
UC San Diego
UC San Diego Previously Published Works

Title
Numerical Treatment of Stokes Solvent Flow and Solute–Solvent Interfacial Dynamics for 
Nonpolar Molecules

Permalink
https://escholarship.org/uc/item/37g5708v

Journal
Journal of Scientific Computing, 67(2)

ISSN
0885-7474

Authors
Sun, Hui
Zhou, Shenggao
Moore, David K
et al.

Publication Date
2016-05-01

DOI
10.1007/s10915-015-0099-z
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/37g5708v
https://escholarship.org/uc/item/37g5708v#author
https://escholarship.org
http://www.cdlib.org/


Numerical Treatment of Stokes Solvent Flow and Solute-Solvent 
Interfacial Dynamics for Nonpolar Molecules

Hui Sun*, Shenggao Zhou†, David K. Moore‡, Li-Tien Cheng§, and Bo Li¶

Hui Sun: hus003@ucsd.edu; Shenggao Zhou: sgzhou@suda.edu.cn; David K. Moore: dkmoore@ucsd.edu; Li-Tien 
Cheng: lcheng@math.ucsd.edu; Bo Li: bli@math.ucsd.edu
*Department of Mathematics, University of California, San Diego, CA 92093

†School of Mathematical Sciences and Mathematical Center for Interdiscipline Research, 
Soochow University, 1 Shizi Street, Suzhou, Jiangsu 215006, China

‡Department of Physics, University of California, San Diego, CA 92093

§Department of Mathematics, University of California, San Diego, CA 92093

¶Department of Mathematics and Quantitative Biology Graduate Program, University of California, 
San Diego, CA 92093

Abstract

We design and implement numerical methods for the incompressible Stokes solvent flow and 

solute-solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous 

force, surface tension, and van der Waals type dispersive force leads to a traction boundary 

condition on the solute-solvent interface. To allow the change of solute volume, we design special 

numerical boundary conditions on the boundary of a computational domain through a consistency 

condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such 

boundary conditions. The method is tested to have a second-order accuracy. We combine this 

ghost fluid method with the level-set method to simulate the motion of the solute-solvent interface 

that is governed by the solvent fluid velocity. Numerical examples show that our method can 

predict accurately the blow up time for a test example of curvature flow and reproduce the 

polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems.

Keywords

Nonpolar molecules; solute-solvent interface; the Stokes equation; ghost fluid method; level-set 
method; interface motion; change of volume; traction boundary conditions

 1 Introduction

Aqueous solvent plays a significant role in dynamical processes of biological molecules, 

such as conformational changes, molecular recognition, and molecular assembly, that 

control cellular functions of underlying biological systems [2, 12, 21, 22]. Implicit-solvent 

models are efficient descriptions of such dynamical processes. In such descriptions, the 

solvent is treated implicitly as a continuum and the effect of individual solvent molecules is 

coarse grained [3, 15, 23]. One of the successful dielectric boundary based implicit-solvent 

approaches is the variational implicit-solvent model (VISM) [7, 8]. In VISM, one minimizes 
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a macroscopic solvation free-energy functional of all possible dielectric boundaries, 

coupling both nonpolar and polar contributions, and the solute-solvent van der Waals (vdW) 

interaction. Implemented by a robust level-set numerical method [4, 5], VISM can predict 

polymodal states of hydration, such as wet and dry states, subtle electrostatic effects, and 

solvation free energies of an underlying bimolecular system [4, 9, 18, 25, 28, 29].

While dielectric boundary based implicit-solvent models, including VISM, have been 

successful in many cases, they treat the solvent as a structureless dielectric medium, 

neglecting other solvent effects, such as the solvent hydrodynamic effect. Recent 

experimental and theoretical studies have indicated that the solvent shear motion can induce 

protein conformational changes and the solvent viscosity can affect the kinetics of such 

changes [1, 10, 11, 16, 17, 19–21, 24].

