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Abstract

Regularizability and bosonization of relativistic massless fermion

by

Yen-Ta Huang

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Dung-Hai Lee, Chair

In this dissertation, we discuss the non-regularizability and the bosonization of massless
fermions with relativistic dispersion in 1, 2, 3 spatial dimensions. The non-regularizability
is the root of various quantum anomalies and plays a central role in the physics of
symmetry-protected topological phases. We generalized the Nielsen-Ninomiya theorem
to all minimal nodal free fermion field theories protected by the time reversal, charge con-
servation, and charge conjugation symmetries. We prove that these massless field theories
cannot be regularized on a lattice while respecting the protection symmetries. However,
they can be realized on the boundaries of symmetry-protected topological phases in one
higher dimension. We then generalize Witten’s non-abelian bosonization of massless free
fermion theories in one spatial dimension to two and three spatial dimensions. We shown
the resulting boson theories share the same emergent symmetries and anomalies with
the fermion theories. Moreover, we also show the boson theories possess fermion degrees
of freedom, namely solitons. These bosonized models are non-linear sigma models with
level-1 Wess-Zumino-Witten terms. As applications, we apply the bosonization results to
the SU(2) gauge theory of the Mott insulating phase of nearest-neighbor hopping Hub-
bard model, “bipartite-Mott insulators” in 1,2,3 spatial dimensions and twisted bilayer
graphene.
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2.6 The Poincaré-Hopf Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 The reductio ad absurdum proof . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 Final discussion: the open issues . . . . . . . . . . . . . . . . . . . . . . . 14

III Bosonization of relativistic fermions 16

3 Introduction of bosonization 17

4 Bosonization 19
4.1 The idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Emergent symmetries of the massless fermion theory . . . . . . . . . . . 20
4.3 Mass terms and mass manifolds . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 The symmetry anomalies of the fermionic theories . . . . . . . . . . . . . 25
4.5 Breaking the emergent symmetry by the mass terms . . . . . . . . . . . . 31
4.6 Restoring the emergent symmetries . . . . . . . . . . . . . . . . . . . . . 33
4.7 The conditions for the effective theory being bosonic . . . . . . . . . . . 34



iii

4.8 Fermion integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.9 Non-linear sigma models in (2 + 1)-D and (3 + 1)-D . . . . . . . . . . . . 37
4.10 Non-linear sigma models as the effective theories of interacting fermion

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.11 Global symmetry of the non-linear sigma model . . . . . . . . . . . . . . 43
4.12 The symmetry anomalies of the nonlinear sigma models . . . . . . . . . . 45
4.13 Soliton of the non-linear sigma model and the Wess-Zumino-Witten term 48
4.14 A summary of bosonization . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Applications of bosonization 52
5.1 The SU(2) gauge theory of the π-flux phase of the half-filled Hubbard model 52
5.2 The critical spin liquid of “bipartite Mott insulators” in D = 1 + 1, 2 + 1

and 3 + 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Twisted bi-layer graphene . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Conclusions of bosonization 78

References 79

Bibliography 79

A Appendices of part II 86
A.1 The preservation of constraints 1 to 4 by the spectral symmetrization steps 86
A.2 Impossibility for the gap of h̃(k) to close at only a single point in the

Brillouin zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.3 Odd continuous functions on S2 . . . . . . . . . . . . . . . . . . . . . . . 103

B Appendices of part III 105
B.1 The emergent symmetries for (2 + 1) and (3 + 1)-D . . . . . . . . . . . . 105
B.2 The mass manifolds, homotopy groups and symmetry transformations . 107
B.3 The anomalies of the fermion theories . . . . . . . . . . . . . . . . . . . . 113
B.4 Fermion integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
B.5 Emergent symmetries of the nonlinear sigma models . . . . . . . . . . . . 138
B.6 Anomalies of the nonlinear sigma models . . . . . . . . . . . . . . . . . . 142
B.7 Soliton’s statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
B.8 Bosonization for small flavor number . . . . . . . . . . . . . . . . . . . . 159
B.9 Massless fermions as the boundary of bulk topological insulators/superconductors163
B.10 The decoupling of the charge-SU(2) gauge field from the low energy non-

linear sigma model after confinement . . . . . . . . . . . . . . . . . . . . 165
B.11 The WZW term in the (3 + 1)-D real class non-linear sigma model . . . . 167



iv

List of Figures

2.1 An illustration of the fact that the regularizability of the boundary Hamilto-
nian of an SPT implies the gapless modes are not protected. (a,b) By turning
on symmetry-respecting interactions mimicking those in the bulk (the black
lines) it is possible to gap out the gapless modes (red and blue circles). (c)
The regularizability of the boundary SPT Hamiltonian implies it is possible
to fabricate the gapless boundaries. (d,e) The fabricated boundaries can be
brought to interact with the original boundaries and gap each other out. . . 7

2.2 From the left to the middle panel we replaced the upper half and lower half of
the eigenvalues at each k with their averages. From the middle panel to the
right panel we subtracted the average of all eigenvalues from each eigenvalue
at each k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 The degree 1 maps f̂(k) for (a) d = 1, (b) d = 2 and (c) d = 3. . . . . . . . . 12

4.1 Two layers of annulus shape Chern insulators with σxy = ±1 stacked together.
The outer edge harbors the 1D n = 1 non-chiral massless fermion modes.
The green and red arrows represent the opposite chiralities. When a time-
dependent diagonal U(1) flux pierces the inner hole, the induced electric field
in the azimuthal direction causes a Hall current (dashed arrows) flowing from
inner to outer boundary in the top layer and from outer to inner boundary in
the bottom layer. As the result, the chiral current J+ − J− is not conserved
viewed from the outer edge alone. This system is realized as the “spin Hall
insulator” experimentally. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 The π-flux mean-field theory. Here the black bonds represent hopping ampli-
tude iχ in the positive x- or y-direction and the green bonds represent −iχ.
The unit cell is enclosed by the orange rectangle. . . . . . . . . . . . . . . . 55

5.2 Translation by one lattice constant in the x-direction compounded with the
gauge transformation which multiplies the fermion operators on sites in the
orange rows by -1 leaves the mean-field Hamiltonian invariant. . . . . . . . 59

5.3 (a) The usual 1D nearest neighbor tight-binding with real hopping. (b) Upon
the gauge transformation (cAj , c

B
j )→ (cAj , i c

B
j ), hoppings become purely imag-

inary with alternating sign. The hopping Hamiltonian in panel (b) is charge-
SU(2) invariant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



v

5.4 (a) The usual nearest neighbor tight-binding model on the honeycomb lattice
with real hopping. (b) Upon the gauge transformation (cAj , c

B
j ) → (cAj , i c

B
j ),

hoppings become purely imaginary with alternating sign. The tight-binding
Hamiltonian in panel (b) is charge-SU(2) invariant. . . . . . . . . . . . . . . 63

5.5 (a) The tight-binding model on a stacked honeycomb lattice with real-valued
nearest-neighbor hopping. Blue/red (A/B) mark the two sub-lattices of the
honeycomb lattice respectively. The positive hoppings are drawn in black,
while the negative hoppings in white.(b) After the gauge transformation (cA1

j , cB1
j , cA2

j , cB2
j )

→ (cA1
j , icB1

j , icA2
j , cB2

j ), a unit cell contains four sites. This is marked by
blue/red/green/orange and labeled as A1/B1/A2/B2 respectively. The hop-
pings become purely imaginary. The direction of the arrows on the bonds label
the direction of the imaginary hoppings. The tight-bonding Hamiltonian in
panel (b) has charge-SU(2) symmetry. . . . . . . . . . . . . . . . . . . . . . 66

5.6 (a) A real space picture of twisted bilayer graphene. (b) Blue and red color
the Brillouin zones of the first and second layer graphene. Orange colors the
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Chapter 1

Introduction: Dirac equation,
anomalies, and symmetry protected
topological phases

The Dirac equation [1] is a crown jewel of theoretical physics. It combines Einstein’s
special relativity with quantum mechanics, and predicts electron spin and the existence
of position. Although it was originally proposed as the theory of electron, it turns out
that all elementary matter-particles, with the exception of Higgs boson, are described by
the Dirac/Majorana equation in the standard model. In condensed matter systems, it’s
not apparent at the first sight why relativistic massless fermions are relevant, because
usually the Lorentz symmetry is broken in such systems. Therefore it is a bit of a sur-
prise that relativistic massless fermions emerge in the low energy effective field theories in
many important condensed matter systems. This include the Mott insulator, Dirac/Weyl
semi-metals, magic-angle-twisted-bilayer graphene and the boundaries of topological in-
sulators/superconductors, e.t.c. The only difference is the speed of light is replaced with
the Fermi velocity. It is completely unexpected that the deep insight of Dirac finds ap-
plications in such distant corners of physics.

In the subsequent developments in quantum field theory, the concept of (quantum)
anomalies played an important role in modern particle physics. Historically, the Adler-
Bell-Jackiw (ABJ) anomaly [2, 3] was the first discovered, where the axial U(1) sym-
metry of the Dirac fermion in odd space dimensions is anomalous when the fermion are
coupled to the external (vector) U(1) gauge field. The anomaly is manifested by the
non-conservation of the axial U(1) current. This is later generalized by Bardeen [4] to
non-abelian symmetries. In a good sense the recent advance in condensed matter physics,
namely, the discovery of symmetry-protected topological states is a revisit of anomaly in
condensed matter physics. This dissertation benefits from such developments and push
the forefront further.

Anomaly and regularization are inextricable. Regularization makes a low energy the-
ory well-defined in the high energy. In the original ABJ calculation, the axial symmetry
is broken when one chooses a regularization preserving the vector U(1) symmetry, which
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is necessary for the vector U(1) gauge theory (i.e., electromagnetism) to be well-defined.
Nielsen-Ninomiya gave an even more concrete demonstration [5]. They showed that Weyl
fermion, i.e., one chiral part of the Dirac fermion, cannot be regularized on a lattice by
itself while preserving U(1) charge conservation. This is a necessary condition for the
ABJ anomaly to hold, as argued in the following. A good (on-site) continuous symmetry
at lattice level can be gauged without anomaly by Peierls substitution. If a Weyl fermion
can be regularized with the U(1) charge conservation intact, one can stack two copies of
Weyl fermions of opposite chiralities. The resulting theory has a Dirac fermion spectrum
in the low energy while both the vector and axial U(1) can be gauged without issue,
contradicting the result of the ABJ anomaly. In short, an anomaly can show up when
regularization is impossible while preserving the symmetries at all energy.

A caveat is in order at this point. For the non-regularizability, we mean that the the-
ory cannot be regularized in the same spatial dimension. However, it is generally possible
to regularize an anomalous theory on the boundary of a system in the one-higher space
dimension. Take the chiral fermion as an example again. By Nielsen-Ninomiya theorem, a
single chiral fermion cannot be regularized the one spatial dimension. It can nevertheless
live on the boundary of a Chern insulator, e.g., on one of the boundaries of an annulus. In
the presence of a time-dependent flux associated with the (vector) electromagnetic field,
the charge on one boundary is not conserved by itself. The non-conservation is canceled
out by the induced Hall current in the radial direction, and the total charge of the system
is still conserved. We shall come back to this example in part III. The phenomenon that
the anomaly on the boundary is canceled out by the higher dimensional bulk is termed
anomaly inflow [6].

The physics of symmetry-protected topological (SPT) phases can be viewed as the
reincarnation of the anomaly inflow picture. SPT phases are the generalization of Chern-
insulator: a system is in an SPT phase if the Hamiltonian respects certain a symmetry
group G and the bulk has a uniquely gapped symmetric ground state on any closed
manifold. For the Chern insulator, the symmetry group is the charge U(1) symmetry.
When a non-trivial SPT phase is cut open, there are several possibilities on the boundary:
1) the boundary has spontaneous symmetry breaking, 2) establishes surface topological
order, or 3) is gapless. In the present work, we shall focus on the last possibility. For
fermionic SPTs, one can choose massless relativistic fermions as the representatives of
the gapless boundaries [7] (in the rest of the dissertation, unless otherwise stated, “mass-
less fermion” is always referred to massless relativistic fermion). The gaplessness of the
fermion is protected by the symmetry in question. Furthermore, the massless fermion
cannot be regularized in its dimension (i.e., the boundary is anomalous). The fermionic
SPT phases are characterized by the anomalies of the massless fermions on the bound-
aries. The reverse is also true: all anomalous massless fermion can be realized on the
boundary one higher dimensional SPT [8].

This naturally leads us to two questions:

1. What kind of massless fermions together with symmetry groups are non-regularizable
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(anomalous)?

2. Are there other gapless theories with the same anomalies so that we can attach
them to the boundaries of the same SPTs? If so, what is the relation between these
gapless theories and the original massless fermions at low energy?

Each part of the present dissertation attempts to answer one of the questions above.
In part II, we demonstrate that the boundaries of free fermion (non-trivial) SPTs are
indeed non-regularizable, through a case-by-case study. This is consistent with the view
in [7] that the non-trivialness of an SPT can be told by the absence of mass term on
the boundary. In part III, we construct a series of bosonic models sharing the same
symmetries and anomalies with the massless fermions. The anomalies are dictated by
the level-1 Wess-Zumino-Witten (WZW) terms in the bosonic theories in 1, 2, 3 spatial
dimensions. In (1 + 1)-D, the bosonic theory reproduces the non-abelian bosonization by
Witten [9]; in (2 + 1)-D and (3 + 1)-D, the solitons inherit fermion statistics from the
WZW terms. This leads us to the proposal that these bosonic theories are equivalent to
the original massless fermions, generalizing the non-abelian bosonizations to higher di-
mensions. Some applications of the bosonization follow. To make the main points clear,
we generally demonstrate the ideas through simple examples in the main text and leave
the detailed systematic check to the appendices.
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Chapter 2

Non-regularizability of relativistic
fermion

2.1 Idea of non-regularizability

The non-regularizability of massless free fermion field theories is the origin of various
quantum anomalies. A famous example is the Nielsen-Ninomiya [5] theorem, namely,
Weyl nodes with net chirality cannot be realized by any charge-conserved lattice model
in three dimensions. However, Weyl nodes with net chirality can appear on the boundary
of a 4D charge-conservation-protected topological insulator (The free fermion topologi-
cal classification of this 4D topological insulator is Z.). Another example involves Dirac
cones with net vorticity in 2D. Under charge conservation and time-reversal (T 2 = −1)
symmetries, Dirac cones with net vorticity cannot be realized by any lattice model. How-
ever, they can appear on the boundary of a 3D topological insulator. (The free fermion
topological classification of such topological insulator is Z2.)

According to the folklore, the low energy field theory describing the boundary of on-
site symmetry protected topological states (SPTs) cannot be regularized on a lattice. In
other words, they can not be realized as finite-range tight-binding models where the sym-
metry acts on the degrees of freedom on each lattice site independently. The obstruction
lies in the realization of symmetry – in the boundary dimension the on-site nature of the
protection symmetry cannot be realized. This obstruction is relieved by “UV complet-
ing” the boundary degrees of freedom with the bulk degrees of freedom living in one extra
spatial dimension. The bulk degrees of freedom are gapped and respect an on-site sym-
metry. The bulk state is called an SPT. When the boundry is one-dimensional, Ref.[10,
11] argued that the non-regularizability is manifested by the fact that the boundary the-
ory is not modular invariant after orbifolding with respect to the protection symmetry.

If the protection symmetry is not on-site, regularization is certainly possible. A fa-
mous example is the tight-binding model of graphene. There, the two Dirac nodes are
protected by the translation, charge conservation, time reversal, and inversion symme-
tries. Here the inversion symmetry is not on-site. In the rest of the paper we shall assume
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translation invariance and the term “symmetry” always refers to other on-site symmetry.

The non-regularizability discussed above lies at the heart of the physics of SPTs. It
is well-known that SPTs are defined by their symmetry-protected gapless boundaries. In
the following, we argue that if it were possible to realize these boundaries on a lattice,
the gapless boundary modes will not be protected.

For example, in Fig. 2.1 we consider a 2D SPT having two edges. It is always possible
to reconnect these edges with symmetry-respecting interactions, i.e., seal off the boundary
(Fig. 2.1(a)). After the reconnection the gapless modes are removed (Fig. 2.1(b)). If it
was possible to regularize the gapless boundaries on 1D lattices, one would have been able
to fabricate the gapless boundaries as 1D systems (Fig. 2.1(c)). These fabricated edges
can be brought around to interact with the original boundaries (via symmetry-respecting
interactions) (Fig. 2.1(d)). As a result, the gapless edges can be removed (Fig. 2.1(e)),
which proves that the original gapless edges are not symmetry-protected.

Figure 2.1: An illustration of the fact that the regularizability of the boundary Hamil-
tonian of an SPT implies the gapless modes are not protected. (a,b) By turning on
symmetry-respecting interactions mimicking those in the bulk (the black lines) it is pos-
sible to gap out the gapless modes (red and blue circles). (c) The regularizability of
the boundary SPT Hamiltonian implies it is possible to fabricate the gapless boundaries.
(d,e) The fabricated boundaries can be brought to interact with the original boundaries
and gap each other out.

The purpose of this paper is to prove the following folklore, namely:

Any symmetry-protected minimal nodal free-fermion field theory cannot be reg-
ularized on a lattice.
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Here, “nodal free-fermion field theory” is a continuum field theory which has a gap-
less spectrum with a linear-dispersing gap node, characterized by a Clifford algebra, at
a single time-reversal invariant momentum. Without loss of generality, we shall assume
such momentum to be k = 0. “Minimal” refers to the fact that the fermion field in
the theory has the smallest number of components necessary to represent the symme-
try transformations and the Clifford algebra. “Symmetry-protection” means there is no
symmetry-allowed mass term. In this paper, we restrict ourselves to the charge conser-
vation, time-reversal, and charge conjugation symmetries. “Lattice regularization” is the
procedure which converts the continuum field theory to a finite-range tight-binding model
while preserving all symmetries.

The outline of the current part is as follows. We achieve the proof by “reductio ad
absurdum”. In section 2.2, we assume the existence of a tight-binding Hamiltonian whose
low energy limit is the field theory in question. Let the momentum space Hamiltonian
of this tight-binding model be h(k), we list the four constraints h(k) must obey. In
section 2.3 we present the h(k) which has the smallest matrix size and satisfies the
constraints listed in section 2.2. This is the momentum space Hamiltonian of the minimal
models. In section 2.4 we lay out the symmetry protection hypothesis. In section 2.5
and A.1, we show that for each h(k) obeying the constraints of sections 2.2 and 2.4 there
is an associated “spectral symmetrised” counterpart, h̃(k). In section 2.6 we apply the
Poincaré-Hopf Theorem to h̃(k), and show that it imposes a stringent constraint on the
form of h̃(k) at a time reversal invariant point k0 different from k = 0. Section 2.7 adopts
the strategy of reductio ad absurdum for the proof of non-regularizability. We complete
the proof in two alternative ways. (a) When h̃(k) satisfies a special condition we prove
that if it obeys constraints 1-4 it must violate the symmetry-protection hypothesis. (b)
For other h̃(k) we prove that if it satisfies the symmetry-protection hypothesis it must
have the energy gap close at k0 as well. This means it violates constraint 3 of section 2.2.
The proof (b) is achieved by a case-by-case study of all nodal Hamiltonians protected by
the charge conservation, time reversal, and charge conjugation symmetries. Because of
the length of this proof, it is left to A.2 and A.3.

2.2 The constraints on lattice-regularized nodal

Hamiltonians

In the following we assume the existence of lattice-regularized minimal SPN Hamiltonian

H =
∑
k∈BZ

χ(−k)Th(k)χ(k), (2.1)

and discuss the conditions it must satisfy. Here “BZ” stands for the Brillouin zone of a
d-dimensional lattice. χ(k) is a Fourier transformed Majorana lattice field. We work with
Majorana rather than complex fermion field because it also covers charge non-conserving
(Bogoliubov-de Gennes) free fermion Hamiltonians. There are 4 constraints we require
h(k) to satisfy:
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1. The Majorana constraint: hT (−k) = −h(k).

2. h(k) is an analytic function of k in the Brillouin zone.

3. There is an energy gap between the lower half and the upper half of the eigenvalues
of h(k). The energy gap between these two groups of eigenvalues exhibits a single
node at k = 0. Moreover

h(k)→
d∑
j=1

kjΓj as k→ 0. (2.2)

Here {Γj} are traceless symmetric matrices satisfying {Γi,Γj} = 2δij.

4. h(k) obeys the following symmetry requirement: U †βh(k)Uβ = h(k) andA†αh(−k)∗Aα =
h(k). Here Aα, α = 1, ..., NA and Uβ, β = 1, ..., NU are k-independent orthogonal
matrices representing the anti-unitary and unitary protection symmetries.

Four comments are in order:

◦ We assume that the Hamiltonian has translation symmetry so that we can express
it in momentum space. The more general case where the translation symmetry is
absent is more diffucult, and is beyond the scope of this paper. The fact that the
unitary and anti-unitary symmetry matrices do not depend on k signifies that they
are on-site symmetries.

◦ In the presence of anti-unitary symmetry, A†αh(−k)∗Aα = h(k) implies A†αh(k)Aα =
−h(k) due to constraint 1. As a result, the spectrum of h(k) is symmetric about
zero for each k.

◦ In 1D we shall assume the dispersion of h(k) is non-chiral. This is because for
chiral Hamiltonians the constraints of continuity, Brillouin zone periodicity, and the
requirement that the energy band crosses the Fermi energy only at k = 0 (which is
the nodal condition for chiral Hamiltonians) obviously contradict one another.

◦ Conditions 3 and 4 impose a constraint on the minimal size of h(k). We state, with-
out proof, that the smallest such matrix for the charge conservation (unitary), time
reversal (anti-unitary) and charge conjugation (unitary) symmetries has dimension
2n × 2n. Here n depends on the spatial dimension and the symmetry group.

2.3 The minimal model satisfying the constraints in

section 2.2

In this section and the rest of the paper we shall focus on minimal SPN models. For these
models h(k) is a 2n × 2n Hermitian matrix. Any such 2n × 2n h(k) can be constructed
from linear combinations of the tensor products of n Pauli matrices. Among them N1 =
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(22n + 2n)/2 are real and symmetric and N2 = (22n − 2n)/2 are imaginary and anti-
symmetric, i.e.,

h(k) =

N1∑
i=1

oi(k)M s
i +

N2∑
j=1

ej(k)Ma
j . (2.3)

Due to the Majorana constraint oi(k) and ej(k) are odd and even functions of k, respec-
tively. Under the action of unitary symmetries k remains unchanged. But anti-unitary
symmetries send k to −k. As the result, the {M s

i } and {Ma
j } that can appear in Eq.(2.3)

must satisfy the following equations

U †βM
s
i Uβ = M s

i , A†αM
s
i Aα = −M s

i

U †βM
a
i Uβ = Ma

i , A†αM
a
i Aα = −Ma

i . (2.4)

Let the number of symmetric/anti-symmetric matrices satisfying Eq.(2.4) be ns and na,
respectively. Thus

h(k) =
ns∑
i=1

oi(k)M s
i +

na∑
j=1

ej(k)Ma
j . (2.5)

The matrices M s
i and Ma

j are “linear independent” with respect to the following definition

of matrix inner product 〈M1|M2〉 = V †M1
·VM2 , where VM is the column vector containing

all matrix elements of M . In the following we shall order {M s
i } so that the first d of

them are the Γi’s in constraint 3. These {Γi} satisfy the Clifford algebra {Γi,Γj} = 2δij.
Under the above ordering convention,

h(k) =
ns∑
i=1

oi(k)M s
i +

na∑
j=1

ej(k)Ma
j

=
d∑
i=1

oi(k)Γi +
ns∑

i=d+1

oi(k)M s
i +

na∑
j=1

ei(k)Ma
i . (2.6)

2.4 The symmetry protection hypothesis

Symmetry protection means that under the requirement of Eq.(2.4), there is no non-zero
anti-symmetric matrix which anticommutes with all the Γi in Eq.(2.2) and Eq.(2.6).

2.5 Spectral Symmetrisation

Given a h(k) satisfying constraints 1-4 in section 2.2, we can create a “spectral sym-
metrised” Hamiltonian satisfying the same constraints.

To perform spectral symmetrization, we first write h(k) in terms of its eigenvalues
and eigenvectors

h(k) = U †kD(k)Uk (2.7)
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where D(k) is the diagonal matrix formed by the eigenvalues of h(k) in descending order.
Uk contains the eigenvectors. It is the unitary transformation necessary to diagonalize
h(k).

We first replace the upper and lower halves of the eigenvalues in D(k) by their re-
spective averages. After this replacement, D(k) becomes D′(k) and the Hamiltonian is
given by

h′(k) = U †
k
D′(k)Uk. (2.8)

Note that in Eq.(2.8) Uk remains unchanged. From h′(k) we define a new Hamiltonian
by subtracting the average of the diagonal element Ē ′(k) from each element of D′(k) so
that D′(k) → D̃(k) = D′(k) − Ē ′(k)In. Here In represents the 2n × 2n identity matrix.
After the above two steps the Hamiltonian becomes

h(k)→ h̃(k) = U †
k
D̃(k)Uk. (2.9)

h̃(k) is the “spectral symmetrised Hamiltonian”. Note that Uk still remains unchanged.
h̃(k) has the important property that

h̃(k)2 ∝ In for all k. (2.10)

In A.1, we show that the spectral symmetrization does not jeopardize constraint 1-4
in section 2.2. In addition, it preserves the analyticity of h(k) in the Brillouin zone region
where the energy gap is non-zero. In particular, spectral symmetrization does not affect
Eq.(2.2), i.e,

h̃(k)→
d∑
j=1

kjΓj as k→ 0. (2.11)

In Fig. 2.2 we show an example of spectral symmetrization in one dimension.

(a)

-1.0 -0.5 0.5 1.0
k/π

-3

-2

-1

1

2

3

E(k)

(b)

-1.0 -0.5 0.5 1.0
k/π

-3

-2

-1

1

2

3

E(k)

(c)

-1.0 -0.5 0.5 1.0
k/π

-3

-2

-1

1

2

3

E(k)

Figure 2.2: From the left to the middle panel we replaced the upper half and lower half of
the eigenvalues at each k with their averages. From the middle panel to the right panel
we subtracted the average of all eigenvalues from each eigenvalue at each k.
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The spectral symmetrised h̃(k) can also be written in the form of Eq.(2.6), i.e.

h̃(k) =
ns∑
i=1

õi(k)M s
i +

na∑
j=1

ẽi(k)Ma
i

=
d∑
i=1

õi(k)Γi +
ns∑

i=d+1

õi(k)M s
i +

na∑
j=1

ẽi(k)Ma
i

:= S(k) + A(k). (2.12)

Here the symmetric matrix S(k) includes the first and the second sums, and the anti-
symmetric matrix A(k) includes the third sum.

2.6 The Poincaré-Hopf Theorem

The Poincaré-Hopf theorem (see, e.g., Ref.[12]) applies to a d-component vector function
f(k) = {f1(k), ..., fd(k)} that vanishes at a discrete set of points {kn} on a d-dimensional
torus. The theorem states that the “index” of the k → f(k) map at each kn must sum
to zero. The meaning of the index is the following. Pick a closed ball Dn around each kn
so that kn is the only zero of f(k) in Dn. We define the index at kn to be the “degree” of
the map from the boundary of Dn to the (d− 1)-sphere formed by f̂(k) = f(k)/|f(k)|.
For 3D the degree is the Pontryagin index of f̂(k), and in 2D it is the “winding number”

of f̂(k). For 1D the degree is equal to
(
f̂(kR)− f̂(kL)

)
/2. Fig. 2.3 illustrates the degree

1 map for spatial dimension 1,2 and 3.

k0

(a)
k0

(b)

Figure 2.3: The degree 1 maps f̂(k) for (a) d = 1, (b) d = 2 and (c) d = 3.

Any zero of f(k) that has no mapping degree can be removed by infinitesimal changes.
On the other hand, a zero that has non-zero mapping degree can only be shifted but not
removed by infinitesimal changes. We assert, without proof, that it is always possible to
deform h̃(k) so that õ(k) := {õ1(k), ....õd(k)} only possess discrete zeros while keeping
the symmetrised nature of the energy spectrum. Moreover, around each of the discrete
zero õ(k) exhibits a non-zero mapping degree.

Equation 2.11 implies õ(k) has a degree 1 zero at k = 0. Applying the Poincaré-Hopf
theorem we conclude that the sum of the mapping degree in the rest of the Brillouin
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zone must be equal to −1. Due to the fact that õ(k) = −õ(−k), and the fact that the
degree of mapping is not affected by the simultaneous sign reversal of both õ and k, we
conclude that the sum of the mapping degree in the Brillouin zone excluding all time-
reversal invariant k points must be an even integer. This, in turn, implies the sum of
the mapping degrees across all non-zero time-reversal invariant k points must be an odd
integer. (Note that by the oddness of õ(k), it must vanish at any time reversal invariant
k point.) Thus there must exist, at least, one non-zero time-reversal invariant k point,
say, k0, where the mapping degree is an odd integer.

2.7 The reductio ad absurdum proof

In section 2.5 we have shown that given a lattice-regularized h(k) satisfying constraints
1-4 in section 2.2 there is always a spectral symmetrised h̃(k) which obeys all constraints
of h(k) and is lattice regularized.

In this section we complete the proof of non-regularizability via reductio ad absur-
dum. This proof is achieved in two alternative ways. (a) We prove that if õ(k) satisfies
a special condition (see below), and if h̃(k) obeys constraints 1-4 of section 2.2, the
symmetry-protection hypothesis must be violated. (b) For õ(k) that violates the special
condition, we prove that if h̃(k) satisfies the symmetry-protection hypothesis its energy
gap must also close at k0. This means constraint 3 of section 2.2 is violated. Because
proof (b) involves a case-by-case study of all T̂ , Q̂, Ĉ protected minimal SPN, we leave it
to A.2 and A.3.

The symmetries under consideration are generated by the subsets of {T̂ , Q̂, Ĉ}. Here

Q̂ = i
∑
k∈BZ

χT (k) Q χ(k)

is the total charge operator. It generates the global charge U(1) gauge transformation.
T̂ and Ĉ are the generators of time reversal and charge conjugation symmetries. They
act on the fermion operators according to

T̂ χ(k)T̂−1 = Tχ(−k)

Ĉχ(k)Ĉ−1 = Cχ(k) (2.13)

where T,Q,C are 2n× 2n matrices. In A.2 we list the relevant T,Q,C and all symmetry
allowed {M s

i , i = 1, ..., ns} and {Ma
i , i = 1, ..., na} in Eq.(2.12) for the minimal SPNs in

spatial dimensions 1 ≤ d ≤ 3.

Due to the spectral symmetrization condition, Eq.(2.10), the S(k) andA(k) in Eq.(2.12)
must anticommute. This is because the square of h̃(k) is

h̃(k)2 = S(k)2 + A(k)2 + {S(k), A(k)}, (2.14)
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since {S(k), A(k)} is an anti-symmetric matrix, while h̃(k)2 is proportional to the identity
matrix, it implies

{S(k), A(k)} = 0 for all k. (2.15)

Now apply Eq.(2.15) to k0. Since k0 is a time reversal invariant point S(k0) = 0, which
means {õ1(k0), ..., õd(k0)} = 0.

The simplest case to prove the contradiction is when (i) all d functions {õ1(k0 +
q), ..., õd(k0 + q)} vanish as the same power in q as q → 0, and (ii) all other õi(q),
namely, õd+1(k0 + q), ..., õns(k0 + q), vanish as higher power in q. Under such condition
examining {S(k0 + q), A(k0 + q)} = 0 to the lowest order in q gives us

{A(k0),Γi} = 0, for i = 1, ..., d. (2.16)

Equation 2.16 implies A(k0) acts like a mass term. Since A(k0) = h̃(k0) 6= 0 (oth-
erwise h̃(k) will have more than one gap node), this violates the symmetry-protection
hypothesis. More specifically, including A(k0) in the Hamiltonian

H =

∫
ddx χT (x)

[
−i

d∑
i=1

Γi∂i + A(k0)

]
χ(x) (2.17)

gaps out the node at k = 0.

Under the more general condition, namely when {õ1(k0 + q), ..., õd(k0 + q)} do not
vanish as the same power in q, and/or when õd+1(k0 + q), ..., õns(k0 + q) vanish slower
than, or as slowly as, õ1(k0 + q), ..., õd(k0 + q) the above proof does not apply.

Under such condition we adopt a different proof strategy. Instead, we assume the
symmetry-protection hypothesis holds, and show that it is impossible for h̃(k) to have
gap node at only a single point in the Brillouin zone. This proof is achieved via a case-
by-case study of all T̂ , Q̂, Ĉ symmetry-protected minimal nodal Hamiltonians. Because
of the length of the proof we leave it to A.2 and A.3.

2.8 Final discussion: the open issues

In the preceding discussions we have proven that all minimal nodal Hamiltonians pro-
tected by {T̂ , Q̂, Ĉ} symmetries cannot be regularized on a lattice. Here we list some of
the open issues. The first is the proof for non-minimal symmetry-protected nodal Hamil-
tonians. Such nodal Hamiltonians can be constructed by stacking the minimal nodal
Hamiltonians together. Although it is clear that the non-regularizability of the minimal
nodal Hamiltonians is a necessary condition for the non-regularizability of non-minimal
symmetry-protected nodal Hamiltonians, it remains to be proven that it is a sufficient
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condition. The second issue concerns the assumption that in the spectral symmetrised
Hamiltonian the coefficient functions in front of {Γ1, ...,Γd} exhibit isolated zeros. It
remains to be proven that it is always possible to deform h̃(k) so that the coefficient
functions fulfill such a statement while maintaining the symmetrised spectrum. The
third issue is the proof that a general symmetry-protected gapless Hamiltonian can be
deformed into the single-node Hamiltonian discussed in this paper. We leave these open
issues for future researches.
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Part III

Bosonization of relativistic fermions
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Chapter 3

Introduction of bosonization

Bosonization in (1 + 1)-D has been a very useful theoretical tool. It allows one to map a
theory, where the fundamental degrees of freedom are fermionic, to a theory with bosonic
degrees of freedom. Often, things that can be seen easily in one picture are difficult to see
in the other. The best-known bosonization is the abelian bosonization[13, 14, 15], where
fermions are solitons in the Bose field. A shortcoming of the abelian bosonization, when
fermions have flavor (e.g., spin) degrees of freedom, is that the flavor symmetries are hid-
den. This problem was solved by Witten’s non-abelian bosonization [9]. In this paper we
generalize Witten’s non-abelian bosonization to (2+1) and (3+1) space-time dimensions.

