a single replication, the same MCMC draws were used in ap-

plying the three stopping rules. Further, we uniformly set p(n) = εI(n < n∗) + n−1 and

estimate σ2
θ via BM methods with bn = b

√
nc calculated with the mcmcse package. Finally,

standard errors for the empirical coverage probabilities equal
√
p̂(1− p̂)/r where r is the

number of replications.

2.4.1 Exponential distribution

Consider an Exp(1) target distribution, i.e. f(x) = e−xI(x > 0). It is easy to

show that E[X] = 1 and F−1(q) = log
{

(1− q)−1
}

, which we use to evaluate finite sample

confidence intervals obtained via fixed-width methods. We will sample from f(x) using

an independence Metropolis sampler with an Exp(1/2) proposal and note this chain is

geometrically ergodic (Jones and Hobert, 2001).

First, consider estimation of E[X] using each combination of Ti(ε) for i ∈ {1, 2, 3}
and ε ∈ {0.10, 0.05, 0.02}. The chain was started from 1 and ran for a minimum of n∗ = 1000

iterations. If the stopping criteria was not met, an additional 500 iterations were added

to the chain before checking again. The simulation was repeated for 2000 replications to
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evaluate the resulting coverage probabilities.

Table 2.1 summarizes the mean and standard deviation of the number of iterations

at termination along with the resulting coverage probabilities. All the coverage probabilities

are close to the 0.90 nominal level suggesting all three stopping rules are preforming well.

Note the mean iterations are approximately equal, which is expected since E[X] = 1 and

λθ = Var[X] = 1.

Length (SD) E[X] Length (SD) ξ.5
T1(0.10) 2.44E3 (4.9E2) 0.8840 2.70E3 (5.9E2) 0.8580
T1(0.05) 8.89E3 (1.2E3) 0.8940 1.01E4 (1.5E3) 0.8805
T1(0.02) 5.36E4 (4.7E3) 0.8875 6.17E4 (5.4E3) 0.8775

T2(0.10) 2.44E3 (4.8E2) 0.8895 5.40E3 (9.4E2) 0.8800
T2(0.05) 8.90E3 (1.2E3) 0.8910 2.07E4 (2.4E3) 0.8820
T2(0.02) 5.35E4 (4.7E3) 0.8870 1.29E5 (9.1E3) 0.8830

T3(0.10) 2.45E3 (4.7E2) 0.8885 2.79E3 (5.2E2) 0.8650
T3(0.05) 8.90E3 (1.2E3) 0.8880 1.03E4 (1.3E3) 0.8820
T3(0.02) 5.35E4 (4.6E3) 0.8895 6.23E4 (5.2E3) 0.8770

Table 2.1: Summary of coverage probabilities for estimation of E[X] and ξ.5 based on 2000
replications and 0.90 nominal level.

Next, consider estimation of the median, ξ.5, using the same simulation settings.

Table 2.1 summarizes the results from 2000 replications. Again the results are very close to

the 0.90 nominal level, though slightly lower than those for estimating the mean. Here we

have ξ.5 = 0.693 and
√

0.5(1− 0.5)/e−ξ.5 = 1, hence for fixed ε we expect T1(ε) and T3(ε)

to be similar and T2(ε) to be larger.

Finally, consider estimating the mean and an 80% Bayesian credible region simul-

taneously, which we denote as Φ = (E[X], ξ.1, ξ.9). Due to increased computation time,

each chain was run for a minimum of n∗ = 10000 iterations with an additional 5000 added

between checks. The simulation was terminated the first time the length of a confidence

interval was sufficiently small for each parameter in Φ. To adjust for multiplicity, we apply a

Bonferonni approach. Specifically, we set individual confidence intervals to have a coverage

probability of 0.901/3 = 0.9655 resulting in a simultaneous confidence region with coverage

probability of at least 0.90.

The simulation was repeated for 2000 replications with each combination of Ti(ε)

for i ∈ {1, 2, 3} and ε ∈ {0.10, 0.05, 0.02}. Table 2.2 summarizes the simulation results.

22



We can see the individual coverage probabilities improve as ε decreases, especially in the

case of ξ.1. For ε = 0.02, all the individual coverage probabilities are remarkably close to

the nominal level of 0.9655. Note the observed confidence region coverage probabilities are

above the 0.90 nominal level, which is unsurprising due to correlation between parameters

in Φ.

Length (SD) E[X] ξ.1 ξ.9 Region

T1(0.10) 2.88E4 (3.9E3) 0.963 0.989 0.963 0.930
T1(0.05) 1.07E5 (9.7E3) 0.965 0.979 0.962 0.923
T1(0.02) 6.53E5 (3.3E4) 0.965 0.967 0.968 0.917

T2(0.10) 6.71E4 (5.9E3) 0.969 0.979 0.964 0.925
T2(0.05) 2.29E5 (1.4E4) 0.966 0.974 0.963 0.920
T2(0.02) 1.29E6 (5.0E4) 0.964 0.963 0.970 0.915

T3(0.10) 1.00E4 (0) 0.962 0.991 0.955 0.927
T3(0.05) 2.31E4 (2.9E3) 0.963 0.983 0.958 0.921
T3(0.02) 1.30E5 (9.1E3) 0.961 0.970 0.965 0.914

Table 2.2: Summary of coverage probabilities for estimation of Φ based on 2000 replications.
Individual confidence intervals have a 0.9655 nominal level, resulting in a 0.90 nominal level
confidence region.

2.4.2 Mixture of bivariate Normals

Consider a mixture of bivariate Normals X = [X1, X2]T = pY1 + (1−p)Y2, where

Y1 =

Y11

Y12

 ∼ N2

µ11

µ12

 ,
σ2

11 0

0 σ2
12

 and Y2 =

Y21

Y22

 ∼ N2

µ21

µ22

 ,
σ2

21 0

0 σ2
22

 .

In this example, we choose p = 0.25, µ11 = 1, µ12 = 10, µ21 = 2.5, µ22 = 25, σ11 = 0.5,

σ12 = 5, σ21 = 0.7 and σ22 = 7.

We first sample from f(X) with two different component-wise Metropolis random

walk algorithms, one with Uniform proposals and another with Normal proposals. For the

Uniform proposals, we apply a Unif(−3, 3) and Unif(−30, 30) random walk for the X1 and

X2 dimensions, respectively. For the Normal proposals, we apply a N(0, 32) and N(0, 302)

random walk for the X1 and X2 dimensions, respectively. It can be shown that these chains

are geometrically ergodic (Jarner and Hansen, 2000).

Consider estimation of Φ = (E[X], ξ.1, ξ.9) using fixed-width stopping rules Ti(ε)
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for i ∈ {1, 2, 3} and ε ∈ {0.10, 0.05, 0.02}. We ran the chain for a minimum of n∗ = 5000

iterations and added 1000 iterations between checking the stopping criteria. This simulation

was repeated for 1000 independent replications.

Table 2.3 summarizes the mean and standard deviation of the number of itera-

tions at termination along empirical coverage probabilities from the Uniform and Normal

proposals. Notice for both samplers, the coverage probabilities improve as ε decreases and

are close to the 0.95 nominal level once ε = 0.02. It appears the Metropolis random walk

with Normal proposals is mixing faster since the overall simulation effort is substantially

lower than that of the Uniform proposals. This difference in simulation effort illustrates the

importance of specifying a good proposal distribution in MCMC simulations.

Uniform Length (SD) E[X1] ξ.1,X1 ξ.9,X1 E[X2] ξ.1,X2 ξ.9,X2

T1(0.10) 14,658 (3.4E3) 0.930 0.932 0.917 0.936 0.945 0.937
T1(0.05) 59,869 (9.1E3) 0.934 0.922 0.939 0.940 0.934 0.953
T1(0.02) 391,566 (3.1E4) 0.956 0.944 0.945 0.956 0.948 0.953

T2(0.10) 20,897 (5.0E3) 0.929 0.933 0.911 0.931 0.936 0.938
T2(0.05) 85,401 (1.2E4) 0.950 0.926 0.934 0.929 0.925 0.942
T2(0.02) 556,821(3.9E4) 0.953 0.946 0.954 0.950 0.938 0.956

T3(0.10) 8,827 (1.0E3) 0.926 0.928 0.899 0.920 0.922 0.920
T3(0.05) 35,733 (2.9E3) 0.924 0.938 0.931 0.934 0.928 0.937
T3(0.02) 233,312 (1.3E4) 0.954 0.955 0.959 0.948 0.958 0.956

Normal Length (SD) E[X1] ξ.1,X1 ξ.9,X1 E[X2] ξ.1,X2 ξ.9,X2

T1(0.10) 8,028 (1.5E3) 0.946 0.939 0.939 0.934 0.943 0.937
T1(0.05) 29,844 (3.7E3) 0.927 0.936 0.948 0.917 0.932 0.953
T1(0.02) 186,061 (1.3E4) 0.952 0.936 0.952 0.943 0.946 0.938

T2(0.10) 11,307 (2.1E3) 0.949 0.933 0.940 0.940 0.944 0.943
T2(0.05) 42,338 (4.6E3) 0.911 0.943 0.956 0.937 0.934 0.951
T2(0.02) 261,741 (1.6E4) 0.940 0.938 0.956 0.949 0.938 0.945

T3(0.10) 5,114 (3.2E2) 0.944 0.950 0.933 0.936 0.936 0.924
T3(0.05) 17,654 (1.8E3) 0.922 0.930 0.943 0.925 0.921 0.939
T3(0.02) 112,626 (7.6E3) 0.933 0.946 0.941 0.941 0.930 0.940

Table 2.3: Summary of coverage probabilities for estimations of Φ using a Metropolis ran-
dom walk with Uniform and Normal proposals based on 1000 replications and a 0.95 nominal
level.
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Next, we consider a Gibbs sampler using the full conditional densities, i.e.

fX1|X2
(x1|x2) = PX2Y11 + (1− PX2)Y21 and

fX2|X1
(x2|x1) = PX1Y12 + (1− PX1)Y22 ,

where

PX2 =

(
1 +

(1− p)σ12

pσ22
exp

{
1

2

((
x2 − µ12

σ12

)2

−
(
x2 − µ22

σ22

)2
)})−1

,

and

PX1 =

(
1 +

(1− p)σ11

pσ21
exp

{
1

2

((
x1 − µ11

σ11

)2

−
(
x1 − µ21

σ21

)2
)})−1

.

Note, X1|X2 = x2 and X2|X1 = x1 are easy to sample from since they are mixtures of

Normal random variables.

Table 2.4 summarizes the results for the Gibbs sampler. Notice, the coverage

probabilities do not uniformly improve as ε decreases. However, they are all close to the

nominal 0.95 level using significantly fewer total iterations, suggesting the Gibbs sampler

mixes better than either of the Metropolis random walk samplers.

As a final comparison, we performed additional simulations via i.i.d. sampling

(not shown). The resulting empirical coverage probabilities were similar to using the Gibbs

sampler, albeit with slightly fewer iterations.

Gibbs Length (SD) E[X1] ξ.1,X1 ξ.9,X1 E[X2] ξ.1,X2 ξ.9,X2

T1(0.10) 1,930 (3.7E2) 0.941 0.940 0.937 0.954 0.958 0.927
T1(0.05) 5,727 (8.7E2) 0.946 0.958 0.941 0.942 0.945 0.940
T1(0.02) 31,170 (2.8E3) 0.935 0.945 0.961 0.937 0.937 0.944

T2(0.10) 2,465 (5.4E2) 0.935 0.939 0.939 0.954 0.950 0.937
T2(0.05) 7,865 (1.1E3) 0.950 0.959 0.943 0.955 0.954 0.952
T2(0.02) 43,756 (3.6E3) 0.933 0.936 0.959 0.936 0.959 0.946

T3(0.10) 1,182 (3.9E2) 0.929 0.936 0.942 0.936 0.936 0.924
T3(0.05) 3,786 (6.2E2) 0.956 0.951 0.944 0.940 0.940 0.935
T3(0.02) 20,289 (2.0E3) 0.945 0.947 0.954 0.940 0.943 0.952

Table 2.4: Summary of coverage probabilities for estimations of Φ using a Gibbs sampler
based on 1000 replications and a 0.95 nominal level.
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2.4.3 Bayesian logistic regression

Our final example considers the Anguilla eel data provided in the dismo R package

(see e.g. Elith et al., 2008; Hijmans et al., 2010). The data consists of 1,000 observations

from a New Zealand survey of site-level presence or absence for the short-finned eel (Anguilla

australis). We selected six out of twelve covariates as in Leathwick et al. (2008). Five are

continuous variables: SegSumT, DSDist, USNative, DSMaxSlope and DSSlope; one is a

categorical variable: Method, with five levels Electric, Spo, Trap, Net and Mixture.

Let xi be the regression vector of covariates for the ith observation of length k

and βββ = (β0, . . . , β9) be the vector regression coefficients. For the ith observation, suppose

Yi = 1 denotes presence and Yi = 0 denotes absence of Anguilla australis. Then the Bayesian

logistic regression model is given by

Yi ∼ Bernoulli(pi) ,

pi ∼
exp(xTi βββ)

1 + exp(xTi βββ)
and,

βββ ∼ N(000, σ2
βIk) ,

where Ik is the k× k identity matrix. For the analysis, σ2
β = 100 was chosen to represent a

diffuse prior distribution on βββ (Boone et al., 2014). Further, we use the MCMClogit function

in the MCMCpack package to sample from the target Markov chain.

Suppose we are interested in estimating the posterior mean along with an 80%

Bayesian credible interval for each regression coefficient in the model. Given that we are

working with real data, the true values are naturally unknown. Instead, we ran 1000

independent chains for 1E6 iterations to obtain an accurate estimate, which we treat as the

truth (Table 2.5).

Consider estimating Φj =
(
βj , ξ

(j)
.1 , ξ

(j)
.9

)
for j = 0, . . . , 9 using fixed-width stopping

rules Ti(ε) for i ∈ {1, 2, 3}. From the magnitudes in Table 2.5, it is easy to see a single ε

would be problematic for T1(ε). Instead, we will specify an ε for each Φj with respect to its

magnitude. Specifically, we choose three simulation settings such that εεε1 = (1, 0.01, 0.001,

0.1, 0.1, 0.1, 0.1, 0.1, 0.01, 0.01), 0.5εεε1 and 0.2εεε1.