In several recent works [13, 14, 26, 27], the authors have initiated the development of a fluid 

mechanics approach to treat the solvent fluid in molecular systems. The key features of such 

a new approach include: (1) the aqueous solvent (i.e., water or salted water) is treated as an 

incompressible fluid and its motion is by the Stokes or Navier-Stokes equation; (2) the 

solute pressure is simply described by the ideal-gas law; (3) the electrostatic interactions are 

modeled by the Poisson or Poisson–Boltzmann equation; and (4) all viscous force, 

electrostatic force, and vdW force are balanced on the solute-solvent interface that moves 

with solvent velocity. White [26] proposed to add the Landau–Lifshitz random stress tensor 

in the Stokes equation to model the solvent fluctuations. They also propose to describe the 

electrostatic interaction through the dielectric boundary force, without introducing ionic 

charge densities in the solvent. They further applied their model, termed dynamical implicit-

solvent model (DISM), to a charged spherical molecule to derive a generalized Rayleigh–

Plesset equation, a stochastic ordinary differential equation for the fluctuating radius. With 

the same deterministic model, Li et al. [13] study the linear stability of a cylindrical solute-

solvent interface, and conclude that the viscosity can modify the critical wavelength of such 

stabilities. Luo et al. [14, 27] make a connection of solvent fluid mechanics model with 

statistical mechanics theory. They also develop numerical methods to solve the solvent fluid 

equations. In particular, they design boundary conditions on the boundary of a 

computational domain to allow solutes to change their volumes. They also implement an 

augmented immersed interface method for the Navier–Stokes flow with moving interface.

In this work, we develop numerical methods to solve the governing equations of the solvent 

fluid mechanics model. As the full model is quite complicated, we shall focus here on a two-

dimensional setting for nonpolar molecular systems. Our main results are as follows:

1. We discretize the Stokes equation using a ghost fluid finite difference scheme. 

We show that our scheme is second-order accurate;

2. We refine the method proposed in [14, 27] to design artificial boundary 

conditions on the boundary of computational domain, allowing the change of 

solute volume;

3. We couple the level-set method with our Stokes solver to track the motion of 

solute-solvent interface. Our method captures both dry and wet states for some 

simple model systems.
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We remark that our ghost fluid scheme is quite different from the augmented immersed 

interface method used in [14, 27]. We hope that our method can be better coupled with some 

other compact schemes, such as the compact coupling interface method [29] for electrostatic 

interactions.

The rest of the paper is organized as follows: In Section 2, we present the solvent fluid 

model. In particular, we describe the boundary conditions for the Stokes equation. In Section 

3, we describe our numerical schemes. In Section 4, four test examples are provided to show 

the accuracy of our numerical schemes. In Section 5, we compute the interface around two 

nonpolar spherical solute atoms and the interface around two nonpolar plates. In Section 6, 

we draw conclusions and discuss our future work.

 2 A Solvent Fluid Model

We denote by Ω the region of an underlying salvation system. It is divided into the solute 

region Ω− and the solvent region Ω+, separated by the solute-solvent interface Γ = ∂Ω− ∩ 

∂Ω+; cf. Figure 2.1. We assume all Ω, Ω−, and Ω+ are open sets, and Ω− is completely inside 

Ω, i.e., ∂Ω− ∩ ∂Ω = ∅. The interface Γ, the solute region Ω−, and the solvent region Ω+ can 

all depend on t. At a given time t, we denote by u = (u, v) : Ω+ → ℝ2 and p : Ω+ → ℝ the 

velocity and pressure of the solvent fluid, respectively. We also denote by p− : Ω− → R the 

pressure inside the solute region Ω−.

Our governing equations and boundary conditions are as follows [13, 26]:

• Interface motion:

(2.1)

where a dot donates the time derivative.

• The Stokes equation for incompressible flow:

(2.2)

• The ideal-gas law:

(2.3)

• Traction interface conditions for the fluid velocity and pressure:

(2.4)
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• Boundary conditions on ∂Ω for the velocity and pressure:

(2.5)

Here, μ denotes the viscosity of solvent fluid and G = (g(1), g(2)) is the density of a body 

force exerted in Ω+. In the ideal-gas law (2.3), Cm is a constant, proportional to the 

temperature and the number of solute atoms. If there are multiple components  (1 ≤ i ≤ I) 

of solutes then the ideal-gas law should be applied to each  and the constants  for 

can vary with i. As usual, we denote D(u) = ∇u + ∇uT to be the rate-of-strain tensor. The 

force f in the traction boundary condition is given by

where γ is the constant surface tension and H is the mean curvature. The surface vdW force 

fvdw is defined by [7, 8, 13, 29]

with each  the Lennard-Jones potential for atom i. We have implicitly assumed that there 

are I solute atoms inside the solute region Ω−. The boundary velocity u0 will be specified 

later. The boundary pressure p∞ is a given function.