The limitation of our theory is that it only applies to fermions with relativistic dis-
persion. (However, we do not restrict the Fermi velocity to be the speed of light.) In
the absence of a mass gap, such theories have Dirac-like dispersion relation. In one
space dimension, massless fermions are generically relativistic at low energies. In two
and three space dimensions, relativistic massless fermions have been discovered in many
experimental condensed matter systems. Examples include graphene and twisted bilayer
graphene, Dirac and Weyl semi-metal,...etc. Moreover, relativistic massless fermions can
appear in the mean-field theory of strongly correlated systems. Such theory serves as
the starting point of a more rigorous treatment. For example, the “spinon π-flux phase”
mean-field theory sets the stage for a gauge theory description of the Mott insulating
state of cuprates.

Another important area where relativistic massless fermions appear is at the bound-
ary of topological insulators or superconductors, which are simple examples of symmetry-
protected topological (SPT) phases. The classification of topological insulator and super-
conductor[7, 16] can be viewed as asking how many copies of the massless fermion theories
on the boundary are required to couple together before a symmetry-allowed mass term
emerges.

The remaining of this part contains two chapters: Chap. 4 for the bosonization and
Chap. 5 for the applications. Each of them contains several sections, namely, 14 sections
in Chap. 4 and 3 sections in Chap. 5. In each section of 4, we discuss an important
step or input of the bosonization. We shall illustrate the relevant concept with examples
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in the lowest spatial dimension where it first appears. For higher spatial dimensions, we
simply present the result while leaving the details to the appendices. Together, the 14
sections in 4 provide the readers with the idea and technical details of the bosonization.
In Chap. 5 there are 3 sections, each gives an example of how this bosonization can be
applied. The topics include the SU(2) gauge theory of the Mott insulating phase in the
cuprates, the spin effective theory in “bipartite-Mott insulators” in spatial dimensions
1, 2, 3, and the twisted bilayer graphene. Finally, the 11 appendices provide the details
omitted in the main text.
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Chapter 4

Bosonization

4.1 The idea

In this paper, by “Bosonization”, we mean to construct bosonic theories that are
equivalent to theories of massless relativistic fermions. In the rest of the paper, unless
otherwise stated, “massless fermion” always refers to massless relativistic fermion. Here
we stress again that “relativistic massless fermion” does not imply the Fermi velocity is
the speed of light. As mentioned in the introduction, in several (2+1) and (3+1) dimen-
sional condensed matter systems, relativistic massless fermions have been encountered.

We look at the massless fermion theories from two points of view. On one hand, as d
(spatial) dimensional theories, the massless fermion theories have emergent symmetries
and symmetry anomalies. On the other hand, the massless fermions can be realized on
the boundary of d + 1 topological insulators/superconductors where the emergent sym-
metries are the protection symmetries.

If the emergent symmetries are to be respected, the (massless) fermions can not
develop an energy gap. But what if we introduce mass terms (or the bosonic order
parameters), at the expense of breaking the emergent symmetries, then fluctuate the
order parameters smoothly (in both space and time) until the symmetries are restored
? Since the order parameter fluctuations are smooth, we expect the fermion gap to re-
main intact. Under such conditions, we can integrate out the fermions to yield bosonic
non-linear sigma models governing the dynamics of the order parameters. From the per-
spective of the boundary of topological insulators/superconductors, after integrating out
the fermions, what’s left are fluctuating order parameters and the non-linear sigma mod-
els. Because the protection symmetries are restored by the order parameter fluctuations,
the non-linear sigma models are either gapless or possess topological order. It turns out
that the non-linear sigma models have a special type of topological term: the level-one
Wess-Zumino-Witten (WZW) term. Such term encodes the ‘t Hooft anomaly1 associated

1The ‘t Hooft anomaly refers to the obstruction in gauging the continuous part of the emergent
global symmetries. Under such conditions, once gauge field is introduced, the partition function fails to
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with the boundary of topological insulators/superconductors. Due to the WZW term,
the non-linear sigma models are gapless, hence potentially can be equivalent to the mass-
less fermion theories. This equivalence is supported by the fact that the fermion and
boson theories have (1) the same symmetries, (2) the same anomalies, and (3) the boson
theories have fermionic solitons.

As to the question of why do we bother to bosonize? One reason is it allows us to
determine the low energy physics of a non-trivial boson theory by solving the theory of
free massless fermions, and often what is subtle in one picture can become clearer in
the other. Of course, we will not stop at the massless free fermion theories, the goal of
bosonization is to enable one to go further. This will become clear in the applications.

4.2 Emergent symmetries of the massless fermion

theory

A necessary condition for two theories to be equivalent is that they have the same
symmetry. Thus it is important to determine the symmetry of massless fermion theo-
ries. It turns out the symmetries of such theories are rather rich. Because the massless
fermion theories are low energy effective theories, we shall refer to their symmetries as
the emergent symmetries.

In the following, we shall consider massless n-flavor Dirac (or Majorana) fermion theo-
ries in spatial dimensions 1, 2, and 3. Such theories can be split into two main categories,
namely, complex class and real class. A theory in complex classes can be solely written
in terms of complex Dirac fermion fields. Moreover, in the presence of a cutoff, its Hilbert
space is the eigenspace of certain “charge” operator Q. In the following we shall focus on
the Q = 0 eigenspace, i.e., the “charge neutral point” in condensed matter physics. The
charge operator is the generator of a (continuous) global U(1) symmetry. In contrast, a
theory in the real class is expressed in terms of Majorana fermion fields. In this class,
there is no requirement for a conserved charge operator.

4.2.1 Complex class

Now, as an example, let’s determine the emergent symmetry group of a one dimen-
sional massless fermion theory. To this end let’s first consider a complex class, n-flavor,
massless Dirac fermion theory described by the following action

be gauge invariant.
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S0 =

∫
dx0dx1ψ†(∂0 − iΓ1∂1)ψ where (4.1)

Γ1 = ZIn

Here In denotes n × n identity matrix. In the following we shall use the shorthand
I,X, Y, Z,E to denote the Pauli matrix σ0,x,y,z, iσy, and when two matrix symbols stand
next to each other, e.g., ZIn, it means tensor product Z ⊗ In. For complex fermion field
ψ, the possible unitary transformations include

ψ → U · ψ
ψ → C · (ψ†)T

where U and C are unitary matrices. Note that as a discrete transformation (the second
line of the above equations), the charge conjugation transformation does leave the Q = 0
eigenspace invariant 2.

One can easily show that the full emergent symmetries of the action in Eq.(4.1) are

Chiral U(n) symmetry:

U(n)+ × U(n)− : ψ →
(
P+ ⊗ g+ + P− ⊗ g−

)
ψ where g± ∈ U(n)

Charge conjugation symmetry:

C : ψ → (Z ⊗ In) (ψ†)T

Time reversal symmetry (anti-unitary):

T : ψ → (X ⊗ In)ψ (4.2)

Here

P± :=
I ± Z

2
(4.3)

are the projection operators with the subscript ± denoting the “right/left” moving
fermions, respectively. Note that any other anti-unitary symmetry can be written in
terms of the composition of a unitary symmetry and the time reversal transformation
above.

4.2.2 Real class

2However, we do not allow the charge conjugation operator to generate continuous transformations,
since under such transformations ψ will go into the superposition of ψ and ψ†. This violates the require-
ment that the Hilbert space is the eigenspace of the charge operator.
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Next, we consider the one-dimensional massless theory in the real class. In this case,
we write the action in terms of the n-component Majorana fermion field

S0 =

∫
dx0dx1 χT [∂0 − iΓ1∂1]χ where (4.4)

Γ1 := ZIn

For Majorana fermion field, the possible unitary transformations are of the form

χ→ O · χ

where O is an orthogonal matrix. The full emergent symmetries of the action in Eq.(4.4)
are

Chiral O(n) symmetry:

O(n)+ ×O(n)− : χ→
(
P+ ⊗ g+ + P− ⊗ g−

)
χ where g± ∈ O(n)

Time reversal symmetry (anti-unitary):

T : χ→ (X ⊗ In)χ. (4.5)

In D = d+ 1 space-time dimension, the massless fermion actions are

Complex class: S0 =

∫
dDxψ†

[
∂0 − i

d∑
i=1

Γi∂i

]
ψ

Real class: S0 =

∫
dDxχT

[
∂0 − i

d∑
i=1

Γi∂i

]
χ (4.6)

where ψ and χ are complex and Majorana fermion fields, respectively. In table 4.1 we
summarize the emergent symmetries of massless fermion theories in 1,2 and 3 dimensions.
For details see appendix B.1.

4.3 Mass terms and mass manifolds

Mass terms, or order parameters, are fermion bilinears, namely,

ψ†Mψ, or

χTMχ, (4.7)

which opens an energy gap when added to Eq.(4.6). To achieve that, the hermitian mass
matrix M must anti-commute with all the gamma matrices, i.e.,

{M,Γi} = 0 for i = 1, ..., d (4.8)
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(1 + 1)-D Real class Complex class

Γi Z ⊗ In Z ⊗ In

Emergent
symmetries

T = X ⊗ In
O+(n)×O−(n) : P+ ⊗ g+ + P− ⊗ g−
where g+ ∈ O+(n) and g− ∈ O−(n)

T = X ⊗ In
C = Z ⊗ In

U+(n)× U−(n) : P+ ⊗ g+ + P− ⊗ g−
where g+ ∈ U+(n) and g− ∈ U−(n)

(2 + 1)-D Real class Complex class

Γi Z ⊗ In , X ⊗ In Z ⊗ In , X ⊗ In

Emergent
symmetries

T = E ⊗ In
O(n) : I ⊗ g

where g ∈ O(n)

T = Y ⊗ In
C = I ⊗ In
U(n) : I ⊗ g

where g ∈ U(n)

(3 + 1)-D Real class Complex class

Γi ZI ⊗ In , XI ⊗ In, Y Y ⊗ In ZI ⊗ In , XI ⊗ In, Y Z ⊗ In

Emergent
symmetries

T = EZ ⊗ In
U(n) : II ⊗ g1 − IE ⊗ g2

where u = g1 + ig2 ∈ U(n)

T = Y Z ⊗ In
C = IX ⊗ In

U+(n)× U−(n) : IP+ ⊗ g+ + IP− ⊗ g−
where g+ ∈ U+(n) and g− ∈ U−(n)

Table 4.1: A summary of the emergent symmetries of massless fermions in (1 + 1)-D,
(2 + 1)-D, and (3 + 1)-D. Here P± := (I ± Z)/2 as in Eq.(4.3).

We will further require that the gap is flavor independent by imposing

M2 = m2 · 1 (4.9)

Here 1 means the identity matrix of appropriate size. The mass matrices satisfying
Eq.(4.8) and Eq.(4.9) form a topological space – the mass manifold. In the simplest case,
it can be a k-dimensional sphere. In general, it is a closed k-dimensional manifold. If, in
addition to Eq.(4.8), the mass terms are required to be invariant under certain unitary or
anti-unitary transformations, the mass manifold will be affected. In the classification of
the free fermion SPTs, it is important to know what is the homotopy group of the mass
manifold [7].

In the following we give two examples in one spatial dimension, to let the readers get
a feeling of what’s involved in figuring out the mass manifold.

4.3.1 Complex class

Let the U(1) symmetry transforms the field field according to

ψ → eiθψ.
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Then all mass terms in the form

ψ†MCψ,

are invariant under U(1). Here the superscript C is to remind us that this is a mass
matrix in the complex fermion class. MC is an 2n× 2n (2n is the number of component
of ψ) satisfying

MC =
(
MC)†

{MC,Γi} = 0(
MC)2

= m2I2n

Here I2n is the 2n× 2n identity matrix. Associated with the massless fermion action
given in Eq.(4.1), the first two conditions require MC to be of the form

MC = m (X ⊗H1 + Y ⊗H2) (4.10)

where H1 and H2 are n× n hermitian matrices. If we define

QC := H1 + iH2, (4.11)

it can be easily shown that the third condition requires

QC ·
(
QC)† = In.

Therefore the mass manifold for one dimension, in complex class, is the topological space
formed by n× n unitary matrices.

4.3.2 Real class

In this case, the mass term is the Majorana fermion bilinear

χTMRχ

where the matrix MR is an anti-symmetric matrix satisfying

MR =
(
MR)†

{MR,Γi} = 0(
MR)2

= m2I2n

The first two conditions require
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MR = m (Y ⊗ S +X ⊗ (iA))

where S and A are real symmetric and anti-symmetric matrix, respectively. If we define

QR := S + A

the last condition requires

QR ·
(
QR)T = In.

Thus, the mass manifold is the space of n× n orthogonal matrices.

In table 4.2 we summarize the mass manifolds for 1,2 and 3 dimensions. The detailed
derivations are left in appendix B.2.

4.4 The symmetry anomalies of the fermionic

theories

Emergent symmetries of a low-energy effective theory can be broken when a cutoff
is imposed. In this section, we review the symmetry anomalies of the massless fermion
theories.

4.4.1 The ’t Hooft anomaly of continuous symmetry

(1 + 1)-D Real class Complex class

Γi Z ⊗ In Z ⊗ In

Mass manifold
M = Y ⊗ S +X ⊗ (iA)

where QR = S +A ∈ O(n)
M = X ⊗H1 + Y ⊗H2

where QC = H1 + iH2 ∈ U(n)

(2 + 1)-D Real class Complex class

Γi Z ⊗ In , X ⊗ In Z ⊗ In , X ⊗ In

Mass manifold
M = Y ⊗ S

where QR = S ∈
⋃n
l=0

O(n)
O(l)×O(n−l)

M = Y ⊗H
where QC = H ∈

⋃n
l=0

U(n)
U(l)×U(n−l)

(3 + 1)-D Real class Complex class

Γi ZI ⊗ In , XI ⊗ In, Y Y ⊗ In ZI ⊗ In , XI ⊗ In, Y Z ⊗ In

Mass manifold
M = Y X ⊗ S1 + Y Z ⊗ S2

where QR = S1 + iS2 ∈ U(n)
O(n)

M = Y X ⊗H1 + Y Y ⊗H2

where QC = H1 + iH2 ∈ U(n)

Table 4.2: A summary of the mass manifolds for the real and complex class fermions in
(1 + 1)-D, (2 + 1)-D, and (3 + 1)-D.
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The emergent symmetries discussed in the section 4.2 can suffer the ‘t Hooft anomaly”.
A theory is said to have the ‘t Hooft anomaly with respect to global symmetry group G if
there are obstructions against gauging G [17]. In the following we shall use the (1 + 1)-D
complex class to illustrate the ideas.

The simplest example is the chiral anomaly associated with the (1 + 1)-D complex
class theory defined in Eq.(4.6). This theory has emergent global U+(n) × U−(n) sym-
metry. However, when one tries to gauge this symmetry, an anomaly is encountered.
Namely, in the presence of gauge field with non-zero curvature, the theory can not be
made to conserve the Noether’s current associated with the full U+(n)×U−(n) symmetry.

Starting from the massless fermion theory, we can introduce the U+(n)×U−(n) gauge
field (i.e., “gauging” U+(n)× U−(n)) via minimal coupling. Moreover, we can define the
effective gauge action after integrating out fermions,

W [A+, A−] = − ln

[∫
DψDψ̄e−S[ψ,ψ̄,A+,A−]

]
, where

S[ψ, ψ̄, A+, A−] =

∫
d2x ψ̄ [iγµ (∂µ + iP+ ⊗ A+,µ + iP− ⊗ A−,µ)]ψ. (4.12)

Here A± are the n × n matrix value gauge fields associated with U±(n), and P± are
the projection operators selecting the chiral fermion modes defined in Eq.(4.3). Adler[2],
Bell, and Jackiw[3] first showed that in the presence of a diagonal (i.e., A+ = A−) U(1)
gauge field, the axial current is not conserved. Shortly after, this was generalized by
Bardeen [4] who showed that under infinitesimal gauge transformation, W in Eq.(4.12)
is not gauge invariant, namely,

δW := W [A+ + dε+, A− + dε−]−W [A+, A−]

= − i

4π

∫
M

tr [A+dε+ − A−dε−] . (4.13)

This is the ‘t Hooft anomaly.

This phenomenon is also connected to the physics of SPT. In odd space dimension,
this connection constitutes the so-called “anomaly in-flow picture” [6]. The most famil-
iar example is for n = 1 in 1D. In this case, we can view the 1D (non-chiral) massless
fermions as the edge modes of two Chern insulators stacked together, with each Chern
insulator having Hall conductivity σxy = ±1 (see Fig. 4.1). In the presence of a time-
dependent flux associated with the diagonal gauge field, there will be the electric fields
in the azimuthal direction. This induces a Hall current causing the charge to flow from
the outer to the inner edge on one layer, and from the inner to the outer edge on the
other layer. Viewing from the edge (one-dimensional world), the chiral current J+ − J−
is not conserved. This manifests the chiral anomaly, namely gauging the diagonal U(1)
symmetry breaks axial U(1) symmetry - an example of the ‘t Hooft anomaly.



CHAPTER 4. BOSONIZATION 27

Figure 4.1: Two layers of annulus shape Chern insulators with σxy = ±1 stacked together.
The outer edge harbors the 1D n = 1 non-chiral massless fermion modes. The green and
red arrows represent the opposite chiralities. When a time-dependent diagonal U(1) flux
pierces the inner hole, the induced electric field in the azimuthal direction causes a Hall
current (dashed arrows) flowing from inner to outer boundary in the top layer and from
outer to inner boundary in the bottom layer. As the result, the chiral current J+ − J−
is not conserved viewed from the outer edge alone. This system is realized as the “spin
Hall insulator” experimentally.

Although the U+(n)× U−(n) anomaly makes it impossible to gauge the whole group
consistently, it’s possible to gauge a subgroup of it. For example, if we only gauge the
diagonal subgroup U(n) within U+(n)× U−(n), i.e., if

A := A+ = A−

ε := ε+ = ε−

then the two terms in Eq.(4.13) cancel out, hence the theory is anomaly free with respect
to diagonal U(n) subgroup.

4.4.2 A heuristic way to determine the ’t Hooft anomaly

The discussions presented above require rather involved field theory calculations.
However, there is a heuristic way to get the correct answer. The basis of this heuristic
argument is the fact that if a theory can be defined on a lattice with all its (continuous)
symmetry, then these symmetries can be gauged without anomaly. Again, the above state-
ment is suggested by the SPT physics, namely, the boundary modes (which has ‘t Hooft
anomaly) of an SPT can not be defined on a lattice in the dimension of the boundary. In
the following we shall again use the (1 + 1)-D complex class to illustrate the ideas.

Under Wilson’s regularization[18](see later), whether a theory with global symmetry
group G can be defined on a lattice, is determined by whether there is a mass term that
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respects G 3. Thus, a theory with the U+(n) × U−(n) anomaly, means no mass term
is U+(n) × U−(n) symmetric. Again, this is the condition that the gaplessness of the
boundary modes is symmetry protected.

First, we show that no mass term is allowed if U+(n) × U−(n) symmetry is to be
respected. Under U+(n)× U−(n) the fermion field transform as

ψ → (P+ ⊗ g+ + P− ⊗ g−)ψ where P± =
I ± Z

2
.

Under such transformation, there is, e.g., no mass term preserving the axial UA(1) gen-
erated by ZIn. This is because according to table 4.2 the mass terms have the form

ψ† (X ⊗H1 + Y ⊗H2)ψ.

In fact, the anomaly is not only in the axial UA(1) part. To see that, let’s consider n > 1.
The diagonal U(n) symmetry requires that both H1 and H2 be proportional to the iden-
tity matrix. However, such mass term would break U+(n).

Now we show that if we relax the condition to only demanding the diagonal U(n)
symmetry, there is a mass term. For example,

Mreg = X ⊗ In.

This means that we can then write down a lattice model in momentum space using
Wilson’s regularization[18]

Ĥ =
∑
k∈BZ

ψ†k [sin k Γ1 + (1− cos k)Mreg]ψk

where “BZ” stands for the Brillouin zone. We can Fourier transform the above hamilto-
nian back to the real space which gives us a lattice tight-binding model. The diagonal
U(n) gauge field can then be introduced via Peierls’ substitution

ψ†jψi → ψ†je
iAi,jψi

for two adjacent sites i, j. Here Ai,j is the gauge connection from site i to j.

4.4.3 Discrete global symmetry anomaly

A (global) discrete symmetry in a fermion theory can also be broken by regularization.
In this subsection, we shall review the simplest example – the “parity anomaly”[20, 21]

3Using Wilson’s regularization method [18], the existence of such a mass term is a sufficient condition
for the theory to be regularizable on a lattice. However, it is more involved to show that it is the necessary
condition [19].
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of the (2 + 1)-D Dirac fermions in the complex class.

When the anomaly-free U(n) symmetry is gauged, the low energy fermion action is
given by

S =

∫
dτ d2xψ† [(∂0 + i I ⊗ A0)− iΓi (∂i + i I ⊗ Ai)]ψ (4.14)

where Γ1 = ZIn, Γ2 = XIn

Here Aµ is the n×n matrix-valued U(n) gauge field. Under the global emergent symme-
tries listed in table 4.1, the gauged field transforms as

U(n): Aµ → g · Aµ · g†

Time reversal: Aµ → − (Aµ)∗

Charge conjugation: Aµ → − (Aµ)T (4.15)

It’s easy to check that the low energy action Eq.(4.14) is invariant under the combined
transformation of the fermion and the gauge field.

As we saw in the preceding subsection, the condition for a symmetry to be anomaly-
free is the theory can be regularized while preserving the symmetry. In the present case,
to preserve U(n) we need to choose a regularization that is U(n) invariant. In Wilson’s
regularization[18] this amounts to choose a U(n) invariant regularization mass. The most
general mass term is given by

M = mY ⊗H,
where H is an n × n hermitian matrix with H2 = In. When acted upon by the global
U(n),

M → (I × g)† ·M · (I × g)

(see table 4.1). Requiring it to be invariant forces us to choose

Mreg = mY ⊗ In. (4.16)

Under Wilson’s regularization the momentum space Hamiltonian of the massless Dirac
fermion (without gauge field) read,

Ĥ =
∑
k∈BZ

ψ†k [sin k1Γ1 + sin k2Γ2 + (2− cos k1 − cos k2)Mreg]ψk (4.17)

To incorporate the gauge field, we Fourier transform the above equation back to real
space and introduce the gauge field by Peierls’ substitution. This is all good as far as
regularizing Eq.(4.14) is concerned.

Under the action of the discrete symmetries, however

Charge conjugation: Mreg → − (I ⊗ In) ·MT
reg · (I ⊗ In) = Mreg

Time reversal: Mreg → (Y ⊗ In) ·M∗
reg · (Y ⊗ In) = −Mreg
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Therefore charge conjugation is respected by the regularization, however, time-reversal
symmetry is not.

It was first shown by Redlich [20, 21] that one can detect the time-reversal anomaly
through the effective U(n) gauge action after integrating out the fermions. We reproduce
his argument in the following. In momentum space (the Brillouin zone) we have four low
energy Dirac fermions, each around a time-reversal invariant k points:

k = (0, 0) + q : Ĥ(0,0) ≈
∑

small q

ψ†(0,0)+q [q1 Γ1 + q2 Γ2]ψ(0,0)+q (4.18)

k = (π, 0) + q : Ĥ(π,0) ≈
∑

small q

ψ†(π,0)+q [−q1 Γ1 + q2 Γ2 + 2mMreg]ψ(π,0)+q

k = (0, π) + q : Ĥ(0,π) ≈
∑

small q

ψ†(0,π)+q [q1 Γ1 − q2 Γ2 + 2mMreg]ψ(0,π)+q

k = (π, π) + q : Ĥ(π,π) ≈
∑

small q

ψ†(π,π)+q [−q1 Γ1 − q2 Γ2 + 4mMreg]ψ(π,π)+q

Among the four, the first is massless and preserves the time-reversal symmetry. The
remaining three, however, acquire a large regularization mass, which is time-reversal
breaking. In the presence of the U(n) gauge field, these massive Dirac fermions would
each contribute a Chern-Simons effective gauge action after the fermions are integrated
out[21]. In particular, for each massive fermion the effective gauge action is

1

2
× (±1)× i

4π

∫
AdA,

where the sign depends on the product of the signs in front of q1Γ1, q2Γ2, and Mreg.
Combing them, the massive fermions contribute the following breaking effective action(

−1

2
− 1

2
+

1

2

)
m

|m|
i

4π

∫
tr

[
AdA+

2i

3
A3

]
= − i

8π

∫
tr

[
AdA+

2i

3
A3

]
. (4.19)

This is time-reversal odd, as can be explicitly shown by replacing Aµ → − (Aµ)∗ and
complex conjugating the action. As to the massless fermions near k = (0, 0), based on
the fact that the first line of Eq.(4.18) is time reversal invariant so should their effec-
tive gauge action. Thus after regularization, the time-reversal symmetry of Eq.(4.14) is
broken! As expected, charge conjugation is not broken by the regularization. Since T
is broken while C is not, based on the CPT invariance, the parity should also be broken 4.

4In two space dimension, the ”parity” transformation P is realized by spatial reflection. Take the
reflection in x-direction as an example, the fermion field transforms according to

ψ(τ, x, y)
P−→ XIn · ψ(τ,−x, y).

It is easy to see the that the regularization mass defined in Eq.(4.16) changes sign under P . However, the
combined CPT transformation leaves it invariant. Thus, there is no CPT anomaly. The same conclusion
can be drawn by looking at the parity transformation of the effective gauge action. Under P the gauge
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In table 4.3, we summarize the maximal anomaly-free continuous symmetry and the
discrete symmetry that is broken after regularization. The only discrete symmetry which
possesses anomaly occurs in (2 + 1)-D for the time-reversal symmetry 5. More detailed
discussions are left to appendix B.3.

4.5 Breaking the emergent symmetry by the mass

terms

The mass terms discussed in the last section necessarily break some of the emergent
symmetries in table 4.1. This is because so long as the full emergent symmetries remain
unbroken, the fermions will remain massless. In the rest of this section, we use one-
dimensional examples to illustrate this.

4.5.1 Complex class

The mass terms for the complex class in (1 + 1)-D can be written as

ψ† (X ⊗H1 + Y ⊗H2)ψ = ψ†
[

0
(
QC
)†

QC 0

]
ψ.

When acted upon by the emergent symmetries in Eq.(4.2), QC transforms as

U+(n)× U−(n) : QC → g†− ·QC · g+ (4.20)

Charge conjugation : QC →
(
QC)∗

Time reversal : QC →
(
QC)T .

field transforms as

Aτ (τ, x, y)
P−→Aτ (τ,−x, y)

Ax(τ, x, y)
P−→−Ax(τ,−x, y)

Ay(τ, x, y)
P−→Ay(τ,−x, y)

Again, Eq.(4.19) changes sign under P , but is invariant under CPT .
5Note that we have made a particular choice for the anti-unitary (time reversal) and charge con-

jugation generators in table 4.1. This choice is not unique because a new choice can be obtained by
compounding the C and the T we used with other unitary symmetries. For example, in the case of
complex class in (1 + 1)-D, one can compound the T and C with a chiral U+(n)×U−(n) transformation.
Had we done so, these discrete symmetries would also be anomalous. In (1 + 1)-D and (3 + 1)-D we
specifically choose the generators of C and T to be anomaly-free after the maximal anomaly-free part
of the continuous symmetry is gauged. On the other hand, it can be shown (see appendixB.3) that in
(2+1)-D, there is no choice of T which will not be broken by a regularization that respects all continuous
symmetries.



CHAPTER 4. BOSONIZATION 32

(1 + 1)-D Real class Complex class

Global Symmetry

Discrete
Anti-unitary: T 2 = +1
Continuous unitary

Chiral O(n)×O(n)

Discrete
Anti-unitary: T 2 = +1

Unitary: C2 = +1
Continuous unitary

Chiral U(n)× U(n)

Aanomaly free part Diagonal O(n), T Diagonal U(n), T , C

(2 + 1)-D Real class Complex class

Global Symmetry

Discrete
Anti-unitary: T 2 = −1
Continuous unitary

O(n)

Discrete
Anti-unitary: T 2 = −1

Unitary: C2 = +1
Continuous unitary

U(n)

Anomaly free part O(n) U(n), C

(3 + 1)-D Real class Complex class

Global Symmetry

Discrete
Anti-unitary: T 2 = −1
Continuous unitary

U(n)

Discrete
Anti-unitary: T 2 = −1

Unitary: C2 = +1
Continuous unitary

Chiral U(n)× U(n)

Anomaly free part O(n), T Diagonal U(n), T , C

Table 4.3: The summary of the global symmetry groups and the anomaly-free parts of the
symmetry groups of the massless fermions (and the bosonized non-linear sigma models)
in (1 + 1)-D,(2 + 1)-D, and (3 + 1)-D.

Thus a space-time constant QC breaks the emergent symmetry because both g+ and
g− can be arbitrary unitary matrices.

4.5.2 Real class

For the real class in (1 + 1)-D, the mass term can be written as

χ† [Y ⊗ S +X ⊗ (iA)]χ = χT
[

0 −i
(
QR
)T

iQR 0

]
χ. (4.21)

When the emergent symmetries in Eq.(4.5) acts on it QR transforms as

O+(n)×O−(n) : QR → gT− ·QR · g+

Time reversal : QR →
(
QR)T .
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Therefore a space-time non-zero QR breaks the emergent symmetry because both g+

and g− can be arbitrary orthogonal matrices.

4.6 Restoring the emergent symmetries

So far we have seen that space-time constant QC or QR breaks the emergent sym-
metry. But what if QC and QR fluctuates in space-time? As in statistical mechanics,
when the order parameters fluctuate, the broken symmetry can be restored. Likewise,
if we fluctuate QC and QR over the appropriate mass manifold we expect the emergent
symmetry to be restored.

Our approach is conceptually similar to that in Ref.[22, 23] where, on the surface of
the topological insulator, the fluctuating superconducting order parameters restore the
symmetries of the massless fermions. The important difference is that the required order
parameter fluctuation in Ref.[22, 23] is not smooth, because it involves the proliferation
of superconducting vortices. Since the structure of vortex cores is important in that
approach, and such structure depends on the short-distance physics, this approach is
constrained to the surface of SPTs where regularization is not an issue. In contrast, our
goal is to bosonize the low energy effective theory, where the emergent symmetry is nec-
essarily broken at short distances (due to anomaly). As the result, we restrict our order
parameter to be smooth in space and time, so that they act on the low energy theory only.

But what does “appropriate mass manifold” mean? For complex class in (1 + 1)-D,
QC needs to fluctuate over the space formed by n × n unitary matrices, or U(n). Such
a space is connected and has a single component. On the other hand for the real class
in 1D, QR needs to fluctuate in the space formed by n× n orthogonal matrices, or O(n).
This space has two disconnected components, corresponding to det[QR] = ±1. It’s only
when QR fluctuates in both components with the equal statistical weight we can restore
the emergent symmetry.

In (3+1)-D the mass manifold consists of a single component, in which QC,R fluctuate.

However, in (2+1)-D the mass manifold in complex class is ∪nl=0
U(n)

U(l)×U(n−l) which contains

n+ 1 disconnected components. Here QC needs to fluctuate in the component l = n/2 in
order to restore the time reversal symmetry6 In real class, the mass manifold in two space
dimension is ∪nl=0

O(n)
O(l)×O(n−l) , and QR needs to fluctuate in the l = n/2 component in order

to restore the time reversal symmetry. We summarize the results for higher dimensions
in table 4.4 and leave the detail in appendix B.2.

6Of course this requires n to be even.
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(1 + 1)-D Real class Complex class

Symmetry transformations
of QC,R

T : QR →
(
QR)T

O+(n)×O−(n) :
QR → gT− ·QR · g+

T : QC →
(
QC)T

C : QC →
(
QC)∗

U+(n)× U−(n) :

QC → g†− ·QC · g+
The mass manifold required

to restore the full
emergent symmetries

O(n) U(n)

(2 + 1)-D Real class Complex class

Symmetry transformations
of QC,R

T : QR → −QR

O(n) : QR → gT ·QR · g

T : QC → −
(
QC)∗

C : QC →
(
QC)T

U(n) : QC → g† ·QC · g

The mass manifold required
to restore the

full emergent symmetries

O(n)
O(n/2)×O(n/2)

for n ∈ even

U(n)
U(n/2)×U(n/2)

for n ∈ even

(3 + 1)-D Real class Complex class

Symmetry transformations
of QC,R

T : QR →
(
QR)∗

U(n) : QR → uT ·QR · u

T : QC →
(
QC)∗

C : QC →
(
QC)T

U+(n)× U−(n) :

QC → g†− ·QC · g+
The mass manifold required

to restore the
full emergent symmetries

U(n)
O(n)

U(n)

Table 4.4: The summary of the symmetry transformations of QR,C, and the mass mani-
folds in which the QR,C fluctuations can restore the full emergent symmetries.

4.7 The conditions for the effective theory being

bosonic

In order to achieve bosonization, the fermions in Eq.(4.1) and Eq.(4.4) must not ap-
pear in the low energy theory. To ensure that, we need to impose some conditions on
the space-time dependence of QC and QR. Namely, as functions of x and τ , QC(τ,x)
and QR(τ,x) needs to fluctuate smoothly (comparing with the length and time scale set
by m). Under such conditions, the original fermions can be integrated out, yielding a
non-linear sigma model for the order parameters. The idea is similar to that encountered
in magnetism, where electrons form local moments. After integrating out the electrons
we arrive at an effective theory – a non-linear sigma model describing the fluctuations of
the local moments in space and time.
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4.8 Fermion integration

In this section, using (1 + 1)-D as an example, we shall describe how to integrate out
the fermions. In higher spatial dimensions we shall present the results while leaving the
details in appendix B.4.