A single ε value for T2(ε) will also be problematic since there are parameters with

very small absolute values (e.g. DSDist). We instead specify an ε for each Φj . In this case,
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Variable βj ξ
(j)
.1 ξ

(j)
.9

Intercept -10.463 (2.7E-5) -12.224 (3.9E-4) -8.730 (3.7E-4)
SegSumT 0.657 (1.5E-5) 0.559 (2.1E-5) 0.757 (2.2E-5)
DSDist -4.02E-3 (3.3E-7) -6.15E-3 (4.9E-7) -1.93E-3 (4.4E-7)
USNative -1.170 (7.1E-5) -1.625 (9.9E-5) -0.718 (1.0E-4)
MethodMixture -0.468 (6.8E-5) -0.910 (9.8E-5) -0.028 (9.8E-5)
MethodNet -1.525 (8.2E-5) -2.026 (1.2E-4) -1.035 (1.1E-4)
MethodSpo -1.831 (1.3E-4) -2.623 (2.2E-4) -1.798 (1.4E-4)
MethodTrap -2.594 (1.1E-4) -3.285 (1.8E-4) -1.937 (1.3E-4)
DSMaxSlope -0.170 (1.1E-5) -0.244 (1.7E-5) -0.099 (1.5E-5)
USSlope -0.052 (3.7E-6) -0.076 (5.5E-6) -0.028 (5.1E-6)

Table 2.5: Summary of estimated true values with standard errors for the Bayesian logistic
regression example.

we choose three simulation settings such that εεε2 = (0.1, 0.1, 1, 0.1, 1, 0.1, 0.1, 0.1, 0.1, 1),

0.5εεε2 and 0.2εεε2.

For both T1(ε) and T2(ε), it becomes overwhelmingly tedious to specify appropriate

ε vectors when the number of parameters becomes large. However, for the stopping rule

T3(ε) we can use a single ε for the 30 dimensional target parameter vector. Specifically, we

choose three simulation settings such that ε3 ∈ {0.10, 0.05, 0.02}.
For the two larger ε settings, we set n∗ = 10000 and added 1000 iterations between

checks. For the smallest ε setting, we set n∗ = 1E5 and added 10000 iterations between

checks due to increased computational demands. Each simulation setting was repeated 1000

times independently.

Table 2.6 summarizes the empirical coverage probabilities. We can see the coverage

probabilities for each stopping rule increase towards the nominal level of 0.95 as ε decreases,

suggesting that all the stopping rules perform well. For high dimensional settings such as

this, T3(ε) provides a distinct practical advantage since a practitioner can specify a single ε

value.

To adjust for multiplicity, we again apply a Bonferonni approach. We set individual

confidence intervals to have a nominal level of 0.801/10 = 0.9779 resulting in simultaneous

confidence region with nominal level of at least 0.80. We only considered estimating the

posterior mean of the 10 dimensional vector βββ using T3(ε) with ε ∈ {0.20, 0.10, 0.05, 0.02}.
The minimum simulation effort was n∗ = 1E5 iterations with an additional 1000 added
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T1(εεε1) T1(0.5εεε1) T1(0.2εεε1)

Variable βj ξ
(j)
.1 ξ

(j)
.9 βj ξ

(j)
.1 ξ

(j)
.9 βj ξ

(j)
.1 ξ

(j)
.9

Intercept 0.936 0.933 0.912 0.937 0.942 0.942 0.946 0.946 0.930
SegSumT 0.932 0.922 0.916 0.942 0.941 0.934 0.953 0.944 0.936
DSDist 0.987 0.969 0.979 0.976 0.969 0.960 0.956 0.954 0.952
USNative 0.927 0.929 0.917 0.939 0.933 0.943 0.948 0.939 0.944
MethodMixture 0.930 0.928 0.920 0.946 0.948 0.938 0.935 0.953 0.940
MethodNet 0.946 0.922 0.936 0.941 0.948 0.932 0.943 0.939 0.935
MethodSpo 0.913 0.913 0.927 0.931 0.929 0.931 0.943 0.942 0.926
MethodTrap 0.928 0.906 0.937 0.938 0.930 0.927 0.941 0.947 0.947
DSMaxSlope 0.932 0.930 0.921 0.942 0.943 0.945 0.953 0.958 0.951
USSlope 0.921 0.928 0.935 0.951 0.927 0.954 0.957 0.952 0.962

Length (SD) 19,521 (3.8E3) 76,894 (9.5E3) 492,910 (3.4E4)

T2(εεε2) T2(0.5εεε2) T2(0.2εεε2)

Variable βj ξ
(j)
.1 ξ

(j)
.9 βj ξ

(j)
.1 ξ

(j)
.9 βj ξ

(j)
.1 ξ

(j)
.9

Intercept 0.928 0.938 0.915 0.950 0.948 0.947 0.945 0.949 0.938
SegSumT 0.923 0.916 0.937 0.953 0.955 0.948 0.944 0.947 0.947
DSDist 0.985 0.968 0.975 0.970 0.958 0.958 0.956 0.955 0.947
USNative 0.921 0.936 0.921 0.946 0.933 0.945 0.940 0.956 0.941
MethodMixture 0.941 0.938 0.933 0.942 0.945 0.916 0.935 0.933 0.942
MethodNet 0.942 0.920 0.922 0.940 0.942 0.939 0.942 0.944 0.935
MethodSpo 0.919 0.901 0.924 0.936 0.923 0.937 0.947 0.956 0.947
MethodTrap 0.935 0.910 0.936 0.939 0.939 0.931 0.941 0.933 0.941
DSMaxSlope 0.937 0.942 0.916 0.948 0.942 0.950 0.942 0.954 0.955
USSlope 0.935 0.933 0.930 0.949 0.936 0.941 0.949 0.944 0.943

Length (SD) 37,667 (3.5E4) 151,276 (8.9E4) 1,161,400 (2.6E5)

T3(0.10) T3(0.05) T3(0.02)

Variable βj ξ
(j)
.1 ξ

(j)
.9 βj ξ

(j)
.1 ξ

(j)
.9 βj ξ

(j)
.1 ξ

(j)
.9

Intercept 0.932 0.944 0.929 0.943 0.950 0.943 0.943 0.954 0.934
SegSumT 0.932 0.935 0.941 0.942 0.934 0.946 0.942 0.934 0.946
DSDist 0.981 0.969 0.969 0.968 0.966 0.955 0.957 0.954 0.950
USNative 0.939 0.942 0.923 0.941 0.948 0.954 0.942 0.943 0.940
MethodMixture 0.939 0.928 0.920 0.947 0.943 0.933 0.927 0.947 0.928
MethodNet 0.929 0.922 0.931 0.939 0.939 0.934 0.930 0.938 0.939
MethodSpo 0.915 0.902 0.925 0.924 0.933 0.926 0.948 0.946 0.935
MethodTrap 0.930 0.909 0.920 0.941 0.937 0.933 0.939 0.935 0.948
DSMaxSlope 0.941 0.932 0.930 0.940 0.950 0.943 0.958 0.955 0.951
USSlope 0.939 0.928 0.940 0.953 0.937 0.955 0.954 0.957 0.958

Length (SD) 24,404 (1.4E3) 78,886 (4.2E3) 439,260 (1.7E4)

Table 2.6: Summary of coverage probabilities for Bayesian logistic regression example with
1000 independent replicates. The coverage probabilities have a 0.95 nominal level.
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between checks. Again, for the smallest ε setting, we set n∗ = 1E6 with an additional

10000 added between checks. The simulation was terminated the first time T3(ε) was met

and repeated 1000 times independently.

Table 2.7 summarizes the simulation results. We can see that, as ε decreases, all

the individual coverage probabilities are remarkably close to the nominal level of 0.9779.

Note the observed confidence region coverage probabilities approach the nominal level of

0.80 as expected. However, it is bit surprising how close this is to the nominal 0.80 level

given possible correlation among parameters. To this end, we investigated the correlation

between pairs of target parameters. We found that most pairs have low correlation, except

for strong correlation between (Intercept, SegSumT) and moderate correlation between

(USNative, USSlope). Given the lack of correlation, the confidence region coverages are

very encouraging.

T3(0.20) T3(0.10) T3(0.05) T3(0.02)

Variable βj βj βj βj
Intercept 0.959 0.975 0.976 0.973
SegSumT 0.960 0.971 0.979 0.974
DSDist 0.995 0.989 0.993 0.979
USNative 0.948 0.978 0.970 0.973
MethodMixture 0.950 0.973 0.967 0.968
MethodNet 0.962 0.962 0.976 0.973
MethodSpo 0.946 0.954 0.968 0.979
MethodTrap 0.950 0.960 0.970 0.978
DSMaxSlope 0.966 0.971 0.977 0.974
USSlope 0.964 0.965 0.973 0.982

Region 0.693 0.763 0.792 0.805

Length (SD) 10,082(2.7E2) 29,729(1.8E3) 100,261(5.2E3) 583,488(1.9E4)

Table 2.7: Summary of coverage probabilities for βββ based on T3(ε) with 1,000 replicates.
The coverage probabilities have a 0.9779 nominal level, resulting in a 0.80 nominal level
confidence region.

2.4.4 Discussion

This chapter considers absolute precision, relative magnitude, and relative stan-

dard deviation fixed-width stopping rules in the context of MCMC simulations. Under

limited assumptions, we show fixed-width stopping rules obtain a desired coverage proba-
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bility in an asymptotic sense as ε tends to 0. Moreover, we illustrate these rules perform

well in a variety of finite sample settings provided ε is specified to be small enough.

A practical MCMC stopping rule should be applicable for a large number of pa-

rameters since practitioners usually report multiple expectation and quantile estimates.

Unfortunately, choosing a single ε could be problematic for absolute precision and relative

magnitude stopping rules. These stopping rules would be better served by specifying an εεε

vector, which can be tedious when the number of parameters becomes large.

Instead, we advocate use of the relative standard deviation stopping rule since it

is easy to implement and applicable in multivariate settings without a priori knowledge of

the target parameter size. Simply put, this rule terminates an MCMC simulation when

estimates of target parameters are sufficiently accurate relative to their associated posterior

standard deviations. The resulting estimates are approximately ε−1 more accurate than

their posterior standard deviations. We recommend using ε = 0.02, which provided excellent

results in the wide variety of examples considered here. However, a smaller ε may be

appropriate when the accuracy of estimation is critical.

When estimating multiple quantities simultaneously, we have focused on control-

ling the width of each of the marginal confidence intervals. We also investigated the impact

of a Bonferonni correction in the case of multiplicity. Alternatively, one could consider mul-

tiple quantities jointly by controlling the volume of confidence region, which is the subject

of ongoing research. In this setting, one should be able to establish asymptotic validity for

a relative fixed-volume approach using techniques presented here and in Glynn and Whitt

(1992).

In any MCMC simulation, a key component is choosing a Markov chain that mixes

well while sufficiently exploring the state space. As in the mixture of bivariate Normals,

the sampler choice affects the performance significantly in terms of coverage probabilities.

Moreover, the computational effort to achieve a reasonable accuracy varies depending on

the sampling scheme. In practice, the true parameters values are unknown and thus poorly

behaved samplers may lead to suspicious inference. We have offered limited guidance in

this direction, but note this is usually the most challenging aspect of an MCMC simulation.

An interested reader is directed to Brooks et al. (2010) and the references therein for advice

on sampling schemes.

Finally, our examples only consider BM to estimate the asymptotic variance from

a CLT since it is the most popular technique and widely available. Improving the variance
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estimation step might be possible using alternative methods such as overlapping batch

means, spectral variance, or subsampling bootstrap methods (Doss et al., 2014; Flegal,

2012; Flegal and Jones, 2010), which are currently available in the mcmcse package.

2.5 Proofs and Calculations

2.5.1 Proof of Theorem 4

The proof follows techniques introduced in Glynn and Whitt (1992). Define z =

zδ/2 and recall

T3(ε) = inf
{
n ≥ 0 : 2zσ̂n/

√
n+ p(n) ≤ ελ̂n

}
and note T3(ε)→∞ w.p.1 as ε→ 0. The following two facts will be utilized multiple times.

First, since σ̂n → σθ w.p.1 as n → ∞, we have σ̂T3(ε) → σθ w.p.1 as ε → 0. Second, since

λ̂n → λθ w.p.1 as n→∞, we have λ̂T3(ε) → λθ w.p.1 as ε→ 0.

Define V (n) = 2zσ̂n/
√
n+p(n), where p(n) = o(n−1/2). Then T3(ε) can be denoted

as T3(ε) = inf
{
n ≥ 0 : V (n) ≤ ελ̂n

}
. Recall σ2

θ ∈ (0,∞), then it is easy to verify that

n1/2V (n)→ 2zσθ > 0 w.p.1 as n→∞. (2.8)

By definition of T3(ε), V (T3(ε) − 1) > ελ̂T3(ε)−1 and V (T3(ε)) ≤ ελ̂T3(ε). Using

(2.8) we have

lim
ε→0

sup εT3(ε)1/2 ≤ lim
ε→0

supT3(ε)1/2V (T3(ε)− 1)/λ̂T3(ε)−1 = 2zσθ/λθ w.p.1.

Similarly,

lim
ε→0

inf εT3(ε)1/2 ≥ lim
ε→0

inf T3(ε)1/2V (T3(ε))/λ̂T3(ε) = 2zσθ/λθ w.p.1.

Thus, we have

lim
ε→0

εT3(ε)1/2 = 2zσθ/λθ w.p.1. (2.9)

Using (2.9) with properties of σ̂T3(ε) and λ̂T3(ε), we have

lim
ε→0

ε−1T3(ε)−1/22zσ̂T3(ε)/λ̂T3(ε) = 1 w.p.1. (2.10)
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Let β = 2zσθ/λθ and set τε(t) = T3(ε)ε2β−2t for t ≥ 0. Note that τε → e as

ε → 0 w.p.1 pointwise, where e(t) = t. Then it follows from the FCLT and a standard

random-time-change argument (p. 151 Billingsley, 1999) that

Zε2β−2(τε(1))
d→ σθB(e(1))/e(1) = σθB(1) as ε→ 0 , (2.11)

where

Zε2β−2(τε(1)) = βε−1
(
ZT3(ε) − θ

)
.

Slutsky’s theorem with (2.10) and (2.11) yield

T3(ε)1/2/σ̂T3(ε)

(
ZT3(ε) − θ

) d→ B(1) as ε→ 0.

Finally, we have

Pr (θ ∈ C[T3(ε)]) = Pr
(
ZT3(ε) − θ ∈ (−zσ̂T3(ε)/T3(ε)1/2, zσ̂T3(ε)/T3(ε)1/2)

)
= Pr

(
T3(ε)1/2/σ̂T3(ε)(ZT3(ε) − θ)) ∈ (−z, z)

)
→ 1− δ as ε→ 0.
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Chapter 3

Fixed-width Procedure in High

Dimensions

This chapter proposes modifications for the relative standard deviation FWSR in

high-dimensional settings, including a strongly consistent variance estimator that signifi-

cantly improves computational efficiency and a novel sampling scheme that automates the

adjustment of the frequency of which the stopping rule is checked with respect to the total

simulation effort. It also establishes a connection between the relative standard deviation

FWSR and using the ESS as a stopping rule. Two modern Bayesian applications with high-

dimensionality are used to evaluate the performance of the stopping criteria. The content

of this chapter is primarily contained in Gong and Flegal (2015).