Due to the incompressibility of the solvent fluid, usual boundary conditions on ∂Ω, such as 

no-slip or periodic boundary conditions, will lead to a constant volume of the solute region 

Ω−. In order to simulate molecular conformational changes and multiple hydration states, 

which often result the volume change of solutes, we need to design numerical boundary 

conditions. To do so, we use the consistency condition

(2.6)

This equates the fluid flux along ∂Ω to that along Γ. It results from the incompressibility 

condition. The volume change of Ω_ is thus determined by the fluid flux along ∂Ω. The 

calculation of such volume change depends on the way u0 is specified in (2.5). Here we 

design the boundary velocity u0 to achieve such volume change. Let Ω = (0, lx) × (0, ly) for 

some lx > 0 and ly > 0, we specify the boundary velocity profile in one of the following two 

ways:

• A parabolic profile:
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(2.7)

• A circular profile:

(2.8)

In these equations, the function C(t) is to be determined by the consistency condition (2.6). 

The idea is that, under the assumption of the absence of external flow, the error of the 

boundary velocity prescribed by the profiles given in (2.7) and (2.8) would have relatively 

minor effect on the interface motion. This assumption is justified in Section 4 for a shrinking 

circle, whose analytical solution is well known.

Finally, to numerically track the motion of the solute-solvent interface Γ, we employ the 

level-set method. We denote by ϕ = ϕ(x, t) a level-set function of the interface Γ = Γ(t) at 

time t, i.e., Γ = {x ∈ Ω : ϕ(x, t) = 0}. We also assume that Ω− = {x ∈ Ω : ϕ(x, t) < 0} and Ω+ 

= {x ∈ Ω : ϕ(x, t) > 0}. The level-set equation is

(2.9)

where un = u · n is the normal component of the velocity field u at the interface Γ, but is 

suitably extended to Ω.

In summary, we couple the Stokes equation (2.2) in Ω+ with the traction interface conditions 

(2.4) and the ideal-gas law (2.3), the consistency condition (2.6), and the Dirichlet boundary 

condition (2.5) for p, and (2.7) or (2.8) for u. The fluid velocity dictates the motion of Γ, 

which is tracked by the level-set equation (2.9).

 3 Numerical Methods

In this section, we introduce our numerical methods. We divide our computational domain Ω 

= (0, lx) × (0, ly) into nx × ny grid cells, with nx and ny two positive integers. We denote hx = 

lx/nx and hy = ly/ny, and define xi, j = ((i + 1/2)hx, (j + 1/2)hy), xi±1/2, j = ((i + 1/2 ± 1/2)hx, (j 
+ 1/2)hy), and xi, j±1/2 = ((i + 1/2)hx, (j + 1/2 ± 1/2)hy).

Sun et al. Page 5

J Sci Comput. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 3.1 Discretization of the Stokes Equation

We use a marker-and-cell (MAC) grid for the unknown fluid components u, v, and p. We 

approximate p at the center xi, j of each cell, u at the midpoints of vertical cell edges xi−1/2, j, 

and v at the midpoints of horizontal cell edges xi, j−1/2; cf. Figure 3.1. For convenience, we 

define the regular points, boundary points, and ghost points as follows:

1. The regular velocity points are those points on the edges of the cells and are 

located inside the fluid region Ω+.

2. The regular pressure points are those points on the center of the cells, of which 

at least one edge contains a regular velocity point.

3. The boundary velocity points are those points on ∂Ω, or on an edge that 

intersects ∂Ω.

4. The boundary pressure points are the center points xi, j of those boundary cells, 

each of which has at least one edge entirely on ∂Ω.

5. A ghost velocity point is a point located either inside Ω− or on the interface Γ, 

and is a neighbor to a regular velocity point. Two velocity points are neighbors 

of each other if the edges they are on share a same vertex or if they are on the 

edges of the same cell.

With the assumption that Γ is far away from ∂Ω, we can simply assume that any ghost point 

is not a boundary point, and any boundary point is a fluid point. We then denote

For any non-boundary fluid point for velocity xi−1/2, j ∈ u or xi, j−1/2 ∈ v, or any non-

boundary regular point for pressure xi, j ∈ p, we apply the following second-order 

discretization scheme to the incompressible Stokes equation:

(3.1)

Where

Sun et al. Page 6

J Sci Comput. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Note that this scheme enforces the divergence free condition on each cell with center a non-

boundary regular pressure point. For any boundary velocity point or pressure point, we apply 

the Dirichlet boundary condition (2.7) or (2.8), and (2.5), respectively.