4.8.1 Complex class

The fermion action with a space-time dependent mass term reads

S =
∫
dτ dxψ†

[
∂0 − iΓ1∂1 +mM̂(τ,x)

]
ψ (4.22)

where and Γ1 = ZIn, and

{Γ1, M̂(t,x)} = 0, and M̂(τ,x)2 = I2n. (4.23)

The M̂(τ,x) that satisfies Eq.(4.23) is given by

M̂(τ,x) = m [X ⊗H1(τ,x) + Y ⊗H2(τ,x)] ,

For smooth order parameter configurations M̂(τ,x), the fermion integration can be
done via gradient expansion (See [24] for example. We shall convert the action to a
Lorentz invariant form and present the general formalism applicable for all spatial di-
mensions in appendix B.4). The resulting effective action consists of two types of terms:
the non-topological and topological terms. For the non-topological term (the stiffness
term) we shall keep the one with the smallest number of space-time derivatives (they are
the most relevant in the renormalization group sense). The topological term is dimen-
sionless. In (1 + 1)-D, explicit fermion integration yields (see appendix B.4 for details)

W [QC] =
1

8π

∫
M

d2x tr
[
∂µQ

C†∂µQC]− 2πi

24π2

∫
B

tr
[ (
Q̃C†dQ̃C

)3 ]
, (4.24)

where QC is given in Eq.(4.10) and Eq.(4.11). The first term in Eq.(4.24) is the stiffness
term and the second is the Wess-Zumino-Witten (WZW) topological term. Eq.(4.24)
reproduces the level-1 U(n) (abbreviated as U(n)1) WZW model in Witten’s non-abelian
bosonization [9]. Note that the symbol “tr” means tracing over the n × n portion of
the matrix. (In doing fermion integration, we have already traced out the matrix part
involving γµ’s). In Eq.(4.24)M is the space-time manifold, and B is the extension of the
space-time manifold M so that

∂B =M.



CHAPTER 4. BOSONIZATION 36

In addition, Q̃C(u, x) is an extension field of QC(x) so that

Q̃C(u = 1, x) = QC(x) and

Q̃C(u = 0, x) = constant

In the equation above, “constant” means a space-time independent matrix.

For simplicity we shall focus on the space-time manifold M = SD so that B is a
D + 1-dimensional disk. The reason for this choice is to ensure the extension Q̃C(u, x)
exists. Because we require a smooth evolution from QC(u = 0, x) to Q̃C(u = 1, x) (x
denotes (τ,x)), it means the mapping

QC : (u = 1, x)→ mass manifold

is homotopically equivalent to the mapping

QC : (u = 0, x)→ mass manifold.

Since Q̃C(u = 0, x) = constant is homotopically trivial, a necessary condition for the
smooth extension to exist is

πD(mass manifold) = 0,

i.e., all smooth mappings from the space-time manifold to the mass manifold are homo-
topically trivial. It turns out this condition is met for sufficiently large n in all spatial
dimensions. We shall return to this point in appendix B.2, B.4, and B.8. For (1 + 1)-D,
π2(U(n)) = 0 for any n.

For the WZW term to be well defined, it had better not depend on the extension.
When there are two different extensions on the D + 1 dimensional disk, say one defined
by Q̃C

1 on B1 and the other by Q̃C
2 on B2, the difference in the WZW term associated with

these two extensions is given by

∆WWZW [Q̃C] = − 2πi

24π2

∫
B1∪(−B2)

tr
[ (
Q̃C†dQ̃C

)3 ]
(4.25)

where −B2 is the mirror reflection of B2. Since B1 ∪ (−B2) = SD+1, removing the
factor 2πi, Eq.(4.25) is the topological invariant associated with π2+1(mass manifold).
It turns out that for all relevant cases, πD+1(mass manifold) = Z (see appendix B.2).
In (1 + 1)-D, π3(U(n)) = Z for n ≥ 2 (n = 1 corresponds to flavorless or spinless
fermion where the bosonization is abelian.). The coefficient of the WZW term renders
∆WWZW = 2πi × integer. The fact that the WZW term is 2πi times the topological
invariant implies the level (k) is 1. After the exponentiation, the phase factor associated
with the WZW term is well-defined.
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4.8.2 Real class

The 1+1-D Majorana fermion action with a space-time dependent mass read

S =

∫
dτ dxχT

[
∂0 − iΓ1∂1 +mM̂(τ,x)

]
χ (4.26)

where

Γ1 = ZIn and M̂(τ,x) = [Y ⊗ S +X ⊗ (iA)] .

Following the same steps discussed in the last subsection, fermion integration yields
the following effective action (see appendix B.4)

W [QR] =
1

16π

∫
M

d2x tr
[
∂µQ

RT∂µQR]− 2πi

48π2

∫
B

tr
[ (
Q̃RTdQ̃R

)3 ]
. (4.27)

Eq.(4.27) is the O(n)k=1 WZW model. Again, Q̃R(u, x) is extension field of QR(x), which
exists if πD(mass manifold) = 0. In (1 + 1)-D, π2(O(n)) = 0 for n ≥ 3. Here the differ-
ence in the WZW term associated with two different extension is the topological invariant
associated with π3(O(n)) = Z for relevant n (see appendix B.2). The coefficient of the
WZW term renders ∆WWZW = 2πi × integer hence yields the same phase factor upon
exponentiation. Again, the fact that the WZW term is 2πi times the topological invariant
implies the level (k) is 1.

Thus, for both complex and real classes, the bosonization of massless fermion is the
non-linear sigma model with WZW term. This reproduces Witten’s non-abelian bosoniza-
tion results, which was obtained using a totally different method (the current algebra).

The above bosonization scheme can be straightforwardly generalized to higher di-
mensions. One thing that needs some care is the fact that the homotopy group of
the mass manifold depends on n. For n exceeds certain value πD+1(mass manifold)
= Z. In that case fermion integration does lead to a nonlinear sigma model with
k = 1 WZW term. However, for small n (before the “homotopy stabilization”) some-
times, e.g., πD+1(mass manifold) = 0. We shall discuss one such instance in appendix
B.8. Fortunately, for the vast majority of applications n is sufficiently big so that
πD+1(mass manifold) = Z.

4.9 Non-linear sigma models in (2 + 1)-D and

(3 + 1)-D

As mentioned, the bosonization strategy described in the preceding section can be
applied to two and three spatial dimensions. To facilitate later discussions, including the
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applications in (2 + 1)-D and (3 + 1)-D, the explicit form of the nonlinear sigma models
in table 4.5 are given here. For briefness, we shall only include the results for sufficiently
large n so that πD+1(massmanifold) = Z. As discussed earlier, under such conditions the
non-linear sigma model possesses a WZW term.

4.9.1 Complex class in (2 + 1)-D

For Dirac fermions with n flavors in the complex class, after bosonization the sigma
model matrix field (or the order parameter) lives in the space of complex Grassmannian,
namely,

QC(x) ∈ U(n)

U(n/2)× U(n/2)
.

This means that at any space-time point x, QC(x) is an n × n hermitian matrix with
half of the eigenvalues +1, and the other half −1. One can specify QC(x) by the unitary
matrix, C(x), which renders QC(x) diagonalized upon similarity transformation, i.e.,

QC(x) = C(x) ·
(
In/2 0

0 −In/2

)
· C†(x).

Obviously two different C(x)s related by

C ′(x) = C(x) ·
(
g1(x) 0

0 g2(x)

)
,

where g1(x), g2(x) ∈ U(n/2), will lead to identical QC(x). Due to this redundancy, the

order parameter lives in the quotient space U(n)
U(n/2)×U(n/2)

.

Explicit fermion integration yields the following non-linear sigma model

W [QC] =
1

2λ3

∫
M

d3x tr
[(
∂µQ

C
)2]
− 2πi

256π2

∫
B

tr
[
Q̃C

(
dQ̃C

)4 ]
, (4.28)

where λ3 is a parameter having the dimension of length. In the limit where the short
distance cutoff is zero,

λ3 =
8π

m
(4.29)

where m is the fermion energy gap.

The first term in Eq.(4.28) is the stiffness term and the second is the level-1 (k = 1)
Wess-Zumino-Witten term. Q̃C(x, u) is the extended field of QC(x), which exist because

π3( U(n)
U(n/2)×U(n/2)

) = 0 for n ≥ 4. The difference in the WZW term associated with two dif-

ferent extensions is 2πi times the topological invariant associated with π4( U(n)
U(n/2)×U(n/2)

) =
Z. Consequently upon exponentiation, different extensions yield the same phase factor.
(To recapitulate the explanation, the readers are referred to subsection 4.8.1.)
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4.9.2 Real class in (2 + 1)-D

For massless n-flavor Majorana fermions in the real class, the fluctuating order pa-
rameters QR(x) lives in the space of real Grassmannian, namely,

QR(x) ∈ O(n)

O(n/2)×O(n/2)
.

This means that at any space-time point x, QR(x) is an n × n real symmetric matrix,
with half of the eigenvalues +1, and the other half −1. One can specify QR(x) by the
orthogonal matrix, R(x), required to render QR(x) diagonalized, namely,

QR(x) = R(x) ·
(
In/2 0

0 −In/2

)
·RT (x).

Two different R(x)s related by

R′(x) = R(x) ·
(
g1(x) 0

0 g2(x)

)
,

where g1(x), g2(x) ∈ O(n/2), will lead to identical QR(x). Due to this redundancy, the

order parameter lives in the quotient space O(n)
O(n/2)×O(n/2)

.

Explicit fermion integration leads to the following non-linear sigma model

W [QR] =
1

4λ3

∫
M

d3x tr
[(
∂µQ

R
)2]
− 2πi

512π2

∫
B

tr
[
Q̃R

(
dQ̃R

)4 ]
. (4.30)

Again, λ3 has the dimension of length, and in the limit where the short-distance cutoff
is zero λ3 is given by Eq.(4.29).

The first term in Eq.(4.30) is the stiffness term and the second is the Wess-Zumino-
Witten topological term of level k = 1. Q̃R(x, u) is the extended field of QR(x), which

exist because π3( O(n)
O(n/2)×O(n/2)

) = 0 for n ≥ 6. The difference in the WZW term associ-
ated with two different extensions is 2πi times the topological invariant associated with
π4( O(n)

O(n/2)×O(n/2)
) = Z. Consequently upon exponentiation different extensions yield the

same phase factor. (Again, to recapitulate the explanation, the readers are referred to
subsection 4.8.2.)

4.9.3 Complex class in (3 + 1)-D

For the n-flavor massless Dirac fermions in the complex class, the fluctuating order
parameters QC(x) lives in the space of n× n unitary matrices, namely,

QC(x) ∈ U(n).
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Explicit fermion integration leads to the following non-linear sigma model

W [QC] =
1

2λ2
4

∫
M
d4x tr

[
∂µQ

C∂µQC†]− 2π

480π3

∫
B

tr
[ (
Q̃C†dQ̃C

)5 ]
, (4.31)

where λ4 has the dimension of length. Using dimensional regularization λ4 is given by

1

λ4

=

[
Γ(0+)m2

8π2

]1/2

, (4.32)

signifying that λ4 is cutoff-dependent. Here Γ(0+) is the gamma function evaluated at
0+ from dimensional regularization (see appendix B.4 for the details.

The first term in Eq.(4.28) is the stiffness term and the second is the level k = 1
Wess-Zumino-Witten term. Q̃C(x, u) is the extended field of QC(x), which exist because
π4(U(n)) = 0 for n ≥ 3. The difference in the WZW term associated with two different
extensions is 2πi times the topological invariant associated with π5(U(n)) = Z. Conse-
quently upon exponentiation different extensions yield the same phase factor. (Again, to
recapitulate the explanation, the readers are referred to subsection 4.8.1.)

4.9.4 Real class in (3 + 1)-D

For the n-flavor massless Majorana fermions in the complex class, the fluctuating
order parameters QR(x) lives in the space of “real Lagrangian Grassmannian”, namely,

QR(x) ∈ U(n)

O(n)
.

This means that at any space-time point x, QR(x) is an n×n symmetric unitary matrix.
According to the Autonne decomposition (e.g., corollary 2.6.6 of [25]), any symmetric
unitary matrix can be decompose into

QR(x) = W (x) ·W T (x),

where W (x) is unitary. Hence, two different W (x)s related by

W ′(x) = W (x) · g(x),

where g(x) ∈ O(n), will lead to identical QR(x). Due to this redundancy, the order pa-

rameter lives in the quotient space U(n)
O(n)

.

Explicit fermion integration yields the following non-linear sigma model

W [QR] =
1

4λ2
4

∫
M
d4x tr

[
∂µQ

R∂µQR†]− 2π

960π3

∫
B

tr
[ (
Q̃R†dQ̃R

)5 ]
. (4.33)
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The first term in Eq.(4.30) is the stiffness term and the second is the level k = 1
Wess-Zumino-Witten topological term. Q̃R(x, u) is the extended field of QR(x), which
exist because π4(U(n)/O(n)) = 0 for n ≥ 5. The difference in the WZW term associ-
ated with two different extensions is 2πi times the topological invariant associated with
π5(U(n)/O(n)) = Z. Consequently upon exponentiation different extensions yield the
same phase factor. (Again, to recapitulate the explanation, the readers are referred to
subsection 4.8.2.)

In table 4.5 we summarize the n values above which πD+1(mass manifold) is stabilized.
We shall discuss some of the small n cases which are relevant to our applications in
appendix B.8.

4.10 Non-linear sigma models as the effective

theories of interacting fermion models

As we have seen in section 4.9, while the coefficient in front of the stiffness term in
the non-linear sigma model is dimensionless in (1+1)-D, those in (2+1)-D and (3+1)-D
are dimensionful parameters. This begs the question of what are these parameters? and
for what values of these parameters are the non-linear sigma models equivalent to the
massless fermion theories? In addition, for D = 2 + 1 the mass manifold consists of more
than one connected components. What kind of model can realize phases correspond to
different components of the mass manifold? In the following, we answer these questions
by focusing on the complex class. It is straightforward to generalize the result to the real
class.

Real class complex class

(1 + 1)-D
O(n)1 WZW term
stabilized for n ≥ 3

U(n)1 WZW term
stabilized for n ≥ 2

(2 + 1)-D

[
O(n)

O(n/2)×O(n/2)

]
1

WZW term

stabilized for n ≥ 6

[
U(n)

U(n/2)×U(n/2)

]
1

WZW term

stabilized for n ≥ 4

(3 + 1)-D
[U(n)/O(n)]1 WZW term

stabilized for n ≥ 5
U(n)1 WZW term
stabilized for n ≥ 3

Table 4.5: The n values above which the πD+1(mass manifold) is stabilized.
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As listed in table 4.2, the mass terms correspond to QC are given by

(1 + 1)-D : M [QC] = X ⊗ 1

2

[
QC +

(
QC)†]+ Y ⊗ 1

2i

[
QC −

(
QC)†]

(2 + 1)-D : M [QC] = Y ⊗QC

(3 + 1)-D : M [QC] = Y X ⊗ 1

2

[
QC +

(
QC)†]+ Y Y ⊗ 1

2i

[
QC −

(
QC)†]

(4.34)

Let’s consider the four-fermion interacting generated by the following inverse Hubbard-
Stratonovich transformation,

exp
{
−SI

[
ψ†, ψ

]}
:=∫

D [Q(x)] exp

{
−
∫
dDx

[
ψ† M [Q(x)] ψ +

1

2λI
tr
[
Q(x)†Q(x)

]]}
(4.35)

where Q(x) is an n× n matrix-valued function of space-time. We note that the strength
of the four fermion interaction in Eq.(4.35) is proportional to λI .

The emergent global symmetries transform Q(x) in exactly the same way as QC (see
table 4.1). This is becauseQ(x) and QC couple to the same fermion bi-linears. Such trans-
formation can be absorbed by the redefinition of the integration variable Q(x). Therefore
as long as the integration measure in Eq.(4.35) is symmetric under the symmetry trans-
formations, SI is invariant under the action of emergent symmetries.

When λI is sufficiently large, it is energetically favorable for

tr
[
〈Q†(x)Q(x)〉

]
to acquire a non-zero expectation value. Assuming such expectation value doesn’t spon-
taneously break the continuous symmetry7 it must satisfy

〈Q†(x)Q(x)〉 → g† · 〈Q†(x)Q(x)〉 · g = 〈Q†(x)Q(x)〉

for all g ∈ U(n) (for (1 + 1)-D and (3 + 1)-D g ∈ U+(n)). This requires the expectation
value of Q†(x)Q(x) to be proportional identity matrix,

〈Q†(x)Q(x)〉 = κ2In

where κ2 should grow monotonically with λI . At low energy and long wavelength, the
dynamics of Q is governed by the Goldstone modes QC(x), where

Q(x)→ κQC(x), and
(
QC)†QC = In.

The manifold in which QC(x) fluctuates is exactly the mass manifold given in table 4.2.

7The possible symmetry breaking phases are captured by the non-zero expectation value 〈Q(x)〉.
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The effective action governing the fluctuations of QC(x) is given by the results of sec-
tion 4.9, where the stiffness term coefficients 1

2λ3
and 1

2λ24
should grow with κ2 which, in

turn, monotonically increases with λI . As the result, strong four-fermion interaction im-
plies small λ3 and λ2

4, while weak four fermion-interaction implies large λ3 and λ2
4. Thus,

we obtain a duality-like relation, namely, strong coupling fermion theory corresponds to
weak coupling non-linear sigma model, and weak coupling fermion theory corresponds to
strong coupling non-linear sigma model. Since, by dimension counting, local four-fermion
interaction is an irrelevant perturbation to the massless theory in (2 + 1)- and (3 + 1)-D,
we expect there is a range of large λ3 and λ2

4 where the non-linear sigma model is massless.

Now we come to (2 + 1)-D, where according to table 4.2 , the mass manifold has n+ 1
components, namely,

QC ∈
n⋃
l=0

U(n)

U(l)× U(n− l)
.

(Here l corresponds to the number positive eigenvalues of QC(x), the readers are referred
to appendix B.2 for details.) The condition that the order parameter is a smooth function
of space-time confines QC(x) to fluctuate in one of the mass manifold components. If such
fluctuation is to restore the time-reversal symmetry, it further restricts l = n/2 (we focus
on n = even). However, if we allow the possibility of spontaneous time-reversal symme-
try breaking, then QC(x) can fluctuate in the l 6= n/2 mass manifold. It is interesting
whether the order parameter fluctuation in the l 6= n/2 mass manifolds can restore the
unitary part of the emergent symmetry, and if it does can the resulting phase be gapless.

4.11 Global symmetry of the non-linear sigma

model

Up to this point, we have derived the non-linear sigma model. The bosonic partition
function is given by

Z =

∫
D[QC,R] e−SNLσ[QC,R].

Here QC,R ∈ mass manifolds, and the integration measure is defined so that at every
space-time point QC,R and the symmetry transformed QC,R (see table 4.5) have the same
weight.

Now, using the complex class in (1 + 1)-D as an example, we demonstrate that the
non-linear sigma model in Eq.(4.24) respects the emergent symmetries of the massless
free fermion theory. Under the action of the global emergent symmetries, a configuration
QC(τ,x) transforms by Eq.(4.20), namely,
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U+(n)× U−(n) : QC(τ,x)→ g†− ·QC(τ,x) · g+

Charge conjugation : QC(τ,x)→
(
QC(τ,x)

)∗
Time reversal : QC(τ,x)→

(
QC(τ,x)

)T
.

Under the action of U+(n)× U−(n)

QC†∂µQ
C → g†+ ·

(
QC†∂µQ

C) · g+

Due to the cyclic invariance of trace, the similarity transformations cancel out and the
action Eq.(4.24) is invariant.

Under charge conjugation, the stiffness term transforms as

− 1

8π

∫
M

d2x tr
[(
QC†∂µQC)2

]
→ − 1

8π

∫
M

d2x tr
[(
QCT∂µQC∗)2

]
=− 1

8π

∫
M

d2x tr
[(
∂µQC†QC) (∂µQC†QC)] = − 1

8π

∫
M

d2x tr
[(
QC†∂µQC) (QC†∂µQC)]

hence is invariant. Here the first equality in the second line is due to the invariance
of trace under transposing, and the second equality is due to ∂µQC†QC = −QC†∂µQC. A
similar argument applies to the WZW term,

2πi

24π2

∫
B

tr
[ (
Q̃C†dQ̃C

)3 ]
→ 2πi

24π2

∫
B

tr
[ (
Q̃CTdQ̃C∗

)3 ]
=− 2πi

24π2

∫
B

tr
[ (
dQ̃C†Q̃C

)3 ]
=

2πi

24π2

∫
B

tr
[ (
Q̃C†dQ̃C

)3 ]
.

The extra minus sign in the second line is because transposing causes an odd number of
crossing of the differential 1-forms. This negative sign is canceled out in the last term
due to the odd number of negative signs arising from dQC†QC = −QC†dQC. Therefore
Eq.(4.24) is invariant under charge conjugation.

Under the action of time-reversal transformation, the stiffness term transforms as

1

8π

∫
M

d2x tr
[
∂µQ

C†∂µQC]→ 1

8π

∫
M

d2x tr
[
∂µQ

C∗∂µQCT ]
=

1

8π

∫
M

d2x tr
[
∂µQC∂µQ

C†] =
1

8π

∫
M

d2x tr
[
∂µQ

C†∂µQC]
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As for the WZW term, note that the i in front becomes −i due to the complex conjugation
involved in the time-reversal transformation 8. Thus the WZW term transforms as

2πi

24π2

∫
B

tr
[ (
Q̃C†dQ̃C

)3 ]
→ − 2πi

24π2

∫
B

tr
[ (
Q̃C∗dQ̃CT

)3 ]
=

2πi

24π2

∫
B

tr
[ (
dQ̃CQ̃C†

)(
dQ̃CQ̃C†

)(
dQ̃CQ̃C†

) ]
=

2πi

24π2

∫
B

tr
[ (
Q̃C†dQ̃C

)3 ]
(4.36)

The disappearance of the minus sign in the second line is because transposing causes
an odd number of crossings of differential 1-forms. The passing to the third line follows
from the cyclic invariance of trace.

In summary, the non-linear sigma model is invariant under the action of the global
emergent symmetries. The same conclusion applies to the real and complex classes non-
linear sigma models in other space-time dimensions. The details is left in appendix B.4.

4.12 The symmetry anomalies of the nonlinear

sigma models

A necessary condition for the bosonized non-linear sigma model to be equivalent to
the massless fermion theory is that the former has the same symmetry anomalies as the
original massless fermion theories. In this section, we will show this is indeed the case.

4.12.1 Gauging the non-linear sigma model and the ‘t Hooft
anomalies

In table 4.3 we see that in (1 + 1)-D and (3 + 1)-D, the massless free fermion the-
ories have the ‘t Hooft anomalies (with respect to the continuous symmetries). In this
subsection, we first gauge the non-linear sigma models and then determine their ‘t Hooft
anomalies.

8The time-reversal symmetry in Euclidean space-time requires a complex conjugation on the Boltz-
mann weight. It is important to check whether a term is real or complex before deciding how time-reversal
transformation acts.
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Again, taking the complex class (1 + 1)-D example, under an infinitesimal U+(n) ×
U−(n) transformation, QC and gauge fields transformed as

QC → e−iε−QCeiε+

A± → A± + dε± + i[A±, ε±] (4.37)

where we let g± = eiε± in the symmetry transformation. For the stiffness term, the usual
minimal coupling guarantees the gauge invariance

Wstiff [QC, A+, A−] = − 1

8π

∫
M

d2x tr
[(
QC† (∂µQC − iQCA+,µ + iA−,µQ

C))2
]
.

However, it is less clear how to gauge the WZW term. Here we follow Witten’s “trial-
and-error” method [26], which we shall explain in the following.

First, we determine the variation of the WZW term when QC undergoes space-time
dependent transformation given by the first line of Eq.(4.37)

δ
[
− i

12π

∫
B

tr
[(
QC†dQC)3

] ]
=

1

4π

∫
M

tr
[
dε+

(
QC†dQC)+ dε−

(
dQCQC†)]

Here we remark that although writing down the action requires the extended space-time
manifold B, the variation of the action can be expressed solely in the space-time manifold
M, which is (1 + 1)-D in the example.

In an attempt to make the theory gauge invariant, we subtract a term with dε±
replaced by A±. Together, the gauge variant part becomes

δ
[
− i

12π

∫
B

tr
[(
QC†dQC)3

]
− 1

4π

∫
M

tr
[
A+

(
QC†dQC)+ A−

(
dQCQC†)] ]

=− i

4π

∫
M

tr
[
A+

(
dε+ −QC†dε−Q

C)+ A−
(
−dε− +QCdε+Q

C†)]

Last, we repeat the previous step by adding another term with dε± in the above
equation replaced by A±. After some work we obtain

δ
[
− i

12π

∫
B

tr
[(
QC†dQC)3

]
− 1

4π

∫
M

tr
[
A+

(
QC†dQC)+ A−

(
dQCQC†)+ iA+Q

C†A−Q
C] ]

=− i

4π

∫
M

tr [A+dε+ − A−dε−]
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Now the gauge variant part contains no QC anymore. Hence we cannot find any term
to cancel the remaining non-gauge-invariance. This result reproduces Bardeen’s result in
Eq.(4.13).

In summary, the gauged WZW model is given by

W [QC, A+, A−] =− 1

8π

∫
M

d2x tr
[(
QC† (∂µQC − iQCA+,µ + iA−,µQ

C))2
]

− i

12π

∫
B

tr
[(
QC†dQC)3

]
− 1

4π

∫
M

tr
[
A+

(
QC†dQC)+ A−

(
dQCQC†)+ iA+Q

C†A−Q
C] ].

Moreover, we have shown that it has the same ’t Hooft anomaly for the continuous
symmetry as the original massless fermion. In appendix B.6 we summarize the gauged
non-linear sigma model in d = 1, 2, 3.

4.12.2 Discrete symmetry anomaly

In section 4.4.3, we saw that massless fermion theory has a time-reversal anomaly for
the complex class in (2 + 1)-D. This anomaly originates from the massive Dirac fermion
at time reversal invariant k points other than k = (0, 0) where the mass breaks time-
reversal. We would like to see the same phenomenon in the nonlinear sigma model.

In the following, we focus on the complex class in (2 + 1)-D. First, let’s focus on
the vicinity of k = 0 (under Wilson’s regularization). The bosonized model is given by
Eq.(4.28). Following Witten’s trial-and-error method discussed in the preceding subsec-
tion (see B.6 for the detail), we obtain the following gauged nonlinear sigma model,

W [QC, A] =
1

2λ3

∫
M

d3x tr
[(
∂µQ

C + i[Aµ, Q
C]
)2]

(4.38)

− 2πi

256π2

{∫
B

tr
[
Q̃C

(
dQ̃C

)4 ]
+8

∫
M

tr
[
iAQC(dQC)2 − (AQC)2dQC

− i
3

(AQC)3 + iA3QC − AQCF − AFQC
]}

This action is invariant under global symmetry transformations where the gauge field and
QC are transformed according to Eq.(4.15) and table 4.4. This is expected, given the low
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energy fermion theory near k = 0 respects these symmetries.

For the Dirac fermions near k = (π, 0), (0, π), and (π, π), there are time reversal
breaking masses, namely, M = 2mY ⊗ In for k = (π, 0), (0, π) and M = 4mY ⊗ In for
(π, π). The non-linear sigma model describes these massive fermions is again given by
Eq.(4.38) except that now l = n or 0. Due to the signs in front of q1Γ1 and q2Γ2 at
k = (π, 0), (0, π), and (π, π) the effective mass sign for these massive fermions are given
by

ηk := sign of (q1Γ1)× sign of (q2Γ2)× sign of (m).

Consequently the QC associated with the massive fermions obeys

QC = ηkIn. (4.39)

We can thus use the gauged nonlinear sigma model in appendix B.6 to predict the
Chern-Simons term due to the massive fermions at k = (π, 0), (0, π), and (π, π) by plug in
Eq.(4.39). For these space-time constant QC we can drop all the terms with derivatives
on QC. The remaining can be combined into the Chern-Simons term. Summing the
contribution from k around (π, 0), (0, π), and (π, π), we get

W(π,0) +W(0,π) +W(π,π) =

(
−1

2
− 1

2
+

1

2

)
m

|m|
i

4π

∫
tr

[
AdA+

2i

3
A3

]
=− i

8π

∫
tr

[
AdA+

2i

3
A3

]
which agrees with Eq.(4.19).

As for other discrete symmetry anomalies, with the input of how QC,R and the gauge
field transform under discrete symmetries, it’s simple to show that in (1 + 1)-D and
(3 + 1)-D, there is no discrete-symmetry-anomaly after gauging the anomaly-free part of
the continuous symmetries. In (2 + 1)-D, gauging the continuous symmetry breaks the
time-reversal symmetry as discussed in subsection 4.12.2.

In appendix B.6, we show that all the symmetry anomalies of massless fermions in
table 4.3 are reproduced by the corresponding gauged nonlinear sigma models. This lends
strong support to the idea that the nonlinear sigma models are equivalent to the original
massless fermion theories.

4.13 Soliton of the non-linear sigma model and the

Wess-Zumino-Witten term

In order for the bosonization to hold, somehow the bosonic non-linear sigma model
must possess fermion degrees of freedom. In this section, we show that due to the WZW
term, the solitons of the non-linear sigma model are fermions.
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4.13.1 Soliton classification

Soliton is a spatial texture of the “order parameter” (QC,R). Such texture represents a
non-trivial mapping from the spatial space to the mass manifold, i.e., the space where the
order parameter lives. In d spatial dimension, solitons are classified by the d-th homotopy
group of the mass manifold, namely,

πd (mass manifold) .

In appendix B.2, we list the relevant homotopy groups. Since exchange statistics only
make sense for spatial dimension greater than one, in the following we shall focus on
d ≥ 2. For the nonlinear sigma models considered in section 4.9, when n is sufficiently
large so that there is a WZW term, the soliton classifications are Z for the complex
classes, and are Z2 for the real classes, namely,

π2

( U(n)

U(n/2)× U(n/2)

)
= Z for n ≥ 4

π2

( O(n)

O(n/2)×O(n/2)

)
= Z2 for n ≥ 6

π3

(
U(n)

)
= Z for n ≥ 3

π3

(U(n)

O(n)

)
= Z2 for n ≥ 5

This means that for the complex classes, we can define a topological quantum number,
namely, the “soliton charge” Qsol. When we fuse two solitons of different charges, Qsol

adds; for the real classes, on the other hand, this soliton charge is defined mod 2 so that
two solitons with unit soliton charges can fuse into zero soliton charge.

4.13.2 Soliton charge and the conserved U(1) charge Q

For the complex classes, it is natural to ask what is the relation between the soliton
charge Qsol and the conserved charge Q. The conserved charge Q is associated with a
global U(1) symmetry. In (3 + 1)-D such U(1) symmetry belongs to a diagonal subgroup
of U+(n) × U−(n). As shown in table 4.3, it is anomaly-free. For (2 + 1)-D the U(1)
symmetry is a subgroup of the global symmetry group U(n), which is also anomaly-free
according to table 4.3.

In appendix B.6 we present the gauged non-linear sigma model. In particular, by
focusing on the term linear in the gauge field (associated with the anomaly-free U(1)
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subgroup) derived from the WZW term, we can extract the U(1) current. The answer is
9

(2 + 1)-D : Jµ = − i

16π
εµνρtr

[
QC∂νQ

C∂ρQ
C] (4.40)

(3 + 1)-D : Jµ = − 1

24π2
εµνρσtr

[(
QC†∂νQ

C) (QC†∂ρQ
C) (QC†∂σQ

C)] .
Thus the U(1) charge given by

(2 + 1)-D : Q = − i

16π

∫
d2x εijtr

[
QC∂iQ

C∂jQ
C]

(3 + 1)-D : Q = − 1

24π2

∫
d3x εijktr

[(
QC†∂iQ

C) (QC†∂jQ
C) (QC†∂kQ

C)] .
These are, in fact, exactly the same expression as the topological invariant corresponding
to π2( U(n)

U(n/2)×U(n/2)
) = Z in (2 + 1)-D and π3(U(n)) = Z in (3 + 1)-D (see appendix B.2

for the details). Thus, for both cases

Q = Qsol. (4.41)

4.13.3 Statistics of soliton

One way to derive the statistics of soliton is to calculate the topological spin by com-
paring Berry’s phase difference between the following two processes. In the first process,
we have a static soliton. In the second process, the spatial soliton configuration is adi-
abatically rotated by 2π in time. Following Witten [27], we show in appendix B.7 that
such Berry’s phase difference is e−ikπ, where k is the level of the WZW term (see appendix
B.7 for the details). Since all nonlinear sigma models in section 4.9 have k = 1 WZW
term, their solitons are fermion.

4.14 A summary of bosonization

So far, we have established the fact that the fermion and boson theories have the
same global symmetries and anomalies. In addition, we have shown that the solitons of
the bosonic theories are fermions. All these support the equivalence between the fermion
and boson theories. Now we present a brief summary of Chap. 4.

9The same result can be derived by fermion integration.
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We begin in section 4.1 by presenting the essential idea underlying the present work.
Prior to performing the fermion integration, we first identify the emergent symmetries in
section 4.2, and the mass manifolds in section 4.3. For a given massless fermion theory,
the mass manifold is the topological space formed by all mass terms that can fully gap
out the fermions. We then work out the anomalies with respect to the emergent symme-
tries in section 4.4. Afterward, we introduce mass terms at the expense of breaking the
emergent symmetries in section 4.5 and fluctuate the mass terms smoothly to regain the
emergent symmetries in section 4.6. As discussed in section 4.7, the smoothness of the
mass fluctuations is to ensure that the original fermions remain gapped, hence can be in-
tegrated out to yield non-linear sigma models in section 4.8 and section 4.9.10. The level-1
WZW term resulting from the fermion integration is checked against the prediction of
homotopy groups in the appendix, which is referred to in sections 4.8 and 4.9. In section
4.10, we present local interacting fermion theories that have duality-like relationships
with the bosonized non-linear sigma models. In section 4.11, we analyze the symmetries
of the non-linear sigma models. A comparison with the results obtained in section 4.2
leads to the conclusion that the fermion and boson theories have the same symmetry.
Using the method of reference [26] we determine the anomalies of the non-linear sigma
models in section 4.12. A comparison with the results obtained in section 4.4 leads to
the conclusion that the fermion and boson theories have the same anomalies. Finally, in
section 4.13, we show the bosonized theories have fermionic degrees of freedom, namely
the solitons of the non-linear sigma models.

10The procedure can be easily applied to higher dimensions, though we shall not pursue it in the
present paper.
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Chapter 5

Applications of bosonization

5.1 The SU(2) gauge theory of the π-flux phase of

the half-filled Hubbard model

5.1.1 The “spinon” representation of the half-filled Mott
insulator

The paradigmatic model describing a Mott insulator is the Hubbard model in the
large U limit. At half-filling, every site is occupied by one electron. Below the Mott-
Hubbard gap, the active degrees of freedom are those of spins. Through Anderson’s
super-exchange [28], the dynamics of the spins is governed by the anti-ferromagnetic
Heisenberg interaction

Ĥ =
∑
〈ij〉

Jij ~Si · ~Sj.