3.1 Introduction

Markov chain Monte Carlo (MCMC) simulations are commonly employed in a

Bayesian context to estimate features of a posterior distribution by constructing a Markov

chain with the target as its stationary distribution. A fundamental challenge is determining

when to terminate the simulation, especially for the often high-dimensional problems en-

countered in modern Bayesian analyses. For instance, the visual inspection of trace plots and

running means (see e.g. Flegal and Jones, 2011) is extremely challenging in high-dimensions.

Further, convergence diagnostics (see e.g. Cowles and Carlin, 1996) were designed for prob-

lems of at most moderate dimension and can be essentially impossible to implement in

high-dimensions. Given these problems, most practitioners resort to a fixed-time rule to
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terminate the simulation. That is, the procedure terminates after n iterations where n

is determined heuristically. In this chapter, we present a simple and theoretically valid

sequential stopping rule applicable for high-dimensional MCMC.

As applications, we consider the analysis of large spatially and temporally corre-

lated data sets routinely collected by the scientific community. A common framework to

effectively incorporate spatial-temporal associations is by building multiple hierarchies in

the model (Banerjee et al., 2004). The posterior analysis of Bayesian hierarchical models

often involves the implementation of high-dimensional MCMC. There is considerable liter-

ature in this direction, for example, Huerta et al. (2004) develop a time-varying regression

model for studying ozone levels; Gelfand et al. (2005) propose spatial process modeling for

dynamic data with an application to climate data; Finley et al. (2012) use Gaussian pre-

dictive processes to model large space-time data; Woolrich et al. (2004) implement a fully

spatio-temporal model for the noise process in fMRI data; Smith and Fahrmeir (2007) and

Lee et al. (2014) develop spatial Bayesian variable selection models to study brain images.

With important economic, ecological and public health implications, these anal-

yses require accurate assessment of their inferential uncertainties. However, few of these

studies, which often involve thousands of parameters, carefully describe the stopping crite-

rion utilized. Among them, some use convergence diagnostics (see e.g. Gelfand et al., 2005)

and some report Monte Carlo standard errors (MCSEs) to assess the quality of estimates

(see e.g. Lee et al., 2014). We assume the rest employ a fixed-time stopping rule where n

is determined heuristically. Unfortunately, choosing too small an n can lead to inaccurate

statistical inference.

As mentioned, many practitioners utilize convergence diagnostics and visual in-

spections to evaluate if the chain has been run long enough. While these methods can

be useful to assess sampler performance and detect obvious multimodality, they are barely

tenable in truly high-dimensional settings. For example, as stated in Gössl et al. (2001),

“With this high-dimensional data, convergence diagnostics were reduced to a selection of

randomly chosen parameter chains”.

Instead, we advocate terminating the simulation using a relative standard de-

viation fixed-width stopping rule (FWSR), which is easy to implement and theoretically

justified (Flegal and Gong, 2015). The main idea is to stop the simulation when an esti-

mate is sufficiently accurate relative to its posterior uncertainty. That is, the simulation

is terminated the first time a confidence interval width is less than an εth fraction of the
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posterior standard deviation. In this chapter, we show such a stopping rule is equivalent

to stopping when an effective sample size (ESS) is sufficiently large. In addition, we show

relative FWSRs work well in truly high-dimensional problems since a single ε can be used

for multiple parameters without any a priori knowledge.

Use of the relative standard deviation FWSR in high-dimensional settings requires

overcoming some computational issues, which we address here. The proposed computational

modifications provide significant improvements with minor tradeoffs. As we show later, the

main benefits are a significant reduction in computer memory usage and improved computa-

tional efficiency. To our best knowledge, there are no previous attempts to formally address

how long to run a MCMC simulation in such high-dimensional settings. Specifically, we

extend the previous application (Flegal and Gong, 2015) of the stopping rule for estimat-

ing tens of parameters to a spatial Bayesian dynamic model with hundreds of parameters

and a more complicated Bayesian fMRI model with thousands of parameters. Finally, we

compare our results to a convergence diagnostic used as a stopping criterion and show the

latter tends to terminate the simulations prematurely.

The two distinct high-dimensional Bayesian hierarchical analyses considered here

are (i) the univariate dynamic space-time regression models introduced by Gelfand et al.

(2005) applied to weather station data collected over the northeastern United States (Finley

et al., 2012) and (ii) the spatial variable selection models proposed by Lee et al. (2014)

applied to the StarPlus fMRI datasets (Carpenter et al., 1999; Keller et al., 2001; Wang

and Mitchell, 2002). Both applications clearly demonstrate the potential of the relative

standard deviation FWSR in general high-dimensional settings. Moreover, they illustrate

the rule is easily implemented in an almost automated fashion while providing uncertainty

estimates with confidence.

The rest of the chapter is organized as follows. Section 3.2 formally introduces

the relative standard deviation FWSR, proposes modifications for modern applications, and

illustrates its connection to ESS. Section 3.3 investigates finite sample properties for two

high-dimensional MCMC simulations related to Bayesian hierarchical models. This section

summarizes the models, experimental datasets and simulation studies. Section 3.4 concludes

with a discussion and recommendations for practitioners.
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3.2 A sequential stopping procedure

Suppose we want to make inference about a probability distribution π with support

X ⊆ Rd, d ≥ 1. Such inference is often based on expectations with respect to π. To this end,

our goal is to calculate Eπggg = (Eπg1, · · · ,Eπgp)T ∈ Rp, where, for i = 1, · · · , p, gi : X → R

and

Eπgi =

∫
X
gi(x)π(dx).

Note that p can be smaller or larger than d, with large values of either indicating a high-

dimensional setting.

Unfortunately, in most practical settings we cannot calculate Eπggg analytically

and frequently π is such that MCMC is the only viable technique for estimating Eπggg.

MCMC methods entail constructing a time-homogeneous Harris ergodic Markov chain X ={
X(0), X(1), . . .

}
on state space X with invariant distribution π (Robert and Casella, 2004).

Suppose n is finite and we simulate X for n steps. Let

ḡgg(n) :=
1

n

n−1∑
j=0

ggg
(
X(j)

)
= (ḡ1(n), . . . , ḡp(n))T

be an estimator of Eπggg from the observed chain. Under certain regularity conditions (Chan

and Geyer, 1994; Jones, 2004; Roberts and Rosenthal, 2004; Tierney, 1994), we can obtain

a marginal Markov chain central limit theorem (CLT) for the sampling distribution of an

unknown MCSE. That is for i = 1, . . . , p,

√
n (ḡi(n)− Eπgi)

d→ N
(
0, σ2

i

)
(3.1)

as n→∞ where σ2
i ∈ (0,∞). One could also consider a multivariate Markov chain CLT for

ḡgg(n)−Eπggg. However, the often high-dimensionality of the associated asymptotic covariance

matrix creates additional challenges and extracting useful information from it is a direction

of future research.

For i = 1, . . . , p, let σ̂i(n) denote an estimator of σi. Then the CLT at (3.1) allows

construction of p (1− δ)100% marginal confidence intervals with widths

wi(n, δ) = 2zδ/2
σ̂i(n)√
n

for i = 1, . . . , p , (3.2)
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where zδ/2 is a critical value from the standard Normal distribution. We can use the widths

at (3.2) to construct sequential FWSRs that terminate the simulation when they fall below

specific values.

3.2.1 A relative fixed-width stopping rule

Suppose ε is a pre-specified value, then the simplest FWSR terminates the simu-

lation when wi < ε for all i = 1, . . . , p. Asymptotic validity of such a rule was established

by Glynn and Whitt (1992) and first used in MCMC simulations by Jones et al. (2006).

Asymptotic validity is important because it ensures the simulation will terminate w.p.1 and

the resulting confidence intervals will have the right coverage probability (as ε→ 0).

Jones et al. (2006) and Flegal et al. (2008) show the simple FWSR is superior to

using convergence diagnostics as stopping criteria. Unfortunately, such a rule is difficult

to implement in high-dimensional settings without a priori knowledge of the magnitudes of

the components in Eπggg. Further, a single ε value is unlikely to be suitable across multiple

dimensions.

Instead, we consider a relative standard deviation FWSR proposed by Flegal and

Gong (2015). The main idea is to terminate the simulation when an estimator’s computa-

tional uncertainty is small relative to its posterior uncertainty. As we will illustrate, this is

equivalent to terminating the simulation when the ESS is sufficiently large.

To this end, let λ2
i denote the posterior variance associated with Eπgi. That is,

λ2
i is the i-th diagonal element of V arπ[ggg(X)]. Due to correlation in the Markov chain,

σ2
i 6= λ2

i in general. We further suppose λ̂2
i (n) is an estimator of λ2

i , usually

(λ̂2
1(n), . . . , λ̂2

p(n))T =
1

n− 1

n−1∑
j=0

(
ggg
(
X(j)

)
− ḡgg(n)

)2
.

Note that exponentiation on a vector is taken element-wise.

A relative standard deviation FWSR terminates the simulation when the length of

all the confidence intervals are less than an εth fraction of the magnitude of their posterior

standard deviations. That is, when wi < ελ̂i for all i = 1, . . . , p. Formally, the time at

which the simulation terminates is defined by

T (ε, δ) = sup
i∈{1,...,p}

inf
{
n ≥ 0 : wi(n, δ) + p(n) ≤ ελ̂i(n)

}
,
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where p(n) ≥ 0. The role of p(n) is to ensure that the simulation is not terminated prema-

turely based on poor estimates of the σ2
i s. A reasonable default is p(n) = εI(n ≤ n∗) +n−1

(Glynn and Whitt, 1992; Jones et al., 2006), where n∗ is the desired minimum simulation

effort. The user-specified starting value n∗ is often based on the complexity of the problem

at hand and ε reflects the desired accuracy for the analytical purpose. In our experience,

setting n∗ = 1E4 works well in practice. However, we caution that one should also examine

trace plots, autocorrelation plots, and convergence diagnostics to determine the minimum

simulation effort. Such care should also be used to determine if the MCMC sampler itself

is performing well, see e.g. Flegal and Jones (2011).

Sufficient conditions for asymptotic validity of T (ε, δ) are established in Flegal and

Gong (2015). In short, they require the limiting process must satisfy a functional CLT and

estimators of the associated asymptotic variance and posterior variance must be strongly

consistent. While not trivial, one can establish these conditions in many complex practical

MCMC settings. An interested reader is directed to Flegal and Gong (2015), Flegal and

Jones (2010), and Jones et al. (2006).

The relative standard deviation FWSR (outlined in Algorithm 1) is appealing

because it provides a simple, yet informative automated stopping criterion applicable in

multivariate settings. One only needs to specify a relative ε and hence no prior knowledge

about the magnitude of the parameters is needed. Moreover, a single ε will suffice in

multivariate settings, whereas other fixed-width approaches require a vector of values.

Algorithm 1 Relative standard deviation FWSR

Require: 0 < ε, δ < 1 and n∗,m > 0 . m: # of iterations between checks
1: UPDATE the chain by n∗ iterations
2: while True do
3: ESTIMATE σ̂ and λ̂
4: if stopping criterion is met then
5: break
6: UPDATE the chain by m iterations

The frequency with which the criterion should be checked is still an open question.

Checking too often may substantially increase the computational burden. Instead, it is

sufficient to check every m iterations, where m is a pre-specified gap determined by an

estimated simulation effort.
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Variance estimation modification

The MCMC community has expended considerable effort establishing strongly

consistent estimators for the asymptotic variance at (3.1) including batch means (Flegal

and Jones, 2010; Jones et al., 2006), spectral variance estimation (Flegal and Jones, 2010)

and regenerative simulation (Hobert et al., 2002; Mykland et al., 1995). In this section,

we propose a modified non-overlapping batch means (BM) estimator that does not require

storage of the entire chain.

In standard BM the output is broken into an batches of equal size bn. Suppose

the algorithm is run for a total of n = anbn iterations and define for j = 1, . . . , an,

YYY j =
1

bn

jbn−1∑
k=(j−1)bn

ggg
(
X(k)

)
.

The BM estimate of the asymptotic variance from the CLT at (3.1) is

(
σ̂2

1(n), . . . , σ̂2
p(n)

)T
=

bn
an − 1

an∑
j=1

(YYY j − ḡgg(n))2 .

Jones et al. (2006) establish necessary conditions for σ̂2
i (n) → σ2

i w.p.1, i =

1, · · · , p, as n → ∞. In short, they require the batch size and the number of batches

to increase as the overall simulation length increases. Setting bn = bnτc and an = bn/bnc,
the regularity conditions require that X be geometrically ergodic, Eπ|g|2+ε1+ε2 < ∞ for

some ε1 > 0, ε2 > 0 and (1 + ε1/2)−1 < τ < 1. A common choice of τ = 1/2 has been

shown to work well in applications (Flegal et al., 2008; Jones et al., 2006). We denote the

BM estimate with such a sampling plan as the consistent batch means (CBM) estimate.

Unfortunately, most sampling plans including CBM require storage of the entire

Markov chain to allow recalculations as bn grows with n. Given a target vector of dimension

p, this means a matrix of size p×n will have to be stored in the memory. Clearly, computer

memory soon becomes a serious limitation, which one can solve by writing parts of the

chain in-and-out of memory. However, given the frequency that T (ε, δ) is checked and the

already computationally intense task of updating the chain, we prefer a simpler solution.

To this end, we propose a new sampling plan that utilizes less memory while still

providing a strongly consistent variance estimator. Specifically, set b̃n = inf
{

2k : 2k ≥ nτ , k ∈ Z+
}

and ãn = bn/b̃nc. Notice b̃n is bounded by nτ ≤ b̃n ≤ 2nτ . Hence, it is easy to establish

39



strong consistency for σ̂2
i (n) with such a sampling plan using results in Jones et al. (2006)

and Bednorz and Latuszyński (2007). We denote this BM estimate with b̃n as the low-cost

batch means (LCBM) estimate.

Notice that b̃n increases by doubling the batch size, i.e. in the form of
{

2, 4, 8, . . . , 2k, . . .
}

.

It then becomes possible to record only the batch means YYY js and merge every two batches

by averaging their means when the batch size increases twofold. The size of the required

storage then reduces significantly from O(n) to O(ãn) = O(n1−τ ). Moreover, calculations

at each checking point take less time since the batch means are already in memory. In

practice, this change significantly reduces computational effort and memory as we illustrate

later. Finally, using the new sampling plan with T (ε, δ) requires a standard recursive cal-

culation of λ̂i(n) as n increases. An interested reader is directed to the technique studied

by Biesel (1977).