The boundary velocity profile on Γ(t) depends on a new variable C(t), which is determined 

by discretizing (2.6). We approximate the left-hand side of (2.6) by numerical integrating 

along the lines x = 0, lx and y = 0, ly:

(3.2)

To approximate the right-hand side of (2.6), we consider the region ω bounded by Γ and the 

lines x = hx, lx − hx, and y = hy, ly − hy, and use the incompressibility condition to get

Here the right-hand side of (2.6) can be approximated by

(3.3)

By substituting (2.7) or (2.8) into (3.3), and combining (2.6) and (3.2), we arrive at

(3.4)

Where

(3.5)

For any ghost velocity point xi+1/2, j ∈ u or xi, j+1/2 ∈ v, we first project it onto Γ and find 

the projection point yi+1/2, j or yi, j+1/2, respectively. Then we use the nearby fluid velocity 

points, ghost velocity points, and pressure points to form a locally third-order approximation 

to the derivative components ux, uy, vx, vy, and pressure component p at yi+1/2, j and yi, j+1/2, 

respectively. Thus, we obtain a third-order approximation to the traction interface conditions 
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at the projection points. This third-order approximation scheme on the interface covers 

various cases of the local geometry of interface. In some other cases, where the geometry of 

Γ does not allow enough points for a third order scheme, we switch to a second order or 

even first order scheme, which causes the solution to be reverted to a lower order 

approximation. We include a detailed discussion and formulation of the discretization 

scheme for ghost velocity points in the appendix.

By discretizing the system as illustrated above, we obtain a linear system, with an array of 

unknown composed of u, v at the fluid points, p at the pressure points, and C(t). The 

discretization matrix  is asymmetric and sparse. It takes the following form

(3.6)

where the last row and last column correspond to (3.4) and (3.5), respectively. Rows of Au, 
Av correspond mainly to the five-point stencils for Laplacian. All entries of Ou, Ov, and Op 

are zero, except a few that correspond to ghost points. All Apx, Apy, Aux, and Avy result 

mainly from the discretization of px, py, ux, and vy, respectively. In each of these 

submatrices, there are rows corresponding to the ghost points, where the discretization of the 

(2.4) couples the u, v, and p points and introduces many nonzero off-diagonal entries. This 

linear problem is similar in structure to a saddle point problem. It may suggests a solution 

method involving the Schur complement reduction. However, the highly coupled interface 

conditions together with the geometry dependent discretization make the conditional number 

of  very high. Furthermore, submatrices such as Au, Av are far away from diagonal 

dominant. At a few ghost points, the diagonal entries have their magnitude smaller than off-

diagonals. As a consequence, it is not efficient to apply any Krylov subspace solver to even a 

subproblem. Leaving the development of numerical algorithms to future work, as a first step, 

we use UMFPACK, an implementation of a direct multifrontal sparse LU factorization 

method, to solve this system [6]. The time cost for UMFPACK to solve a sparse linear 

system of size ∼ 30,000-by-30,000 is O(0.1) seconds.

 3.2 Solving the Level-Set Equation

We now consider the discretization of the level-set equation (2.9). For the time derivative, 

we use the explicit forward Euler scheme

(3.7)

where ϕ(k)(x) and  (x) are the approximations of ϕ(x, tk) and un(x, tk), respectively, at 

time tk = kΔt (k = 1, 2,…) and Δt is the time step satisfying the CFL condition
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(3.8)

If un(x, t) = 0 for all x on Γ at a certain time t, then Γ no longer moves, and a steady state 

interface is reached.

To approximate the normal velocity un(x), we use the level-set function, to interpolate the 

points on the interface, calculate the normal fluid velocity on these points, and use a fast 

marching algorithm to extend the values in the normal direction to all spatial grid points. 

Note that we here use the same grid as that for the discretization of the pressure p. For 

spatial derivatives, we use a fifth-order WENO method to approximate |∇ϕ(k)(x)|. We use 

the homogeneous Neumann boundary conditions at the outer boundary of the computational 

box.