In the “spinon” treatment [29, 30] one decomposes a spin-1/2 operator into auxiliary
fermion (spinon) operators

Sai =
1

2
f †iασ

a
αβfiβ, (5.1)

and supplement it with the single occupation constraints

f †i↑fi↑ + f †i↓fi↓ = 1

f †i↑f
†
i↓ = 0

fi↓fi↑ = 0. (5.2)

In the following we shall refer to the above constraints as the “Mott constraint”. The
decomposition in Eq.(5.1), where one separates the physical spin degrees of freedom into
the auxiliary “spinon” degrees of freedom, is an example of the so-called “slave particle”
approach.



CHAPTER 5. APPLICATIONS OF BOSONIZATION 53

In terms of the spinon operators the Heisenberg Hamiltonian read

Ĥ =
1

4

∑
〈ij〉

Jij

(
f †iασ

a
αβfiβ

)(
f †jγσ

a
γδfjδ

)
=

1

4

∑
〈ij〉

Jij

(
−f †iαfiαf

†
jβfjβ − 2f †iαfjαf

†
jβfiβ

)
=− 1

2

∑
〈ij〉

Jij

(
1

2
f †iαfiαf

†
jβfjβ + f †iαfjαf

†
jβfiβ

)
Upon Hubbard-Stratonovich transformation, we express

exp
{
−
∫ β

0

dτ
[∑

i

f †iα∂0fiα +H
]}

=∫
D[U ] exp

{
−
∫ β

0

dτ
[∑

i

ψ†i∂0ψi +
∑
〈ij〉

3

8
Jij

(
−
(
ψ†iUijψj + h.c.

)
+

1

2
Tr
[
U †ijUij

] )]}
.

(5.3)

where

ψi =

(
fi↑
f †i↓

)
, Uij =

[
χ∗ij ∆ij

∆∗ij −χij

]
. (5.4)

For later convenience, we rewrite the spinon operator in terms of Majorana fermions

fiα := Fi,1α + iFi,2α,

in terms of which, the spin operators are represented as

Sai =
1

2
F †i ΣaFi, where

Σa = (Y X, IY, Y Z) . (5.5)

In the last line, the first and second Pauli matrices carry the Majorana and spin indices,
respectively.

The spin operators in Eq.(5.5) are invariant under the following local “charge-SU(2)”
transformation

Fi → WiFi

where Wi is generated by
T b = (XY, Y I, ZY ).

In terms of The Majorana fermion operators, the Mott constraint in Eq.(5.2) becomes

f †iαfiα − 1 = F T
i (Y I)Fi = F T

i T
2Fi = 0

εαβ
(
fiαfiβ + f †iβf

†
iα

)
= F T

i (XY )Fi = F T
i T

1Fi = 0

iεαβ
(
fiαfiβ − f †iβf

†
iα

)
= F T

i (ZY )Fi = F T
i T

3Fi = 0 (5.6)
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These constraints are implemented via the Lagrange multipliers in the path integral

Z =

∫
D[F ]D[U ]D[a0] exp (−S)

with

S =

∫ β

0

dτ
{∑

i

F T
i ∂0Fi +

∑
〈ij〉

3

8
Jij

[
F T
i

(
Re[χij]Y I + i Im[χij]II +Re[∆ij]XY

− Im[∆ij]ZY
)
Fj + |χij|2 + |ηij|2

]
+ i
∑
i

abi0
(
F T
i T

bFi
)}

. (5.7)

5.1.2 The π-flux phase mean-field theory and the SU(2) gauge
fluctuations

In treating the path integral, Eq.(5.7), one often starts from a mean-field theory where
Uij and abi0 are assumed to be space-time independent. To see the many possible mean-
field ansatzes we refer the readers to, e.g., Ref.[30]. In the following, we shall focus on the
so-called “π-flux phase mean-field theory”[31] for the nearest neighbor Heisenberg model.

The π-flux mean field theory assumes the following mean-field Ūij and ābi0

∆̄ij = 0, ābi0 = 0,

χ̄i,i+x̂ = iχ,

χ̄i,j+ŷ = i(−1)ixχ (5.8)

where χ is a real parameter (see Fig. 5.1). This leads to the following fermion mean-field
Hamiltonian,

ĤMF = −3

4
J
∑
i

{
i χ
[
F T
i+x̂ (II)Fi

]
+ i (−1)ixχ

[
F T
i+ŷ (II)Fi

]
+ h.c.

}
Because the Pauli matrices are identity in both the Majorana and spin spaces, this mean-
field Hamiltonian enjoys both global spin- and charge-SU(2) symmetries generated by

Spin-SU(2) generators: Σa = (Y X, IY, Y Z)

Charge-SU(2) generators: T a = (XY, Y I, ZY ) . (5.9)

Using the eigenvalues ±1 of the “sub-lattice Pauli matrix” Z to label the blue and
red sub-lattices in Fig. 5.1, and performing Fourier transform we obtain the following
momentum-space mean-field Hamiltonian
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Figure 5.1: The π-flux mean-field theory. Here the black bonds represent hopping am-
plitude iχ in the positive x- or y-direction and the green bonds represent −iχ. The unit
cell is enclosed by the orange rectangle.

ĤMF = −3

4
Jχ
∑
k

F T
−k

[
II ⊗

[
i
(
eik2 − e−ik2

)
−i+ ie2ik1

i− ie−2ik1 −i
(
eik2 − e−ik2

)]]Fk

= −3

4
Jχ
∑
k

F T
−k [II ⊗ (− sin 2k1X + (1− cos 2k1)Y − 2 sin k2 Z)]Fk.

(5.10)

In the above equation the tensor product of Pauli matrices are ordered according to

Majorana⊗ spin⊗ sub-lattice.

In Eq.(5.10) the (halfed) Brillouin zone is

−π/2 ≤ k1 < π/2, − π ≤ k2 < π

and the Dirac nodes are situated at k0 = (0, 0) and (0, π), which are referred to as two
“valleys” in the following.

Expand k = k0 + q around these two Dirac nodes, and Fourier transform (w.r.t. q)
back to the real space, we obtain the following low energy mean-field Hamiltonian

ĤMF =

∫
d2x F̃ T (−iΓi∂i) F̃ ,

where
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Γ1 = IIXI

Γ2 = IIZZ. (5.11)

The tensor product of four Pauli matrices in Eq.(5.11) are arranged according to

Majorana⊗ spin⊗ sub-lattice⊗ valley.

Including the sub-lattice and valley Pauli matrices the generators of the charge and spin
SU(2) transformations are given by

Spin-SU(2) generators: Σa = (Y XII, IY II, Y ZII)

Charge-SU(2) generators: T a = (XY II, Y III, ZY II) . (5.12)

Because the local charge-SU(2) gauge degrees of freedom is a redundancy in the
original half-filled Mott insulator, we expect the field theory in Eq.(5.7) to have the local
charge-SU(2) symmetry. This motivates one to think the low energy theory, including
fluctuations in Uij and abi0, is a charge-SU(2) gauge theory with

Uij = Ūije
iaij

where aij = abijT
b is the spatial component of the charge-SU(2) gauge field. According to

Ref.[30, 32], because the mean-field Ūij commutes with the global charge-SU(2) transfor-
mations, the low theory is a charge-SU(2) gauge theory, with a0 and aij playing the roles
of the time and spatial components of the gauge field, respectively.

The partition function of the charge-SU(2) gauge theory reads

Z =

∫
D[F̃ ]D[aµ]e−S[F̃ ,aµ]

S =

∫
d3x
{
F̃ T

[
(∂0 + iaa0T

a)− i
2∑
i=1

Γi(∂i + iaai T
a)

]
F̃ +

1

2g
f 2
µν

}
. (5.13)

In Eq.(5.13) the 1
2g
f 2
µν is generated by integrating out the higher energy fermion degrees

of freedom. The theory in Eq.(5.13) describes the n = 8 real class fermion theory coupled
to a dynamic charge-SU(2) gauge field.

According to the bosonization in section 4.9.2, the bosonized theory is a gauged
O(8)

O(4)×O(4)
nonlinear sigma model with the k = 1 WZW term 1. Here the charge-SU(2)

1Note that although for n = 8, the homotopy group are not yet stabilized, fermion integration still
gives a WZW term. When B is a closed manifold, and after division by 2πi, the WZW term is the
topological invariant of one of the Z factor of the π4.



CHAPTER 5. APPLICATIONS OF BOSONIZATION 57

subgroup of the fermion (emergent) global symmetry group O(8) is gauged.

In the following let’s assume that the effect of the SU(2) gauge field is to cause confine-
ment 2. Under such condition, the fermion-antifermion pair oder parameter (analogous to
mesons in QCD) must be a charge-SU(2) singlet. Since QR is precisely the “meson” field,
it follows that in the charge-SU(2) confined phase the finite energy QR are restricted to a

sub-manifold of O(8)
O(4)×O(4)

which are invariant under the charge-SU(2) transformation.3,4.

This sub-manifold is the S4 spanned by the following 5 mutually anti-commuting masses,

S4 =
{ 5∑

i=1

niMi;
5∑
i=1

n2
i = 1

}
, where

Mi = Y XZX, IY ZX, Y ZZX, IIY I, IIZY. (5.14)

At this point it is important to stress that we are not implying the deconfined phase does
not exist. We simply consider the scenario where the SU(2) gauge field is in the confined
phase.

In order to match the gamma matrices and mass matrices convention in table 4.1 and
4.2 (based on which the non-linear sigma models in subsection 4.9 and appendix B.3 and
B.6 are derived), we will make the following change the basis. We first exchange the order
of the third and the fourth (i.e., sub-lattice and valley) Pauli matrices, followed by the
following orthogonal transformation,

II ⊗
[
I 0
0 X

]
2Note that unlike the compact U(1) gauge field, here the confinement can be not caused by the

proliferation of monopoles. This is based on the following homotopy argument. The SU(2) gauge
configurations on the space-time surface S2 surrounding the location of the monopole are classified by
the mapping classes of S2 → BSU(2), where BSU(2) is the classifying space of SU(2). Using the
following identity in algebraic topology,

[S2, BSU(2)]∗ = [ΣS1, BSU(2)]∗ = [S1, SU(2)]∗ = π1(SU(2)) = 0

,it follows that there is no topologically non-trivial gauge field configuration on S2, hence there is no
monopole. Here Σ denotes “reduced suspension”, and [X1, X2]∗ is the homotopy class of base-point-
preserving maps X1 → X2. Physically speaking, assuming the SU(2) monopole exists, we can take the
northern and southern hemispheres as the patches to define the gauge connection so that on each patch,
the gauge field configuration is non-singular. On the equator, S1, where the two patches overlap, a
gauge transformation must relate the gauge fields originated from the two patches. At each point of S1

the gauge transformation is an element in SU(2). Therefore the monopole classification is given by the
homotopy class of gauge transformation on the S1, i.e., π1(SU(2)).

3In addition to restricting QR to be invariant under charge-SU(2) transformations, the charge-SU(2)
gauge fluctuations can also generate four-fermion interaction which could trigger spontaneous symmetry
breaking.

4Our result is analogous to Witten’s non-linear sigma model description of QCD in the color SU(3)
confined phase[27].
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In the new basis the gamma matrices and the mass terms become

Γ̃1 = IIIX

Γ̃2 = IIIZ

M̃i = Y XY Y, IY Y Y, Y ZY Y, IIXY, IIZY (5.15)

These are consistent with the matrices shown in table table4.1 and table4.2, except a
trivial exchange of the first and the last Pauli matrices. In this basis, the order parameter
QR is defined by M̃ = mQR ⊗ Y .

5.1.3 Antiferromagnet, Valence bond solid, and the
“deconfined” quantum crtical point

For the mass manifold in Eq.(5.14), we expect the non-linear sigma model to have a
WZW term because π4(S4) = Z. Substituting

QR = niNi where

Ni = (Y XY, IY Y, Y ZY, IIX, IIZ) (5.16)

into the non-linear sigma model given by Eq.(4.30) in subsection 4.9.2 we obtain

W [n̂] =
2

λ3

∫
M

d3x (∂µni)
2 − 2πi

64π2

∫
B

εijklmñi dñj dñk dñl dñm. (5.17)

This model has O(5) global symmetry generated by the pair-wise product of the matri-
ces in M̃i, which are also the generators of O(8) that commutes with the charge-SU(2)
generators. Hence Eq.(5.17) is often referred to as the “O(5)” non-linear sigma model in
the literature [33, 34, 35, 36].

Now we address the physical meaning of the five masses given in Eq.(5.14) (or equiva-
lently the physical meaning of M̃i in Eq.(5.15)). The first three of the masses in Eq.(5.14)
correspond to the Néel order parameters, while the last two to the valence bond solid
(VBS) orders. To see this, we first note that the first three masses rotate into each other
under spin-SU(2),

Σa = (Y XII, IY II, Y ZII)

while the last two are invariant.

We can also deduce the effect of translation by one lattice constant on these mass
terms. In writing down the mean-field Hamiltonian we have chosen a particular charge-
SU(2) gauge that explicitly breaks the symmetry associated with x-translation by one-
lattice spacing. However, this is an artifact of gauge choice. The compounded transfor-
mation where the x-translation is followed by the gauge transformation which multiplies
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the fermion operator located on the orange rows in Fig. 5.2 by −1

(FI,1, FI,2)
T̂x̂−→ (−1)Iy × (FI,2, FI+x̂,1)

(FI,1, FI,2)
T̂ŷ−→ (FI+ŷ,1, FI+ŷ,2) , (5.18)

leaves the mean-field ansatz invariant. This is an example of “projective transformation”.
In Eq.(5.18) I label the unit cell in Fig. 5.1 , and we have omitted the Majorana and
spin indices because they are unaffected by the translation.

Figure 5.2: Translation by one lattice constant in the x-direction compounded with the
gauge transformation which multiplies the fermion operators on sites in the orange rows
by -1 leaves the mean-field Hamiltonian invariant.

In the following, we derive the effects of the “projective translation” on the fermion
operator F̃ which is related to F via

FI,l =
∑

small q

(
F̃q,(l,1)e

iq·I + F̃q,(l,2)e
i((0,π)+q)·I

)
where the (l, v) are the indices for sub-lattice and valleys respectively. Doing the inverse
Fourier transform, the above projective translation transforms F̃ according to

F̃ → Tx̂,ŷF̃

where

Tx̂ = IIXX

Tŷ = IIIZ. (5.19)
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Here we have put back the Majorana and spin (i.e., the first two) Pauli matrices.

Under Tx̂,ŷ the mean-field Hamiltonian is invariant, but the first three mass terms

change sign under T̂x̂ and T̂ŷ (as should the Néel order parameter) while the remaining

two masses each breaks T̂x̂ or T̂ŷ. These are the expected transformation properties of
the VBS order parameters.

In appendix B.10 we show that the order parameters in Eq.(5.16) completely decouple
from the charge-SU(2) gauge field. Thus even in the presence of such gauge field the non-
linear sigma model preserves the form in Eq.(5.17). Before moving on, there is one
additional thing worth mentioning, namely,

π2(S4) = 0.

Hence there is no soliton in the order parameter associated with Eq.(5.17).

In summary, we have found that after the charge-SU(2) confinement Eq.(5.17) de-
scribes the critical point between the AFM and VBS phases the so-called “deconfined
quantum critical point”[33, 34, 35, 36, 37, 38]. It is also very satisfying that Eq.(5.17)
captures the best-known spin-long-range ordered phase (AFM) and the spin quantum
disorder phases (VBS)[39, 40, 41, 42, 43].5

5.2 The critical spin liquid of “bipartite Mott

insulators” in D = 1 + 1, 2 + 1 and 3 + 1.

The idea explained in the preceding section can be generalized to the insulating phase
of “bipartite Mott insulators”.

A bipartite Mott insulator is a Mott insulator whose lattice consists of two sub-lattices,
and hoppings only occur between different sub-lattices. The nearest-neighbor spin-1/2
antiferromagnetic Heisenberg model in one spatial dimension describes the dynamics of
spin degrees of freedom in a one-dimensional bipartite Mott insulator. It realizes the
SU(2)1 WZW non-linear sigma model, where the emergent symmetries are realized in a
non-onsite (e.g., translation) fashion. This model serves as a paradigm of, e.g., quantum
number fractionalization, and has profoundly influenced theoretical physics. It is natural
to ask what is the generalization of this non-linear sigma model in the Mott insulating
phase of higher dimensions. In the present section, we answer this question.

In a Mott insulating phase, the low energy degrees of freedom are the spins. Since
the spin operators are invariant under the charge-SU(2) transformation, there are lots of

5Here the interaction favoring the Néel or the VBS type of symmetry breaking can be due to
anisotropy terms that are omitted in our theory.
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choices in fractionalizing the spin into spinons. Different choices are related by the spinon
charge-SU(2) gauge transformation. The spin-spin interaction is generated by Anderson’s
super-exchange, the spinon mean-field theory amounts to choosing a spinon tight-binding
model which reproduces the spin-spin interaction after super-exchange. Since the spin-
spin interaction is independent of which charge-SU(2) gauge we choose, we shall choose
the gauge so that the hoppings are purely imaginary in the following. The reason for
doing so is because in such a gauge, the mean-field spinon Hamiltonian is charge-SU(2)
invariant. This gauge choice exists when the Mott insulator is bipartite.

In section 5.1.2, we saw that the Mott insulating condition is imposed by the con-
straint that the order parameter QR is a charge-SU(2) singlet. In this section we show
that imposing such constraints allows us to derive the spin effective theory in bipartite
Mott insulators in spatial dimensions 1,2 and 3 6.

5.2.1 (1+1)-D

For the nearest neighbor tight-binding model with real hopping in 1D, one can break
the lattice into A,B sub-lattice and do the transformation (cAj , c

B
j )→ (cAj , i c

B
j ) to make

the hopping purely imaginary (see figure 5.3). This leads to the lattice model

Ĥ =t
∑
k

c†k

[
I ⊗

(
0 i+ ie−ik

−i− ie+ik 0

)]
ck

=− t
∑
k

c†k [−(sin k)IX + (1 + cos k)IY ] ck

Here identity matrix I part acts on the spin. After linearizing around kF = π, the low
energy effective theory in Majorana fermion basis reads

H =

∫
dx χT (x) [−iΓ1∂1] χ(x)

where

Γ1 = IIX. (5.20)

Here the tensor product of Pauli matrices are arranged according to

Majorana⊗ spin⊗ sub-lattice.

In the presence of Hubbard U , there is the global charge-SU(2) symmetry at half-filling.
In the low energy theory, the charge-SU(2) transformation is generated by

Charge-SU(2) generators : T a = (XY I, Y II, ZY I)

6Although we will not pursue it in the present paper, the discussion in the following can be generalized
to the cases with larger flavor number or in higher dimensions.
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On the other hand, the spin-SU(2) transformations are generated by the following charge-
SU(2) invariant matrices,

Spin-SU(2) generators : Σa = (Y XI, IY I, Y ZI)

Following the discussion in section 4.8.2, the massless free fermion theory is equivalent
to theO(4) level-1 WZW model. Gauging the charge-SU(2) symmetry of the sigma model,
and integrating over the gauge field, amounts to imposing the Mott insulating constraint.
Assume the system is in the charge-SU(2) confined phase, only charge-SU(2) singlet order
parameters (mass terms) can exist at low energies. These mass terms satisfy

{Γ1,M} = 0

[T a,M ] = 0

M2 = I8

The most general mass M satisfying the first two lines has the form

M = n0 IIY + n1 Y XX + n2 IY X + n3 Y ZX (5.21)

Among the mass terms

IIY, Y XX, IY X, Y ZX,

the last three rotate into each other under the action of spin-SU(2) transformations, and
the first one is invariant. They corresponds to the dimer and Néel order parameters
respectively. The condition that M2 = I8 gives

3∑
i=0

n2
i = 1.

The non-linear sigma model describing the fluctuations of n̂ has a WZW term because
π3(S3) = Z, namely,

W [n̂] =
1

4π

∫
M

d2x (∂µn̂)2 − 2πi

12π2

∫
B

εijklñi dñj dñk dñl. (5.22)

(a) Real hopping (b) Imaginary hopping

Figure 5.3: (a) The usual 1D nearest neighbor tight-binding with real hopping. (b) Upon
the gauge transformation (cAj , c

B
j ) → (cAj , i c

B
j ), hoppings become purely imaginary with

alternating sign. The hopping Hamiltonian in panel (b) is charge-SU(2) invariant.
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This is the SU(2)1 non-linear sigma model, known to be the effective theory of the Heisen-
berg spin chain[44].

5.2.2 (2 + 1)-D

In (2 + 1)-D we use the honeycomb lattice to write down the tight-binding model.
The lattice vectors in the real and momentum space are

a1 =
√

3a

(
1

2
,

√
3

2

)
, a2 =

√
3a

(
−1

2
,

√
3

2

)

and

b1 =
4π

3a

(√
3

2
,
1

2

)
, b2 =

4π

3a

(
−
√

3

2
,
1

2

)
, (5.23)

respectively. In the following we perform the gauge transformation

(cAj , c
B
j )→ (cAj , i c

B
j )

(a) Real hopping (b) Imaginary hopping

Figure 5.4: (a) The usual nearest neighbor tight-binding model on the honeycomb lattice
with real hopping. (b) Upon the gauge transformation (cAj , c

B
j ) → (cAj , i c

B
j ), hoppings

become purely imaginary with alternating sign. The tight-binding Hamiltonian in panel
(b) is charge-SU(2) invariant.
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on the two sub-lattices, so that the nearest-neighbor hopping becomes purely imaginary
(see figure 5.4). The tight-binding Hamiltonian read

Ĥ =t
∑
k

c†k

[
I ⊗

(
0 i+ ieik·a1 + ieik·a2

−i− ie−ik·a1 − ie−ik·a2 0

)]
ck

=t
∑
k

c†k

[
− (sin(k · a1) + sin(k · a2)) IX − (1 + cos(k · a1) + cos(k · a2)) IY

]
ck

Here the Pauli matrices are arranged according to

spin⊗ sub-lattice.

In the Majorana fermion basis,

Ĥ = t
∑
k

χ†k

[
− (sin(k · a1) + sin(k · a2)) IIX − (1 + cos(k · a1) + cos(k · a2)) IIY

]
χk.(5.24)

Here the Pauli matrices are arranged according to

Majorana⊗ spin⊗ sub-lattice.

In the presence of repulsive Hubbard U , there is charge-SU(2) symmetry at half-filling.
In the low energy theory the charge-SU(2) transformation is generated by

Charge-SU(2) generators : T a = (XY I, Y II, ZY I)

On the other hand, the spin-SU(2) transformations are generated by the following ma-
trices,

Spin-SU(2) generators : Σa = (Y XI, IY I, Y ZI)

Eq.(5.24) is invariant under both the charge- and spin-SU(2). In momentum space the
Dirac points are located at K and K̂ points, i.e., ±k0 where k0 := 1

3
(b1 − b2) (see

Eq.(5.23)). Note that in the Majorana fermion basis, the contribution of Hamtiltonian
from k and −k are the same due to the constraint χT−k = χ†k. This means that one can
take the fermion χk0+q around k0 as the Fourier modes of complex fermion c̃q and discard
the other node. We then break this complex fermion c̃ into real fermion by c̃ = χ̃1 + iχ̃2

(in the following we shall refer to this 1 and 2 as the “valley” indices). In this final
Majorana representation, the low energy Hamiltonian reads

Ĥ =

∫
dx χ̃T (x) [−iΓ1∂1 − iΓ2∂2] χ̃(x)

where Γ1 = IIIX and Γ2 = IIY Y . Here the Pauli matrices are arranged according to

Majorana⊗ spin⊗ valley⊗ sub-lattice.
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In this basis, the symmetry generators are

Charge SU(2) generators : T a = (XY II, Y III, ZY II)

Spin SU(2) generators : Σa = (Y XII, IY II, Y ZII).

Following the discussions in section 4.9.2, the massless fermion theory is equivalent to
the O(8)

O(4)×O(4)
level-1 WZW model. Notice that the low energy fermion theory is identical

to the π flux phase spinon mean-field theory discussed in section 5.1. Imposing the
Mott constraint constraints the mass manifold. Specifically it requires the mass terms
to commute with the charge-SU(2) generators. Under conditions the allowed mass terms
satisfy

{Γi,M} = 0

[T a,M ] = 0

M2 = I16

The most general mass, M ∈ O(8)
O(4)×O(4)

, satisfying the first two equations has the form

M = n1 Y XIZ + n2 IY IZ + n3 Y ZIZ + n4 IIXY + n5 IIZY

Similar to the discussion in section 5.1, the first three of the masses in Eq.(5.14) corre-
spond to the Néel order parameters, while the last two to the valence bond solid (VBS)

order parameters. The order parameter space forms an S4. Plugging it into the O(8)
O(4)×O(4)

level-1 WZW model, we arrive at the O(5) WZW theory

W [ni] =
2

λ3

∫
M

d3x (∂µni)
2 − 2πi

64π2

∫
B

εijklmñi dñj dñk dñl dñm.

Here we note that because π2(S4) = 0 there is no soliton.

5.2.3 (3 + 1)-D

A lattice model for Dirac semi-metal

As a model for bipartite Mott insulator, we begin with a 3-dimensional tight-binding
model consists of stacked honeycomb lattice. Here the lattice sites of each layer are
stacked on top of those in the layer beneath. Within each layer, we have real hopping
between the nearest-neighbor sites described in section 5.2.2. Between layers, the (real)
hopping have the opposite sign for the A and B sub-lattice (see figure 5.5a). In order to
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(a) Real hopping (b) Imaginary hopping

Figure 5.5: (a) The tight-binding model on a stacked honeycomb lattice with real-valued
nearest-neighbor hopping. Blue/red (A/B) mark the two sub-lattices of the honeycomb
lattice respectively. The positive hoppings are drawn in black, while the negative hoppings
in white.(b) After the gauge transformation (cA1

j , cB1
j , cA2

j , cB2
j ) → (cA1

j , icB1
j , icA2

j , cB2
j ), a

unit cell contains four sites. This is marked by blue/red/green/orange and labeled as
A1/B1/A2/B2 respectively. The hoppings become purely imaginary. The direction of the
arrows on the bonds label the direction of the imaginary hoppings. The tight-bonding
Hamiltonian in panel (b) has charge-SU(2) symmetry.

make the hopping terms global charge-SU(2) invariant, we first enlarge the unit cell by
grouping two adjacent layers to form A1, B1, A2, B2 sub-lattices as shown in figure 5.5b.
We then perform the following gauge transformation,

(cA1
j , cB1

j , cA2
j , cB2

j )→ (cA1
j , icB1

j , icA2
j , cB2

j ).

Here the lattice vectors in the real and momentum spaces are

a1 =
√

3

(
1

2
,

√
3

2
, 0

)
, a2 =

√
3

(
−1

2
,

√
3

2
, 0

)
, a3 = 3 (0, 0, 1)

and

b1 =
4π

3

(√
3

2
,
1

2
, 0

)
, b2 =

4π

3

(
−
√

3

2
,
1

2
, 0

)
, b3 =

2π

3
(0, 0, 1) (5.25)

respectively. In the above we have assumed the magnitude of the hopping in the z-
direction is the same as those within each layer. Moreover, we have tuned the lattice
constant in the z-direction so that the Dirac cone is isotropic. The resulting tight-binding
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model reads

Ĥ = i t
∑
k

c†k · I ⊗


0 Sxy(k) Sz(k) 0

−S∗xy(k) 0 0 Sz(k)
−S∗z (k) 0 0 −Sxy(k)

0 −S∗z (k) S∗xy(k) 0

 ck

= t
∑
k

c†kI ⊗
{
− [sin(k · a1) + sin(k · a2)]ZX − [1 + cos(k · a1) + cos(k · a2)]ZY

+ sin(k · a3)XI − [1 + cos(k · a3)Y I] .

}
ck

(5.26)

where the Sxy and Sz in Eq.(5.26) are defined as

Sxy(k) = 1 + eik·a1 + eik·a2

Sz(k) = 1 + e−ik·a3 ,

and the Pauli matrices are arranged according to

spin⊗ sub-lattice (4× 4).

It is simple to show that in the momentum space the Dirac points are located at ±k0,
where k0 := 1

3
(b1 − b2).

Converting Eq.(5.26) into the Majorana fermion basis, the Hamiltonian reads

Ĥ = t
∑
k

χT−kII ⊗
[
− (sin(k · a1) + sin(k · a2))ZX − (1 + cos(k · a1) + cos(k · a2))ZY

+ sin(k · a3)XI − (1 + cos(k · a3)Y I)

]
χk

(5.27)

where the first Pauli matrix I acts in the Majorana space. The Hamiltonian in Eq.(5.27)
is invariant under the global charge and spin SU(2) transformations generated by

Charge-SU(2): T a = (XY II, Y III, ZY II)

Spin-SU(2): Σa = (Y XII, IY II, Y ZII) (5.28)

When performing the mode expansion near ±k0, because χT−k = χ†k, one can keep the
complex fermion operator c̃q = χk0+q while disregard the mode expansion near −k0. We
subsequently break c̃ into real fermion operators c̃ = χ̃1 + iχ̃2 (in the following we shall
refer to this 1 and 2 as the “valley” indices). Omitting the tilde, in this final Majorana
representation, the low energy theory of the Hamiltonian Eq.(5.27) is given by the n = 8
real class massless fermion Hamiltonian

Ĥeff =

∫
d3x χT

[
−i

3∑
i=1

Γi∂i

]
χ

where Γ1 = IIZXI, Γ2 = IIZY Y, Γ3 = IIXII, (5.29)
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and Eq.(5.28) is given by

Charge-SU(2): T a = (XY III, Y IIII, ZY III)

Spin-SU(2): Σa = (Y XIII, IY III, Y ZIII) (5.30)

In this basis, the Pauli matrices correspond to

Majorana⊗ spin⊗ sub-lattice (4× 4)⊗ valley.

For the gamma matrices to be in the standard basis used in table 4.1, we can do the
transformation

χ→ ei
π
4
IIZY I · ei

π
4
IIIXY χ,

and then switch between the third and the fifth Pauli matrices. In the new basis, Eq.(5.29)
becomes

Ĥeff =

∫
d3x χT

[
−i

3∑
i=1

Γi∂i

]
χ

where Γ1 = IIIZI, Γ2 = IIIXI, Γ3 = IIIY Y, (5.31)

while the symmetry generators in Eq.(5.30) remain unchanged. Upon bosonization,
Eq.(5.31) is equivalent to the U(8)/O(8) nonlinear sigma model in Eq.(4.33).

Imposing the Mott constraint

Following the discussion in section 5.2, the Mott constraint can be imposed by de-
manding the order parameter to be charge SU(2) singlet. It is straightforward (but
lengthy) to show that the following QR satisfies the charge-SU(2) singlet requirement

QR(x) = eiθ(x)

[
n0(x)N0 + i

5∑
i=1

ni(x)Ni

]
:= eiθ(x)GS(x), (5.32)

where

N0 = III, N1 = IIZ, N2 = IIX, N3 = IY Y, N4 = Y ZY, N5 = Y XY

and
5∑
i=0

n2
i = 1, i.e., (n0, n1, n2, n3, n4, n5) ∈ S5.

In addition, in Eq.(5.32) GS is a symmetric special unitary 8× 8 matrix, namely,

GS(x) ∈ SU(8)

O(8)
.
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Substituting Eq.(5.32) into the bosonized nonlinear sigma model Eq.(4.33) and noting
that

1

i
QR†∂µQ

R =
1

i
G†S∂µGS + ∂µθ,

the stiffness term becomes

1

4λ2
4

∫
M
d4x tr

[
∂µQ

R∂µQR†]
=

8

4λ2
4

∫
M
d4x [∂µθ∂

µθ] +
1

4λ2
4

∫
M
d4x tr

[
∂µGS∂µG†S

]
=

2

λ2
4

∫
M
d4x [∂µθ∂

µθ] +
2

λ2
4

∫
M
d4x

5∑
i=0

(∂µni)
2 (5.33)

The cross term vanishes because

1

i
Tr[G†S∂µGS] = 0. (5.34)

Eq.(5.34) is due to the fact that GS is a symmetric special unitary matrix hence ∈ SU(n).
As a result, the matrix part of 1

i
G†S∂µGS can be decomposed into the generators {ta} of

su(n), which are traceless.

As to the WZW term it’s can be shown that

− 2π

960π3

∫
B

tr
[ (
Q̃R†dQ̃R

)5 ]
= − 2π

960π3

∫
B

tr
[ (
G̃S
†
dG̃S

)5 ]
= − 2πi

120π3

∫
B

εi1i2i3i4i5i6ñi1dñi2dñi3dñi4dñi5dñi6 . (5.35)

(We shall prove this relation in appendix B.11.)

Putting together Eq.(5.33) and Eq.(5.35), the non-linear sigma model action is given
by

W [θ,β] =
2

λ2
4

∫
M
d4x [∂µθ∂

µθ] +
2

λ2
4

∫
M
d4x

5∑
i=0

(∂µni)
2

− 2πi

120π3

∫
B

εi1i2i3i4i5i6ñi1dñi2dñi3dñi4dñi5dñi6 .

(5.36)

Therefore unlike (1 + 1)- and (2 + 1)-D, the spin effective theory for (3 + 1)-D bipartite
Mott insulator has an extra U(1) mode!
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Gapping out the U(1) mode

In this subsection we show that there is a charge-SU(2) singlet fermion interaction
term that gaps out the θ degree of freedom. For convenience, we use the basis in Eq.(5.31).
The emergent symmetry is U(n) which includes a subgroup U(1) (not to be confused with
the extra U(1) mode discussed earlier) generated by

QU(1) = In ⊗ IY.

We can use this QU(1) to complexify the Majorana fermion 7 , namely,

ψαi :=
1√
2

(χαi1 + i χαi2) . (5.37)

Here the Majorana field χαia carries three indices: α = 1, 2, ..., n is the flavor index; i
indexes the second Pauli matrix in Eq.(5.31) and a = 1, 2 indexes the last Pauli matrix.
In terms of the complexified fermion operators the mass term reads (see table4.2)

χT [S1 ⊗ Y X + S2 ⊗ Y Z]χ

=
[
ψαi (i Yij) (S1 + i S2)αβ ψ

β
j + h.c.