Use of the proposed sampling plan only requires storage of the current state and

the batch means. The unit of interest is then per batch rather than per iteration. Thus,

a natural adjustment to the frequency with which T (ε, δ) should be checked is to examine

the criterion every m batches. As before, m is pre-specified by the user but is likely much

smaller than used previously. The gap between checks is then m batches, or equivalently

mb̃n iterations. Hence, the number of iterations between each check increases in accordance

to the magnitude of the simulation effort. Note that occasionally an additional batch is

needed between checks to ensure there are an even number of batches. Such variation

enables adjacent batch means to be merged when the batch size increases twofold.

The two proposed modifications fit naturally with each other and enable imple-

mentation of relative standard deviation FWSR in high-dimensional settings. The modified

procedure with LCBM calculation is presented in Algorithm 2. Note that it only requires

the in-memory storage of the batch means. In addition, they yield improvements in compu-

tational efficiency measured by clock time and stopping procedure automation. A drawback

of the new sampling plan is one can not consider estimation problems that require storing

the entire chain. One way to circumvent this is to periodically write (out of memory) a

copy of the entire chain before only storing the means (in memory).

Remark 8. A lower bound LCBM is defined by setting b̃∗n = sup
{

2k : 2k ≤ nτ , k ∈ Z+
}

and ã∗n = bn/b̃∗nc. One can establish strong consistency for such a sampling plan because b̃∗n

is then bounded by nτ/2 ≤ b̃∗n ≤ nτ . We advocate the upper bound LCBM since it produces
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Algorithm 2 Relative standard deviation FWSR with LCBM

Require: 0 < ε, δ < 1, n∗ and m > 0 . m: # of batches between checks
1: CALCULATE batch size based on n∗

2: UPDATE the chain to get dn∗/batch sizee batches of iterations
3: INITIALIZE counter = dn∗/batch sizee × batch size

. Note that counter (≥ n∗) keeps track of the total number of iterations
4: UPDATE λ̂ using recursive techniques
5: STORE the mean of each of the dn∗/batch sizee batches to a container: batch means
6: while True do
7: ESTIMATE σ̂ from batch means
8: if stopping criterion is met then
9: break

10: UPDATE the chain to get m (or m+ 1) batches of iterations
. Variation is to ensure the feasibility of Line 15

11: UPDATE λ̂ using recursive techniques
12: APPEND the mean of each of the new batches to batch means
13: INCREMENT counter by m× batch size (or (m+ 1)× batch size)
14: if batch size changes based on the updated counter then
15: RESHAPE batch means by averaging neighbors

more conservative estimates and thus better performances in terminating simulations (see

Section 3.3 for numerical comparisons).

3.2.2 Connections with effective sample size

Given n iterations in a Markov chain, the ESS measures the size of an i.i.d. sample

with the same standard error, or the ”effective number of independent samples”. This

quantity is frequently used by practitioners as a run length diagnostic, terminating the

simulation once ESS estimates are greater than a pre-specified threshold K (for e.g. see

Atkinson et al., 2008; Drummond et al., 2006). Although the intuition behind this rule

is clear, we are not aware of any theoretical discussions of its validity. Here we show

the relative standard deviation FWSR and the ESS stopping rule are equivalent. Thus, we

establish theoretical validity of using the ESS as a stopping rule for MCMC simulations. The

main assumption required is a strongly consistent estimate of the ESS. The connection also

provides practitioners with another intuitive way to look at the relative standard deviation

FWSR.

Note that the ESS is not uniquely defined. One way to define ESS is described in
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Kass et al. (1998) and Robert and Casella (2004), for i = 1, · · · , p,

ESSi(n) =
n

1 + 2
∑∞

k=1 ρk(gi)
,

where ρk(gi) is the autocorrelation of lag k for gi. This calculation is implemented in many

R packages, such as coda (Best et al., 1995) and mcmcse (Flegal and Hughes, 2012).

An alternative approach to define ESS as in the custom of survey sampling (Kish,

1965; Liu et al., 1998), where for i = 1, · · · , p,

ESSi(n) =
n

σ2
i /λ

2
i

.

In practice, we estimate this quantity by replacing the parameters with their strongly con-

sistent estimates, i.e.

ÊSSi(n) =
n

σ̂2
i (n)/λ̂2

i (n)
. (3.3)

The two ESS calculations produce comparable results in various simulation studies. As a

toy example we consider an independence Metropolis sampler with an EXP(0.5) proposal

to sample from an EXP(1) target distribution. Note that this Markov chain is uniformly

ergodic. Figure 3.1 shows that these methods behave similarly as the number of iterations

increases, although the alternative ESS calculation based on either CBM or LCBM tends

to fluctuate more due to changes in batch size (with τ = 1/2). Notice that LCBM produces

slightly more stable estimates than CBM since its batch size changes less frequently. Despite

that, the alternative ESS calculations, especially implemented using LCBM, enable the

estimation of ESS in memory intensive and high-dimensional settings. Further, in the

presence of high correlations, the alternative ESS calculations tend to be more conservative

in the sense that they produce smaller ESS estimates.

In multivariate settings, using ESS as a stopping rule is equivalent to terminating

the simulation when the estimated ESS for every parameter is above the threshold K. That

is, the time at which the simulation terminates is defined by

T̃ (K) = sup
i∈{1,...,p}

inf
{
n ≥ 0 : ÊSSi(n) ≥ K

}
.

As mentioned, when implemented together with the alternative ESS calculation,
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Figure 3.1: Comparison of ESS estimates for an independence Metropolis sampler with a
EXP(0.5) proposal used to sample from an EXP(1) target.

T̃ (K) provides additional insights into the relative standard deviation FWSR. From the

definition of T (ε, δ), one can easily show that at termination

ελ̂i(n) ≥ 2zδ/2σ̂i(n)/
√
n+ p(n) ≈ 2zδ/2σ̂i(n)/

√
n. (3.4)

Combining (3.3), (3.4) and the definition of T̃ (K), setting K = 4z2
δ/2/ε

2, we have T (ε, δ) ≈
T̃ (K). That is, the relative standard deviation FWSR is equivalent to terminating a simu-

lation when the smallest ESS is above a pre-specified level. For instance, setting ε = 0.124

and δ = 0.05 in FWSR is equivalent to set K = 1000 in ESS. Given the equivalency, we can

establish the asymptotic validity of the ESS stopping rule under the same conditions for the

relative standard deviation FWSR (see Flegal and Gong, 2015) provided the threshold K

goes to infinity. This equivalency is valid only under the alternative ESS calculation since

a strongly consistent estimate of ESS is required.

3.2.3 An alternative stopping criterion

Convergence diagnostics are widely employed by practitioners as stopping criteria.

Particularly, we are interested in the Geweke diagnostic (GD) from Geweke (1992), which

we will compare with the relative standard deviation FWSR in the next section. Our

simulations use the GD implementation from the R package coda (Best et al., 1995). The

GD is based on a hypothesis test that the mean estimates of two non-overlapping parts of
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the Markov chain have converged. As a rule of thumb, Geweke (1992) suggested to take first

0.1 and last 0.5 proportions of the Markov chain. The resulting test statistic is univariate

by its nature and the z-score is constructed as follows,

Z =
x̄1 − x̄2√

ŝ1(0)/n1 + ŝ2(0)/n2

,

where x̄1, x̄2 are the sample average and ŝ1(0), ŝ2(0) are spectral density estimates at zero

frequency for the two parts of the Markov chain, respectively. In multivariate settings,

given the hypothesis-testing nature of GD, one needs to confirm if the percentage of p-

values below a pre-specified threshold δ (e.g. 0.1 or 0.05) at termination is greater than

1− δ.
The GD requires a single Markov chain, which is close in spirit to the current

work. It is also more practical in high-dimensional settings than the popular Gelman-

Rubin diagnostic (Brooks and Gelman, 1998; Gelman and Rubin, 1992), which requires

parallel chains. Jones et al. (2006) note that the GD is based on a Markov chain CLT

and hence does not apply more generally than a FWSR that is based on the calculation of

MCSE.

3.3 Applications

In this section, we evaluate the performance of relative standard deviation FWSR

in finite sample settings using spatial-temporal Bayesian applications. Particularly, we

consider the spatial Bayesian dynamic models of Gelfand et al. (2005) applied to a weather

station dataset of Finley et al. (2012) and the spatial Bayesian variable selection models of

Lee et al. (2014) applied to an experimental fMRI dataset of Carpenter et al. (1999).

3.3.1 Bayesian dynamic space-time model

This application considers the monthly temperature data collected over 356 weather

stations in the northeastern United States starting in January 2000 to September 2011,

which is available in the R package spBayes (Finley and Banerjee, 2013). We fit the uni-

variate Bayesian dynamic space-time regression model proposed by Gelfand et al. (2005) to

a subset of the dataset for illustrative purposes. Note that the modeling approach is limited

to settings where space is continuous but time is taken to be discrete.
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The response yt(s) denotes the temperature at location s and time t. It is modeled

through a measurement equation that provides a regression specification with a space-

time varying intercept. In addition, the model considers serially and spatially uncorrelated

zero-centered Gaussian disturbances as measurement error εt(s). A transition equation

introduces a p × 1 coefficient vector βββt, which is a strictly temporal component, and a

spatial-temporal component ut(s). The overall model is given by

yt(s) = xxxt(s)
Tβββt + ut(s) + εt(s), t = 1, 2, . . . , Nt,

εt ∼ N(0, τ2
t ),

βββt = βββt−1 + ηηηt; ηηηt ∼ Np(0,Ση),

ut(s) = ut−1(s) + wt(s); wt(s) ∼ GP (0, Ct(·, ψt)).

The GP (0, Ct(·, ψt)) denotes a spatial Gaussian process with covariance function Ct(·;ψt).
We specify C(s1, s2;ψt) = σ2

t ρ(s1, s2;φt), where ψt = {σ2
t , φt} and ρ(·;φ) is an exponential

correlation function with φ controlling the correlation decay and σ2
t represents the spatial

variance component.

The prior specifications and MCMC schemes follow the spDynLM function in the

spBayes package and we use it to sample from the Markov chain. Interested readers are

directed to Finley and Banerjee (2013) for details. Specifically, we are only interested in

the data recorded from 10 weather stations in the year 2000 and estimating the posterior

mean of {τ2
t , σ

2
t , φt,βββt,Ση, ut(s)} with p = 186 dimensions.

Two measurements to evaluate the performance of the stopping criteria are uti-

lized. One is the average of coverage probabilities over all 186 parameters. The other

is

max
i≤p

P (|ḡi(n)− Eπgi| ≥ ελi) , (3.5)

which should be less than δ when n is chosen according to T (ε, δ). Since the true values

are unknown, we use estimates of gi and λi, i = 1, · · · , p, obtained via 1000 parallel runs of

1E6 iterations and treated these as the “truth”.
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Terminating the simulation

We terminated 1000 parallel simulations and conducted comparative studies of

a set of stopping criteria. Specifically, for each independent run, the ESS stopping rule

was implemented with three batch means estimates (CBM, LCBM and LCBM∗) and three

threshold values (1000, 2000 and 4000). Note that LCBM∗ stands for the lower bound

LCBM. Using the same data, the relative standard deviation FWSR was implemented with

the same batch means estimates (CBM, LCBM and LCBM∗) and three ε values (0.123,

0.088 and 0.062) with δ = 0.05. Under such settings, the relative standard deviation FWSR

should be equivalent to the ESS stopping rule. Since the proposed sampling plan leads to

the batch size of the form 2k, k ∈ Z+, we set n∗ = 214 = 16, 384 and added 20 or 21 batches

between checks. Two values of added batches were to ensure an even number of batches

when the stopping criteria are checked. As a comparison, we used the GD as a stopping

rule with a threshold p-value of 0.05 starting with 15000 iterations after 5000 burn-in.

Criteria Estimator Threshold Length(SD) Memory(SD) Coverage Maximum

ESS

LCBM∗ 1000 1.73E5(4.01E3) 1.01(0.02) 0.822 0.018
CBM 1000 2.70E5(1.20E4) 402.32(17.73) 0.889 0.004

LCBM 1000 3.57E5(3.85E4) 0.56(0.07) 0.925 0.001
LCBM∗ 2000 5.34E5(1.26E4) 1.55(0.04) 0.897 0.005
CBM 2000 6.60E5(2.51E4) 982.22(37.42) 0.916 0.002

LCBM 2000 7.20E5(2.61E4) 1.05(0.04) 0.925 0.001
LCBM∗ 4000 1.36E6(1.64E5) 2.27(0.37) 0.919 0.001
CBM 4000 1.50E6(5.01E4) 2231.75(74.59) 0.931 0.001

LCBM 4000 1.68E6(6.60E4) 1.22(0.05) 0.941 0.001

FWSR

LCBM∗ 0.124 1.73E5(4.01E3) 1.01(0.02) 0.822 0.018
CBM 0.124 2.70E5(1.20E4) 402.32(17.73) 0.889 0.004

LCBM 0.124 3.57E5(3.85E4) 0.56(0.07) 0.925 0.001
LCBM∗ 0.088 5.34E5(1.26E4) 1.55(0.04) 0.897 0.005
CBM 0.088 6.60E5(2.51E4) 982.22(37.42) 0.916 0.002

LCBM 0.088 7.20E5(2.61E4) 1.05(0.04) 0.925 0.001
LCBM∗ 0.062 1.36E6(1.64E5) 2.27(0.37) 0.919 0.001
CBM 0.062 1.50E6(5.01E4) 2231.75(74.59) 0.931 0.001

LCBM 0.062 1.68E6(6.60E4) 1.22(0.05) 0.941 0.001

GD − 0.05 1.50E4(0) 22.32(0) 0.720 −

Table 3.1: Summary statistics for three stopping criteria based on 1000 independent repli-
cations and 0.95 nominal level. Memory usage is measured in megabytes.
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Table 3.1 summarizes comparative statistics for the three stopping criteria utilized.

Notice that results from the relative standard deviation FWSR and the ESS stopping rule

are almost identical. We will therefore limit our discussion to only the ESS stopping criteria.

As the thresholdK increases, both the coverage probabilities and the maximum probabilities

in (3.5) improve. For three batch means estimates, all the coverage probabilities are close to

the 0.95 nominal level and the maximum probabilities are well below 0.05 indicating the ESS

is performing well under these threshold values. However, LCBM, with significantly less

computer memory usage, achieves slightly better coverage probabilities than CBM, which is

a major advantage in high-dimensional settings. LCBM also outperforms LCBM∗ in these

settings. The better performances of LCBM is due to its uniformly larger batch size, i.e.

b̃∗n ≤ bn ≤ b̃n. In short, the relative standard deviation FWSR and the ESS stopping rule are

equivalent and all perform well in terminating the simulations. The proposed modification

to the batch means estimator reduces memory usage while maintaining overall performance.

On the contrary, the GD as a stopping rule produces poor coverage probabilities with far

less simulation effort at termination. Its results indicate a premature termination as pointed

out by Cowles and Carlin (1996).