To keep the level-set function as a signed distance function, we reinitialize ϕ by solving the 

equation

for a few steps with the initial value ϕ = ϕ0 at t = 0. Here ϕ0 is the level-set function before 

reinitialization, and the time t is different from that in the original level-set equation.

 4 Numerical Tests

 4.1 Flow Outside a Circular Region

In this example, we test the convergence of our Stokes solver on flow outside a circular 

region. We set Ω = (0, 1) × (0, 1) and Ω− = {(x, y) ∈ Ω : ϕ(x, y) < 0}, where the level-set 

function is given by

(4.1)

Note that Ω− is a circular region. Note also that the region Ω− and the interface Γ are fixed 

all the time. So there is no moving interface in this test. Furthermore, we set μ = 1 and fix p− 

=0. We select the boundary velocity u0, the boundary pressure p∞, the fluid body force G, 

and the interface force f to yield the following velocity and pressure fields for an 

incompressible flow:

(4.2)
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We then solve the Stokes equation (2.2) on Ω+ = {(x, y) ∈ Ω : ϕ(x, y) > 0} with such 

boundary conditions. The numerical solutions of u, v, and p to this test example are plotted 

in Figure 4.1 on an N × N spatial grid with N = 400. We analyze the error between the 

numerical solutions and the analytical solutions (4.2), by generating in Figure 4.2 six log-log 

plots of the L2-norm and L∞-norm of the error for u, v, and p versus N, the number of grid 

points in both x and y directions. The log-log plots show that the error for u, v, and p all 

decay in an order of O(N−2) in both L2-norm and L∞-norm, with spikes intermittently. 

These spikes arise due to the insufficient grid resolution for the curved interfacial geometry 

resulting unpredicted sudden increase of the conditional number of discretization matrix. In 

average, the conditional number increases in the order of O(N3). We believe that such spikes 

can be reduced by discretizing the interface condition using a least-squares approach.

 4.2 Flow Outside a Clover Shaped Region

This example is the same as that in Subsection 4.1, except that Ω− = (1/2, 1/2) + Ωc, where 

Ωc is a three-fold clover region defined in polar coordinates as

(4.3)

Our numerical solutions of u, v, and p are plotted in Figure 4.3, with the spatial 

discretization parameter N = 400 in both x and y directions. An analysis of the error between 

the numerical and analytical solutions shows similar behavior than the previous example in 

terms of L2-norm and L∞-norm of the error on the three fluid components u, v, and p, as 

shown in Figure 4.4. We get an average second-order convergence in u, v, and p.

 4.3 Flow around a Disk with Designed Numerical Boundary Conditions

We now test on our numerical boundary conditions. Define

(4.4)

Define also the circular region Ω− = {(x, y) ∈ ℝ2 : ϕ(x, y) < 0}. One can verify that

(4.5)

solve the Stokes equation (2.2) with μ = 1, G = 0, together with the interface condition p− = 

0, and f = − n, and also that its flux along Γ is
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(4.6)

We solve the Stokes equation numerically for u and p on Ω = (0, 1) × (0, 1) with p∞ = 0, and 

the boundary velocity profile given by (2.7) or (2.8). In Figure 4.5, we plot the solution with 

profile (2.7) and nx = ny = N = 101. The tendency of shrinking of the volume of Ω− can be 

observed from the inward velocity field.

As we increase N, the flux ζC(t) approaches a constant. In Figure 4.6, we plot the flux ζC(t) 
as a function of N. We see that for both (2.7) and (2.8), ζC(t) converges to a certain value. 

For (2.8), ζC(t) approaches the analytical value 0.04π, because the circular velocity profile is 

exact in this case. For (2.7), ζC(t) approaches to a value which is slightly less than, but 

reasonably close to 0.04π. This shows that even though the assumptions of boundary 

velocity profiles are artificial, they can be expected to work relatively accurately. To test the 

convergence of ζC(t) with respect to increasing N, we take the value of ζC(t) at N = 600 as a 

reference value for both (2.7) and (2.8). We then compute the absolute values of the 

differences between the fluxes at the other values of N and the reference values. This process 

gives us the convergence plot in Figure 4.6, from which we observe a convergence rate of 

roughly first order for (2.7) and second order for (2.8).