]
=
[
ψαi EijQ

R
αβ ψ

β
j + h.c.

]
(5.38)

where S1 and S2 are symmetric real matrices.

Now we are ready to construct the desired interaction term to gap out the U(1) mode
in Eq.(5.32)

Ĥint = −Uθ
2

∫
d4x
[
Ei1j1Ei2j2 ...Einjn

(
εα1α2...αnψ

α1
i1
ψα2
i2
...ψαnin

)
×
(
εβ1β2...βnψ

β1
j1
ψβ2j2 ...ψ

βn
jn

)
+ h.c.

]
. (5.39)

First we note that Eq.(5.39) is a charge-SU(2) singlet, hence is unaffected by the
Mott constraint. The proof goes as follows. When acted upon by the charge-SU(2)
transformation, the fermion operator in Eq.(5.37) transforms according to

ψαi → uαβψ
β
i ,

where uαβ is the charge-SU(2) transformation matrix. Under such transformation, the
term in each parenthesis of Eq.(5.39) transforms according to

εα1α2...αnψ
α1
i1
ψα2
i2
...ψαnin → εα1α2...αnu

α1
β1
uα2
β2
...uαnβnψ

β1
i1
ψβ2i2 ...ψ

βn
in

= (detu) εβ1β2...βnψ
β1
i1
ψβ2i2 ...ψ

βn
in

= εα1α2...αnψ
α1
i1
ψα2
i2
...ψαnin .

7Note that although we have complexified the Majorana fermion using the emergent U(1), this is
different from the complex class because we allow the mass term to break this U(1).
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Therefore Eq.(5.39) is charge-SU(2) invariant.

Next, we note, upon bosonization

Eijψ
α
i ψ

β
j → QR

αβ = (S1 + iS2)αβ ,

where

QR ∈ U(8)

O(8)

is the order parameter of the nonlinear sigma model in Eq.(4.33). As the result, the
action corresponds to Ĥint is

Sint = −Uθ
2

∫
d4x

{
det
[
QR]+ c.c

}
. (5.40)

Substituting Eq.(5.32) into Eq.(5.40) we obtain

Sint = −Uθ
∫
d4x cos(8θ). (5.41)

Naively, it might appear that the θ-vacuum is 8-fold degenerate, corresponding to

θ =
2πl

8
with l = 0, 1, ...7.

However, this is due to a redundancy in the splitting U(8)/O(8)→ U(1)× SU(8)/O(8).
The transformation

eiθ →ei(θ+
2π
8

)

can be absorbed by the following transformation of GS

GS →ei
2π
8 GS.

Because
(
ei

2π
8

)8

= 1, the transformed GS still belongs to SU(8)/O(8). As a result, the 8

different θ vacua should be counted as one, as long as there is no spontaneous symmetry
breaking in GS (i.e., when GS(x) fluctuates over all possible configurations in SU(8)/O(8)).

In the phase that the θ degrees of freedom are gapped out, we have

QR(x) =

[
n0(x)N0 + i

5∑
i=1

ni(x)Ni

]
. (5.42)

Among the six order parameters, the first three are spin-SU(2) singlet and the last three
are spin-SU(2) triplet. The latter can be interpreted as the anti-ferromagnetic order
parameters. As to the first three, they break the lattice rotation symmetry, and can be
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identified as the VBS order parameters. The non-linear sigma model governing the ni
degrees of freedom read

W [ni] =
2

λ2
4

∫
M
d4x

5∑
i=0

(∂µni)
2 − 2πi

120π3

∫
B

εi1i2i3i4i5i6ñi1dñi2dñi3dñi4dñi5dñi6 ,

(5.43)

which is the S5 (or O(6)) nonlinear sigma model with k = 1 WZW term. Note that since
π3(S5) = 0, there is no soliton. This model is a natural generalization of the spin effective
theory in (1 + 1)- and (2 + 1)-D.

5.3 Twisted bi-layer graphene

Another 2D system where relativistic electron dispersion comes into play is the twisted
bilayer graphene (TBLG). When the twisting angle is close to the “magic” value, the rele-
vant bands become very flat [45], which suggests strong correlation. Under that condition,
as a function of band filling ν, a rich phase diagram emerges. This includes various insu-
lating phases near integer filling and superconductivity when ν deviates from integer [46,
47, 48, 49, 50, 51]. In the following, we shall hold the point of view that the essence of the
TBLG physics is the fact that the interaction energy overwhelms the bandwidth, which
does not require the bandwidth to be zero. Therefore we restrict ourselves to twisting
angles close but not exactly equal to the magic values.

In the non-interacting picture, the Fermi energy (EF ) only intersects the Dirac nodes
at the charge neutral point ν = 0. However, by measuring the electronic compressibility,
it is recently suggested that the coincidence of EF and Dirac nodes reappears at all integer
filling factors [52, 53]. Such “Dirac revivals” is interpreted as the evidence of the unequal
filling of bands induced by the polarization of the flavor (including valley and spin) de-
grees of freedom. Therefore the relativistic massless fermions and bosonized non-linear
sigma models discussed in Part I are good starting points to address the physics of TBLG.

The real space structure of the TBLG is shown in Fig. 5.6a for a certain small but
commensurate twisting angle. In Fig. 5.6b we show the associated momentum space
structure. The large blue and the red hexagons are the original graphene Brillouin zones
for the two layers. The small hexagons colored orange are the Brillouin zone of the Moiré
superlattice. In Fig. 5.6c we blow up one of the Moiré Brillouin zones. Here KM and K ′M
labels the two valleys in the Moiré Brillouin zone, while the blue/red K and K ′ labels
the valleys of the graphene Brillouin zone. Note that each valley of the Moiré Brillouin
zone consists of two opposite valleys of the graphene Brillouin zone,
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5.3.1 Charge neutral point ν = 0

In the presence of inter-layer hybridization, there are eight “active” graphene-like
bands. We can label these eight “flavors” by the flavor index which represents

graphene valley, Moiré valley, spin

degrees of freedom. At the charge neutral point, the Fermi level crosses the Dirac points
at KM and K ′M .

In the momentum space we expand the band dispersion around KM and K ′M , the
resulting low energy Dirac-like band structure is described by the following continuum
real-space Hamiltonian

Ĥ =

∫
d2x ψ†(x) (−iΓ1∂x − iΓ2∂y)ψ(x), (5.44)

where ψ is an eight-component complex fermion field, and

Γ1 = XZII, Γ2 = Y III. (5.45)

Here the tensor product of Pauli matrices is arranged according to

sub-lattice⊗ graphene valley ⊗Moiré valley⊗ spin.

The reason we use the complex fermion (rather than Majorana) representation in Eq.(5.44)
is that at integer band fillings there is no evidence of superconductivity [48]. Therefore
Eq.(5.44) belong to the complex class.

(a) Real space

θ

K1

K1

 K2

K2



(b) Momentum space

KM: (K1,K2
)

K
M


: (K1


,K2)

(c) Moiré Brillouin zone

Figure 5.6: (a) A real space picture of twisted bilayer graphene. (b) Blue and red color
the Brillouin zones of the first and second layer graphene. Orange colors the Brillouin
zone of the Moiré superlattice. (c) At KM there are the K1 of the first layer and K ′2 of
the first layer. At K ′M there are the K ′1 of the first layer and K2 of the second layer.
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The massless free fermion Hamiltonian in Eq.(5.44) has emergent U(8) symmetry.
After performing the the basis transformation

ψ → ei
π
4
XIII ·

[(
I 0
0 Z

)
⊗ II

]
ψ

to cast the gamma matrices into the form used in table 4.1, namely,

Γ1 = XIII, Γ2 = ZIII,

we can use our bosonization result (see appendix B.6). In the presence of the electro-
magnetic (U(1)) gauge field A, the massless fermion theory in Eq.(5.44) is equivalent to
the following gauged non-linear sigma model

W [QC, A] =
1

2λ3

∫
M

d3x tr
[ (
∂µQ

C)2
]
− 2πi

256π2

{∫
B

tr
[
Q̃C

(
dQ̃C

)4 ]
+8

∫
M

tr
[
iAQC(dQC)2 − 2AFQC

]}
, (5.46)

where

QC ∈ U(8)

U(4)× U(4)
. (5.47)

As discussed in section 4.10, there exists a local interacting fermion model which re-
spects all emergent symmetries and the phases (which might spontaneously break the con-
tinuous or discrete symmetries) are described by the effective theories given by Eq.(5.46)
but with

QC ∈
8⋃
l=0

U(8)

U(l)× U(8− l)

Among the last two terms of Eq.(5.46), the term linear in Aµ measures the soliton
current

Jµ =
i

16π
εµνρtr

[
QC∂νQ

C∂ρQ
C
]
.

The term proportional to AF gives rise to a Chern-Simons term

− i

8π

∫
M

tr[QC]AF,

with the corresponding Hall conductance

σxy =
1

2
tr[QC] = l − 4. (5.48)
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Therefore only the l = 4 mass manifold, U(8)
U(4)×U(4)

, has σxy = 0. Since so far there is

no reported (non-zero) Hall conductivity at the charge neutral point [51], we take it as

implying the relevant mass manifold is U(8)
U(4)×U(4)

.

The resulting non-linear sigma model has two phases depending on the coupling con-
stant λ3 in the stiffness term. For λ3 < λc there is a spontaneous breaking of the U(8)
symmetry, and the sigma model is gapped. We interpret this phase as the “symmetry-
breaking insulator”. For λ3 > λc, there is a gapless phase for the non-linear sigma model,
and we interpret that as the semi-metal phase. As far as we know, it is still not totally
clear whether the low-temperature phase at ν = 0 is a Dirac semimetal or a correlated
charge insulator.

5.3.2 ν = ±1,±2,±3

Experimentally a sequence of asymmetric jumps in the electronic compressibility are
observed near integer filling factors[52, 53]. In Ref.[52] this is coined “Dirac fermion re-
vivals”, which is interpreted as due to “flavor polarization”. In the following we shall
assume this interpretation holds.

The mechanism of flavor polarization is likely due to a combination of Coulomb inter-
action and narrow bands, much like the occurrence of spin polarization (ferromagnetism)
in narrow band metal. In the following, we shall assume the simplest flavor polarization
mechanism. More complicated ones will not affect our discussions, as long as, after the
polarization, the low energy spectrum forms Dirac cones and the number of active bands
and the associated low-energy theory are captured correctly.

For simplicity, we shall consider ν ≥ 0 in the following discussion. In the cases of
ν = 1, 2, 3 8, the Fermi level crossing band number is reduced to 3, 2, 1 respectively. This
can be caused by a polarization operator

∆p

∫
d2x ψ(x)†P ψ(x) (5.49)

where P is a hermitian matrix that commutes with Γi and satisfies P 2 = I16. In addition,
P needs to be identity matrix for the Moiré valley degree of freedom. This leads to the
space

P ∈
4⋃

ν=0

U(4)

U(4− ν)× U(ν)
, (5.50)

Such a term will shift 4− ν bands on the Moiré Brillouin zone upward and the remaining
ν downward by the energy ±∆p. For example, P = IZII is one such polarization matrix

8ν = −1,−2, 3 can be mapped onto ν = 1, 2, 3 by flipping the signs of ∆p in Eq.(5.49) and εF in
Fig. 5.7.
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for ν = 2 causing the polarization of graphene valleys, with half of the bands are shifted
upward/downward. The resulting spectrum for each ν is schematically shown in Fig. 5.7.

After the polarization, the low energy free fermion Hamiltonian read

Ĥ =

∫
d2x ψ†(x)

(
−iΓ(ν)

1 ∂x − iΓ(ν)
2 ∂y

)
ψ(x), (5.51)

where, up to a flavor basis transformation,

Γ
(ν)
1 = XII4−ν , Γ

(ν)
2 = Y II4−ν . (5.52)

Here I4−ν is the identity matrix for size 4− ν. The order parameter associated with the
Fermi-level crossing bands is

QC ∈
8−2ν⋃
l=0

U(8− 2ν)

U(l)× U(8− 2ν − l)
, (5.53)

and the associated non-linear sigma model reads

W [QC, A] =
1

2λ3

∫
M

d3x tr
[ (
∂µQ

C)2
]
− 2πi

256π2

{∫
B

tr
[
Q̃C

(
dQ̃C

)4 ]
+8

∫
M

tr
[
iAQC(dQC)2 − 2AFQC

]}
. (5.54)

where Aµ is the electromagnetic (U(1)) gauge field. Here, associated with each mass
manifold the σxy is given by

σxy = l − (4− ν).

k
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ϵF

(a)

k
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-1
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Figure 5.7: A caricature of the possible flavor polarization at (a) ν = 2 and (b) ν = 1 and
(c) ν = 3. Note that as long as the Fermi level intersects bands with the right degeneracy,
the bands below the Fermi energy can overlap without changing the filling factor. For
ν = −2,−1,−3 we simply reflect the figures with respect to the x-axis.
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First consider we ν = 1, 2. Since experimentally σxy = 0 at ν = 1, 2 [51] for B = 0, we

take it as implying the relevant mass manifold is U(8−2ν)
U(4−ν)×U(4−ν)

. The resulting non-linear
sigma model can have two phases. One of phases occurs for λ3 < λc, where there is a
spontaneous breaking of the U(8 − 2ν) symmetry and the sigma model is gapped. We
interpret this phase as the “symmetry-breaking correlated insulator”9. The other phase
occurs for λ3 > λc where the sigma model remains gapless. We interpret that as the
semi-metal phase.

For ν = 3, the order parameter associated with the Fermi-level crossing bands is

QC ∈
2⋃
l=0

U(2)

U(l)× U(2− l)
. (5.55)

The l = 2 and l = 0 mass manifolds break the time-reversal symmetry and yield σxy = ±1
(see appendix B.8 for the details). Hence the phase corresponds to a quantum anomalous
Hall state. This is consistent with the experimental observation of Ref.[51]. We stress
that the non-zero σxy associated with mass manifold l = 0 or 2 is independent of the
choice of flavor polarization P so long as it obeys Eq.(5.50).

The mass manifold associated with l = 1 is

U(2)

U(1)× U(1)
= S2.

In that case QC can be replaced by a unit vector n̂ ∈ S2. This leads to the bosonization
of a small n case (i.e., before the WZW term is stabilized). The resulting nonlinear sigma
model was first derived in Ref. [54] and reviewed in appendix B.8. The action is given
by

W [n̂] =
1

2λ′3

∫
M
d3x (∂µn̂)2 + iπH[n̂].

Here H[n̂] is the Hopf invariant of the S3 → S2 mapping. In the presence of such Hopf
term the solitons are fermions [55]. Depending on the value of λ′3 this non-linear sigma
model can be gapless (preserving the U(2) symmetry) for λ′3 < λc, or gapped (spontaneous
symmetry breaking) for λ′3 > λc. In the latter case the fermionic solitons will be gapped.
In either case σxy = 0. We viewed the gapped soliton phase a “correlated insulator”
arising from symmetry breaking.

9Due to the flavor polarization, the original emergent symmetry is broken. Hence in principle, the
low energy massless fermion theory can be regularized. If so there is the possibility that a Mott insulator
phase exists.
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Chapter 6

Conclusions of bosonization

In this part we have (non-abelian) bosonized two classes of massless fermion theories, the
real and complex class, in spatial dimensions 1, 2, and 3. The boson theories are non-
linear sigma models with the level-1 Wess-Zumino-Witten terms. We have also included
three examples showing how to apply the bosonization results.

Of course, the goal of bosonization is not simply writing down theories equivalent to
that of massless free fermions. For example, the bosonized models manifest what are
the “nearby” symmetry-breaking states. These symmetry-breaking states can be reached
when anisotropy terms are added to the non-linear sigma models. The bosonized theo-
ries also allow one to include the effects of strong interaction such as the charge-SU(2)
confinement discussed in the first two applications. Moreover, as we have discussed, the
main idea of this bosonization is inspired by the physics of topological insulators and su-
perconductors. Indeed, the results discussed here can be applied to the boundary physics
of such systems.

In this dissertation, when restoring the symmetries, we have restricted the bosonic
order parameters to fluctuate smoothly. As the result, defect proliferation is not con-
sidered. In the literature, it is known that proliferation of symmetry-protected defects
can lead to topological order (e.g., in Ref. [56]). However, in that case, one is re-
stricted to the boundary of topological insulators/superconductors (or more generally
symmetry-protected topological states). This is because defects are sensitive to short-
distance physics, and the symmetries that protect the desired properties of defects can
be broken by the regularization. Of course, unless the defects are on the boundary of an
SPT, where regularization is provided by the bulk, and no symmetry breaking is neces-
sary. An interesting question is how to reach a topological ordered state without invoking
defects. These are directions that warrants more researches.
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Appendix A

Appendices of part II

A.1 The preservation of constraints 1 to 4 by the

spectral symmetrization steps

In this section, we show that spectral symmetrization preserves the constraints 1 to 4.
As discussed in the main text, if there is anti-unitary symmetry, the spectrum of h(k) is
symmetric about E = 0, in which case there is no need for the second step of spectral
symmetrization, namely, subtracting the average of eigenenergies.

A.1.1 Constraint 1

The Majorana constraint implies the original Hamiltonian satisfies

hT (−k) = −h(k) (A.1)

This implies the eigenvalues at −k are the negative of the eigenvalues at +k. Thus

D(−k) = −W †
kD(k)Wk (A.2)

where Wk is the unitary transformation necessary to reorder the eigenvalues in D(−k)
according to descending order. The Majorana constraint of Eq.(A.1) implies

UT
−kD(−k)U∗−k = −U †kD(k)Uk.

We substitute Eq.(A.2) into the above equation,

UT
−kW

†
kD(k)WkU

∗
−k = U †kD(k)Uk

⇒ UkU
T
−kW

†
kD(k)WkU

∗
−kU

†
k = D(k) (A.3)

The second line of the above equation can be rewritten as

ZkD(k)Z†k = D(k), (A.4)

where the unitary matrix Zk = UkU
T
−kW

†
k. In order for Eq.(A.4) to hold, Zk needs to be

block diagonalized where each block is spanned by the degenerate eigenvectors of D(k).
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Within each block, D(k) is proportional to an identity matrix.

After the first step of spectral symmetrization D(k) → D′(k). Since D′(k) is still
proportional to the same identity matrix in each block of D(k), it follows that conjugation
by Z(k) still leaves it invariant, i.e.,

ZkD
′(k)Z†k = UkU

T
−kW

†
kD
′(k)WkU

∗
−kU

†
k = D′(k). (A.5)

Given Eq.(A.5) we can multiply the unitary matrices in the reverse order to arrive at

UT
−kD

′(−k)U∗−k = −U †kD
′(k)Uk,

which means

h′
T

(−k) = −h′(k). (A.6)

Equation A.6 implies that the spectrum of h′(k) flips sign upon the reversal of k.
As a result, the average of the diagonal elements Ē ′(k) subtracted in the second step of
spectral symmetrization, obeys

Ē ′(−k) = −Ē ′(k). (A.7)

Consequently the subtracted piece Ē ′(k)In obeys the Majorana constraint, i.e.,(
Ē ′(−k)In

)T
= −Ē ′(k)In. (A.8)

This means if h′(k) satisfies the Majorana constraint, so does h̃(k) after the subtraction.

A.1.2 Constraint 2

The periodicity constraint is given by

h(k) = h(k +G) (A.9)

where G is any reciprocal lattice vector. This means

U †kD(k)Uk = U †k+GD(k +G)Uk+G

⇒ D(k +G) = Uk+GU
†
kD(k)UkU

†
k+G.

Since D(k +G) = D(k) (periodicity in Hamiltonian implies periodicity in the eigenval-
ues), we have

D(k) = Uk+GU
†
kD(k)UkU

†
k+G ≡ YkD(k)Y †k . (A.10)

Here the unitary matrix Yk = Uk+GU
†
k needs to be block diagonalized where each block is

spanned by the degenerate eigenvectors of D(k). Within each block, D(k) is proportional
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to an identity matrix. Since D′(k) is still proportional to the same identity matrix in
each block of D(k), conjugation by Y (k) leaves D′(k) invariant. Thus

D′(k) = Uk+GU
†
kD
′(k)UkU

†
k+G.

Since D′(k) on the LHS equals to D′(k +G), it follows that

D′(k +G) = Uk+GU
†
kD
′(k)UkU

†
k+G.

Multiplying the unitary matrices in reverse order leads to

h′(k) = h′(k +G).

Because h′(k) satisfies the periodicity constraints, so does the average of its eigen-
values Ē ′(k). Hence Ē ′(k)In, subtracted in the second step of spectral symmetrization,
obeys the Brillouin zone periodicity. As as result, h̃(k) satisfies the periodicity constraint.

Another important part of constraint 2 is the analytic nature of h(k). In the following
we show that in the k region where the spectrum is gapped, spectral symmetrization does
not spoil analyticity.

Let’s consider shifting k to k+ εn̂, where n̂ is an unit vector and ε is an infinitesimal.
Under such infinitesimal shift

h(k)→ h(k + εn̂). (A.11)

In the mathematics literature, e.g., theorem 1 in Chapter I (page 42) of Ref.[Rellich1969]),
there is the following theorem.

Theorem Let h(x) be a finite dimensional Hermitian matrix function of a
parameter x. If the polynomial expansion of h(x) around x = 0 has a finite
radius of convergence (i.e. analytic), then there exists a basis in which both the
eigenvalues and the orthonormal set of eigenvectors of h(x) have a convergent
power series expansion within the same radius.

It is important to note that this theorem applies whether there are degeneracies in
the eigenvalues of h(0) or not.

Applying this theorem to our problem, the analytic nature of h(k) around k implies
the existence of a basis in which the eigenvalues and eigenvectors of h(k + εn̂) is an
analytic function of ε in any direction n̂. This means we can choose a basis so that both
D(k + εn̂) and U(k + εn̂) in

h(k + εn̂) = U †(k + εn̂)D(k + εn̂)U(k + εn̂) (A.12)

are analytic functions of ε. In regions where h(k) is gapped we can sort the eigenvalues
into an upper half and a lower half so that no interchange of eigenvalues between the two
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parts take place as k moves around. Note that this is also true when there is crossing
between the bands in the upper or lower halves (see Figure A.1 (a)).

Under such (no gap closure) condition, the spectral symmetrization does not change
the analyticity of the Hamiltonian, because the eigenvectors are unchanged and the aver-
age of the upper/lower half of the eigenvalues as well as the average of all eigenvalues are
analytic in k. This is no longer true when k moves across a gap closing point (see Figure
A.1 (b)). In that case there exists eigenvalues (and their associated eigenvectors) that
move from the upper to the lower part (and vice versa). Under this condition although
the original eigenvalues and eigenvectors are analytic in k, the sorted ones are not (see
Figure A.1 (c)).

Thus if h is analytic and gapped in a neighborhood of k the spectral symmetrised h̃ is
analytic too. In contrast, spectral symmetrization does not maintain the analytic nature
the Hamiltonian if k moves across gap nodes.

(a)                                  (b)                                  (c)

Figure A.1: Examples of band crossing at k 6= 0 in 1D. (a) The orange arrow points at
a k point where band crossing occurs while the energy gap remains non-zero. (b) The
orange arrow points at a gap-closing k point. (c) After the energy eigenvalues are sorted
into upper (blue) and lower (red) halves, the eigenvalues and eigenvectors are no longer
analytic across the gap-closing k point.

A.1.3 Constraint 3

The spectral symmetrization step clearly does not collapse the energy gap.

At k = 0, since all eigen-energies are zero, no spectral symmetrization is necessary.
Moreover, the spectral symmetrization does not change the fact that h(k) →

∑
j kjΓj

as k → 0, because
∑

j kiΓj already satisfies the spectral symmetrization condition. To-
gether, the above arguments imply that spectral symmetrization preserves constraint 3.
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A.1.4 Constraint 4

The unitary symmetries

The unitary symmetries require

U †βh(k)Uβ = h(k),

which means

U †βU
†
kD(k)UkUβ = U †kD(k)Uk

⇒ QkD(k)Q†k ≡ UkU
†
βU
†
kD(k)UkUβU

†
k = D(k). (A.13)

Again, the unitary matrix Qk = UkU
†
βU
†
k needs to be block diagonalized where each block

is spanned by the degenerate eigenvectors of D(k). Within each block, D(k) is propor-
tional to an identity matrix.

After spectral symmetrization, D′(k) is still proportional to the same identity matrix
in each block of D(k), hence conjugation by Q(k) leaves D′(k) invariant. Thus

UkU
†
βU
†
kD
′(k)UkUβU

†
k = D′(k).

Multiplying the unitary matrices in reverse order leads to

U †βh
′(k)Uβ = h′(k).

The Ē ′(k)In, subtracted in the second step of spectral symmetrization, clearly satisfies
the unitary symmetry constraint, namely,

U †β
(
Ē ′(k)In

)
Uβ = Ē ′(k)In.

As a result, the subtraction does not jeopardize the unitary symmetry.

The anti-unitary symmetries

The anti-unitary symmetries require

A†αh(−k)∗Aα = h(k).

The Majorana constraint Eq.(A.1) converts the above equation to

−A†αh(k)Aα = h(k). (A.14)

Among other things, this means the eigenvalues of h(k) are in ± pairs, which means

D(k) = X†k (−D(k))Xk. (A.15)
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Where Xk is a unitary matrix necessary to reorder the eigenvalues of−D(k) in descending
order. Equation A.14 implies

A†αU
†
kD(k)UkAα = −U †kD(k)Uk

⇒ UkA
†
αU
†
kD(k)UkAαU

†
k = −D(k) (A.16)

Now we use Eq.(A.15) to convert the last line of the above equation to

OkD(k)O†k ≡ UkA
†
αU
†
kX
†
kD(k)XkUkAαU

†
k = D(k)

Like before, the unitary matrix Ok = UkA
†
αU
†
kX
†
k needs to be block diagonalized where

each block is spanned by degenerate eigenvectors of D(k). Within each block, D(k) is
proportional to an identity matrix.

After spectral symmetrization D′(k) is still proportional to the same identity matrix
in each block of D(k), hence conjugation by O(k) leaves D′(k) invariant, i.e.,

UkA
†
αU
†
kX
†
kD
′(k)XkUkAαU

†
k = D′(k).

Since the same Xk can reverse the ordering of eigenvalues in D′(k), the above equation
turns into

UkA
†
αU
†
k (−D′(k))UkAαU

†
k = D′(k).

Multiplying the unitary matrices in reverse order leads to

−A†αh′(k)Aα = h′(k). (A.17)

Since Eq.(A.17) implies the eigenvalues of h′(k) are symmetric with respect to E = 0,
there is no subtraction step needed. Hence h̃(k) = h′(k), and

−A†αh̃(k)Aα = h̃(k)⇒ A†αh̃(−k)∗Aα = h̃(k).

A.2 Impossibility for the gap of h̃(k) to close at

only a single point in the Brillouin zone

In this appendix, we prove that the symmetry protection constraint plus constraints
1,2,4 and Eq.(2.2) in section 2.2 lead to the violation of the single gap node assumption
in constraint 3. More specifically, we prove that under the conditions described above
A(k0) = 0. Here A(k) is defined in Eq.(2.12) and k0 is the non-zero time reversal in-
variant point discussed in the main text. Since S(k0) = 0 this implies h̃(k0) = 0. This
violates the statement that energy gap closes only at k = 0. This proof addresses the
generic situations discussed in section 2.7 of the main text.
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For each symmetry group generated by a subset of {T̂ , Q̂, Ĉ} we focus on the minimal
models where the number of components, n0, in χ(k) is the minimum. This is the min-
imal number of components required to realize a particular SPN. Under this condition
the dimension of all associated matrices is n0 × n0. In other words, n0 is the minimum
integer for which there exists n0-by-n0 matrices representing the available symmetries
and Γ1, ...,Γd (d is the spatial dimension). Here the {Γi} obey the symmetry requirement
(constraint 4 in section 2.2) and satisfy the Clifford algebra {Γi,Γj} = 2δij.

For each spatial dimension d, we will go through all the symmetry groups G which
gives rise to an SPN. (These groups protect non-trivial SPT’s in d+ 1 dimensions.) For
each (d,G) we write down the number n0, the symmetry matrices, and the most general
form of S(k) and A(k) allowed by symmetry.

To characterize each symmetry group we shall use the short hand

G±([ ]±, [ ]±, [ ]±).

Between the square brackets we insert T,Q or C (the maximal number of symbols in the
argument of G is 3). The subscript of the symbols, when present, denotes whether the
matrix representing the T̂ , Q̂, Ĉ squares to identity or minus identity. The superscript on
G specifies whether the time reversal matrix T commutes (+) or anticommutes (−) with
the charge conjugation matrix C. The matrix Q always anticommutes with T and C, and
always squares to minus identity. Hence we do not bother to attach a subscript to Q, nor
do we need to specify the commutator between Q and T,C. To simplify the notation we
shall abbreviate the Pauli matrices σ0, σx, σy, σz, iσy as I,X, Y, Z,E, respectively. When
two Pauli matrices appear next to each other it means tensor product. For example EX
means iσy ⊗ σx.

The proof is based on the following facts.

1. After spectral symmetrization, the Hamiltonian is given by Eq.(2.12) in the main
text, where {S(k), A(k)} = 0 and S(k)2 + A(k)2 ∝ In.

2. As shown in A.1.2 the spectral symmetrization preserves the analytic nature of h(k)
in regions of k where the spectrum of h(k) is fully gapped. Hence in the gapped
region of h(k), h̃(k) and the coefficient functions õi(k) and ẽj(k) in Eq.(2.12) are
analytic.

3. The Poincaré -Hopf theorem implies the mapping degree of

{õ1(k), õ2(k), ..., õd(k)}

is odd around, at least, one other time-reversal invariant point k0 6= 0.

In addition, for the ease of later discussions, we define the curves {Ci, i = 1, ..., d}
near k0 as follows.
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Definition 1. Given i ∈ {1, . . . , d}, let’s consider the map q → (õ1(k0 + q), . . . , õd(k0 +
q)) from any circle of radius |q| = r > 0. Due to the non-zero degree of this map there
must exist, at least, one point q on the circle such that õj(k0 + q) = 0 for j 6= i and
õi(k0 +q) > 0. Let’s select such a point. Because the coefficient functions are continuous
we can connect the points for different r into a curve Ci which approaches the point k0

as r → 0.

A.2.1 1D SPNs

G(∅), or equivalently G(C+) after block-diagonalizing C

G(∅), n0 = 1,
S(k) õ1(k)
A(k) 0

As mentioned in the main text, this is a chiral SPN. It is not regularizable because
the continuity and the Brillouin zone periodicity contradict with each other.

G(T−), or equivalently G+(T−, C+) after block-diagonalizing C

T = E, n0 = 2,
S(k) õ1(k)X + õ2(k)Z
A(k) 0

Since there is no A(k) =⇒ A(k0) = 0.

G(C−), or equivalently G(Q) after identifying C with Q

C = E, n0 = 2,
S(k) õ1(k)I
A(k) ẽ1(k)Y

Since S(k) ∝ I this is a chiral SPN. It is not regularizable because the continuity and
the Brillouin zone periodicity contradict with each other.

G−(T+, C+)

T = Z,C = X, n0 = 2,
S(k) õ1(k)X
A(k) 0

Since there is no A(k) =⇒ A(k0) = 0.
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G−(T−, C+)

T = E,C = Z, , n0 = 2,
S(k) õ1(k)Z
A(k) 0

Since there is no A(k) =⇒ A(k0) = 0.

G−(T−, C−), or equivalently G(Q, T−) after identifying C with Q

T = ZE,C = EI, n0 = 4,
S(k) õ1(k)Y Y + õ2(k)IX + õ3(k)IZ
A(k) ẽ1(k)Y I

{S(k), A(k)} = 0 implies


õ1(k)ẽ1(k) = 0

õ2(k)ẽ1(k) = 0

õ3(k)ẽ1(k) = 0

Because the mapping degree of õ1(k) is odd in the neighborhood of k = k0, it requires
õ1(k) to be non-zero when k is in the neighborhood but not equal to k0. This implies
ẽ1(k) = 0 in the neighborhood of k0. The continuity of ẽ1(k) implies ẽ1(k0) = 0, which
in turn implies A(k0) = 0.

G(Q,C+)

Q = E,C = Z, n0 = 2,
S(k) õ1(k)I
A(k) 0

Since S(k) ∝ I this is a chiral SPN. It is not regularizable because the continuity and
the Brillouin zone periodicity contradict with each other.

G(Q,C−)

Q = EI,C = ZE, n0 = 4,
S(k) õ1(k)II
A(k) ẽ1(k)Y X + ẽ2(k)Y Z + ẽ3(k)IY

Since S(k) ∝ II this is a chiral SPN. It is not regularizable because the continuity
and the Brillouin zone periodicity contradict with each other.
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G+(Q, T−, C+) or equivalently G−(Q, T−, C+) after identifying C with QC

Q = EI, T = ZE,C = XX, n0 = 4,
S(k) õ1(k)Y Y + õ2(k)IX
A(k) 0

Since there is no A(k) =⇒ A(k0) = 0.

A.2.2 2D SPNs

G(T−), or equivalently G+(T−, C+) after block-diagonalizing C

T = E, n0 = 2,
S(k) õ1(k)X + õ2(k)Z
A(k) 0

Since there is no A(k) =⇒ A(k0) = 0.

G+(T+, C−) or equivalently, G+(T−, C−) after identifying T− with T+C−

T = ZI, C = ZE, n0 = 4,
S(k) õ1(k)XX + õ2(k)XZ
A(k) ẽ1(k)Y X + ẽ2(k)Y Z

Here {S(k), A(k)} = 0 implies

õ2(k)ẽ1(k) = õ1(k)ẽ2(k)

We examine the above equation in the neighborhood of k0 by expanding k = k0 + q.

On the curve C1 defined in A.2 with d = 2, for any r = |q| 6= 0,

0 = õ2(k)ẽ1(k) = õ1(k)ẽ2(k) (A.18)

Because õ1(k) > 0 it implies ẽ2(k) = 0. By the continuity of ẽ2(k) we conclude ẽ2(k) = 0
at r = 0. In other words ẽ2(k0) = 0. We can repeat this argument by looking at C2. This
will lead to ẽ1(k0) = 0. Combining the above results, we obtain A(k0) = 0.