3.3.2 Spatial Bayesian variable selection model

This application considers the Bayesian analysis of a functional Magnetic Reso-

nance Imaging (fMRI) study. It studies the physiological changes that accompany brain

activation via the blood oxygenation level dependent (BOLD) signal contrast. During the

course of a typical fMRI experiment, a single patient performs a set of tasks in response

to one or several external stimulus while a series of three dimensional brain images are

acquired. Our goal is to detect activated brain regions associated with external stimulus

through the image intensities. Imagine that the patient’s brain can be divided into tiny

voxels on a 3D regular lattice. The time series BOLD response is collected at each voxel re-

sulting in enormous observations of spatio-temporally correlated structures. The Bayesian

analysis of fMRI data often involves high-dimensional models and extensive computation.

For voxel v = 1, . . . , N , let {yv,i; i = 1, . . . , t} be the BOLD image intensities at t

time points. Although other alternatives are possible, a conventional voxelwise regression

analysis assumes a linear model with a balance between model complexity and computa-
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tional feasibility (Friston et al., 1995; Smith and Fahrmeir, 2007),

yv,i = zTi av + xv,iβv + εv,i.

Linear combination zTi av is the baseline trend to remove stimulus-independent effects. βv

is the activation amplitude and xv,i is the transformed stimulus (see Figure 3.2). In many

experiments, the external stimulus {si; i = 1, . . . , t} alternates activation/inactivation in a

0-1 ’boxcar’ pattern. However, instead of proceeding in a 0-1 ’boxcar’ function, the brain

produces a fairly fixed, stereotyped blood flow response with delay dv every time a stimulus

hits it, where dv is estimated in a preprocessing step. The so-called hemodynamic response

function (HRF) is used to characterizes this process. There are several formulations of HRF

(see e.g. Friston et al., 1998; Glover, 1999; Gössl et al., 2001).
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Figure 3.2: The transformed stimulus is obtained by convolving the original 0-1 ’boxcar’
stimulus and the HRF.

One approach is to use a canonical HRF consisting of a difference of two gamma

functions (Lindquist et al., 2009),

h(t) = A

(
tα1−1βα1

1 e−β1t

Γ(α1)
− ct

α2−1βα2
2 e−β2t

Γ(α2)

)
,
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where α1 = 6, α2 = 16, β1 = β2 = 1 and c = 1/6. The only unknown parameter, i.e. the

amplitude A, is estimated in a preprocessing step. We can transform the orignal ’boxcar’

stimulus by a convolution with the HRF,

xv,i =

i−dv∑
k=0

h(k)si−dv−k.

The measurement error is denoted by εv,i. Appropriate distributional assumptions about

εv,i can be made to incorporate temporal correlation and specific priors can be chosen to

reflect spatial dependence.

In this chapter, we consider the spatial Bayesian variable selection models for

single subject (Lee et al., 2014). This approach is shown to incorporate temporal-spatial

correlation and allow for the task-related changes in BOLD response while mitigates the

computational burden. It also possesses the ability to account for anatomic prior informa-

tion. A general MCMC algorithm is designed to perform the large dimensional posterior

inference. Here we summarize the model formulation and estimation process from Lee et al.

(2014). An interested reader is directed to their paper for more details.

Denote yyyv = (yv,1, . . . , yv,t)
T as the BOLD image intensity at time i = 1, . . . , t

for voxel v = 1, . . . , N . Let Xv be a t × p design matrix of transformed stimulus and

βββv = (βv,1, . . . , βv,p)
T be a vector of p regression coefficients for each voxel. We formulate a

linear regression mode,

yyyv = Xvβββv + εεεv, εεεv ∼ Nt

(
000, σ2

vΛv
)
. (3.6)

Notice that the detection of voxel activation is equivalent to the identification

of nonzero βββvs. To this end, we introduce 0/1 binary indicators γγγv = (γv,1, . . . , γv,p),

v = 1, . . . , N , such that βv,j = 0 if γv,j = 0 and βv,j 6= 0 if γv,j = 1. The γv,j is used to

indicate whether the voxel v is activated by input stimulus j. Given γγγv, let βββv (γγγv) be the

vector of nonzero regression coefficients and Xv (γγγv) be the corresponding design matrix.

Then, the model (3.6) can be rewritten as

yyyv = Xv (γγγv)βββv (γγγv) + εεεv.

Further, we assume the independence among σ2
v and set its prior π

(
σ2
v

)
∝ 1/σ2

v .
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Zellner’s g-prior on βββv (γγγv) |γγγv is placed to undertake variable selection or model averaging.

The parameter g is adjusted to obtain similar results with those if BIC were used,

βββv (γγγv) |yyyv, σ2
v ,Λv, γγγv ∼ N

(
β̂ββv (γγγv) , Tvσ

2
v

[
XT
v (γγγv) Λ−1

v Xv (γγγv)
]−1
)
,

where

β̂ββv (γγγv) =
[
XT
v (γγγv) Λ−1

v Xv (γγγv)
]−1

XT
v (γγγv) Λ−1

v yyyv. (3.7)

Define the corresponding sum of squares for posterior inference

S (ρv, γγγv) =
(
yyyv −Xv (γγγv) β̂ββv (γγγv)

)T
Λ−1
v

(
yyyv −Xv (γγγv) β̂ββv (γγγv)

)
.

We incorporate the temporal dependence between observations on a given voxel

through the specification of the structure of Λv. The AR(1) dependence, i.e. Λv (i, j) =

ρ
|i−j|
v , is an effective compromise between inferential efficacy and computational efficiency.

We specify a point mass prior for ρρρ = (ρ1, . . . , ρN ) at a fixed point ρ̂ρρ using maximum

likelihood methods.

We incorporate the spatial dependence, as well as the anatomical information,

by using a binary Markov random field (MRF) prior, i.e. the Ising prior, on γγγv. Let

γγγ(j) = (γ1,j , . . . , γN,j)
T be the vector of indicators for regressor j over all voxels. Then,

let wv,k be pre-specified constants that weigh the interaction between voxels v and k and

let νj be parameter to measure the strength of the interaction between voxels for regressor

j. We denote v ∼ k, if two voxels v and k are defined as neighbors by the user. In this

chapter, we employ a widely used three-dimensional structure containing the six immediate

neighbors: 1 above, 1 below and 4 adjacent. The weight wv,k is set to be the reciprocal of

the Euclidean distance between voxel v and k. Then, the spatial interaction is described as

νj
∑N

v=1

∑
v∼k wv,kI (γv,j = γk,j), where I(x) is the usual 0/1 indicator function. A linear

”external field”
∑N

v=1 αv,jγv,j is specified to incorporate anatomical prior information, where

αv,j is chosen to reflect prior knowledge.

We consider the prior on γγγ to be π (γγγ|ννν) =
∏p
j=1 π

(
γγγ(j)|νj

)
, where

π
(
γγγ(j)|νj

)
∝ exp

{
N∑
v=1

αv,jγv,j + νj

N∑
v=1

∑
v∼k

wv,kI (γv,j = γk,j)

}
.
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The remaining prior to be addressed is the distribution of ννν = (ν1, . . . , νp). A

uniform prior is placed π (ννν) ∝
∏p
j=1 I (0 < νj < νmax), where Moller and Waagepetersen

(2003) suggests to use νmax ≤ 2.0.

The posterior density is characterized by

q
(
βββ (γγγ) , γγγ,ρρρ,ννν,σσσ2|y

)
∝ p

(
y|βββ (γγγ) , γγγ,σσσ2,Λ

)
× π

(
βββ (γγγ) |y,σσσ2,Λ, γγγ

)
π (γγγ|ννν)π (ρρρ)π

(
σσσ2
)
π (ννν) .

We follow the two-step component-wise Metropolis-hastings algorithm designed

by Lee et al. (2014) to update γγγ and ννν. Particularly, we are interested in estimating the

posterior mean of θθθ = {γγγ,ννν}.
Particularly, we are interested in the StarPlus experiment of Carpenter et al.

(1999). The experiment was designed to investigate brain activities related to high level

cognition, i.e. language comprehension and visuospatial processing. Snapshots were taken

every 0.5 seconds resulting in about 54 images throughout the experiment. Data were pre-

processed using standard techniques such as slice timing and spatial smoothing (for a review

see Lindquist, 2008) and were registered in standardized space with 64× 64× 8 dimensions

for 54 time points.

Based on the settings of the StarPlus experiment, we rewrite the linear model (3.6)

as

yyyv = α0zzz0 + α1zzz1 + β1xxx1 + β2xxx2 + εεεv,

where αi, zzzis are the baseline signal, βis are the activation amplitude corresponding to the

two tasks ”Semantic” and ”Symbol”, respectively, The binary indicator γv = {1, 1, γv,3, γv,4}
is used in the variable selection problem described previously. Notice that we assume all αis

nonzero and set νmax = 1.0 as in Lee et al. (2014). Figure 3.3 visualize the design matrix

for this linear model as we described previously.

We followed the component-wise Metropolis-hastings algorithm introduced in Lee

et al. (2014) to update the 9398-dimensional posterior distribution. Given the computa-

tional challenges that arise from the high-dimensionality, it is not practicable to estimate

the “truth” and subsequent coverage probabilities via multiple parallel runs using the re-

sources at hand. Instead, the simulation study presented is from a single run of the Markov

chain.

51



0 5 10 15 20 25
Time

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
m

p
lit

u
d
e

Visulized design matrix

Baseline

Effect of no interest

Semantic

Symbol

Figure 3.3: The visualization of the design matrix for the experimental dataset.

Terminating the simulation

Since the equivalency between the relative standard deviation FWSR and the ESS

stopping rule has been established in the previous sections, we restrict our attention to

relative standard deviation FWSR in this application. Given the dimension of the problem,

in-memory storage of the entire chain becomes infeasible when the simulation approaches

1E6 iterations. Thus, the use of CBM in the stopping criteria is not an option. At the

same time, by only keeping the summarized information, LCBM offers a practical solution

with minimal tradeoffs. We, therefore, implemented T (ε, δ) with LCBM as the variance

estimator in this study.

The relative standard deviation FWSR was implemented with δ = 0.05 and ε =

0.062, which is equivalent to setting the threshold of the ESS stopping rule to K = 4000.

We set n∗ = 214 = 16, 384 and added 20 or 21 batches between checks. The simulation

was terminated after 368, 640 iterations, which was 360 batches under LCBM. The storage

required was approximately 84 megabytes, where it would have required over 84 gigabytes

if we were to use CBM. Figure 3.4 and 3.5 are the estimated activation maps in eight brain

slices for two tasks ”Semantic” and ”Symbol”, respectively. The red voxels are identified
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Figure 3.4: The activation map for all eight slices when perform task ”Semantic”.

as activated.

Again, we compared terminating simulations by T (ε, δ) and through the GD. For

the GD, we generated 20,000 iterations and discarded the first 5,000 as burn-in. We con-

firmed the chain convergence with a p-value equals 0.05 over all parameters. A parameter-

wise estimation of ESS revealed that the smallest ESS from GD is 398, while the T (0.062, 0.05)

guarantees a minimal ESS greater than 4000 in the above setting. Moreover, it took about

3.5 gigabytes to store the entire chain for the GD, which is 100 times more memory usage

than the relative standard deviation FWSR with LCBM implemented. We also note around

10% of the voxels stayed active or inactive, i.e. a sequence of constant 0 or 1, throughout

the simulation terminated by GD. On the contrary, there were only 3.5% of voxels behaving

in such a way in the simulation terminated by FWSR. This suggests that the GD as a

stopping rule tends to result in a premature termination.

Anatomical knowledge suggests that certain areas of the brain, known as the region

of interest (ROI), are more likely to be activated during the experiment. Looking at a

particular ROI called ’LT’, we found that the differences between the estimated percentage

of activated voxels from two simulations are considerable (see Table 3.2), given the small
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Figure 3.5: The activation map for all eight slices when perform task ”Symbol”.

’LT’ FWSR GD

Semantic 3.93% 4.26%
Symbol 12.46% 12.79%

Table 3.2: Comparisons of the activated voxels in ROI based on FWSR and GD.

proportion of activation.

3.4 Discussion

This chapter considers a relative standard deviation FWSR in the context of truly

high-dimensional MCMC simulations. In our viewpoint, a practical stopping rule should

achieve three properties: (1) it is easy to implement in an automated fashion with a few

tuning parameters; (2) it attains confidence in resulting estimates; and (3) it is applicable

in both low- and high-dimensional settings. With such properties, practitioners can then

apply the stopping rule on a routine basis.

We advocate use of the modified relative standard deviation FWSR since it meets

all the properties and is especially applicable in high-dimensional Bayesian settings without
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prior knowledge of the magnitude of the target parameters. It is controlled by one tuning

parameter ε that measures the accuracy of the estimates. Simply put, the estimates are

approximately ε−1 more accurate than their posterior standard deviation. Another way to

understand ε is through the alternative ESS calculation. In high-dimensional settings, we

suggest setting the tuning parameter ε = 0.062, δ = 0.05 which leads to an ESS of 4000.

However, the choice of ε significantly affects the total simulation effort. For instance, in the

described fMRI study, ε = 0.062, δ = 0.05 results in 368,640 iterations, while ε = 0.02, δ =

0.05 results in 1,419,264 iterations. Thus, there should be a balance between the accuracy

of estimation and the cost of simulation.

The proposed LCBM sampling plan summarizes information along the simula-

tion. On one hand, it eliminates the requirement of storing the entire chain in memory to

allow recalculation and also reduces computing time. On the other hand, it is not appli-

cable for more general estimation problems such as quantile estimation (Doss et al., 2014).

Such tradeoffs are necessary in order to overcome challenges that arise in high-dimensional

settings.

A natural extension of the stopping rule is to consider simultaneous multivariate

estimation. Flegal and Gong (2015) apply a Bonferonni approach to adjust for multiplicity.

However, the standard Bonferonni approach will not work for a large dimension p, since the

individual confidence interval needs to be set to a nominal level of 0.951/p. Clearly, a more

sophisticated method is required to adjust for multiplicity in high-dimensional settings. One

direction of future research is to control the volume of a desired confidence region rather

than the width of multiple confidence intervals separately.

The utility of FWSRs remains an open question when MCMC is used as part of

an optimization algorithm. For example, one could consider the relative standard deviation

FWSR in conjunction with the Monte Carlo EM algorithm, see e.g. Caffo et al. (2005). In

this setting, a sequence of decreasing ε values could be used in order to increase accuracy

when the EM algorithm is near convergence. One could also consider FWSRs in the context

of maximum likelihood using MCMC, see e.g. Geyer and Thompson (1992).