 4.4 Moving Interface Driven by Solvent Fluid Flow with Curvature Force

We now test our level-set method coupled with our Stokes solver on a moving circular 

interface. Let us define

(4.7)

where r(t) = 0.2 − t/2 with 0 ≤ t < 0.4. It is easy to verify that p and u solve the Stokes 

equation (2.2) with μ = 1 and G = 0 in the region , where

Moreover, p and u satisfy the interface condition (2.4) on Γ(t) = ∂Ω−(t) with p− = 0 and f = 

−n/r(t) (i.e., the curvature flow). The time needed for the circle Γ(t) to shrink to the center 

(0.5, 0.5) is t = 0.4.

We now set Ω = (0, 1) × (0, 1), and the initial interface to be
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We use our level-set method and ghost fluid Stokes solver to solve numerically (2.1) and 

(2.2) with G = 0, (2.4) with p− = 0 and f = −Hn, where H is the curvature, and the boundary 

conditions p∞ = 0 and boundary profile (2.7) and (2.8). Our numerical solution for Γ(t) as 

plotted in Figure 4.7 exhibits circular shrinking with constant speed. The center is slightly 

shifted due to small numerical error. The numerical critical time tc for both boundary 

profiles (2.7) and (2.8) agree well with the analytic value.

 5 Applications

In this section, we present two examples of application of our method to two model nonpolar 

molecular systems. One is a two-particle system and the other is a two plate system.

 5.1 A Two-Particle System

We consider Ω = (0, lx) × (0, ly) with lx and ly two positive numbers. We assume two 

particles located at x1 = (lx/2 – c, ly/2) and x2 = (lx/2 + c, ly/2), respectively, where c > 0 is 

an adjustable parameter. We define the initial regions Ω− and Ω+ using this level-set function

(5.1)

We set the body force G = 0. We also combine the curvature force and Lenard-Jones force 

into the surface force

(5.2)

where γ, ε, and σ are all constants, and take the following values for this example: γ = 1, ε = 

25, σ = 0.2. Furthermore, we take Cm = 0.001 in (2.3) and (2.4).

We then solve the Stokes equation coupled with level-set equation (2.9), with ly = 1 and 

various choices of lx and c : (1) lx = 1, c = 0.05; (2) lx = 1, c = 0.2; (3) lx = 2, c = 0.25. The 

final steady state for Γ is plotted in Figure 5.1. We see that the interface breaks into two parts 

as the distance between the two particles is large enough; cf. case (3).

 5.2 A Two-Plate System

In this example, we set Ω = (0, 1) × (0, 1) and two plates composed of six atoms each. These 

atoms are located at coordinates (0.5 – c, 0.25 + 0.1k) and (0.5 + c, 0.25 + 0.1k) with k ∈ {0, 

1, ⋯, 5} and c an adjustable constant. With certain parameter choices, one observe dry/wet 

polymodal states depending on the initial solute region Ω−. We choose c = 0.15, γ = 5, ε = 

25, σ = 0.1, Cm = 0.001 in (5.2). Moreover, for a loose initial condition of Γ, we define
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For a tight initial condition on Γ, we define

We solve the Stokes equation (2.2) coupled with level-set equation (2.9). The interface Γ 

goes to a dry final state from the loose initial condition, and a wet final state from the tight 

initial condition; cf. Figure 5.2. The evolution of Γ in between the two states captures the 

dynamics of the transitioning process, which cannot be obtained by an energy variational 

approach such as VISM. In our future work, we would like to develop a 3D fluid solver, and 

compare our numerical results with the results obtained from molecular dynamics 

simulations.

 6 Conclusions

In this paper, we model the aqueous solvent by the incompressible Stokes flow and treat the 

solute with the ideal-gas law. The solute-solvent interface moves with the solvent fluid flow. 

All the viscous, pressure, surface tension, and the solute-solvent vdW forces are balanced on 

the interface, leading to a traction boundary condition. To allow the change of solute 

volume, we design special numerical boundary conditions on the boundary of our 

computation domain. We design a second-order ghost fluid method for solving the Stokes 

equation. We also couple the level-set equation for the moving solute-solvent interface. Our 

methods accurately predict the blowup time of a shrinking bubble under surface tension. 

Moreover, our methods capture the dry and wet polymodal interfaces for the two-plate 

system.

Some existing issues of this model include: (1) The boundary conditions assume a velocity 

profile, which may not be realistic; (2) The numerical error is sensitive to the location of the 

interface; (3) We solve the linear system using a direct LU factorization, which can be 

problematic in extension to three dimensions.