G−(T−, C−), or equivalently G(Q, T−) after identifying C with Q

T = ZE,C = EI, n0 = 4,
S(k) õ1(k)Y Y + õ2(k)IX + õ3(k)IZ
A(k) ẽ1(k)Y I

Here {S(k), A(k)} = 0 implies
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
õ1(k)ẽ1(k) = 0

õ2(k)ẽ1(k) = 0

õ3(k)ẽ1(k) = 0

Let’s focus on the first two equations.

On the curve C1 defined in A.2 with d = 2, for any r = |q| 6= 0,

õ1(k)ẽ1(k) = 0 (A.19)

Because õ1(k) > 0 it implies ẽ1(k) = 0. By the continuity of ẽ1(k) we conclude ẽ1(k) = 0
at r = 0. In other words ẽ1(k0) = 0. This means A(k0) = 0.

G+(Q, T+, C−), or equivalently G−(Q, T+, C−) after identifying C with QC

Q = EII, T = ZII, C = ZEI, n0 = 8,
S(k) õ1(k)Y XY + õ2(k)Y ZY
A(k) ẽ1(k)Y XX + ẽ2(k)Y XZ + ẽ3(k)Y XI+

ẽ4(k)Y ZX + ẽ5(k)Y ZZ + ẽ6(k)Y ZI

Here {S(k), A(k)} = 0 implies


õ1(k)ẽ5(k)− õ2(k)ẽ2(k) = 0

õ1(k)ẽ4(k) + õ2(k)ẽ1(k) = 0

õ1(k)ẽ3(k) + õ2(k)ẽ6(k) = 0

We examine the above equation in the neighborhood of k0 by expanding k = k0 +q. On
the curve C1 defined in A.2 with d = 2, for any r = |q| 6= 0,

õ1(k)ẽ5(k) = 0

õ1(k)ẽ4(k) = 0

õ1(k)ẽ3(k) = 0

Because õ1(k) > 0 it implies ẽ5(k) = ẽ4(k) = ẽ3(k) = 0. By the continuity of ẽ3,4,5(k)
we conclude ẽ5(k) = ẽ4(k) = ẽ3(k) = 0 at r = 0, or in other words, ẽ5(k0) = ẽ4(k0) =
ẽ3(k0) = 0. We can repeat this argument by looking at C2, which will lead to ẽ1(k0) =
ẽ2(k0) = ẽ6(k0) = 0. Combining these results we conclude A(k0) = 0.

G+(Q, T−, C+), or equivalently G−(Q, T−, C+) after identifying C with QC

Q = EI, T = ZE,C = ZI, n0 = 4,
S(k) õ1(k)IX + õ2(k)IZ
A(k) 0

Since there is no A(k) =⇒ A(k0) = 0.



APPENDIX A. APPENDICES OF PART II 97

G+(Q, T−, C−), or equivalently G−(Q, T−, C−) after identifying C with QC

Q = EII, T = ZEI,C = ZIE, n0 = 8,

S(k) õ1(k)Y Y X + õ2(k)Y Y Z + õ3(k)IXI + õ4(k)IZI
A(k) ẽ1(k)Y IX + ẽ2(k)Y IZ + ẽ3(k)IXY + ẽ4(k)IZY

Here {S(k), A(k)} = 0 implies



õ1(k)ẽ1(k) + õ2(k)ẽ4(k) = 0

õ1(k)ẽ3(k) + õ2(k)ẽ2(k) = 0

õ1(k)ẽ1(k) + õ2(k)ẽ2(k) = 0

õ3(k)ẽ2(k)− õ1(k)ẽ4(k) = 0

õ4(k)ẽ1(k)− õ2(k)ẽ3(k) = 0

õ3(k)ẽ3(k) + õ4(k)ẽ4(k) = 0

Let’s focus on the first three equations. We examine these equations in the neighborhood
of k0 by expanding k = k0 + q. On the curve C1 defined in A.2 with d = 2, for any
r = |q| 6= 0, 

õ1(k)ẽ1(k) = 0

õ1(k)ẽ3(k) = 0

õ1(k)ẽ1(k) = 0

Because õ1(k) > 0 it implies ẽ1(k) = ẽ3(k) = 0. By the continuity of ẽ1,3(k) we conclude
ẽ1(k) = ẽ3(k) = 0 at r = 0. In other words ẽ1(k0) = ẽ3(k0) = 0. We can repeat this
argument by looking at C2, which will lead to ẽ2(k0) = ẽ4(k0) = 0. Combining these
results we conclude A(k0) = 0.

A.2.3 3D SPNs

G(C−), or equivalently G(Q) after identifying C with Q

C = EI, n0 = 4,
S(k) õ1(k)Y Y + õ2(k)IX + õ3(k)IZ
A(k) ẽ1(k)Y X + ẽ2(k)Y Z + ẽ3(k)Y I + ẽ4(k)IY

Here {S(k), A(k)} = 0 implies


õ2(k)ẽ3(k) = 0

õ3(k)ẽ3(k) = 0

õ1(k)ẽ3(k) = 0

õ2(k)ẽ1(k) + õ3(k)ẽ2(k) + õ1(k)ẽ4(k) = 0
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We examine the above equation in the neighborhood of k0 by expanding k = k0 +q. On
the curve C1 defined in A.2 with d = 3, for any r = |q| 6= 0,{

õ1(k)ẽ3(k) = 0

õ1(k)ẽ4(k) = 0

Because õ1(k) > 0 it implies ẽ3(k) = ẽ4(k) = 0. By the continuity of ẽ3,4(k) we conclude
ẽ3(k) = ẽ4(k) = 0 at r = 0, or in other words, ẽ3(k0) = ẽ4(k0) = 0. We can repeat this
argument by looking at C2 and C3, which will lead to ẽ1(k0) = ẽ2(k0) = 0. Combining
these results, one gets A(k0) = 0.

G−(T+, C−), or equivalently G(Q, T+) after identifying C with Q

C = EII, T = ZII, n0 = 8,

S(k) õ1(k)Y XY + õ2(k)Y Y I + õ3(k)Y ZY
+õ4(k)Y Y X + õ5(k)Y Y Z + õ6(k)Y IY

A(k) ẽ1(k)Y XX + ẽ2(k)Y XZ + ẽ3(k)Y XI
+ẽ4(k)Y Y Y + ẽ5(k)Y ZX + ẽ6(k)Y ZZ

+ẽ7(k)Y ZI + ẽ8(k)Y IX + ẽ9(k)Y IZ + ẽ10(k)Y II

(A.20)

Here {S(k), A(k)} = 0 implies



ẽ10(k)

õ4(k)

õ5(k)

õ6(k)

 =

−ẽ6(k) −ẽ8(k) ẽ2(k)

ẽ5(k) −ẽ9(k) −ẽ1(k)

−ẽ3(k) −ẽ4(k) −ẽ7(k)

 ·
õ1(k)

õ2(k)

õ3(k)


ẽ10(k)

õ1(k)

õ2(k)

õ3(k)

 =

−ẽ6(k) ẽ5(k) −ẽ3(k)

−ẽ8(k) −ẽ9(k) −ẽ4(k)

ẽ2(k) −ẽ1(k) −ẽ7(k)

 ·
õ4(k)

õ5(k)

õ6(k)


(A.21)

It’s straightforward to check that the above equations imply

[
õ2

4(k) + õ2
5(k) + õ2

6(k)− õ2
1(k)− õ2

2(k)− õ2
3(k)

]
ẽ10(k) = 0

The solutions are

ẽ10(k) = 0 or
[
õ2

4(k) + õ2
5(k) + õ2

6(k)− õ2
1(k)− õ2

2(k)− õ2
3(k)

]
= 0

In the following we prove that ẽ10(k) must vanish.

The spectral symmetrised Hamiltonian h̃(k) satisfies h̃2(k) = [S(k) + A(k)]2 = w2(k)III.
We may assume w(k) > 0 without loss of generality. In the following we show that ẽ10(k)
must take one of the following values

{w(k), w(k)/2, 0,−w(k)/2,−w(k)}
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for each k. We first observe that according to Eq.(A.20) all tensor products in S(k)
and A(k) contain Y as the first factor. Therefore we can factor it out and write h̃(k) =
Y ⊗g(k) where g(k) is a 4×4 Hermitian matrix function. Next, we express g(k) in terms
of its eigenbasis, i.e., g(k) = U(k)Λ(k)U−1(k) where U(k) is the basis transformation
matrix and Λ(k) is the diagonal matrix containing the eigenvalues. Under this basis
h̃2(k) = I ⊗ U(k)Λ2(k)U−1(k). Since the spectral symmetrization condition requires
h̃2(k) = w2(k)III, it follows that

U(k)Λ2(k)U−1(k) = w2(k)II.

This implies the eigenvalues of Λ2(k) are four-fold degenerate and are equal to w2(k).
Thus the diagonal elements of Λ(k) are ±w(k). According to Eq.(A.20)

ẽ10(k) =
1

8
Tr[(Y II)h̃(k)] =

1

4
Tr[Λ(k)].

Because the the diagonal elements of Λ(k) are ±w(k), ẽ10(k) must be equal to one of the
five possible values

{w(k), w(k)/2, 0,−w(k)/2,−w(k)} (A.22)

for each k.

Moreover, because ẽ10(k) is a analytic function of k and w(k) > 0 away from k = 0,
ẽ10(k) can not “switch track”, i.e., it must be equal to one of above five possible functions
throughout the Brillouin zone, away from k = 0.

Since h̃(k) →
∑d

j=1 kjΓj as k → 0, it follows that w(k) → |k| as k → 0. On the
other hand, since ẽ10(k) is an even function of k, it must vanishes as an even power in k
as k→ 0, hence

|ẽ10(k)| << w(k) as k→ 0. (A.23)

The only choice in Eq.(A.22) that is consistent with Eq.(A.23) is

ẽ10(k) = 0. (A.24)

Now we may set ẽ10(k) = 0 in the first three equations of Eq.(A.21) and examine
these equations in the neighborhood of k0 by expanding k = k0 + q. On the curve C1

defined in A.2 with d = 3, for any r = |q| 6= 0,
−õ1(k)ẽ6(k) = 0

õ1(k)ẽ5(k) = 0

−õ1(k)ẽ3(k) = 0
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Because õ1(k) > 0 it implies ẽ3(k) = ẽ5(k) = ẽ6(k) = 0. By the continuity of ẽ3,5,6(k)
we conclude ẽ3(k) = ẽ5(k) = ẽ6(k) = 0 at r = 0, or in other words, ẽ3(k0) = ẽ5(k0) =
ẽ6(k0) = 0. We can repeat this argument by looking at C2 and C3, which will lead to
ẽ4(k0) = ẽ8(k0) = ẽ9(k0) = 0 and ẽ1(k0) = ẽ2(k0) = ẽ7(k0) = 0. Combining these
results, one gets A(k0) = 0.

G−(T−, C−), or equivalently G(Q, T−) after identifying C with Q

C = EI, T = ZE, n0 = 4,
S(k) õ1(k)Y Y + õ2(k)IX + õ3(k)IZ
A(k) ẽ1(k)Y I

Here {S(k), A(k)} = 0 implies


õ1(k)ẽ1(k) = 0

õ2(k)ẽ1(k) = 0

õ3(k)ẽ1(k) = 0

We examine the above equations in the neighborhood of k0 by expanding k = k0 +q.
On the curve C1 defined in A.2 with d = 3, for any r = |q| 6= 0,

õ1(k)ẽ1(k) = 0

Because õ1(k) > 0 it implies ẽ1(k) = 0. By the continuity of ẽ1(k) we conclude ẽ1(k) = 0
at r = 0, or in other words, ẽ1(k0) = 0. This implies A(k0) = 0.

G(Q,C−)

Q = EII, C = ZEI, n0 = 8,

S(k) õ1(k)Y XY + õ2(k)Y ZY + õ3(k)IY Y
+õ4(k)IIX + õ5(k)IIZ

A(k) ẽ1(k)Y XX + ẽ2(k)Y XZ + ẽ3(k)Y XI
+ẽ4(k)Y ZX + ẽ5(k)Y ZZ + ẽ6(k)Y ZI

+ẽ7(k)IY X + ẽ8(k)IY Z + ẽ9(k)IY I + ẽ10(k)IIY

(A.25)

Here {S(k), A(k)} = 0 implies
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

õ1(k)ẽ3(k) + õ2(k)ẽ6(k) + õ3(k)ẽ9(k) = 0 0 −õ3(k) õ2(k)

õ3(k) 0 −õ1(k)

−õ2(k) õ1(k) 0


ẽ1(k)

ẽ4(k)

ẽ7(k)

 = õ5(k)

ẽ3(k)

ẽ6(k)

ẽ9(k)


 0 −õ3(k) õ2(k)

õ3(k) 0 −õ1(k)

−õ2(k) õ1(k) 0


ẽ2(k)

ẽ5(k)

ẽ8(k)

 = −õ4(k)

ẽ3(k)

ẽ6(k)

ẽ9(k)


õ1(k)

õ2(k)

õ3(k)

 ẽ10(k) = õ4(k)

ẽ1(k)

ẽ4(k)

ẽ7(k)

+ õ5(k)

ẽ2(k)

ẽ5(k)

ẽ8(k)



(A.26)

We examine the above equations in the neighborhood of k0 by expanding k = k0 + q.
On the curve C1 defined in A.2 with d = 3, for any r = |q| 6= 0, the first equation gives

õ1(k)ẽ3(k) = 0

which implies ẽ3(k) = 0. By the continuity of ẽ3(k) we conclude ẽ3(k0) = 0. We can
repeat this argument by looking at C2 and C3, which lead to ẽ6(k0) = ẽ9(k0) = 0.

By theorem 1 of A.3, for any radius |q| = r, we can find a non-self-intersecting closed
loop γ5, such that (i) õ5(k) = 0 for k ∈ γ5, (ii) γ5 splits the sphere |q| = r into two
equal-area regions, and (iii) the antipodal point of any k ∈ γ5 is also on γ5. Such γ5 loops
for different radius r form a surface S5 which can be arbitrarily close to r = 0 (i.e. k0).
On S5 the second to the fourth lines of Eq.(A.26) gives

 0 −õ3(k) õ2(k)
õ3(k) 0 −õ1(k)
−õ2(k) õ1(k) 0

ẽ1(k)
ẽ4(k)
ẽ7(k)

 = 0

Note that the 3× 3 matrix on the left hand side is rank 2 as long as õ1(k)2 + õ2(k)2 +
õ3(k)2 6= 0, which is true for in the neighborhood of k0. This gives the general solution

ẽ1(k)
ẽ4(k)
ẽ7(k)

 = a(k)

õ1(k)
õ2(k)
õ3(k)

 (A.27)

Note that as k → k0 we can have the following two possibilities: (i) a(k) is non-
singular, in which case (ẽ1(k), ẽ4(k), ẽ7(k)) → 0 as k → k0, or (ii) a(k) diverges and it
compensates for the vanishing magnitude of (õ1(k), õ2(k), õ3(k)).
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We first consider possibility (ii). In this case as k → k0, (ẽ1(k), ẽ4(k), ẽ7(k)) can be
non-zero. However, its direction must be parallel (or antiparallel) to

n̂(k) = (õ1(k), õ2(k), õ3(k))/|(õ1(k), õ2(k), õ3(k))|.

Let’s look at the pair of antipodal points on a γ5 loop at an infinitesimal radius |q| = r. By
continuity of (õ1(k), õ2(k), õ3(k)) and n̂(k) must change continuously on γ5. This implies
n̂(k) · (ẽ1(k), ẽ4(k), ẽ7(k)) changes continuously on γ5. Since n̂(k) is odd and ẽ1,4,7(k) are
even, n̂(k) · (ẽ1(k), ẽ4(k), ẽ7(k)) has opposite sign among antipodal points on γ5. Thus it
must vanish at some intermediate point k′ on γ5. Since (ẽ1(k), ẽ4(k), ẽ7(k)) ‖ n̂(k) on γ5

by (A.27), thus (ẽ1(k′), ẽ4(k′), ẽ7(k′)) = 0. By connecting such point for different r, we
arrive at a continuous path on which (ẽ1(k), ẽ4(k), ẽ7(k)) = 0. By continuity we have

(ẽ1(k0), ẽ4(k0), ẽ7(k0)) = 0

We can repeat the same arguments for the surface corresponds to õ4(k) = 0. This
lead to (ẽ2(k0), ẽ5(k0), ẽ8(k0)) = 0.

Moreover, by the theorem 2 of A.3, on the sphere correspond to any r = |q|, one can
find a point k such that both õ4(k) and õ5(k) are zero. Such points for different r form
a curve which approaches k0 as r → 0. On the curve, the last of Eq.(A.26) gives

õ1(k)
õ2(k)
õ3(k)

 ẽ10(k) = 0

Since on this curve since õ1(k), õ2(k), õ3(k) cannot simultaneously be zero, it follows
that ẽ10(k) = 0 on the curve. Due to the continuity of ẽ10(k) we conclude that ẽ10(k0) = 0.
Combining all of the above results, we conclude A(k0) = 0.

G+(Q, T−, C−)

Q = EII, T = ZEI,C = ZIE, n0 = 8,

S(k) õ1(k)Y Y X + õ2(k)Y Y Z + õ3(k)IXI + õ4(k)IZI
A(k) ẽ1(k)Y IX + ẽ2(k)Y IZ + ẽ3(k)IXY + ẽ4(k)IZY

(A.28)

Here {S(k), A(k)} = 0 implies



õ2(k)ẽ4(k) + õ3(k)ẽ1(k) = 0

õ1(k)ẽ4(k)− õ3(k)ẽ2(k) = 0

õ1(k)ẽ1(k) + õ2(k)ẽ2(k) = 0

õ2(k)ẽ3(k)− õ4(k)ẽ1(k) = 0

õ1(k)ẽ3(k) + õ4(k)ẽ2(k) = 0

õ3(k)ẽ3(k) + õ4(k)ẽ4(k) = 0

(A.29)
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We examine the above equations in the neighborhood of k0 by expanding k = k0 + q.
On the curve C1 defined in A.2 with d = 3, for any r = |q| 6= 0, the second and third
lines of Eq.(A.29) give

{
õ1(k)ẽ4(k) = 0

õ1(k)ẽ1(k) = 0

which implies ẽ1(k) = ẽ4(k) = 0. By the continuity of ẽ1,4(k) we conclude ẽ1(k0) =
ẽ4(k0) = 0. We can repeat this argument by looking at C2 and C3, which will lead to
ẽ2(k0) = 0.

It remains to prove that ẽ3(k0) = 0. By the theorem 1 in A.3, for any radius r = |k|
one can find a non-self-intersecting closed loop γ4 such that õ4(k0) = 0. As a function of
r all such loops span surface which approach k0 as r → 0. Everywhere on the surface,
the 4-6 lines of Eq.(A.29) give


õ2(k)ẽ3(k) = 0

õ1(k)ẽ3(k) = 0

õ3(k)ẽ3(k) = 0

Because (õ1(k), õ2(k), õ3(k)) has non-trivial mapping degree around k0, they cannot
be simultaneously zero. It follows that ẽ3(k) = 0 everywhere on the surface. By the
continuity of ẽ3(k), we conclude that ẽ3(k0) = 0. Combining these results, one gets
A(k0) = 0.

A.3 Odd continuous functions on S2

In this appendix, we prove some properties for odd continuous functions obeying o(−q) =
−o(q), on a two-sphere S2 formed by |q| = constant.

A.3.1 Theorem 1

Theorem 1 For any continuous odd function o(q) defined on a sphere formed
by |q| = r, there exists a non-self intersecting closed loop γo on the sphere,
such that (i) o(q) = 0 for q ∈ γo, (ii) the curve separates the sphere into two
equal-area regions, and (iii) the antipodal point of any point q on the loop also
belongs to the loop.

Proof: We will prove it by explicitly constructing γo. If o(q) = 0 everywhere on the
sphere, any arbitrary great circle on S2 can be used for γo. Thus the non-trivial case
must have at least one point, q∗, such that o(q∗) 6= 0. Without loss of generality, let’s
assume o(q∗) > 0. Due to the oddness, o(−q∗) < 0. Now consider a geodesic (or a great
arc) connecting q∗ and −q∗. Owing to the continuity of o(q), the function must change
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sign an odd number of times as the geodesic is traversed. The points at which the sign
changes take place must correspond to o(q) = 0. They can either be discrete points or
form a continuous segment on the great arc. In either case we can choose a middle point
(which can either be the mid point of the middle zero-segment, or just the mid point
among the discrete points where the sign change takes place). We then rotate the great
arc through the whole 2π angle. As a function of angle, the aforementioned mid points
span the loop γo. The loop can not self-intersect because we only choose a single point
on every great arc.

Moreover, due to the oddness of o(q), the mid point qm chosen for a given great arc
must be antipodal to −qm chosen on the complementary great arc (a great arc and its
complementary form a great circle). This guarantees that the loop γo will separate the
sphere into two regions with equal areas. By construction, the antipodal point of any
point q on the γo is also on the loop. Q.E.D..

A.3.2 Theorem 2

Theorem 2 For any two continuous odd functions o1(q), o2(q) defined on a
sphere |q| = r, there exists at least a point q∗∗ such that o1(q∗∗) = o2(q∗∗) = 0.

Proof: Assuming the opposite, namely, there is no point q at which o1(q) = o2(q) = 0.
For these two functions o1(q), o2(q), we can use theorem 1 to find the non-self-intersecting
closed loops γ1 and γ2 which separately divide the sphere into two equal-area regions,
and o1(q) = 0 for q ∈ γ1 and o2(q) = 0 for q ∈ γ2. γ1 and γ2 must not intersect each
other, otherwise the intersection will satisfy o1(q) = o2(q) = 0. Thus, one loop must be
totally enclosed by the other loop, which contradicts the statement that they separately
split the sphere into two equal-area regions. Q.E.D.
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Appendix B

Appendices of part III

B.1 The emergent symmetries for (2 + 1) and

(3 + 1)-D

In this appendix we derive the emergent symmetries of the massless fermion theory
(see table 4.1) for spatial dimension d = 2, 3 (for d = 1 the result has already been
discussed in sections 4.2).

B.1.1 Complex class in (2 + 1)-D

In the complex fermion representation, the minimal size of the gamma matrices in two
spatial dimensions is 2× 2. If the fermion has n flavors, modulo a basis transformation,
we have

S0 =

∫
d3xψ†(∂0 − i

2∑
i=1

Γi∂i)ψ where

Γ1 = ZIn, Γ2 = XIn. (B.1)

It’s easy to see that the full emergent symmetries include U(n) transformations in the
flavor degrees of freedom. In addition, there are discrete symmetries, namely, charge
conjugation and time-reversal symmetries. To summarize, Eq.(B.1) is invariant under

U(n) symmetry :

U(n) : ψ → (I ⊗ g)ψ where g ∈ U(n)

Charge conjugation symmetry :

C : ψ → (I ⊗ In) (ψ†)T

Time reversal symmetry :

T : ψ → (Y ⊗ In)ψ. (B.2)
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B.1.2 Real class in (2 + 1)-D

In the Majorana fermion representation, the minimal size of the gamma matrices in
two spatial dimensions, is 2× 2. If the fermion has n flavors, modulo a basis transforma-
tion, we have

S0 =

∫
d3xχT (∂0 − i

2∑
i=1

Γi∂i)χ where

Γ1 = ZIn, Γ2 = XIn. (B.3)

It’s easy to see that the full emergent symmetries include O(n) transformations in the
flavor degrees of freedom. In addition, there is time reversal symmetry. To summarize,
Eq.(B.3) is invariant under

O(n) symmetry :

O(n) : χ→ (I ⊗ g)χ where g ∈ O(n)

Time reversal symmetry :

T : χ→ (E ⊗ In)χ. (B.4)

B.1.3 Complex class in (3 + 1)-D

In the complex fermion representation, the minimal size of the gamma matrices in
three spatial dimensions is 4 × 4. If the fermion has n flavors, modulo a basis transfor-
mation, we have

S0 =

∫
d4xψ†(∂0 − i

3∑
i=1

Γi∂i)ψ where

Γ1 = ZIIn, Γ2 = XIIn, Γ3 = Y ZIn. (B.5)

Similar to the (1 + 1)-D case, the chirality matrix

Γ5 := −iΓ1Γ2Γ3 = IZIn

commutes with the gamma matrices. As a result, the full emergent include chiral U(n)
transformations, namely, U+(n) × U−(n) (see below). In addition, there are discrete
symmetries, namely, charge conjugation, and time-reversal symmetries. To summarize,
Eq.(B.5) is invariant under

Chiral U(n) symmetry :

U+(n)× U−(n) : ψ → (IP+ ⊗ g+ + IP− ⊗ g−)ψ where g± ∈ U±(n)

Charge conjugation symmetry :

C : ψ → (IX ⊗ In) (ψ†)T

Time reversal symmetry :

T : ψ → (Y Z ⊗ In)ψ, (B.6)
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where

P± :=
I ± Z

2
.

B.1.4 Real class in (3 + 1)-D

In the Majorana fermion representation, the minimal size of the gamma matrices in
three spatial dimensions is 4 × 4. If the fermion has n flavors, modulo a basis transfor-
mation, we have

S0 =

∫
d4xχT (∂0 − i

3∑
i=1

Γi∂i)χ where

Γ1 = ZIIn, Γ2 = XIIn, Γ3 = Y Y In. (B.7)

Although we can still define Γ1Γ2Γ3 = IEIn, this is an anti-symmetric matrix with com-
plex eigenvectors hence cannot be used to define chirality for Majorana (real) fermions.

To find the most general continuous unitary symmetry, notice that only II and IE
commute with the first two Pauli matrices in Γ1,2,3. Hence the symmetry transformation
needs to be in the form

χ→ (II ⊗ g1 − IE ⊗ g2)χ.

Here g1 and g2 are orthogonal matrices (which preserve the realness of the Majorana
fermion operator and their anti-commutation relation). The condition of g1 and g2 being
orthogonal matrices is equivalent to requiring g1 + ig2 ∈ U(n)1. Thus, the unitary con-
tinuous symmetry is U(n). In addition, there is time-reversal symmetry. To summarize,
Eq.(B.7) is invariant under

U(n) symmetry :

U(n) : χ→ (II ⊗ g1 − IE ⊗ g2)χ where g := g1 + ig2 ∈ U(n)

Time reversal symmetry :

T : χ→ (EZ ⊗ In)χ (B.8)

B.2 The mass manifolds, homotopy groups and

symmetry transformations

In this appendix we derive the mass manifolds in table 4.2, and the transformation
of QC and QR under the emergent symmetries in table 4.4 for d = 2, 3 (the d = 1 case
has been discussed in section 4.3 and 4.6). In addition, we discuss the relevant homotopy
groups of the mass manifolds. For sufficiently large flavor number n, it turns out that the
πD+1, relevant to the existence of WZW term, are always equal to Z. On the other hand,

1As an algebraic relation, IE plays the role of i here because (IE)2 = −I4
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πD−1, relevant to the existence of non-trivial soliton, are Z or Z2 depending on whether
the class is complex or real. 2.

B.2.1 Complex class in (2 + 1)-D

In (2 + 1)-D, complex fermion representation, the gamma matrices in Eq.(B.1) are

Γ1 = ZIn, Γ2 = XIn. (B.9)

The most general hermitian mass matrix M satisfying

{M,Γi} = 0 and M2 = I2n

is of the form

M = Y ⊗H := Y ⊗QC (B.10)

where QC = H is an n × n hermitian matrix satisfying H2 = In. This last condition
requires the eigenvalues of H to be ±1. Assuming l of the eigenvalues are +1 and n− l
are −1, we have

QC = W · diag(+1, ...,+1︸ ︷︷ ︸
l

,−1, ...,−1︸ ︷︷ ︸
n−l

) ·W †.

Different QC are characterized by the unitary matrix (whose columns are eigenvectors)
W ∈ U(n). However, not all W will yield distinct QC. Under the transformation

W → W ·
(
W̃1 0

0 W̃2

)
where W̃1 ∈ U(l) and W̃2 ∈ U(n− l),

QC is unchanged. Thus the mass manifold M is the union of the quotient spaces

M =
n⋃
l=0

U(n)

U(l)× U(n− l)
.

These quotient spaces are called “complex Grassmannians”. Note thatM contains n+ 1
disconnected components.

Under the action of the emergent symmetries in Eq.(B.2), the order parameter QC

transforms as

QC U(n)−−→ g† ·QC · g

QC C−→
(
QC)T

QC T−→ −
(
QC)∗

2Although we shall not further discuss it in this paper, the Z or Z2 soliton classifications are originated
from K-theory[7] and the Bott periodicity [57, 58]. Therefore this statement holds true in even higher
dimensions.
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Among them, the time reversal transformation changes the signs of all eigenvalues and
thus exchanges l and n− l. Therefore only when

QC ∈ U(n)

U(n/2)× U(n/2)
for n ∈ even

does the time reversal transformed QC stay in the same component of the mass manifold.
Only in this manifold, fluctuating QC can restore the full emergent symmetries.

Using the long exact sequence of the homotopy group corresponding to the fibration,

0→ U(
n

2
)× U(

n

2
)→ U(n)→ U(n)

U(n
2
)× U(n

2
)
→ 0,

we can deduce the homotopy groups of the complex Grassmannian from the homotopy
groups of U(n) (see, e.g., [59]). In table B.1 we list the results of the second, third, and
fourth homotopy groups. They are relevant for determining the existence of solitons,
θ-term, and WZW term. These results are used in appendix B.4.

B.2.2 Real class in (2 + 1)-D

The massless fermion Hamiltonian is given by Eq.(B.3), where the gamma matrices
are given by

Γ1 = ZIn Γ2 = XIn (B.11)

The most general purely imaginary antisymmetric mass matrix (requirement due to her-
miticity and Majorana condition) M satisfying

{M,Γi} = 0 and M2 = I2n

is of the form

M = Y ⊗ S := Y ⊗QR (B.12)

n (even) Mass manifold
π2

(soliton)
π3

(θ term)
π4

(WZW)

≥ 4 U(n)
U(n/2)×U(n/2)

Z 0 Z
2 U(2)

U(1)×U(1)
= S2 Z Z Z2

Table B.1: The homotopy groups of the complex Grassmannian U(n)
U(n/2)×U(n/2)

. We box
the homotopy group when it is stabilized, i.e., no longer changes with increasing n.
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where QR = S is an n× n real symmetric matrix satisfying S2 = In. This last condition
requires the eigenvalues of QR to be ±1. Assuming l of the eigenvalues are +1 and the
rest are −1, we have

QR = W · diag(+1, ...,+1︸ ︷︷ ︸
l

,−1, ...,−1︸ ︷︷ ︸
n−l

) ·W †.

Hence different QR are characterized by the orthogonal matrix W ∈ O(n). However, not
all W yield distinct QR. Under the transformation

W → W ·
(
W̃1 0

0 W̃2

)
where W̃1 ∈ O(l) and W̃2 ∈ O(n− l),

QR is unchanged. Thus the mass manifold is the union of quotient spaces called “real
Grassmannians”

M =
n⋃
l=0

O(n)

O(l)×O(n− l)
.

Here, M contains n+ 1 disconnected components.

Under the action of the emergent symmetries in Eq.(B.4), the order parameter QR

transforms as

QR O(N)−−−→ gT ·QR · g

QR T−→ −QR.

Among them, the time reversal transformation changes the signs of all eigenvalues and
thus exchanges l and n− l. Therefore only when

QR ∈ O(n)

O(n/2)×O(n/2)
for n ∈ even

does the time reversal transformed QR stay in the same component of the mass mani-
fold. Only in the mass manifold, fluctuating QR can restore the full emergent symmetries.

Using the long exact sequence of the homotopy group associated with the fibration,

0→ O(
n

2
)×O(

n

2
)→ O(n)→ O(n)

O(n
2
)×O(n

2
)
→ 0,

we can deduce the homotopy groups of the real Grassmannian from the homotopy groups
of O(n) (see e.g., [59]). We list the results of the second, third, and fourth homotopy
groups in table B.2. They are relevant for determining the existence of solitons, θ-term,
and WZW term. These results are used in appendix B.4.
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n (even) Mass manifold
π2

(soliton)
π3

(θ term)
π4

(WZW)

≥ 10 O(n)
O(n/2)×O(n/2)

Z2 0 Z
2 S1 0 0 0

4 S2×S2

Z2
Z2 Z2 Z2

2

6 Z2 0 Z
8 Z2 0 Z3

Table B.2: The homotopy groups of the real Grassmannian O(n)
O(n/2)×O(n/2)

. We box the
homotopy group when it is stabilized , i.e., no longer changes with increasing n.

B.2.3 Complex class in (3 + 1)-D

The massless fermion Hamiltonian is given by Eq.(B.5), where the gamma matrices
are given by

Γ1 = ZIIn, Γ2 = XIIn, Γ3 = Y ZIn (B.13)

The most general hermitian mass matrix M satisfying

{M,Γi} = 0

is of the form

M = Y X ⊗H1 + Y Y ⊗H2 (B.14)

Here H1,2 are n × n hermitian matrices. It’s easy to check that the extra condition on
the mass matrix

M2 = I4n

is equivalent to requiring

QC := H1 + iH2 ∈ U(n)

Thus, the mass manifold is U(n). Here the mass manifold contains only a single compo-
nent.

Under the action of the emergent symmetries in Eq.(B.6), the order parameter QC

transforms as

QC U(n)×U(n)−−−−−−→ g†− ·QC · g+

QC C−→
(
QC)T

QC T−→
(
QC)∗
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Fluctuating QC within U(n) can restores the full emergent symmetries.

We list the results of the second, third, and fourth homotopy groups in table B.3.
They are relevant for determining the existence of solitons, θ-term, and WZW term.
These results are used in appendix B.4.

B.2.4 Real class in (3 + 1)-D

The massless fermion Hamiltonian is given by Eq.(B.7), where the gamma matrices
are given by

Γ1 = ZIIn, Γ2 = XIIn, Γ3 = Y Y In (B.15)

The most general antisymmetric (to ensure hermiticity) mass matrix M satisfying

{M,Γi} = 0

is of the form

M = Y X ⊗ S1 + Y Z ⊗ S2 (B.16)

Here S1,2 are n× n real symmetric matrices. It’s easy to check that the extra condition
on the mass matrix

M2 = I4n

is equivalent to requiring

QR := S1 + iS2 ∈ symmetric U(n).