Finally, how well a chain mixes and explores the state space is a vital component

in MCMC simulations. In our opinion, this is the role of convergence diagnostics and

visual inspections. However, this remains a challenging problem for Bayesian practitioners

regardless of dimension. We direct interested readers to Brooks et al. (2010) for more

information.
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Chapter 4

Bayesian model selection on linear

mixed-effects models

This chapter proposes a novel Bayesian model selection on linear mixed-effects

models for comparisons between multiple treatments and a control. A fully Bayesian so-

lution provides practitioners with marginal inclusion probability for each treatment that

directly measures its significance, along with model-averaged posterior distributions. It

extends the existing literature by incorporating multiple group effects with unbalanced sub-

jects into the stochastic search variable selection framework. Default priors are proposed

for model selection and a component-wise Gibbs sampler is developed for posterior com-

putation. A simulation study and a longitudinal experiment of mouse weight trajectories

(Spindler et al., 2014a,b, 2013a,b, 2014c) are used to evaluate the performance of the pro-

posed method. This application also serves as an example to advocate the use of the relative

standard deviation FWSR for careful posterior inference.

4.1 Introduction

Experiments are run by researchers in medicine, biology, and various other sci-

entific fields, to compare multiple treatments with a control or standard treatment over a

period of time. Often these studies result in unbalanced repeated measured data that is

widely analyzed by the flexible linear mixed-effects model (LMM). The LMM allows for

some subsets of the regression parameters to vary among subjects, thereby accounting for

sources of natural heterogeneity in the population. It models the mean response as a com-
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bination of population characteristics (fixed-effects), that are assumed to be shared by all

subjects, and subject-specific characteristics (random-effects) that are unique to a partic-

ular subject. For comparisons between multiple treatment groups and a control group, it

is common to introduce a set of fixed-effects to model the treatment effects for each group

(see e.g. Fitzmaurice et al., 2004). The comparison between groups is then equivalent to

compare parameter estimation between the set of fixed-effects.

A difficult question is how to decide which treatments are significantly different

from the control. Standard model selection criteria and test procedures can be implemented

to solve this problem (see e.g. Bolker et al., 2009; Fitzmaurice et al., 2004) with certain dis-

advantages. One can select models by using hypothesis tests (Stephens et al., 2005); that is,

test simpler nested models against more complex models and report corresponding p-values.

Although the likelihood ratio test (LRT) is widely used to determine the contribution of a

factor in a model throughout statistics, it is not recommended by Pinheiro and Bates (2006)

for testing fixed-effects in LMM, because of its unreliability for small to moderate sample

size. Also, when the focus is to compare multiple treatments with the control, Burnham

and Anderson (2002) criticize that such a pairwise comparison as an abuse of hypothesis

testing. Another extensively used approach is the information-theoretic model selection pro-

cedure that allows comparison of multiple models (see e.g. Burnham and Anderson, 2002).

This method relies on information criteria, such as Akaike information criterion (AIC) and

Bayesian information criterion (BIC), that use deviance as a measure of fit with a penal-

ization on more complex models. Instead of reporting p-values, it estimates the magnitude

of difference between models in expected predictive power that can sometimes be difficult

to fully understand and explain by practitioners.

Motivated by these practical challenges faced by frequentist approaches, we resort

to Bayesian model selection methods (for a review see e.g. Clyde and George, 2004; George

and McCulloch, 1997; Kuo and Mallick, 1998). In the Bayesian framework, this problem

can be transformed to the form of parameter estimation (O’Hara et al., 2009). That is,

the marginal posterior probability that a variable should be in the model, i.e. the marginal

inclusion probability, which is usually calculated directly from the posterior inference using

an Markov chain Monte Carlo (MCMC) simulation. This inclusion probability provides

practitioners with an intuitive understanding of the significance of each fixed-effect and a

way to combine prior knowledge of different treatments.

There is an extensive literature on Bayesian model selection for fixed-effects.
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George and McCulloch (1993); Geweke et al. (1996) develop the stochastic search vari-

able selection (SSVS) technique for linear regression models that uses a Gibbs sampler to

traverse the model space. Smith and Kohn (1996) extend its application to nonparametric

regression models and show how integrating the regression parameters is essential to reli-

able convergence of a Gibbs sampler. Kohn et al. (2001) propose a more efficient single-site

Metropolis-Hastings sampler. Holmes et al. (2002) consider selection and smoothing for a

series of seemingly unrelated regressions. Chen and Dunson (2003); Kinney and Dunson

(2007) develop variable selection for both fixed and random effects in generalized LMM.

Recently, Bayesian model selection methods are extended to a series of spatially linked

regression for functional magnetic resonance imaging (fMRI) analysis (see e.g. Lee et al.,

2014; Smith and Fahrmeir, 2007). However, we are unaware of any work to extend Bayesian

model selection on LMMs with multiple group effects that involve unbalanced subjects.

In this chapter, we develop a novel Bayesian model selection approach on LMMs

to accommodate multiple group effects. The method includes a re-parameterization of

the fixed-effects to attribute part of each treatment effect to a baseline, i.e. an effect of the

control group. A modification of the fractional prior (Smith and Kohn, 1997) is proposed to

undertake model selection and averaging. This prior is related to Zellner’s g-prior (Zellner,

1986), and is critical to incorporate information of subjects in the same treatment group and

any prior knowledge of that treatment. A component-wise Gibbs sampler is then developed

for efficient posterior computation. As an example, we consider a longitudinal experiment

of mouse weight trajectories (see e.g. Spindler et al., 2014a,b, 2013a,b, 2014c) that aims to

identify significant treatments with respect to the control. This application provides both

a clear demonstration of our approach and intuitive results for researchers to understand

which treatments significantly affect weight trajectories of mouse. The method is general

and applicable to most experiments that are interested in comparing treatment groups to

a control group.

4.1.1 Experimental Data

As a motivating example, the experimental data is from a longitudinal study on

the life span of an F1 hybrid mouse (see e.g. Spindler et al., 2014a,b, 2013a,b, 2014c). The

study is part of a compound screening program designed to identify potential longevity

therapeutics, and it was approved by the Institutional Animal Care and Use Committee

58



at the University of California, Riverside. It utilized an unbalanced statistical design to

compare the life span of multiple treatment groups to that of one larger control group

(Jeske et al., 2014). In this chapter, we use a part of the data sets that record mouse weight

trajectories throughout the experiment.

In the study, 2266 male C3B6F1 mice were initially on ad libitum chow feeding. At

12 month of age (Day 365), 297 mice were shifted to daily feeding with 13.3 kcal/day/mouse

of the control diet (Diet No.99), and the rest were shifted to 56 different treatment groups.

All mice were fed daily and weighted bimonthly, but the number of mice progressively

declined as the study progressed. The data are censored at extreme old age (Day 1369),

when only 1% of the mice remained.

The control and drug-treated mice gradually lost weight when they were shifted

from ad libitum chow feeding to the defined diets. Figure 4.1 shows spaghetti plot for the

control diet, and Figure 4.2 shows the days on diet versus mean weight trajectories for all

56 treatment diets and the control diet. Note that the mean weight estimates become more

unstable as days on diet increases since mice die off within the study. Our main interest

is to determine which alternative diets would affect lifetime weight trajectories. That is,

researchers are interested in if any deviation from the trajectory of the control group (Diet

No.99) is statistically significant and is caused by the difference between diets.
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Figure 4.1: Spaghetti plot for the control diet in the experimental dataset.
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Figure 4.2: Combined plot of time on diet versus mean weight for 57 diets in the experi-
mental dataset.

The rest of the chapter is organized as follows. Section 4.2 formally introduces

the Bayesian variable selection methodology. It outlines the re-parameterization of a LMM,
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associated with the prior specification, the MCMC sampling schemes and the stopping

criterion utilized. A simulation study is also detailed to evaluate the performance of the

proposed method. Section 4.5 contains the empirical results from the analysis of the moti-

vating example. Section 4.4 concludes with a discussion.

4.2 Model Selection on Linear Mixed-effects Models

In general, suppose that we have n subjects from G experimental groups under

study, each with ni observations taken repeatedly over time, i = 1, · · · , n, and let yyyi =

(yi,1, · · · , yi,ni)T denote the response vector for the i-th subject. Assume the i-th subject

is from the g-th group, for i = 1, · · · , n, g = 1, · · · , G, let Xi and Zi be two ni × p design

matrices, then a LMM (Fitzmaurice et al., 2004; McCullagh and Nelder, 1989) is denoted

as

yyyi = Xiαααg + Zibbbi + εεεi, εεεi ∼ Nni(000, σ
2I), (4.1)

where αααg = (αg,0, · · · , αg,p−1)T are the fixed effects shared by subjects in the same experi-

mental group. Further, denote bbbi = (bi,0, · · · , bi,p−1)T ∼ Np(000, λ
−1
D I) as the random effects

that are unique to a particular subject, and hence we allow subject specific trajectories.

Note that, among the G groups, there is one control group and G − 1 treatment

groups. Without loss of generality, let us assume the G-th group to be the control group, and

g = 1, · · · , G− 1 are the treatment groups. A primary goal for many of these experiments

is to determine which alternative treatments are statistically significantly differ from the

control group. To this end, we propose a re-parameterization of the fixed effects αααg’s in

(4.1), g = 1, · · ·G. Let Wi, Xi and Zi be three ni× p design matrices, the re-parameterized

mixed-effects model is denoted as, for i = 1, · · · , n, g = 1, · · · , G,

yyyi = Wiααα+Xiβββg + Zibbbi + εεεi, εεεi ∼ Nni(000, σ
2I), (4.2)

where bbbi = (bi,0, · · · , bi,p−1)T ∼ Np(000, λ
−1
D I) are the random effects as in (4.1), and ααα =

(α0, · · · , αp−1)T are the fixed effects of the control group, βββg = (βg,0, · · · , βg,p−1)T are the

difference between the fixed effects of the g-th group and the control group. That is, the

group effect αααg is re-written as ααα + βββg, for g = 1, · · · , G. Also, it is straightforward to set

βββG = (0, · · · , 0)T for the control group in this re-parameterization as the baseline.

Under the re-parameterization, the detection of significant diets is equivalent to
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the identification of nonzero βββg’s. To this end, we introduce 0/1 binary indicators γγγg =

(γg,0, · · · , γg,p−1)T , g = 1, · · · , G, such that βg,j = 0 if γg,j = 0 and βg,j 6= 0 if γg,j = 1.

The γg,j is used to indicate whether the fixed effect on the j-th predictor of the g-th is

significantly differ from that fixed effect of the control group. Given γγγg, let βββg(γγγg) be the

vector of nonzero fixed effects and Xi(γγγg) be the corresponding design matrix. Then, the

model (4.2) can be written as

yyyi = Wiααα+Xi(γγγg)βββg(γγγg) + Zibbbi + εεεi. (4.3)

This formulation allows us to look at the problem form the Bayesian stochastic

search variable selection (SSVS) perspective (George and McCulloch, 1993). The SSVS

searches for models having high posterior probability by traversing the model space using

MCMC techniques. Moreover, it allows us to calculate the posterior distributions of pa-

rameters by marginalizing over all the over variables. In this way, the marginal posterior

inclusion probabilities can be obtained to measure the significance of each diet.

Note that, (4.3) is a very general setting that is applicable to a wide range of

applications. It is possible to impose specific structures on γ to suit different settings

to further simplify modeling procedure. For example, given the setups of the motivating

experiment, it is reasonable to assume a common intercept for the fixed effects since all

mice were on the same diet at the first measurement; that is, βg,0 = 0, for g = 1, · · · , G.

Therefore, it is desirable to impose the following settings on γ for this application, where

the primary goal is to compare the treatment groups to the baseline group,

γ1,0 = · · · = γG−1,0 = 0,

γγγG = (γG,0, · · · , γG,p−1)T = (0, · · · , 0)T .

4.2.1 Prior Specification

A proper prior must be placed on the nonzero coefficients βββg(γγγg) to undertake

model averaging (see e.g. George and McCulloch, 1993; Kohn et al., 2001; Mitchell and

Beauchamp, 1988; Smith and Kohn, 1996). In particular, Kohn et al. (2001); Smith and

Fahrmeir (2007) propose a conditional prior for the coefficients by setting it proportional

to a fraction of the likelihood. This fractional prior is related to the g-prior in Zellner
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(1986), and is located and scaled in line with the information from the likelihood. We

propose an extension of this idea to accommodate multiple subjects within a group by

setting π
(
βββg(γγγg)|y,ααα,γγγg, b, σ2

)
∝ Πi∈g p

(
yyyi|ααα,βββg(γγγg), γγγg, bbbi, σ2

)1/ni , so that

βββg(γγγg)|y,ααα,γγγg, b, σ2 ∼ N

β̂ββg(γγγg), σ2

∑
i∈g

1

ni
XT
i (γγγg)Xi(γγγg)

−1 , (4.4)

where β̂ββg(γγγg) =
(∑

i∈g
1
ni
XT
i (γγγg)Xi(γγγg)

)−1 (∑
i∈g

1
ni
XT
i (γγγg) (yyyi −Wiααα− Zibbbi)

)
, and

∑
i∈g

stands for summation over all the subjects that belong to the g-th group.

This prior is proportional to the variance of the least squares estimate of β, and

enjoys a number of attractive properties as pointed out by Kohn et al. (2001). The prior

(4.4) is rescaled automatically if the design matrix X or the data y is rescaled because of

its structure and the presence of σ2. Moreover, this prior is invariant to location changes

in X and y given the basis term (1, · · · , 1)T is included in X. Also it is data-based since

β̂ββg(γγγg) depends on y, which allows proper centering of β.

We consider the prior on γ to be π(γγγg|πg) =
∏p−1
j=0 π(γg,j |πg), g = 1, · · · , G, where

π(γg,j |πg) ∼ Bernoulli(πg) and πππ = (π1, · · · , πG)T is a vector of hyper-parameters that

represents prior knowledge for all experimental groups. For instance, we find a sensible

setting, when there is little prior knowledge of the effects of the alternative treatments, to

be letting πG = 0 for the control group, and π1 = · · · = πG−1 = 0.5 for the G− 1 treatment

groups.

We assume standard priors in Bayesian hierarchical models (see e.g. Gelman et al.,

2004; Johnson and Jones, 2010; Smith and Kohn, 1996) for the rest of the parameters, i.e.

ααα, b, λD, σ
2,

ααα|ddd3, d4 ∼ Np(ddd3, d
−1
4 )

bbbi|λD ∼ Np(000, λ
−1
D I), i = 1, · · · , n

λD|d1, d2 ∼ Γ(d1, d2)

π(σ2) ∝ 1/σ2

where d1, d2, ddd3, d4 are hyper-parameters to be pre-specified.
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4.2.2 Posterior Inference

Combining the priors and likelihoods, the full joint posterior density for θ =

(ααα, β, γ, b, σ2, λD) is characterized by

q(ααα, β, γ, b, σ2, λD|y) ∝

 G∏
g=1

∏
i∈g

p
(
yyyi|ααα,βββg, γγγg, bbbi, σ2

)
π (bbbi|λD)

π (βββg|ααα,γγγg, b, σ2
)
π (γγγg)


× π(ααα)π(λD)π(σ2).