As a first step in the future, we need to propose more realistic boundary conditions. We also 

plan to decrease the sensitivity of error dependence on the interface by considering a least 

square problem. Moreover, an extension of our two dimensional fluid solver to three 

dimensions is necessary. After we develop such a fluid solver, we can add noise to the 

solvent and observe the fluctuations of the interface. Through a combination of such a three 

dimensional fluid solver with fluctuations and a robust Poisson–Boltzmann solver, one can 

better observe and describe the dynamics of a solvent–solute system.

 Acknowledgments

This work was supported by the US National Science Foundation (NSF) through grant DMS-1319731 and the US 
National Institutes of Health (NIH) through grant R01GM096188. Work in McCammon's group is supported in part 

Sun et al. Page 13

J Sci Comput. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by NSF, NIH, HHMI, and NBCR. The authors thank Dr. Robert Krasny, Dr. Ray Luo, and Mr. Li Xiao for helpful 
discussions.

 Appendix

In the appendix, we provide details of the ghost fluid discretization on the interface. First of 

all, with the notations n = (n1, n2) and τ = (–n1,n2), the traction boundary conditions (2.4) 

read

where f⊥ = f · n and f‖= f · τ. Some straightforward algebraic calculations together with the 

incompressibility condition (2.2) lead to

(A.1)

(A.2)

For any ghost velocity point x, we find a point x* ∈ Γ, such that |x – x*| = dist(x, Γ). We call 

x* a projection point of x onto Γ. We then discretize equation (A.1) at each projection point 

 corresponding to each ghost velocity point xi−1/2,j of u. Similarly, we discretize 

equation (A.2) at each projection point  corresponding to each ghost velocity point 

xi, j−1/2 of v.

To obtain a second-order convergence scheme for u, v, and p up to Γ, we design a third-

order discretization of ux, uy, vx, vy, and p in the fluid region. This requires 10 stencil points 

for u, v, and 6 stencil points for p. We denote by S(u, x*, r), S(v, x*, r), and S(p, x*, r) 
respectively, the sets of u, v and p stencil points for discretizing ∇u, ∇v and p with an order r 

at the projection point . Then

In choosing these stencil points, we follow three criteria: (1) Each of these stencil points 

needs to be either a ghost point or a fluid point; (2) The stencil points need to include x, that 

is x ∈ S(u, x*, r) ∪ S(v, x*,r)∪S(p, x*,r); (3) All S(u, x*, r), S(v, x*, r), and S(p, x*, r) 
satisfy
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(A.3)

The criterion (3) is important for the invertibility of matrix A in equation (A.4), as shall be 

discussed later.

We now describe the process of constructing S(u, x*, r), S(v, x*, r), and S(p, x*, r), and the 

corresponding schemes. In this process, we use the following notations

It is easy to see that |λ1| < 1 and |λ2| < 1. Since a ghost point is a neighbor to a fluid point, at 

least one of its neighbor needs to be in Ω+. We name a neighbor of x a check point, if that 

neighbor point is in Ω+. There are totally six different cases for the combination of ghost 

point and check point: (a) x = xi−1/2,j and ϕ(xi−1/2+s1,j) > 0; (b) x = xi−1/2j and ϕ(xi−1/2j+s2) > 

0; (c) x = xi−1/2,j and ϕ(xi−1/2+s1/2, j+s2/2) > 0; (d) x = xi, j−1/2 and ϕ(xi+s1,j−1/2) > 0; (e) x = 

xi, j−1/2 and ϕ(xi, j−1/2+s2) > 0; (f) x = xi, j−1/2 and ϕ(xi+s1/2,j−1/2+s2/2) > 0. For each of these 

cases, we obtain the corresponding S(u, x*, r), S(v, x*, r), and S(p, x*, r) with r ∈ {1, 2, 3}. 

In Figure A.1, we schematically plot all six cases and the corresponding S(u, x*, r), S(v, x*, 

r), and S(p, x*, r) for r = 3. Notice that for cases (a)–(c), equation (A.1) is discretized, and 

S(v, x*, r) is not needed.