According to the “Autonne decomposition” (e.g., corollary 2.6.6 of [25]), any symmetric
unitary matrix can be decomposed into

QR = U · UT

where U is a general n × n unitary matrix. However, not all U will yield different QR.
The transformation

U → U ·O, where O ∈ O(n)

n Mass manifold
π3

(soliton)
π4

(θ term)
π5

(WZW)

≥ 3 U(n) Z 0 Z
1 S1 0 0 0

2 S3×S1

Z2
Z Z2 Z2

Table B.3: The homotopy groups of U(n). We box the homotopy group when it is
stabilized, i.e., no longer changes with increasing n.
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leaves QR unchanged. Thus the mass manifold is

Mm =
U(n)

O(n)
.

This mass manifold is called the “real Lagrangian Grassmannian”, which contains a sin-
gle component.

Under the action of the emergent symmetries in Eq.(B.8), the order parameter QR

transforms as

QR U(n)−−→ gT ·QR · g

QR T−→
(
QR)∗

Fluctuating QR in U(n)/O(n) can restore the full emergent symmetries.

Using the long exact sequence of the homotopy group associated with the fibration,

0→ O(n)→ U(n)→ U(n)

O(n)
→ 0,

we can deduce the homotopy groups of the real Lagrangian Grassmannian from the
homotopy group of U(n) and O(n) (see e.g., [59]). We list the results of the second,
third, and fourth homotopy groups in table B.4. They are relevant for determining the
existence of solitons, θ-term, and WZW term. These results are used in appendix B.4.

B.3 The anomalies of the fermion theories

In this section, we shall use the heuristic method introduced in subsection 4.4.2 to deter-
mine the anomalies associated with the emergent symmetries of the massless free fermion

n Mass manifold
π3

(soliton)
π4

(θ term)
π5

(WZW)

≥ 6 U(n)
O(n)

Z2 0 Z
1 S1 0 0 0

2 S1×S2

Z2
Z Z2 Z2

3 Z2 0 Z× Z2

4 Z2 Z Z× Z2
2

5 Z2 0 Z× Z2

Table B.4: The homotopy groups of the real Lagrangian Grassmannian U(n)
O(n)

. We box the
homotopy group when it is stabilized, i.e., no longer changes with increasing n.
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theory in (1+1), (2+1) and (3+1)-D. For each massless fermion theory, we shall determine
1) the largest subgroup of the continuous symmetry that is anomaly free, 2) whether the
discrete symmetries are anomalous after imposing a regularization mass that is invariant
under the anomaly-free part of the continuous symmetry. Readers are referred to table
4.1 for the emergent symmetries of the massless free fermion theories; table 4.2 for the
general form of mass terms (QC,R) , and the topological space (mass manifold) they reside
in; table 4.4 for the transformations of QC,R under the emergent symmetries.

Complex class in (1 + 1)-D

As discussed in section4.4.2, whether a symmetry group is anomalous depends on
whether there exists a regularization mass that is invariant under its action. For con-
tinuous symmetries, the existence of an invariant regularization mass guarantees the
possibility of gauging such symmetries.

As shown in table 4.1 the continuous part of the emergent symmetries form the
U+(n)× U−(n) group, and a general mass term has the following form

M = X ⊗H1 + Y ⊗H2 where H1 + iH2 := QC ∈ U(n)

Under the action of U+(n)× U−(n) these mass terms transform according to

QC → g†− ·QC · g+, where (g+, g−) ∈ U+(n)× U−(n).

Since there is no (regularization) mass invariant under the action of the entire U+(n) ×
U−(n), it follows that U+(n)× U−(n) is anomalous.

The largest anomaly free subgroup is the diagonal U(n), i.e., g+ = g− = g ∈ U(n).
In this case we can choose QC = In (i.e., H1 = In and H2 = 0), such that it is invariant
under the diagonal U(n). One can thus use

Mreg = X ⊗ In

as the regularization mass.

Note that this mass term is invariant under the time-reversal and charge-conjugation
symmetries

QC T−→(QC)T = In

QC C−→(QC)∗ = In.

Consequently there is no anomaly for these discrete symmetries after imposing the diag-
onal U(n)-invariant regularization mass.
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B.3.1 Real class in (1 + 1)-D

As shown in table 4.1 the continuous part of the emergent symmetries form the
O+(n)×O−(n) group, and a general mass term has the following form

M = Y ⊗ S +X ⊗ (iA) where S + A := QR ∈ O(n).

Under the action of O+(n)×O−(n) these mass terms transform according to

QR → gT− ·QR · g+, where (g+, g−) ∈ O+(n)×O−(n).

Since there is no (regularization) mass invariant under the action of the entire O+(n) ×
O−(n), it follows that O+(n)×O−(n) is anomalous.

The largest anomaly free subgroup is the diagonal O(n), i.e., g+ = g− = g ∈ O(n).
In this case QR = In (i.e., S = In and A = 0) is invariant under the diagonal O(n). One
can thus use

Mreg = Y ⊗ In

as the regularization mass.

Since this mass term is invariant under the time-reversal, i.e.,

QR T−→(QR)T = In,

there is no anomaly for time-reversal symmetry after imposing the diagonalO(n)-invariant
regularization mass.

Complex class in (2 + 1)-D

As shown in table 4.1 the continuous part of the emergent symmetries form the U(n)
group, and a general mass term has the following form

M = Y ⊗QC where QC ∈
⋃
l

U(n)

U(l)× U(n− l)

Under the action of U(n) these mass terms transform according to

QC → g† ·QC · g, where g ∈ U(n).

Because QC = ±In is invariant under the action of U(n) one can choose

Mreg = ±Y ⊗ In
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as the regularization mass. Hence the entire U(n) is anomaly free.

It is easy to see that QC = ±In is the only U(n) preserving mass term. Although this
mass term is invariant the charge-conjugation

QC C−→(QC)T = ±In,

it is odd under the time-reversal symmetry

QC T−→− (QC)∗ = ∓In.

Therefore the time-reversal symmetry is anomalous after imposing the U(n)-invariant
regularization mass.

B.3.2 Real class in (2 + 1)-D

As shown in table 4.1 the continuous part of the emergent symmetries form the O(n)
group, and a general mass term has the following form

M = Y ⊗QR where QR ∈
⋃
l

O(n)

O(l)×O(n− l)
.

Under the action of O(n) these mass terms transform according to

QR → gT ·QR · g, where g ∈ O(n).

Because QR = ±In is invariant under the action of U(n) one can choose

Mreg = ±Y ⊗ In

as the regularization mass. Hence the entire O(n) is anomaly free.

It is easy to see that QR = ±In is the only O(n) preserving mass term. However, this
mass term is odd under the time-reversal symmetry

QR T−→−QR = ∓In.

Therefore the time-reversal symmetry is anomalous after imposing the O(n)-invariant
regularization mass.
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Complex class in (3 + 1)-D

As shown in table 4.1 the continuous part of the emergent symmetries form the
U+(n)× U−(n) group, and a general mass term has the following form

M = Mreg = Y X ⊗H1 + Y Y ⊗H2 where QC := H1 + iH2 ∈ U(n)

Under the action of U+(n)× U−(n) these mass terms transform according to

QC → g†− ·QC · g+, where (g+, g−) ∈ U+(n)× U−(n).

Since there is no (regularization) mass invariant under the action of the entire U+(n) ×
U−(n), it follows that U+(n)× U−(n) is anomalous.

The largest anomaly free subgroup is the diagonal U(n), i.e., g+ = g− = g ∈ U(n). In
this case QC = In (i.e., H1 = In and H2 = 0) is invariant under the diagonal U(n). One
can thus use

Mreg = Y X ⊗ In

as the regularization mass.

Note that this mass term is invariant under the time-reversal and charge-conjugation
symmetries,

QC T−→(QC)∗ = In

QC C−→(QC)T = In

Consequently there is no anomaly for these discrete symmetries after imposing the diag-
onal U(n)-invariant regularization mass.

Real class in (3 + 1)-D

As shown in table 4.1, the continuous part of the emergent symmetries form the U(n)
group, and a general mass term has the following form

M = Y X ⊗ S1 + Y Z ⊗ S2 where QR := S1 + iS2 ∈ U(n)/O(n).

Under the action of U(n), these mass terms transform according to

QR → gT ·QR · g, where g ∈ U(n).

Since there is no (regularization) mass invariant under the action of the entire U(n), it
follows that U(n) is anomalous.
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The largest anomaly-free subgroup is O(n), i.e., g ∈ O(n). In this case QR = In (i.e.,
S = In and S2 = 0) is invariant under the diagonal O(n). One can thus use

Mreg = Y X ⊗ In

as the regularization mass.

Note that this mass term is invariant under the time-reversal transformation,

QR T−→ (QR)∗ = In.

Consequently there is no anomaly for time-reversal symmetry after imposing the O(n)-
invariant regularization mass.

B.4 Fermion integration

In this section, we derive the nonlinear sigma models summarized in section 4.8 and
4.9 by integrating out the gapped fermions.

B.4.1 Integrating out real versus complex fermions

For fermions in the real classes, we face integration of the following form

Z[QR(x)] = e−W [QR(x)] =

∫
Dχ(x)e−S[χ(x),QR(x)] where

S[χ,QR(x)] =

∫
dDxχT

{
∂0 + Ĥ[QR(x)]

}
χ. (B.17)

A convenient trick for doing such integration is to perform the corresponding complex
fermion integration and divide the resulting effective action by two.

Too see this, consider two copies of Majorana fermion χ1 and χ2 coupled to the same
QR(x). After fermion integration, the result should be the square of that in Eq.(B.17),
namely, ∫

Dχ1Dχ2 e
−{S[χ1(x),QR(x)]+S[χ2(x),QR(x)]} =

{
Z[QR(x)]

}2
= e−2W [QR(x)]

:= e−W̃ [QR(x)].

On the other hand, we can combine χ1,2 into a complex fermion field

ψ = χ1 + iχ2,
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so that the sum of the real fermion actions can be written as a complex fermion action,

χT1

[
∂0 + Ĥ(QR)

]
χ1 + χT2

[
∂0 + Ĥ(QR)

]
χ2

= ψ†
[
∂0 + Ĥ(QR)

]
ψ.

Note that the cross terms cancel out, due to the anti-commutation relation between χ1

and χ2, and the fact that [
∂0 + Ĥ(QR)

]T
= −

[
∂0 + Ĥ(QR)

]
.

Consequently if W̃ [QR(x)] is the effective action due to the complex fermion integration,
we have

W [QR(x)] =
1

2
W̃ [QR(x)]. (B.18)

Due to Eq.(B.18), we shall focus on the complex fermion integration in the following.

B.4.2 Integrating out complex fermions

To make the action explicitly Lorentz invariant, we rewrite the fermion-boson action
as

S =

∫
dτ dx ψ†

[
∂0 − i

d∑
i=1

Γi∂i +mM̂(τ,x)
]
ψ

=

∫
dτ dx ψ†(−iγ0)

[
(iγ0)∂0 − i(iγ0)

d∑
i=1

Γi∂i +m(iγ0)M̂(τ,x)
]
ψ, (B.19)

where γ0 is a 2n × 2n hermitian matrix which anti-commutes with {Γi} and satisfying
(γ0)2 = 1. In general we choose γ0 to be identity matrix among the flavor degrees of
freedom. We will write down γ0 explicitly for each dimension later on. Here we also
extract out the parameter m, which controls the size of the fermion gap. As discussed
in section 4.3, we will focus on the M̂ belonging to the manifold manifold, i.e., satisfying
M̂2 = 1. Now define

γµ := (γ0,−iγ0 Γi) where i = 1, ..., d

ψ̄ := ψ†(−iγ0)

β(τ,x) := γ0M̂(τ,x) (B.20)

so that Eq.(B.19) turns into

S =

∫
dDx ψ̄ [iγµ∂µ + imβ(x)]ψ :=

∫
dDx ψ̄ D̂ ψ

where D̂ := i/∂ + imβ(x).
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Using the anti-commutation relations between {Γi} and γ0, the γµ satisfies the Clifford
algebra

{γµ, γν} = 2δµν .

It’s also easy to check that β(x), being a function of QC(x), is a matrix-valued smooth
function of space-time, satisfying

β(x)† · β(x) = 1.

Note that β(x) is in general not hermitian.

Fermion integration generates the effective action

W = − ln det[D̂] = −Tr ln[D̂].

The variation of the effective action W induced by a small variation in δβ (triggered
by a small variation in QC subject to the constraint β(x)† · β(x) = I) is given by

δW =− Tr
[(
δD̂
)
D̂−1

]
=− Tr

[
im δβ D̂−1

]
=− Tr

[
im δβ

(
D̂†D̂

)−1

D̂†
]

=− Tr
[
im δβ

[
G−1

0 −m((/∂β))
]−1 D̂†

]
=− Tr

[
im δβ

[
G−1

0

(
I −mG0((/∂β))

)]−1 D̂†
]

=− Tr

{
im δβ

[
∞∑
l=0

[mG0 ((/∂β)) ]l

]
G0

(
i/∂ − imβ†

)}

Here the double parentheses in ((/∂β)) means that the derivative acts only on β and
nothing afterward, and

G0 := (−∂2 +m2)−1.

One can thus express δW in powers of ((/∂β)). In the following, we shall retain terms
where the number of space-time derivatives is less or equal to D. Hence by dimension
counting, each of these terms is either relevant or marginal. The expansion is called
the gradient expansion in the literature [24]. There are two types of terms having ≤ D
derivatives, namely,

−Tr

{
im δβ

[
D−1∑
l=0

[mG0 ((/∂β)) ]l

]
G0

(
i/∂
)}

(B.21)

and

−Tr

{
im δβ

[
D∑
l=0

[mG0 ((/∂β)) ]l

]
G0

(
−imβ†

)}
(B.22)
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It turns out that among all non-vanishing parts of Eq.B.21 and B.22 there is a unique
pure imaginary term – the WZW term. The rest are real. In D = 1 + 1 and 2 + 1 the
only real term is the stiffness term. In D = 3 + 1 there are several extra real terms in
addition to the stiffness term. However, all of these extra terms contain four space-time
derivatives. Hence they are irrelevant compared with the stiffness term. Therefore the
non-linear sigma model with the WZW term contains the most relevant real and imag-
inary terms after the fermion integration. To avoid sidetracking, we shall leave these
details in subsection B.4.4.

Throughout this appendix, we shall adopt the following convention. Tr denotes the
trace over both the space-time and the matrices in β, δβ, and γµs. tr′ denotes the trace
over the matrices in β, δβ, γµ. trγ denotes the trace over only the γ matrices. tr denotes
the trace over the n× n matrices in β, δβ. According to the above convention

tr′ = trγ × tr.

Moreover, we shall adopt the following short hand∫
dDk

(2π)D
:=

∫
k

The stiffness term

The first non-vanishing such term is the stiffness term,

δWstiff = −Tr
[
im δβ

(
mG0((/∂β))

)
G0

(
i/∂
)]
. (B.23)

Fourier transforming Eq.(B.23), we obtain

δWstiff = −m2

∫
p

∫
q

tr′
[
δβ−q

1

(p+ q)2 +m2/qβq
1

p2 +m2/p

]
≈ 2m2

∫
p

1

(p2 +m2)3

∫
q

(q · p) tr′
[
δβ−qβ

†
q/q/p
]

= 2m2

∫
p

pµpν
(p2 +m2)3

∫
q

(qµqλ) tr′
[
δβ−qβ

†
qγ

νγλ
]

(B.24)

As usual

/p := γµpµ.

In passing to the second line in Eq.(B.24) we have expanded the expression

1

(p+ q)2 +m2
=

1

p2 +m2

∞∑
n=0

(
−2p · q + q2

p2 +m2

)n
(B.25)
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and keep the lowest order non-vanishing term. Because∫
p

1

(p2 +m2)3
pµpν =

1

D

∫
p

p2

(p2 +m2)3
δµν ,

Eq.(B.24) turns into

δWstiff ≈ 2m2

D

∫
p

p2

(p2 +m2)3

∫
q

(qµqλ) tr′
[
δβ−qβ

†
qγ

µγλ
]

=
2m2

D

∫
p

p2

(p2 +m2)3

∫
q

q2 tr′
[
δβ−qβ

†
q

]
(B.26)

In passing to the second line of Eq.(B.26) we have used the fact that

qµqλγ
µγλ = q2I.

The p-integration in Eq.(B.26) converges for (1 + 1)-D and (2 + 1)-D, but diverges for
(3 + 1)-D. We shall use dimensional regularization (D = 4− ε with ε→ 0+), which leads
to

δWstiff ≈2m2 1

D

∫
p

p2

(p2 +m2)3

∫
q

q2 tr′
[
δβ−qβ

†
q

]
=

[
Γ(2− D

2
)

2(4π)D/2
mD−2

]∫
M
dDx tr′

[
∂µ(δβ)∂µβ†

]
(B.27)

Here Γ(l) is the gamma function. For (3 + 1)-D, the dimension regularization is given by

Γ(2− D

2
) = Γ(

ε

2
) ≈ 2

ε
− γ +O(ε)

where γ is the Euler-Mascheroni constant. Thus, the term whose variation with respect
to δβ yields Eq.(B.27) is

Wstiff [β] =
1

2λD−2
D

∫
M
dDx tr′

[
∂µβ∂

µ β†
]

(B.28)

where λ has the dimension of length. In the limit that the short-distance cutoff is zero,

1

λD−2
D

=

[
Γ(2− D

2
)

2(4π)D/2
mD−2

]
. (B.29)
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The WZW (topological) term

The second type of non-vanishing term in the gradient expansion is topological in
nature, namely, the Wess-Zumino-Witten term

δWWZW = −Tr
[
im δβ

(
mG0((/∂β))

)D
G0

(
−imβ†

)]
≈ −mD+2

[∫
p

1

(p2 +m2)D+1

] ∫
M
dDx tr′

[
D∏
a=1

(γµa∂µaβ)β† δβ

]

= −

[
1

(4π)D/2
Γ(D

2
+ 1)

Γ(D + 1)

]∫
M
dDx tr′

[
D∏
a=1

(γµa∂µaβ)β† δβ

]
(B.30)

Eq.(B.30) is the difference in the Berry phase between the order parameter configurations
β(x) and β(x) + δβ(x). To determine the Berry phase for a specific β(x), we integrate
Eq.(B.30) from a reference configuration β(x) = constant matrix. The existence of a
continuous retraction leading from β(x) to the reference configuration relies on

πD(mass manifold) = 0.

It turns out this is exactly the condition when the WZW term exists (see later). Under
the condition that such continuous retraction exists, we can find a continuous family of
configurations β̃(x, u) so that

β̃(x, u = 1) = β(x)

β̃(x, u = 0) = constant matrix. (B.31)

We can integrate Eq.(B.30) to yield

WWZW [β] = −

[
1

(4π)D/2
Γ(D

2
+ 1)

Γ(D + 1)

]∫
B

du dDx tr′

[
D∏
a=1

(γµa∂µaβ̃) β̃
†
∂uβ̃

]
(B.32)

As in the main text, B is the extension of space-time manifold M, so that

∂B =M.

In summary, when the fermion flavor number, n, is sufficiently large so that the WZW
term is stabilized, the non-linear sigma model action is

W [β] =
1

2λD−2
D

∫
M
dDx tr′

[
∂µβ∂

µβ†
]

−

[
1

(4π)D/2
Γ(D

2
+ 1)

Γ(D + 1)

]∫
B

du dDx tr′

[
D∏
a=1

(γµa∂µaβ̃) β̃
†
∂uβ̃

]

where
1

λD−2
D

=

[
Γ(2− D

2
)

2(4π)D/2
mD−2

]
. (B.33)
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In the following, we shall apply this result to (1 + 1)-D, (2 + 1)-D, and (3 + 1)-D 3.

B.4.3 The fermion integration results for sufficiently large n so
that the WZW term is stabilized

In this subsection, we shall focus on the results of fermion integration when n is
sufficiently large so that

πD+1(mass manifold) = Z.

The case of small n, before the WZW term is stabilized, will be discussed in appendix
B.8.

Complex class in (1 + 1)-D

The fermion action for the complex class in (1 + 1)-D is given by Eq.(4.22)

S =

∫
d2x ψ† [∂0 − i(ZIn)∂1 +m (X ⊗H1 + Y ⊗H2)]ψ

=

∫
d2x ψ†(−iXIn) [i(XIn)∂0 + i(−Y In)∂1 + im (I ⊗H1 + iZ ⊗H2)]ψ

:=

∫
d2x ψ̄

[
i/∂ + imβ

]
ψ

where

ψ̄ = ψ†(−iXIn)

γ0 = XIn, γ
1 = −Y In, γ5 = ZIn

β = I ⊗H1 + iγ5I ⊗H2. (B.34)

Plugging the above results into equation Eq.(B.28) and Eq.(B.29) the stiffness term
is given by

Wstiff [QC] =
1

8π

∫
d2x tr [∂µ(H1 + iH2)∂µ(H1 − iH2)]

=
1

8π

∫
d2x tr

[
∂µQ

C∂µQC†]
where QC := H1 + iH2 ∈ U(n). Substitute Eq.(B.34) into Eq.(B.32) we obtain WZW

term as

3It turns out that it always contains a level-1 WZW term in even higher dimensions, though we shall
not discuss them in the present paper.
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WWZW [QC] =− 1

8π

∫
B

du d2x tr′
[
(γµ1∂µ1β̃)(γµ2∂µ2β̃) β̃

†
∂uβ̃

]
=− 1

8π

∫
B

du d2x tr′
[

(γµ1γµ2)
(
I ⊗ H̃1 − iγ5I ⊗ H̃2

)
∂u

(
I ⊗ H̃1 + iγ5I ⊗ H̃2

)
× ∂µ1

(
I ⊗ H̃1 − iγ5I ⊗ H̃2

)
∂µ2

(
I ⊗ H̃1 + iγ5I ⊗ H̃2

) ]
=− 1

8π

∫
B

du d2x tr′
[ (
γµ1γµ2γ5

) (
I ⊗ H̃1 − iI ⊗ H̃2

)
∂u

(
I ⊗ H̃1 + iI ⊗ H̃2

)
× ∂µ1

(
I ⊗ H̃1 − iI ⊗ H̃2

)
∂µ2

(
I ⊗ H̃1 + iI ⊗ H̃2

) ]
=− 1

8π

∫
B

du d2x (−2iεµ1µ2) tr
[
Q̃C† ∂uQ̃

C ∂µ1Q̃
C† ∂µ2Q̃

C
]

=− i

4π

∫
B

du d2x εµ1µ2 tr
[ (
Q̃C†∂uQ̃

C
)(

Q̃C†∂µ1Q̃
C
) (

Q̃C†∂µ2Q̃
C
) ]

=− i

4π
× 1

3

∫
B

du d2x εµ̃1µ̃2µ̃3 tr
[ (
Q̃C†∂µ̃1Q̃

C
)(

Q̃C†∂µ̃2Q̃
C
) (

Q̃C†∂µ̃3Q̃
C
) ]

=− 2πi

24π2

∫
B

tr
[ (
Q̃C†dQ̃C

)3 ]
where

Q̃C := H̃1 + iH̃2 ∈ U(n)

is the extension of QC = H1 + iH2 into B, and µ̃a is extended space-time manifold index
(i.e., they include u). This extension in Eq.(B.31) is possible because

π2(U(N)) = 0.

The passing from the 2nd to the 3rd line is due to the fact that when H̃2 → −H̃2 the
whole expression changes sign, hence only the terms with an odd number of H̃2 survive.
The final non-linear sigma model action, namely,

W [QC] =
1

8π

∫
d2x tr

[
∂µQ

C∂µQC†]− 2πi

24π2

∫
B

tr
[ (
Q̃C†dQ̃C

)3 ]
(B.35)

is the U(n)k=1 WZW theory.

Real class in (1 + 1)-D
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The Majorana fermion action for the real class in (1 + 1)-D is given by Eq.(4.26)

S =

∫
d2x χT [∂0 + i(ZIn)∂1 +m (X ⊗ (iA) + Y ⊗ S)]χ,

where S and A are symmetric and anti-symmetric matrices, respectively. Upon the
complexification described in subsection B.4.1, the form of the action becomes exactly
the same as the complex class action in the preceding section, except that

H1 → iA H2 → S.

Following the discussion in subsection B.4.1, we can substitute

QC = H1 + iH2 → i(A+ S) := iQR

into Eq.(B.35) and divide the result by 2 to obtain the following non-linear sigma model
action

W [QR] =
1

16π

∫
d2x tr

[
∂µQ

R∂µ(QR)T
]
− 2πi

48π2

∫
B

tr
{[

(Q̃R)TdQ̃R
]3 }

(B.36)

This is the action of the O(n)k=1 WZW theory.

Complex class in (2 + 1)-D

The fermion action for complex class in (2 + 1)-D can be constructed from Eq.(B.9)
and Eq.(B.10),

S =

∫
d3x ψ†

[
∂0 − i(ZIn)∂1 − i(XIn)∂2 +mY ⊗QC]ψ

=

∫
d3x ψ†(−i Y In)

[
i(Y In)∂0 + i(XIn)∂1 + i(−ZIn)∂2 + im I ⊗QC]ψ

:=

∫
d3x ψ̄

[
i/∂ + imβ

]
ψ

where

ψ̄ = ψ†(−iY In)

γ0 = Y In, γ
1 = XIn, γ

2 = −ZIn
β = I ⊗QC. (B.37)

Here QC(x) is an n × n hermitian-matrix-value function satisfying
(
QC
)2

= In, forming

the mass manifold
⋃n
l=0

U(n)
U(l)×U(n−l) (see appendix B.2). As discussed earlier, the l = n/2
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component is special because the full emergent symmetries of the fermion theory can be
restored upon order parameter fluctuation. Hence as far as bosonization is concerned we
will focus on l = n/2. However, the following derivation works for other values of l too
as long as both l and n− l are sufficiently large for the WZW term to be stabilized.

Substitute Eq.(B.37) into Eq.(B.28) and Eq.(B.29), we obtain the following stiffness
term

Wstiff [QC] =
1

4λ3

∫
d3x tr′

[
∂µβ∂

µβ†
]

=
1

2λ3

∫
d3x tr

[
∂µQ

C∂µQC] ,
where λ3 has the dimension of length and in the limit where the short-distance cutoff is
zero,

λ3 =
8π

m
. (B.38)

Substitution of Eq.(B.37) into equation (B.32) yields the WZW term

WWZW[QC] =−
[

1

(4π)3/2

Γ(5
2
)

Γ(4)

] ∫
B

du d3x tr′

[
D∏
a=1

(γµa∂µaβ̃) β̃
†
∂uβ̃

]

=− i

32π

∫
B

du d3x εµ1µ2µ3 tr
[
Q̃C ∂uQ̃

C ∂µ1Q̃
C ∂µ2Q̃

C ∂µ3Q̃
C
]

=− i

128π

∫
B

du d3x εµ̃1µ̃2µ̃3µ̃4 tr
[
Q̃C ∂µ̃1Q̃

C ∂µ̃2Q̃
C ∂µ̃3Q̃

C ∂µ̃4Q̃
C
]

=− 2πi

256π2

∫
B

tr

[
Q̃C

(
dQ̃C

)4
]
.

Here Q̃C is the extension of QC into B, and µ̃a extended space-time index. The extension
in Eq.(B.31) is possible because

π3

(
U(n)

U(n/2)× U(n/2)

)
= 0.

The existence of WZW is indicated by

π4

(
U(n)

U(n/2)× U(n/2)

)
= Z,



APPENDIX B. APPENDICES OF PART III 128

with the topological invariant

1

256π2

∫
S4

tr

[
Q̃C

(
dQ̃C

)4
]
∈ Z.

Comparing with the result of fermion integration, the WZW term is 2πi times the above
topological invariant, implying the level, k, is 1. In summary, the non-linear sigma model
action is

W [QC] =
1

2λ3

∫
d3x tr

[
∂µQ

C∂µQC]− 2πi

256π2

∫
B

tr

[
Q̃C

(
dQ̃C

)4
]
. (B.39)

Real class in (2 + 1)-D

The fermion action for real class in (2 + 1)-D can be constructed from Eq.(B.11) and
Eq.(B.12),

S =

∫
d3x χT

[
∂0 + i(ZIn)∂1 + i(XIn)∂2 +mYQR]χ

Note that the form of this action is the same as that in the preceding section, except that
the fermions are Majorana and QR is real symmetric instead of hermitian. According to
the discussion in subsection B.4.1, we can replace

QC → QR ∈ O(n)

O(n/2)×O(n/2)

in Eq.(B.39) and divide the result by 2. The resulting non-linear sigma model action is

W [QR] =
1

4λ3

∫
d3x tr

[
∂µQ

R∂µQR]− 2πi

512π2

∫
B

tr
[
Q̃R (dQ̃R)4

]
. (B.40)

Here λ3 has the dimension of length and in the limit where the short-distance cutoff is
zero λ3 is given by Eq.(B.38). Moreover, Q̃R is the extension of QR into B. The extension
in Eq.(B.40) is possible because

π3

(
O(n)

O(n/2)×O(n/2)

)
= 0.

The existence of the WZW term is indicated by

π4

(
O(n)

O(n/2)×O(n/2)

)
= Z,



APPENDIX B. APPENDICES OF PART III 129

with the topological invariant given by

1

512π2

∫
S4

tr

[
Q̃R

(
dQ̃R

)4
]
∈ Z.

Comparing the WZW term with the topological invariant we conclude Eq.(B.40) is the

action for the O(n)
O(n/2)×O(n/2)

non-linear sigma model with k = 1 WZW term.

Complex class in (3 + 1)-D

The fermion action for complex class in (3 + 1)-D can be constructed from Eq.(B.13)
and Eq.(B.14),

S =

∫
d4x ψ† [∂0 − i(ZIIn)∂1 − i(XIIn)∂2 − i(Y ZIn)∂3 +m (Y X ⊗H1 + Y Y ⊗H2)]ψ

=

∫
d4x ψ†(−iY XIn)

[
i(Y XIn)∂0 + i(XXIn)∂1 + i(−ZXIn)∂2 + i(−IY In)∂3

+ im (II ⊗H1 + i IZ ⊗H2)
]
ψ

:=

∫
d4x ψ̄

[
i/∂ + imβ

]
ψ

where

ψ̄ = ψ†(−iY XIn)

γ0 = Y XIn, γ
1 = XXIn , γ

2 = −ZXIn, γ3 = −IY In, γ5 = IZIn

β = II ⊗H1 + iγ5II ⊗H2. (B.41)

Substitute Eq.(B.41) into Eq.(B.28) and Eq.(B.29), the stiffness term read

Wstiff [QC] =
1

8λ2
4

∫
d4x tr′

[
∂µβ∂

µβ†
]

=
1

2λ2
4

∫
d4x tr

[
∂µQ

C∂µQC†]
where

QC = H1 + iH2 ∈ U(n).

The parameter λ4 has the dimension of length and in the limit where the short-distance
cutoff is zero,

1

λ2
4

=

[
Γ(0+)m2

8π2

]
. (B.42)
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In the case where the short distance cutoff is finite the coefficient Γ(0+) should be replaced
by a cutoff dependent parameter. Substitution Eq.(B.41) into Eq.(B.32) yields the WZW
term

WWZW[QC] =−
[

1

(4π)2

Γ(3)

Γ(5)

] ∫
B

du d4x tr′
[
(γµ1∂µ1β̃)(γµ2∂µ2β̃) (γµ3∂µ3β̃) (γµ4∂µ4β̃) β̃

†
∂uβ̃

]
=− 1

192π2

∫
B

du d4x tr′
[

(γµ1γµ2γµ3γµ4)
(
I ⊗ H̃1 − iγ5I ⊗ H̃2

)
∂u

(
I ⊗ H̃1 + iγ5I ⊗ H̃2

)
× ∂µ1

(
I ⊗ H̃1 − iγ5I ⊗ H̃2

)
∂µ2

(
I ⊗ H̃1 + iγ5I ⊗ H̃2

) ]
× ∂µ3

(
I ⊗ H̃1 − iγ5I ⊗ H̃2

)
∂µ4

(
I ⊗ H̃1 + iγ5I ⊗ H̃2

) ]
=− 1

192π2

∫
B

du d4x tr′
[ (
γµ1γµ2γµ3γµ4γ5

) (
I ⊗ H̃1 − iI ⊗ H̃2

)
∂u

(
I ⊗ H̃1 + iI ⊗ H̃2

)
× ∂µ1

(
I ⊗ H̃1 − iI ⊗ H̃2

)
∂µ2

(
I ⊗ H̃1 + iI ⊗ H̃2

) ]
× ∂µ3

(
I ⊗ H̃1 − iI ⊗ H̃2

)
∂µ4

(
I ⊗ H̃1 + iI ⊗ H̃2

) ]
=− 1

192π2

∫
B

du d4x (4εµ1µ2µ3µ4) tr
[
Q̃C† ∂uQ̃

C ∂µ1Q̃
C† ∂µ2Q̃

C ∂µ3Q̃
C† ∂µ4Q̃

C
]

=− 1

48π2

∫
B

du d4x εµ1µ2µ3µ4 tr
[ (
Q̃C†∂uQ̃

C
)(

Q̃C†∂µ1Q̃
C
) (

Q̃C†∂µ2Q̃
C
)

(
Q̃C†∂µ3Q̃

C
)(

Q̃C†∂µ4Q̃
C
) ]

=− 1

240π2

∫
B

du d4x εµ̃1µ̃2µ̃3µ̃4µ̃5 tr
[ (
Q̃C†∂µ̃1Q̃

C
) (

Q̃C†
3 ∂µ̃2Q̃

C
)(

Q̃C†
3 ∂µ̃3Q̃

C
)

(
Q̃C†

3 ∂µ̃4Q̃
C
)(

Q̃C†
3 ∂µ̃5Q̃

C
) ]

=− 2π

480π3

∫
B

tr
[ (
Q̃C†dQ̃C

)5 ]

where Q̃C is the extension of QC into B, and µ̃a is the coordinate index of the extended
space-time manifold. The extension in Eq.(B.31) is possible because

π4(U(n)) = 0.

In passing from the 2nd to the 3rd line is due to the fact that when H̃2 → −H̃2, the
entire expression changes sign, hence only terms with an odd number of H̃2 survive. The
existence of the WZW term is indicated by

π5(U(n)) = Z,
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with the topological invariant given by

i

480π3

∫
S5

tr
[ (
Q̃C†dQ̃C

)5 ]
∈ Z.