(4.5)

This distribution has a complex form which we cannot sample from directly; in-

stead, we resort to MCMC methodology for the posterior inference and employ a component-

wise strategy (Johnson et al., 2013). To this end, we need the full conditional posterior

distributions of each of the parameters in θ to update the Markov chains. The derivation of

all full conditional posterior distributions follows from (4.5) using straightforward algebraic

route (see Section 4.5).

Specifically, we can set up a six-variable component-wise Gibbs sampler; that is,

if we let θ = (γ, β,ααα, σ2, b, λD) be the current state and θ′ = (γ′, β′,ααα′, (σ2)′, b′, λ′D) be the

future state, we iteratively sample from the full conditional posterior distributions,

(γ, β,ααα, σ2, b, λD)→ (γ′, β,ααα, σ2, b, λD)→ (γ′, β′,ααα, σ2, b, λD)→ (γ′, β′,ααα′, σ2, b, λD)

→ (γ′, β′,ααα′, (σ2)′, b, λD)→ (γ′, β′,ααα′, (σ2)′, b′, λD)→ (γ′, β′,ααα′, (σ2)′, b′, λ′D).

Step 1. Consider updating γ using a Gibbs sampler. Schematically, the transition γ → γ′

consists of G× p steps

(γ1,0, γ1,1, · · · , γ1,p−1, · · · , γG,0, · · · , γG,p−1)→ (γ′1,0, γ1,1, · · · , γ1,p−1, · · · , γG,0, · · · , γG,p−1)

→ (γ′1,0, γ
′
1,1, · · · , γ1,p−1, · · · , γG,0, · · · , γG,p−1)

...

→ (γ′1,0, γ
′
1,1, · · · , γ′1,p−1, · · · , γ′G,0, · · · , γ′G,p−1).
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From the Section 4.5, we have, for g = 1, · · · , G and j = 0, · · · , p− 1,

q(γg,j |ααα,γγγ−(g,j), b, σ2, y) ∝ πγg,jg (1− πg)1−γg,j
(

|
∑
i∈g

1
ni
XT
i (γγγg)Xi(γγγg)|

|
∑
i∈g(1 + 1

ni
)XT

i (γγγg)Xi(γγγg)|

) 1
2

× exp

{
− 1

2σ2

[∑
i∈g

φφφTi φφφ+ (
∑
i∈g

1

ni
XT
i (γγγg)φφφi)

T (
∑
i∈g

1

ni
XT
i (γγγg)Xi(γγγg))

−1(
∑
i∈g

1

ni
XT
i (γγγg)φφφi)

− (
∑
i∈g

(1 +
1

ni
)XT

i (γγγg)φφφi)
T (
∑
i∈g

(1 +
1

ni
)XT

i (γγγg)Xi(γγγg))
−1(
∑
i∈g

(1 +
1

ni
)XT

i (γγγg)φφφi)
]}
,

(4.6)

where γγγ−(g,j) = (γg,0, · · · , γg,j−1, γg,j+1, · · · , γg,p−1)T and φφφi = yyyi −Wiααα− Zibbbi.

At each step, an update is simulated from γg,j
′ ∼ q(γg,j |ααα,γγγ−(g,j), b, σ

2, y). Since γg,j is

binary, i.e. γg,j ∈ {0, 1}, the conditional posterior distribution q(γg,j |ααα,γγγ−(g,j), b, σ
2, y)

is easily normalized by evaluating (4.6) for γg,j = 0 and γg,j = 1.

Step 2. Consider updating β using a Gibbs sampler. Schematically, the transition β → β
′

consists of G steps

(βββ1,βββ2, · · · ,βββG)→ (βββ1
′,βββ2, · · · ,βββG)

→ (βββ1
′,βββ2

′, · · · ,βββG)

...

→ (βββ1
′,βββ2

′, · · · ,βββG′).

At each step, an update is simulated from a p-dimensional multivariate normal dis-

tribution,

βββg
′(γγγg) ∼ q(βββg(γγγg)|ααα,γγγg, b, σ2, y)

∼ N∑p−1
j=0 γg,j

V −1
1

 1

σ2

∑
i∈g

XT
i (γγγg)(yyyi −Wiααα− Zibbbi)

 , V −1
1

 ,
(4.7)

where V1 = 1
σ2

∑
i∈g(1 + 1

ni
)XT

i (γγγg)Xi(γγγg).

Step 3. Consider updating ααα using a Gibbs sampler. At each step, an update is simulated
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from a p-dimensional multivariate normal distribution,

ααα′ ∼ q(ααα|β, γ, b, σ2, y)

∼ Np

(
V −12

[
1

σ2

G∑
g=1

(∑
i∈g

WT
i (yyyi −Xi(γγγg)βββg(γγγg)− Zibbbi)

+ (
∑
i∈g

1

ni
XT
i (γγγg)Wi)

T (
∑
i∈g

1

ni
XT
i (γγγg)Xi(γγγg))

−1(
∑
i∈g

1

ni
XT
i (γγγg)(yyyi −Xi(γγγg)βββg(γγγg)− Zibbbi))

)

+ d4ddd3

]
, V −12

)
,

(4.8)

where

V2 =
1

σ2

G∑
g=1

[∑
i∈g

WT
i Wi +

(∑
i∈g

1

ni
XT
i (γγγg)Wi

)T(∑
i∈g

1

ni
XT
i (γγγg)Xi(γγγg)

)−1(∑
i∈g

1

ni
XT
i (γγγg)Wi

)]
+ d4.

Step 4. Consider updating σ2 using a Gibbs sampler. At each step, an update is simulated

from a Inverse-Gamma distribution, i.e. (σ2)′ ∼ q(σ2|ααα, β, γ, b, y).

(σ2)′ ∼ q(σ2|ααα, β, γ, b, y)

∼ Inv-Gamma

(
1

2
(N +

G∑
g=1

p−1∑
j=0

γg,j),

1

2

G∑
g=1

[∑
i∈g

(yyyi −Wiααα−Xi(γγγg)βββg(γγγg)− Zibbbi)T (yyyi −Wiααα−Xi(γγγg)βββg(γγγg)− Zibbbi)

+ [βββg − (
∑
i∈g

1

ni
XT
i (γγγg)Xi(γγγg))

−1(
∑
i∈g

1

ni
XT
i (γγγg)φφφi)]

T (
∑
i∈g

1

ni
XT
i (γγγg)Xi(γγγg))

−1

[βββg − (
∑
i∈g

1

ni
XT
i (γγγg)Xi(γγγg))

−1(
∑
i∈g

1

ni
XT
i (γγγg)φφφi)]

])
,

(4.9)

where N =
∑G

g=1

∑
i∈g ni. Note that Inv-Gamma(α, β) = βα

Γ(α)x
−α−1 exp

(
−β
x

)
, for

x ∈ (0,∞), and α, β > 0.

Step 5. Considering updating b using a Gibbs sampler. Schematically, the transition b → b′
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consists of n steps

(bbb1, bbb2, · · · , bbbn)→ (bbb1
′, bbb2, · · · , bbbn)

→ (bbb1
′, bbb2

′, · · · , bbbn)

...

→ (bbb1
′, bbb2

′, · · · , bbbn′).

At each step, assuming the i-th subject is from the g-th group, an update is simulated

from a p-dimensional multivariate normal distribution,

bbbi
′ ∼ q(bbbi|ααα,βββg, γγγg, σ2, λD, yyyi)

∼ Np

(
V −13

1

σ2

[
1

ni
ZTi Xi(γγγg)

(∑
j∈g

1

nj
XT
j (γγγg)Xj(γγγg)

)−1(∑
j∈g
j 6=i

1

nj
XT
j (γγγg)φφφj +

1

ni
XT
i (γγγg)φφφi

)

+ ZTi (yyyi −Wiααα− (1 +
1

ni
)Xi(γγγg)βββg(γγγg))

]
, V −13

)
,

(4.10)

where V3 = 1
σ2Z

T
i Zi + λDI + 1

σ2
1
ni
ZTi Xi(γγγg)(

∑
j∈g

1
nj
XT
j (γγγg)Xj(γγγg))

−1XT
i (γγγg)Zi.

Step 6. Consider updating λD using a Gibbs sampler. At each step, an update is simulated

from a Gamma distribution,

λD
′ ∼ q(λD|b)

∼ Γ(
np

2
+ d1,

1

2

G∑
g=1

∑
i∈g

bbbTi bbbi + d2).
(4.11)

The posterior inference on model parameters can be estimated from the MCMC

samples. Models with high posterior probability can be identified as those appearing most

often in the MCMC output. One posterior quantity of interest is the marginal inclusion

probability for each treatment effect, i.e. 1 − p(γγγg = 000|y), g = 1, · · · , G, which can be

calculated using the proportion of draws in which γγγg is non-zero.

4.2.3 Stopping Criterion

Determining how long to run an MCMC simulation is critical to performing legit-

imate posterior inference. Premature termination often runs the risk of getting inaccurate
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estimates. The relative standard deviation fixed-width stopping rule (FWSR) (see e.g.

Flegal and Gong, 2015; Gong and Flegal, 2015) is implemented to terminate the MCMC

simulation. It is a member of the FWSR family (for e.g. see Flegal and Gong, 2015; Fle-

gal et al., 2008; Jones et al., 2006). The relative standard deviation FWSR is proved to

be theoretically valid that: (1) it terminates a simulation w.p. 1, and (2) the resulting

confidence interval achieves the nominal coverage probability. Moreover, it automates the

stopping procedure for practitioners, and is shown to outperform convergence diagnostics

using various numerical studies. Interested readers are directed to their papers for more

details.

In short, the relative standard deviation FWSR terminates the simulation when

the computational uncertainty is relatively small to the posterior uncertainty. Specifically,

it controls the width of a confidence interval from a Markov chain central limit theorem

(CLT) through a threshold ε and significant level δ. Gong and Flegal (2015) also establish

a connection between the standard deviation FWSR and using effective sample size (ESS)

as a stopping criteria, i.e. K = 4z2
δ/2/ε

2, where K is the number of effective samples and

zδ/2 is a critical value from the standard Normal distribution. Based on this connection,

for instance, setting ε = 0.124 and δ = 0.05 in the relative standard deviation FWSR is

equivalent to terminate the simulation when an ESS reaches K = 1000.

4.2.4 Simulation Study

We report the results of a simulation study undertaken to validate the model

and estimation procedure. The simulated dataset consists of a control group and five

treatment groups. The control group is simulated based on estimated parameters from a

fitted linear mixed model on the experimental control group. That is, denote Yi,t,99 as the

weight of mouse i ∈ {1, · · · , 297} from the control group (Diet No.99) taken at time t ∈
{365, 395, 456, 517, 578, 639, 700, 760, 821, 882, 943, 1004, 1065, 1125, 1186} corresponding to

days on diet, we consider the following linear mixed model based on (4.2),

Yi,t,99 = α0 + α1t+ b0,i + b1,it+ εi,t, εi,t ∼ N(0, σ2), (4.12)

where α0 and α1 are the global intercept and slope, b0,i and b1,i are the subject specific

random effects, where bbbi = (b0,i, b1,i)
T ∼ N2(000, λ−1

D I), and εi,t is the measurement error.

Note that, as mentioned, the β’s in (4.2) are set to zero for the control group to serve as
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the baseline model.

The parameter estimation of (4.12) was carried out using the lmer() function in

the R package lme4 (Bates et al., 2012). Notice the time was rescaled using t = (t−365)/365

prior to model fitting. The maximum likelihood estimates (MLEs) are ααα = (45.49,−5.75)T

and σ2 = 5.06 and we set λ−1
D = 1.0. Based on these parameter estimates, we simulated

297 subjects from (4.12) as the control group.

We then simulated five treatment groups, each with 36 subjects, by adding βg,1’s

to (4.12), while keeping other settings the same as for the simulated control group,

Yi,t,g = α0 + α1t+ βg,1t+ b0,i + b1,it+ εi,t, g = 1, · · · , 5, (4.13)

where βg,1 ∈ {−2.0,−0.5, 0.0, 0.5, 2.0} for each group. To be consistent with the experi-

mental settings, we artificially differentiate the slope of each treatment group by α1 + βg,1,

but maintained the same global intercept α0, since all mice are on the same diet at t = 0.

Note that, we did not incorporate the ”die-off” mechanism from the experiment into the

simulation. Figure 4.3 shows the rescaled days on diet versus mean weight trajectories for

this simulated dataset.
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Figure 4.3: Combined plot of rescaled days on diet versus mean weight for 5 treatment
groups and the control group (Diet No.99).
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We followed the prior specification outlined in Section 4.2.1. The hyper-parameters

d1, d2 were set to d1 = 0.001, d2 = 0.001 for the prior on λD to be vague. The hyper-

parameters for ααα|ddd3, d4 were set using estimates obtained from a fitted linear mixed model

on the control group. The prior marginal inclusion probabilities for the treatment groups

π′gs were set to 0.5 for equal probability between inclusion and exclusion.

The component-wise Gibbs sampler was run as described in Section 4.2.2. The

simulation was terminated by the relative standard deviation FWSR with the tuning pa-

rameters ε = 0.124 and δ = 0.05. It resulted in 16385 iterations with an effective sample

size of at least 1000 for estimation of the posterior mean of all parameters. Figure 4.4 shows

that the resulting MCMC outputs for variance of the random effects λ−1
D and measurement

errors σ2 are close to the true values. Table 4.1 contains the posterior means (PM), 95%

credible intervals and inclusion probabilities for the fixed effects coefficients, along with the

LMM estimates from lme4.
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0 5000 10000 15000
Iterations

y

Variable

λD
−1

σ2

Figure 4.4: Gibbs sampler for variance terms λ−1
D and σ2 in the simulation study.

We compare our results to estimates from the LMM approach (see e.g. Fitzmaurice

et al., 2004), as it is widely used to model such problems. Researchers often combine

LMM with certain model selection criteria, e.g. Bayesian information criterion (BIC), to
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Parameter Truth LMM 95% CI PM 95% CI Pr(γg,j = 1|y)

α0 45.50 45.570 (45.431, 45.570) 45.591 (45.484, 45.700)
α1 -5.75 -5.708 (-5.852, -5.565) -5.716 (-5.822, -5.612)
β1,1 -2.00 -2.130 (-2.546, -1.713) -2.126 (-2.562, -1.685) 0.992(6.10e-5)
β2,1 -0.50 -0.693 (-1.109, -0.276) -0.698 (-1.126, -0.267) 0.983(7.44e-4)
β3,1 0.00 -0.092 (-0.508, 0.325) -0.093 (-0.518, 0.341) 0.442(3.88e-3)
β4,1 0.50 0.708 (0.292, 1.125) 0.708 (0.283, 1.136) 0.987(5.74e-4)
β5,1 2.00 2.266 (1.849, 2.683) 2.268 (1.830, 2.695) 0.992(6.10e-5)

Table 4.1: Fixed-effects estimates for the simulated dataset. Notice Column 4 contains
the 95% confidence intervals from the LMM, Column 6 contains the 95% credible interval
from the Bayesian model and Column 7 contains the marginal inclusion probability with
standard error in the parenthesis.

determine which treatment are significantly differ from the control (see e.g. Spindler et al.,

2013a). Despite that two approaches result in quite comparable parameter estimates, our

approach introduces the probability of inclusion for each treatment group that is vital

to straightforward interpretation and correct ranking of the true models, which remains

challenging for the current frequentist method.