We now describe the steps of constructing a third-order discretization scheme for case (a), 

whereas all other cases just follow tediously. We consider a u ghost point xi−1/2j with its 

projection point x*. Let us denote

and F = (u, ux, uy, uxx, uxy, uyy, uxxx, uxyy, uxxy, uyyy) T, where (·)T denotes transpose. Then 

a third-order Taylor expansion leads to a linear system X = AF(x*), where
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(A.4)

with (hx,k, hy,k) := xk – x*. A sufficient condition to have A invertible is (A.3). Inverting A 
symbolically, we get F(x*) = A−1X, and the second entry of F(x*) corresponds to a third-

order discretization of ux(x*):

where the notation u(X) = (u0, u1, u2, u3, u4, u5, u6, u7, u8, u9)T is used. The third entry of 

F(x*)t gives a third-order discretization of uy(x*). However, it is not necessary in 

discretizing equation (A.1).

Similarly, one can derive a third-order discretization scheme for p(x*):

Where , , , 

, , .

We use this symbolic inverse matrix method to find a third-order scheme for discretizing 

equation (A.1) around x*. To find a second-order or first-order scheme, we form a smaller 

matrix A by applying a second or first-order Taylor expansion to u(xk), v(yk), and p(zk) at 

x*, with xk ∈ S(u, x*, r), yk ∈ S(v, x*, r), and zk ∈ S(p, x*, r), respectively. Using similar 

computations, we are able to construct the first, second, and third-order schemes for all six 

cases (a)–(f), but we do not need to record the ten-page formulas here.
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Figure A.1. 
Different cases of combination of a ghost point and a check point.
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Figure 2.1. 
The geometry of a salvation system. The solute-solvent interface Γ separates the solute 

region Ω− from the solvent region Ω+. The unit normal and unit tangent vectors at Γ are 

denoted by n and τ, respectively.
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Figure 3.1. 
A schematic MAC grid.
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Figure 4.1. 
Numerical solution to the Stokes equation (2.2). From left to right: u, v component of fluid 

velocity and the fluid pressure p.
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Figure 4.2. 
Log-log plots of errors vs. the number of discretization (grid points). Top row from left to 

right: The L2-norm of the error for u, v and p, with the red straight line having slope −2. 

Bottom row from left to right: The L∞-norm of the error for u, v and p, with the red straight 

line having slope −2. The presence of spikes is due to the insufficient grid resolution that 

leads to sudden increase of the conditional number.
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Figure 4.3. 
Numerical solution to the Stokes equation (2.2) described in Subsection 4.2. From left to 

right: u, v component of fluid velocity, and the fluid pressure p.
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Figure 4.4. 
Top row from left to right: The L2-norm of the error for u, v and p, with the red straight line 

being of slope −2. Bottom row from left to right: The L∞-norm of the error for u, v and p, 

with the red straight line being of slope −2.
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Figure 4.5. 
Numerical solution to the Stokes equation (2.2) and the corresponding flux. Left: The quiver 

velocity field u in the whole domain Ω. Right: A zoom-in velocity field u along Γ.
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Figure 4.6. 
Left: The total fluid flux ζC(t) versus N. The blue horizontal line is 0.04π. The analytic 

value of ζC(t) : the black and red lines and dots correspond to the solutions with profile (2.7) 

and profile (2.8), respectively. Right: A log-log plot of the error on the flux versus N. As a 

comparison, the solid blue line has slope –1 and the dashed blue line has slope –2.
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Figure 4.7. 
Left: The solution to the curvature flow problem with parabolic profile (2.7), at time t = 0, 

0.1, 0.2, 0.3, 0.4, from outside to inside, respectively. Right: The numerical radius r(t) versus 

t with parabolic profile (2.7) (black curve) and with circular profile (2.8) (red line). The 

critical time is tc = 0.4042 for the black line, and tc = 0.4004 for the red line, respectively.
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Figure 5.1. 
The initial interface (red curve) and the numerically computed steady-state interface (black 

curve). The two blue dots are the positions of two particles. Left: Ω = (0, 1) × (0, 1), x1 = 

(0.45, 0.5), and x2 = (0.55, 0.5). Middle: Ω = (0, 1) × (0, 1), x1 = (0.3, 0.5), and x2 = (0.7, 

0.5). Right: Ω = (0, 2) × (0, 1), x1 = (0.75, 0.5), and x2 = (1.25, 0.5).
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Figure 5.2. 
The numerical solutions of the interface Γ: an initial (red curve), an intermediate (blue 

curve), and a final, steady state (black curve) interfaces. The blue dots are the atom 

positions. Both plots are with γ = 5 and σ = 0.1. Left: The dry final state with loose initial 

state. Right: The wet final state with tight initial state.
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