The sensitivity to the prior marginal inclusion probabilities was also evaluated by

repeating the simulation with πg’s set to ranging from 0.3 to 0.7. We found no difference

in model ranking, although the parameter estimates in Table 4.1 were slightly different.

Other simulation settings showed comparable parameter estimations between our method

and the LMM approach, and correctness in model ranking, although the results were not

shown here.

4.3 Application

In this section, we use the methodology detailed in Section 4.2 to analyze the mouse

weight data (see Section 1.1). Out of the 56 treatment groups in the original study, we

limited our attention to 18 pre-screened treatments that the researchers are most interested

in, as well as the control diet (Diet No.99). Therefore, one would expect most of these

diets are significantly different from the control diet. For simplicity, we denote these 19

diets as G = {21, 22, 23, 24, 27, 28, 29, 34, 35, 39, 42, 43, 44, 45, 48, 53, 55, 63, 99}. Similar to

Section 4.2.4, the days on diet were rescaled prior to analysis. Figure 4.5 shows the rescaled
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Figure 4.5: Combined plot of rescaled days on diet versus mean weight for 18 selected
treatment diets and the control diet.

days on diet versus mean weight trajectories for the 18 diet groups.

Since every subjects start with the same control diet, it is reasonable to assume

the same intercept for all groups. The individual weight trajectories suggest that, unlike the

simulated dataset, a quadratic term is needed to characterize the trajectories. Specifically,

we re-write the LMM from (4.3) as

Yi,t,g = α0 +α1t+α2t
2 +βg,1(γg,1)t+βg,2(γg,2)t2 + b0,i + b1,it+ b2,it

2 + εi,t, g ∈ G. (4.14)

Priors were specified as in the simulation study and γγγ99 was set to γγγ99 = (0, · · · , 0)T .

The component-wise Gibbs sampler was terminated by the relative standard deviation

FWSR with ε = 0.124 and δ = 0.05, resulting in 115792 iterations with at least 1000

effective samples for estimation of posterior mean of parameters related to fixed-effects and

variance components. Figure 4.6 shows the resulting MCMC outputs for variance of the ran-

dom effects λ−1
D and the measurement errors σ2. The estimates indicate that, as expected,

the variation among subjects outweighs it of the measurement errors. Table 4.2 presents the

posterior means (PM), 95% credible intervals and inclusion probabilities for the fixed effects

coefficients, along with the LMM estimates, for the experimental dataset. Figure 4.7 shows
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the fitted weight trajectories and and Figure 4.8 illustrates pairwise comparisons between

the control group and the 18 treatment groups. The results from the proposed method

are comparable to the LMM results returned by the R package lme4 in terms of point and

interval estimates. However, the marginal inclusion probability provides a direct measure

of the significance for each diet, which was unavailable in previous investigations using the

LMM approach (see e.g. Spindler et al., 2014a,b, 2013a,b, 2014c).
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y
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Figure 4.6: Gibbs sampler for variance terms λ−1
D and σ2 in the experimental application.

4.4 Discussion

This chapter proposes a novel method for Bayesian variable selection in LMM to

compare multiple treatments with a control. It is a generalization of the SSVS approach, and

it relies on a modification of the fractional prior proposed by Smith and Kohn (1997) and a

component-wise Gibbs sampler. It provides practitioners with a framework to incorporate

prior knowledge on different treatments and an intuitive evaluation of the significance of

each treatment.
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Figure 4.7: Estimated weight trajectories for 18 selected treatment groups and the control
group based on the proposed model.

The proposed method is advantageous in that multiple treatments are compared

with a control group simultaneously. In addition, the Bayesian framework introduces

marginal posterior inclusion probabilities for each group, along with model-averaged co-

efficient estimates. Posterior model probabilities allow direct comparison among models,

which is difficult to do using alternative frequentist approaches. In this chapter, our method

is applied to a longitudinal study of a biochemical experiment, and is shown to perform well

through simulated settings. Moreover, the method is quite general and have a wide range

of potential applications in fields such as medicine and biology.

We emphasize on careful posterior inference with MCMC methodology. A major

challenge for practitioners is determining how long to run an MCMC simulation. While

some simulations are so complex that a fixed time approach is the only practical one,

this is not so for most experiments. We advocate the use of relative standard deviation

FWSR (Flegal and Gong, 2015; Gong and Flegal, 2015), since it is proved to be easy to

use, theoretically valid and superior to using convergence diagnostics as a stopping criteria

(Flegal et al., 2008; Jones et al., 2006).
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4.5 Proofs and Calculations

Full conditional posterior distributions are derived from (4.5), for i = 1, · · · , n, g =

1, · · · , G, and j = 0, · · · , p−1. To calculate the full conditional posterior q(γg,j |ααα,γγγ−(g,j), b, σ
2, y),

we integrate out β in (4.5) as Smith and Kohn (1996)

q(ααα, γ, b, σ2, λD|y) =

∫
q(ααα, β, γ, b, σ2, λD|y)dβ

∝

 G∏
g=1

∏
i∈g

π(bbbi|λD)

π(γγγg)

π(ααα)π(λD)π(σ2)

×
G∏
g=1

∫
βββg

∏
i∈g

p(yyyi|ααα,βββg, γγγg, bbbi, λD, σ2)π(βββg|ααα,γγγg, b, σ2)dβββg

(4.15)

To calculate (4.15), define φφφi = yyyi −Wiααα− Zibbbi. For a given g, consider∫
βββg

∏
i∈g

p(yyyi|ααα,βββg, γγγg, bbbi, λD, σ2)π(βββg|ααα,γγγg, b, σ2)dβββg

∝
∫
βββg

∏
i∈g

σ−ni exp{− 1

2σ2
(φφφi −Xi(γγγg)βββg(γγγg))

T (φφφi −Xi(γγγg)βββg(γγγg))}


× | 1

σ2

∑
i∈g

1

ni
XT
i (γγγg)Xi(γγγg)|

1
2 × (2π)−

1
2

∑p−1
j=0 γg,j

× exp

{
− 1

2

βββg(γγγg)− (
∑
i∈g

1

ni
XT
i (γγγg)Xi(γγγg))

−1(
∑
i∈g

1

ni
XT
i (γγγg)φφφi)

T  1

σ2

∑
i∈g

XT
i (γγγg)Xi(γγγg)


βββg(γγγg)− (

∑
i∈g

1

ni
XT
i (γγγg)Xi(γγγg))

−1(
∑
i∈g

1

ni
XT
i (γγγg)φφφi)

}dβββg
= σ−

∑
i∈g ni

(
|
∑
i∈g

1
ni
XT
i (γγγg)Xi(γγγg)|

|
∑
i∈g(1 + 1

ni
)XT

i (γγγg)Xi(γγγg)|

) 1
2

× exp

{
− 1

2σ2

G∑
g=1

[∑
i∈g

φφφTi φφφi + (
∑
i∈g

1

ni
XT
i (γγγg)φφφi)

T (
∑
i∈g

1

ni
XT
i (γγγg)Xi(γγγg))

−1(
∑
i∈g

1

ni
XT
i (γγγg)φφφi)

− (
∑
i∈g

(1 +
1

ni
)XT

i (γγγg)φφφi)
T (
∑
i∈g

(1 +
1

ni
)XT

i (γγγg)Xi(γγγg))
−1(
∑
i∈g

(1 +
1

ni
)XT

i (γγγg)φφφi)

]}
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Therefore, (4.15) is further simplified

= λ
np/2
D exp{−λD

2

G∑
g=1

∑
i∈g

bbbTi bbbi}
G∏
g=1

p∏
j=1

πγg,jg (1− πg)1−γg,j exp{−1

2
(ααα− ddd3)T d4(ααα− ddd3)}

× λd1−1D exp{−d2λD}
G∏
g=1

σ−
∑

i∈g ni

(
|
∑
i∈g

1
ni
XT
i (γγγg)Xi(γγγg)|

|
∑
i∈g(1 + 1

ni
)XT

i (γγγg)Xi(γγγg)|

) 1
2

× exp

{
− 1

2σ2

G∑
g=1

[∑
i∈g

φφφTi φφφi + (
∑
i∈g

1

ni
XT
i (γγγg)φφφi)

T (
∑
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1

ni
XT
i (γγγg)Xi(γγγg))

−1(
∑
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1

ni
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− (
∑
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)XT

i (γγγg)φφφi)
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1
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i (γγγg)Xi(γγγg))
−1(
∑
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(1 +
1

ni
)XT

i (γγγg)φφφi)

]}
(4.16)

Based on (4.16), the full posterior distribution is characterized by

q(γg,j |ααα,γγγ−(g,j), b, σ2, y) ∝ πγg,jg (1− πg)1−γg,j
(
|
∑
i∈g

1
ni
XT
i (γγγg)Xi(γγγg)|

|
∑
i∈g(1 + 1

ni
)XT

i (γγγg)Xi(γγγg)

) 1
2

× exp

{
− 1

2σ2
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i (γγγg)φφφi)

]}
,

(4.17)

where γγγ−(g,j) = (γg,0, · · · , γg,j−1, γg,j+1, · · · , γg,p−1)T .
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Parameter LMM 95% CI PM 95% CI Pr(γg,j = 1|y)

α0 44.879 (44.638, 45.120) 44.903 (44.720, 45.086)
α1 -4.124 (-4.864, -3.384) -3.687 (-4.134, -3.237)
α2 -0.992 (-1.444, -0.540) -1.718 (-2.076, -1.369)

β21,1 -3.671 (-6.637, -0.705) -3.800 (-6.202, -1.432) 0.991(2.13e-4)
β21,2 1.244 (-0.553, 3.041) 1.667 (-0.151, 3.475) 0.809(1.15e-3)

β22,1 -7.894 (-10.828, -4.959) -8.069 (-10.353, -5.789) 0.996(1.22e-5)
β22,2 4.429 (2.644, 6.214) 4.611 (2.780, 6.461) 0.996(8.63e-6)

β23,1 -4.467 (-7.282, -1.652) -4.902 (-6.995, -2.810) 0.996(1.73e-5)
β23,2 1.819 (0.203, 3.435) 2.352 (0.638, 4.046) 0.970(4.75e-4)

β24,1 -12.373 (-15.317, -9.428) -12.453 (-14.795, -10.103) 0.996(8.64e-6)
β24,2 5.349 (3.533, 7.165) 5.596 (3.752, 7.444) 0.996(8.64-e6)

β27,1 -6.643 (-8.694, -4.592) -5.135 (-6.671, -3.570) 0.996(8.64e-6)
β27,2 3.173 (1.948, 4.397) 3.098 (1.872, 4.344) 0.996(8.64e-6)

β28,1 2.717 (0.585, 4.849) 3.899 (2.227, 5.611) 0.997(1.50e-5)
β28,2 -0.969 (-2.273, 0.335) -1.047 (-2.423, 0.316) 0.747(1.27e-3)

β29,1 -13.462 (-15.574, -11.350) -12.333 (-13.946, -10.704) 0.996(8.64e-6)
β29,2 6.499 (5.195, 7.803) 6.432 (5.097, 7.751) 0.996(8.64e-6)

β34,1 -0.768 (-2.898, 1.363) -0.892 (-2.441, 0.638) 0.663(1.39e-3)
β34,2 0.351 (-1.002, 1.704) 0.022 (-1.315, 1.459) 0.592(1.44e-3)

β35,1 -1.552 (-3.607, 0.503) -2.355 (-3.911, -0.752) 0.983(3.33e-4)
β35,2 0.563 (-0.670, 1.796) 1.384 (0.140, 2.657) 0.920(7.83e-4)

β39,1 3.183 (0.955, 5.410) 2.699 (0.829, 4.532) 0.975(4.29e-4)
β39,2 -2.422 (-3.877, -0.967) -2.212 (-3.707, -0.659) 0.976(4.16e-4)

β42,1 3.625 (1.560, 5.689) 3.478 (1.874, 5.054) 0.996(2.86e-5)
β42,2 -2.047 (-3.298, -0.795) -1.686 (-2.953, -0.423) 0.963(5.28e-4)

β43,1 1.627 (-0.442, 3.697) 1.298 (-0.201, 2.902) 0.815(1.13e-3)
β43,2 -0.659 (-1.910, 0.591) -0.364 (-1.705, 0.929) 0.584(1.45e-3)

β44,1 -2.230 (-4.532, 0.068) -1.028 (-2.777, 0.626) 0.675(1.37e-3)
β44,2 0.853 (-0.626, 2.331) 0.274 (-1.195, 1.889) 0.549(1.46e-3)

β45,1 1.094 (-1.122, 3.310) 1.357 (-0.351, 3.196) 0.772(1.23e-3)
β45,2 -0.160 (-1.631, 1.310) -0.696 (-2.308, 0.875) 0.633(1.41e-3)

β48,1 4.118 (2.032, 6.204) 3.361 (1.695, 5.014) 0.996(6.29e-5)
β48,2 -2.268 (-3.541, -0.995) -1.728 (-3.020, -0.439) 0.960(5.48e-4)

β53,1 -1.138 (-3.242, 0.966) -1.381 (-2.955, 0.185) 0.813(1.14e-3)
β53,2 0.047 (-1.343, 1.249) 0.176 (-1.181, 1.574) 0.530(1.47e-3)

β55,1 -1.714 (-3.800, 0.372) -2.442 (-4.072, -0.812) 0.983(3.27e-4)
β55,2 0.695 (-0.584, 1.975) 1.356 (0.061, 2.658) 0.894(8.92e-4)

β63,1 -2.483 (-4.590, -0.376) 2.712 (1.052, 4.376) 0.991(2.07e-4)
β63,2 -1.367 (-2.678, -0.056) -1.305 (-2.580, 0.019) 0.863(1.00e-3)

Table 4.2: Fixed-effects estimates for the experimental dataset. Notice Column 4 contains
the 95% confidence intervals from the LMM, Column 6 contains the 95% credible interval
from the Bayesian model and Column 7 contains the marginal inclusion probability with
standard error in the parenthesis.
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Figure 4.8: Pairwise comparisons between 18 selected treatment groups and the control
group based on estimates from the proposed model.
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