Comparing the WZW term with the topological invariant we conclude the WZW term is
at level k = 1. In summary, the non-linear sigma model action is given by

W [QC] =
1

2λ2
4

∫
d4x tr

[
∂µQ

C∂µQC†]− 2π

480π3

∫
B

tr
[ (
Q̃C†dQ̃C

)5 ]
. (B.43)

Real class in (3 + 1)-D

The fermion action for complex class in (3 + 1)-D can be constructed from Eq.(B.15)
and Eq.(B.16),

S =

∫
d4x χT [∂0 − i(XIIn)∂1 − i(ZIIn)∂2 − i(Y Y In)∂3 +m (Y X ⊗ S1 + Y Z ⊗ S2)]χ

This action has the same form as that in the preceding section, except that the following
differences. (i) The fermions are Majorana, (ii) an unitary change of the matrix basis,
namely, rotation by π/2 generated by IXIn , and (iii) H1 → S1 and H2 → S2. According
to the discussion in subsection B.4.1, we can use the result in the preceding section by
substituting QC → QR = S1 + iS2 into Eq.(B.43) and divide the final effective action by
2. The resulting non-linear sigma model action is given by

W [QR] =
1

4λ2
4

∫
d4x tr

[
∂µQ

R∂µQR†]− 2π

960π3

∫
B

tr
[ (
Q̃R†dQ̃R

)5 ]
.

(B.44)

The existence of the WZW iterm is indicated by

π5(U(n)/O(n)) = Z,

with the topological invariant given by

i

960π3

∫
S5

tr
[ (
Q̃R†dQ̃R

)5 ]
∈ Z.

Again, we conclude that the WZW term is at level 1.
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B.4.4 The less relevant real terms originate from Eq.(B.21)
and Eq.(B.22)

In this subsection, we provide the details which show that in (1 + 1)-D and (2 + 1)-D,
the non-vanishing terms in Eq.(B.21) and Eq.(B.22) having ≤ D space-time derivatives
are the stiffness and WZW terms. In (3 + 1)-D, there are extra real terms. In the
following, we shall present a detailed analysis of these potential extra terms.

(1 + 1)-D

Given the fact that
β = I ⊗H1 + iγ5I ⊗H2,

the l = 0 term in Eq.(B.21) read

−Tr [im δβG0γ
µ(i∂µ)] .

Since β only contains I or γ5, it follows that the this term vanishes when we trace over
the gamma matrices because both

trγ [γµ] = 0, trγ[γ
µγ5] = 0.

Similar argument applies to the l = 1 term in Eq.(B.22).

This leaves the l = 0 term in Eq.(B.22) as the only term requiring further attention,
namely,

− Tr [imδβG0(−imβ)]

= −m2

∫
p,q

1

p2 +m2
tr′
[
β†−qδβq

]
= −m2

(∫
p

1

p2 +m2

)∫
d2x tr′

[
β†δβ

]
= −2m2

(∫
p

1

p2 +m2

)∫
d2x δ

{
tr
[
H2

1 +H2
2

]}
= 0.

In passing to the last line we used the constraint that

QC = H1 + iH2 ∈ U(n)⇒ H2
1 +H2

2 = In.

Hence the only non-vanishing terms are the stiffness and WZW terms in subsection B.4.2
and B.4.2.
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(2 + 1)-D

Given the fact that
β = I ⊗QC,

both the l = 0 term in Eq.(B.21) and the l = 1 term in Eq.(B.22) vanishes under trγ
because

trγ[γ
µ] = 0.

The l = 2 term in Eq.(B.21) gives

− Tr
[
im δβ

(
mG0((/∂β))

)2
G0

(
i/∂
)]

= m3

∫
p,q1,q2

1

p2 +m2

1

(p+ q1)2 +m2

1

(p+ q1 + q2)2 +m2
tr′
[
δβ−q1−q2(i /q2βq2)(i /q1βq1)(i/p)

]
≈ m3

∫
p,q1,q2

(−2p · (2q1 + q2))

(p2 +m2)4
(2iεµνρ) qµ2 q

ν
1p

ρ tr
[
δQC
−q1−q2Q

C
q2
QC
q1

]
=
−4im3

3

∫
p,q1,q2

p2

(p2 +m2)4
εµνρqµ2 q

ν
1 (2q1 + q2)ρ tr

[
δQC
−q1−q2Q

C
q2
QC
q1

]
= 0

In passing to the third line we have traced over the γ matrices, and in passing to the
last line we have used the fact that qµ2 q

ν
1 (2q1 + q2)ρ is symmetric with respect to (ν, ρ) or

(µ, ρ), while εµνρ is totally anti-symmetric.

The l = 0 term in Eq.(B.22) gives

− Tr
[
im δβG0

(
−imβ†

)]
= −m2

∫
p

1

p2 +m2

∫
d3x tr′

[
δββ†

]
= −2m2

∫
p

1

p2 +m2

∫
d3x tr

[
δQCQC]

= 0

In passing to the last line we noted that(
QC)2

= In ⇒ δQCQC = −QCδQC ⇒ tr
[
δQCQC] = −tr

[
QCδQC]

Upon using the cyclic property of trace we conclude

tr
[
δQCQC] = 0.
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The l = 2 term in Eq.(B.22) gives

− Tr
[
im δβ

(
mG0((/∂β))

)2
G0

(
−imβ†

)]
= −m4

∫
p,q1,q2

1

p2 +m2

1

(p+ q1)2 +m2

1

(p+ q1 + q2)2 +m2
tr′
[
β†−q1−q2−q3δβq3i /q2βq2i /q1βq1

]
≈ −m4

∫
p

1

(p2 +m2)3

∫
q1,q2

tr′
[
β†−q1−q2−q3δβq3i /q2βq2i /q1βq1

]
≈ −2m4

∫
p

1

(p2 +m2)3

∫
d3x tr

[
QC δQC ∂µQ

C ∂µQ
C]

= 0

In passing from the second to the third line we have used the fact at most three qi are
allowed (otherwise the term becomes irrelevant). Therefore at most we can expand the

1
(p+q1)2+m2

1
(p+q1+q2)2+m2 to first order in q1,2. However, such expansion inevitably comes

with a p, and will vanish upon p integration. Thus we can only keep the 0th order term
1

p2+m2
1

(p2+m2)2
. In passing to the last line we have used δQCQC = −QCδQC three times

to move QC to the end, and use the cyclic property to move it back to the front. In this
way, we have proven that the quantity is the minus of itself, hence it is zero.

To summarize, including all (the most and less relevant) terms, the non-linear sigma
model is given by

W [QC] =
1

2λ3

∫
d3x tr

[
∂µQ

C∂µQC]− 2πi

256π2

∫
B

tr

[
Q̃C

(
dQ̃C

)4
]
.

(3 + 1)-D

Given
β = I ⊗H1 + iγ5I ⊗H2,

the l = 0, 2 terms of Eq.(B.21) and the l = 1, 3 terms of Eq.(B.22) vanishes upon trγ.
This is because they contain either one or three γ from /p or /qi. Because β contributes
either I or γ5. These terms vanish due to the fact that

trγ[γ
µ] = trγ[γ

µγ5] = trγ[γ
µγνγρ] = trγ[γ

µγνγργ5] = 0.
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The l = 0 term of Eq.(B.22) gives

− Tr [imδβG0(−imβ)]

= −m2

∫
p,q

1

p2 +m2
tr′
[
β†−qδβq

]
= −m2

(∫
p

1

p2 +m2

)∫
d4x tr′

[
β†δβ

]
= −4m2

(∫
p

1

p2 +m2

)∫
d4x δ

{
tr
[
H2

1 +H2
2

]}
= 0.

In passing to the last line we use the same reasoning as the corresponding term in (1+1)-D.

While maintaining two space-time derivatives, the l = 1 term of Eq.(B.21) gives rise
to the variation of the stiffness term δWstiffness in subsection B.4.2. Here we retain up to
4 space-time derivatives,

− Tr
[
imδβ

(
mG0((/∂β))

)
G0(i/∂)

]
= −m2

∫
p,q

1

p2 +m2

1

(p+ q)2 +m2
tr′
[
δβ−q(γ

µqµ)βq(γ
νpν)

]
= −m2

∫
p,q

1

p2 +m2

1

(p+ q)2 +m2
qµp

νtr′
[
δβ−qγ

µγνβ†q
]

= δWstiffness −m2

∫
p,q

1

(p2 +m2)2

(
4q2(p · q)

(p2 +m2)2
− 8(p · q)3

(p2 +m2)3

)
(q · p)tr′

[
δβ−qβ

†
q

]
= δWstiffness −m2

∫
p,q

(
p2q4

(p2 +m2)4
− p4q4

(p2 +m2)5

)
tr′
[
δβ−qβ

†
q

]
= δWstiffness −

1

192π2

∫
d4x tr′

[
∂2(δβ)∂2β†

]
= δWstiffness −

1

96π2

∫
d4x tr

[
∂2(δQC)∂2QC† + ∂2(δQC†)∂2QC]

= δWstiffness −
1

96π2

∫
d4x δ

(
tr
[
∂2QC∂2QC†] ) (B.45)

In passing from the 2nd to the 3rd line, we use the property βγν = γνβ† for µ = 0, 1, 2, 3.
From the 3rd to the 4th line we have used the fact that the trace is only non-zero if the
γµ and γν are the same. From the 4th to the 5th line, we used the fact that rotational
invariance allows the following replacement in the integrand of the p integral

pµpνpρpσ → 1

D(D + 2)
(δµνδρσ + δµρδνσ + δµσδνρ) .

(The factor 1
D(D+2)

can be fixed by taking trace on both sides.) In the 5th line, only the

terms in δβ−qβ
†
q having an even number of γ5 are non-zero. Moreover, since γ5 is always
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accompanied by H2, we can replace γ5 with the identity matrix as long as we symmetrize
the end result with respect to H2. After the replacement, β becomes II⊗QC, the identity
matrix can then be trace out, and the symmetrization amounts to sum over the terms
with QC = H1 + iH2 replaced by QC† = H1 − iH2. We will use this last trick several
times in the following.

The l = 3 term of Eq.(B.21) gives

− Tr
[
im δβ

(
mG0((/∂β))

)3
G0

(
i/∂
)]

= m4

∫
p,q1,q2,q3

1

p2 +m2

1

(p+ q1)2 +m2

1

(p+ q1 + q2)2 +m2

1

(p+ q1 + q2 + q3)2 +m2

× tr′
[
δβ−q1−q2−q3(i /q3βq3)(i /q2βq2)(i /q1βq1)(i/p)

]
≈ m4

∫
p,q1,q2,q3

−2p · (3q1 + 2q2 + q3)

(p2 +m2)5
qµ3 q

ν
2q

ρ
1p

σtr′
[
γµγνγργσδβ−q1−q2−q3β

†
q3
βq2β

†
q1

]
= −m

4

2

∫
p

p2

(p2 +m2)5

∫
q1,q2,q3

qµ3 q
ν
2q

ρ
1(3q1 + 2q2 + q3)σ (δµνδρσ − δµρδνσ + δµσδνρ)

× tr′
[
δβ−q1−q2−q3β

†
q3
βq2β

†
q1

]
even terms inH2

= − 1

96π2

∫
q1,q2,q3

(
3q2

1(q2 · q3)− 2q2
2(q1 · q3) + q2

3(q1 · q2) + 4(q1 · q2)(q2 · q3)
)

× tr′
[
δQC
−q1−q2−q3Q

C†QC
q2
QC†
q1

]
even H2

= − 1

96π2

∫
d4x

1

2
tr

 3 δQC∂µQ
C†∂QC∂2QC† + 3 δQC†∂µQ

C∂µQ
C†∂2QC

−2 δQC∂µQ
C†∂2QC∂µQ

C† − 2 δQC†∂µQ
C∂2QC†∂µQ

C

+ δQC∂2QC†∂µQ
C∂µQ

C† + δQC†∂2QC∂µQ
C†∂µQ

C

+4 δQC∂µQ
C†∂µ∂νQ

C∂νQ
C† + 4 δQC†∂µQ

C∂µ∂νQ
C†∂νQ

C



=
1

96π2

∫
d4x tr


QC†δQCQC†



−3 ∂µQ
CQC†∂µQ

CQC†∂2QC

+2 ∂µQ
CQC†∂2QCQC†∂µQ

C

−∂2QCQC†∂µQ
CQC†∂µQ

C

−4∂µQ
CQC†∂µ∂νQ

CQC†∂νQ
C

+6∂µQ
CQC†∂µQ

CQC†∂νQ
CQC†∂νQ

C

−2∂µQ
CQC†∂νQ

CQC†∂νQ
CQC†∂µQ

C

+2∂µQ
CQC†∂νQ

CQC†∂µQ
CQC†∂νQ

C




(B.46)

From the 3rd to the 4th line, we take the terms with even number of γ5 (thus even
number of H2) from β and use the identity trγ [γµγνγργσ] = 4(δµνδρσ − δµρδνσ + δµσδνρ).
The terms with odd number of γ5 vanish because trγ [γµγνγργσγ5] = 4εµνρσ is totally
anti-symmetric, while qν3q

ν
2g

ρ
1(3q1 + 2q2 + q3)σ is symmetric with respect to either (µ, σ),

(ν, σ), or (ρ, σ). From the 4th line to the 5th line, we used the same trick as in Eq.(B.45).
From the 6th to the 7th line, δQC† = −QC†δQCQC† is used repeatedly until δ or ∂ act
only on QC.
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The l = 2 term of Eq.(B.22) gives

− Tr
[
im δβ

(
mG0((/∂β))

)2
G0

(
−imβ†

)]
= −m4

∫
p,q1,q2,q3

1

(p+ q1 + q2)2 +m2

1

(p+ q1)2 +m2

1

p2 +m2

× tr′
[
β†−q1−q2−q3δβq3(i /q2βq2)(i /q1βq1)

]
≈ m4

∫
p,q1,q2,q3

qν2q
µ
1

(p2 +m2)3

[
1− q2

1 + (q1 + q2)2

p2 +m2
+ 4

(p · q1)2 + (p · (q1 + q2))2 + (p · q1)(p · (q1 + q2))

(p2 +m2)2

]
× tr′

[
β†−q1−q2−q3δβq3(γνγµβ

†
q2
βq1)

]
= m4

∫
p,q1,q2,q3

(q1 · q2)

(p2 +m2)3

[
1− q2

1 + (q1 + q2)2

p2 +m2
+
p2 (q2

1 + (q1 + q2)2 + q1 · (q1 + q2))

(p2 +m2)2

]
× tr

[
β†−q1−q2−q3δβq3β

†
q2
βq1

]
= m4

∫
q1,q2,q3

(q1 · q2)
[ 1

32π2m2
− 1

192π2m4

(
q2

1 + q2
2 + q1 · q2

) ]
tr′
[
β†−q1−q2−q3δβq3β

†
q2
βq1

]
=

∫
d4x
[
− m2

32π2
tr′
[
β†δβ∂µβ

†∂µβ
]
− 1

192π2
tr′
[
β†δβ

(
∂µβ

†∂µ∂
2β + ∂µ∂

2β†∂µβ + ∂µ∂νβ
†∂µ∂νβ

)] ]
=

∫
d4x
[
− m2

16π2
tr
[
QC†δQC∂µQ

C†∂µQ
C +QCδQC†∂µQ

C∂µQ
C†
]

− 1

96π2
tr

[
QC†δQC (∂µQC†∂µ∂

2QC + ∂µ∂
2QC†∂µQ

C + ∂µ∂νQ
C†∂µ∂νQ

C)
+QCδQC† (∂µQC∂µ∂

2QC† + ∂µ∂
2QC∂µQ

C† + ∂µ∂νQ
C∂µ∂νQ

C†)
] ]

In passing from the 6th to the last line we have used the symmetrization trick in arriving
at Eq.(B.45). Using δQC† = −QC†δQCQC†, the first term in the last line gives zero. The
second term can be evaluated using the same formula repeatedly. After some straight-
forward expansion, most terms cancel out and we are left with

− 1

96π2

∫
d4x tr

[
QC†δQCQC† (∂2QCQC†∂µQ

CQC†∂µQ
C − ∂µQCQC†∂µQ

CQC†∂2QC) ]
(B.47)

Summing over Eq.(B.45), Eq.(B.46), and Eq.(B.47), we obtain

δWstiffness + δ

 1

92π2

∫
d4x tr

 ∂µQ
C†∂µQ

C∂νQ
C†∂νQ

C

− 1
2∂µQ

C†∂νQ
C∂µQ

C†∂νQ
C

−∂2QC∂2QC†

 . (B.48)

All these terms are real. At low energy and long wavelength they are dominated by the
stiffness term. In appendix B.5 we shall refer to the stiffness term plus these extra terms
as the “generalized stiffness” term.
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To summarize, including all “generalized stiffness” terms, the non-linear sigma model
is given by

W [QC] =
1

2λ2
4

∫
M
d4x tr

[
∂µQ

C∂µQC†]− 2π

480π3

∫
B

tr
[ (
Q̃C†dQ̃C

)5 ]

+
1

92π2

∫
M
d4x tr

 ∂µQ
C†∂µQ

C∂νQ
C†∂νQ

C

− 1
2∂µQ

C†∂νQ
C∂µQ

C†∂νQ
C

−∂2QC∂2QC†

 (B.49)

B.5 Emergent symmetries of the nonlinear sigma

models

In this appendix, we shall generalize the discussions in section 4.11 to (2 + 1)-D and
(3 + 1)-D, namely, showing the nonlinear sigma models respect the full emergent symme-
tries of the massless free fermion theories (see table 4.4, or appendix B.1 ).

As we explained in appendix B.4.3, the nonlinear sigma models in real classes can be
derived from the complex classes by restricting QR to the appropriate sub-mass manifold
of QC. Similarly, for each space-time dimension the emergent symmetry group of the real
class is a subgroup of the complex class (see table 4.4). Hence, once we have matched the
symmetries (between the nonlinear sigma models and fermion theories) for the complex
class, it is straightforward to do the same for the real class. All we need to do is to restrict
the order parameters to the appropriate sub-mass manifold and the symmetries to the
appropriate subgroup. Therefore we shall focus on the complex classes in the following.

Complex class in (2 + 1)-D

The nonlinear sigma model is given by Eq.(B.39), namely,

W [QC] =
1

2λ3

∫
d3x tr

[
∂µQ

C∂µQC]− 2πi

256π2

∫
B

tr

[
Q̃C

(
dQ̃C

)4
]
.

(i) Global U(n)

Using the cyclic invariance of trace, the action in Eq.(B.39) clearly respects the U(n)
symmetry

QC → g† ·QC · g.
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(ii)Charge conjugation

QC transforms under the charge conjugation as

QC C−→
(
QC)T .

Under such transformation the stiffness term becomes

1

2λ3

∫
d3x tr

[
∂µ
(
QC)T ∂µ (QC)T]

=
1

2λ3

∫
d3x tr

[
∂µQC∂µQ

C]
Hence is invariant. In passing to the last line we have used the fact that the trace of a
transposed matrix is the same as that of the original.

Under charge conjugation the WZW term transforms as

− 2πi

256π2

∫
B

tr

[
Q̃C

(
dQ̃C

)4
]

C−→ − 2πi

256π2

∫
B

tr

[
(Q̃C)T

(
d(Q̃C)T

)4
]

= − 2πi

256π2

∫
B

tr

[(
dQ̃C

)4

Q̃C
]

= − 2πi

256π2

∫
B

tr

[
Q̃C

(
dQ̃C

)4
]
.

In passing to the second line we have used the transposing invariance of the trace, and the
fact the reordering caused by transposing results in an even number of exchanges between
the differential 1-forms, hence there is no sign change. The cyclic property of trace is
used for the last equality. Therefore the WZW term is charge conjugation invariant.

(iii)Time reversal

Under time-reversal QC transforms as

QC T−→ −(QC)∗ = −(QC)T .

(Here we have used the fact that QC is hermitian). This results in the following transfor-
mation of the stiffness term

1

2λ3

∫
d3x tr

[
∂µQ

C∂µQC]
T−→
(

1

2λ3

∫
d3x tr

[
∂µ(−QC∗)∂µ(−QC∗)

])∗
=

1

2λ3

∫
d3x tr

[
∂µQ

C∂µQC]
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In passing to the second line we have used the fact that in Euclidean space-time the
Boltzmann weight needs to be complex conjugated under anti-unitary transformation.
Therefore, the stiffness term is time reversal invariant.

The WZW term transforms as follows under time reversal

− 2πi

256π2

∫
B

tr

[
Q̃C

(
dQ̃C

)4
]

T−→
(
− 2πi

256π2

∫
B

tr

[
(−Q̃C)∗

(
d(−Q̃C)∗

)4
])∗

= − 2πi

256π2

∫
B

tr

[
Q̃C

(
dQ̃C

)4
]
,

where the five negative signs associated with transposing are canceled out by the negative
sign arising from complex conjugation of i. Thus the WZW term is time reversal invariant.

In summary, the nonlinear sigma model respects the full emergent symmetries of the
massless fermion theory (see table 4.4).

Complex class in (3 + 1)-D

The nonlinear sigma model in Eq.(B.49) is given by

W [QC] =
1

2λ2
4

∫
M
d4x tr

[
∂µQ

C∂µQC†]− 2π

480π3

∫
B

tr
[ (
Q̃C†dQ̃C

)5 ]

+
1

92π2

∫
M
d4x tr

 ∂µQ
C†∂µQ

C∂νQ
C†∂νQ

C

− 1
2∂µQ

C†∂νQ
C∂µQ

C†∂νQ
C

−∂2QC∂2QC†



(i) Global U(n)× U(n)

Eq.(B.49) is clearly invariant under the U+(n)× U−(n) transformations

QC → g†− ·QC · g+.

This is because in Eq.(B.49) QC and QC† appears sequentially.

(ii)Charge conjugation

Under charge-conjugation QC transforms as

QC C−→ (QC)T .



APPENDIX B. APPENDICES OF PART III 141

Under such transformation the “generalized stiffness” terms transforms as

1

2λ2
4

∫
d4x tr

[
∂µ
(
QC)T ∂µ (QC†)T]

+
1

92π2

∫
d4x tr

 ∂µ
(
QC†)T ∂µ (QC)T ∂ν (QC†)T ∂ν (QC)T

− 1
2∂µ

(
QC†)T ∂ν (QC)T ∂µ (QC†)T ∂ν (QC)T
−∂2

(
QC)T ∂2 (QC†)T


=

1

2λ2
4

∫
d4x tr

[
∂µQ

C∂µQC†]+
1

92π2

∫
d4x tr

 ∂µQ
C†∂µQ

C∂νQ
C†∂νQ

C

− 1
2∂µQ

C†∂νQ
C∂µQ

C†∂νQ
C

−∂2QC∂2QC†


(B.50)

In arriving at the final line we have used the transposing invariance of the trace. There-
fore the “generalized stiffness” terms are charge conjugation invariant.

Under charge conjugation, the WZW term transforms as

− 2π

480π3

∫
B

tr
[ (
Q̃C†dQ̃C

)5 ]
C−→− 2π

480π3

∫
B

tr
[ (

(Q̃C)∗d(Q̃C)T
)5 ]

=− 2π

480π3

∫
B

tr
[ (
dQ̃C Q̃C†

)5 ]
=− 2π

480π3

∫
B

tr
[ (
Q̃C†dQ̃C

)5 ]
In passing to the third line we have used the transposing invariance of the trace. Note
that there is no extra sign because the number of exchanges between 1-forms is even
(10 times). In arriving at the last line, the last Q̃C† is moved to the front by the cyclic
invariance of the trace. Thus the WZW term is charge conjugation invariant.

(iii)Time reversal

Under time-reversal QC transforms as

QC T−→ (QC)∗.

W
[
QC] T−→

(
W
[(
QC)∗])∗ = W

[
QC] .

This is because all the coefficients (including those in front of the generalized stiffness
terms and the WZW term) in the nonlinear sigma model are real, the complex conjuga-
tion of the Boltzmann weight cancels out with complex conjugation in QC∗.

To summarize, the nonlinear sigma model is invariant under the full emergent sym-
metries of the massless fermion theory (see table 4.4).
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B.6 Anomalies of the nonlinear sigma models

To reveal the ‘t Hooft anomalies of the non-linear sigma model we first need to gauge
it. In this section, we shall extend the discussions in section 4.12.1 to gauge the contin-
uous symmetries of nonlinear sigma models in (1 + 1)-D, (2 + 1)-D, and (3 + 1)-D. We
shall adopt Witten’s trial-and-error method [26].

We have discussed at the beginning of appendix B.5 that the mass manifold and
emergent symmetries of the non-linear sigma model of real classes are the submanifold
and sub-group of the corresponding sigma model of complex classes. Consequently, once
one knows how to gauge the nonlinear sigma models in the complex classes, one simply
needs to restrict the order parameters (QR) to the submanifold, and the gauge group to
the subgroup, to derive the gauged non-linear sigma models of real classes.

B.6.1 The (‘t Hooft) anomalies associated with continuous
symmetries

Complex class in (1 + 1)-D

The discussion for gauging the nonlinear sigma model of complex class in (1 + 1)-D
was already in section 4.12.1. We will not repeat the argument but just quote the result
here:

W [QC, A+, A−] = − 1

8π

∫
M

d2x tr
[(
QC† (∂µQC − iQCA+,µ + iA−,µQ

C))2
]

− i

12π

∫
B

tr
[(
QC†dQC)3

]
− 1

4π

∫
M

tr
{
A+

(
QC†dQC)

+ A−
(
dQCQC†)+ iA+Q

C†A−Q
C
}
. (B.51)

Under infinitesimal U+(n)× U−(n) gauge transformation,

QC → e−iε−QCeiε+

A± → A± + dε± + i[A±, ε±],

Eq.(B.51) acquires an addition piece

δW = − i

4π

∫
M

tr [A+dε+ − A−dε−] . (B.52)



APPENDIX B. APPENDICES OF PART III 143

Thus Eq.(B.51) is not gauge invariant, revealing the ‘t Hooft anomaly associated with
U+(n)× U−(n). However, when one only gauges the diagonal U(n), i.e., A+ = A− := A
and ε+ = ε− = ε, the non gauge invariant terms in Eq.(B.52) cancels out. Hence Eq.(B.51)
is anomaly free with respect to the diagonal U(n). This agrees with the free fermion
anomaly.

Real class in (1 + 1)-D

The gauged nonlinear sigma model for real class in (1 + 1)-D can be derived from
the complex class by 1) restricting the order parameter QC ∈ U(n) to the subspace
QR ∈ O(n), 2) restricting the gauge group from U+(n) × U−(n) to O+(n) × O−(n), and
3) divide the nonlinear sigma model by a factor of two (see B.4.1). The result is

W [QR, A+, A−] = − 1

16π

∫
M

d2x tr
[(

(QR)T
(
∂µQ

R − iQRA+,µ + iA−,µQ
R))2

]
+

2πi

48π2

∫
B

tr
[ (

(Q̃R)TdQ̃R
)3 ]

+
1

8π

∫
M

tr
{
A+

(
dQR(QR)T

)
+ A−

(
(QR)TdQR)− iA+(QR)TA−Q

R
}
. (B.53)

Here A± are the gauge fields associated with O+(n)×O−(n). Under the O+(n)×O−(n)
gauge transformation,

QR → e−iε−QReiε+

A± → A± + dε± + i[A±, ε±],

(here ε+ and ε− are imaginary anti-symmetric matrices) Eq.(B.53) acquires an addition
piece

δW = − i

8π

∫
M

tr [A+dε+ − A−dε−] ,

manifesting the ‘t Hooft anomaly associated with O+(n) × O−(n). Again, when only
the diagonal O(n) is gauged, Eq.(B.53) is anomaly-free, consistent with the free fermion
prediction.

Complex class in (2 + 1)-D

In the following, we carry out Witten’s method [26] for the non-linear sigma model.
The emergent continuous symmetry is U(n) and under gauge transformation QC and A
change according to

QC → QC + δQC where δQC = i[QC, ε]

A→ A+ δA where δA = dε+ i[A, ε]. (B.54)



APPENDIX B. APPENDICES OF PART III 144

The gauge field enters stiffness term in Eq.(B.39) via the minimal coupling,

Wstiff [QC, A] =
1

2λ3

∫
M

d3x tr
[(
∂µQ

C + i[Aµ, Q
C]
)2]

which is gauge invariant.

Following Witten’s trial-and-error method, we now determine how gauge field enters
through the WZW term. Under Eq.(B.54) the WZW term acquires an addition piece

δ

∫
B

tr
[
QC(dQC)4

]
=

∫
B

tr
[
δQC(dQC)4 + 4Qd(δQC)(dQC)3

]
=

∫
B

tr
[
5δQC(dQC)4 + d

(
4QCδQC(dQC)3

)]
=5

∫
B

tr
[
i
(
QCε− εQC) (dQC)4

]
+

∫
M

tr
[
4QCi

(
QCε− εQC) (dQC)3

]
=0 + 8i

∫
M

tr
[
ε(dQC)3

]
=− 8i

∫
M

tr
[
dεQC(dQC)2

]
(B.55)

In passing to the second line we used the constraint QCdQC = −dQCQC. An integration
by part is done from the 2nd to the 3rd line. The 1st term in the 4th line vanishes because
we can repeatedly use QCdQC = −dQCQC and the cyclic invariance of the trace to show

tr
[
εQC(dQC)4

]
= tr

[
QCε(dQC)4

]
.

To cancel out the gauge dependent part of Eq.(B.55), we add an additional term

Added term 8i

∫
M

tr
[
AQC(dQC)2

]
. (B.56)
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Under the gauge transformation Eq.(B.54) this additional term transforms into

δ

(
8i

∫
M

tr
[
AQC(dQC)2

])
=8i

∫
M

tr
[
δAQC(dQC)2 + δQC(dQC)2A+ d(δQC)

(
dQCAQC + AQC dQC)]

=8i

∫
M

tr

[
δAQC(dQC)2 + δQC

(
(dQC)2A+ dQC dAQC − dQCAdQC

−dAQC dQC +AdQC dQC

)]
=8i

∫
M

tr

[
dεQC(dQC)2 + i[A, ε]QC(dQC)2 + i[QC, ε]

(
(dQC)2A+ dQC dAQC − dQCAdQC

−dAQC dQC +AdQC dQC

)]
=8i

∫
M

tr
[
dεQC(dQC)2

]
− 8

∫
M

tr

[
ε d

(
QC dQCAQC +QCAQC dQC

QC dA+ dAQC

)]
=8i

∫
M

tr
[
dεQC(dQC)2

]
+ 8

∫
M

tr

[
dε

(
QC dQCAQC +QCAQC dQC

QC dA+ dAQC

)]
(B.57)

The first term of the final result cancels the gauge dependent term of Eq.(B.55) by design.
We continue to add the additional term

Added term − 8

∫
M

tr
[
(AQC)2dQC] (B.58)

in an attempt to cancel the term

8

∫
M

tr
[
dε
(
QC dQCAQC +QCAQC dQC

)]
(B.59)

in Eq.(B.57). Under the gauge transformation (Eq.(B.54)) the added term transforms as

δ

(
−8

∫
M

tr
[
(AQC)2dQC])

=− 8

∫
M

tr


δA
(
QCAQC dQC +QC dQCAQC)

+δQC

 AQC dQCA+ dQCAQCA
−dAQCAQC +AdQCAQC

+AQC dAQC −AQCAdQC




=− 8

∫
M

tr

[
dε
(
QCAQC dQC +QC dQCAQC)

+i ε d
(
−AQCA+QCAQCAQC)

]
=

∫
M

tr

[
−8dε

(
QCAQC dQC +QC dQCAQC)

+8i dε
(
−AQCA+QCAQCAQC)

]
(B.60)

The top line in the final result achieves canceling out Eq.(B.59). Now we focus on
canceling out the terms in the bottom line of Eq.(B.60). The term∫

M
tr
[

+8i dε
(
QCAQCAQC)] (B.61)



APPENDIX B. APPENDICES OF PART III 146

can be canceled out by adding the extra term

Added term − 8i

3

∫
M

tr
[
(AQC)3

]
. (B.62)

Under gauge transformation the added term transforms as

δ

(
−8i

3

∫
M

tr
[
(AQC)3

])
=− 8i

∫
M

tr
[
δ(AQC)(AQC)2

]
=− 8i

∫
M

tr
[(
dεQC + i[A, ε]QC + iA[QC, ε]

)
(AQC)2

]
=− 8i

∫
M

tr
[
dεQC(AQC)2

]
(B.63)

which indeed cancels Eq.(B.61). The remaining term∫
M

tr
[

+8i dε
(
−AQCA

)]
(B.64)

in Eq.(B.60) can be partially canceled by adding the extra term

Added term 8i

∫
M

tr
[
A3QC] , (B.65)

which transforms as

δ

(
8i

∫
M

tr
[
A3QC])

=8i

∫
M

tr
[
(dε+ i[A, ε])

(
A2QC + AQCA+QCA2

)
+ i[QC, ε]

(
A3
)]

=8i

∫
M

tr
[
dε
(
A2QC + AQCA+QCA2

)]
(B.66)

under the gauge transformation. The second term in Eq.(B.66) cancel Eq.(B.64).

At this point, under the gauge transformation, the sum of the original WZW term
and the added terms Eq.(B.56),Eq.(B.58),Eq.(B.62), Eq.(B.65) acquires the extra piece

δ

∫
B

tr
[
QC(dQC)4

]
+ 8

∫
M

tr

[
i AQC(dQC)2 − (AQC)2dQC

− i
3 (AQC)3 + i A3QC

]
=8

∫
M

tr
[
dε
(
QCF + FQC)] (B.67)
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where F := dA+iA2. This last non-gauge invariant term, Eq.(B.67), can also be canceled
out by adding

Added term − 8

∫
M

tr
[
AQC F + AF QC] . (B.68)

Indeed, under the gauge transformation the added term transforms as

δ

−8

∫
M

tr
[
AQC F + AF QC]

=− 8

∫
M

tr

(dε+ i[A, ε])(QC F + F QC)
+i [F, ε](AQC +QCA)
+i [QC, ε](F A+AF )


=− 8

∫
M

tr
[
dε
(
QC F + F QC)]

which cancels Eq.(B.67). Thus the entire U(n) symmetry can be gauged without anomaly.
This is consistent with the free fermion prediction.

In summary, the U(n) gauged nonlinear sigma model in (2 + 1)-D is

W [QC, A] =
1

2λ3

∫
M

d3x tr
[(
∂µQ

C + i[Aµ, Q
C]
)2]
− 2πi

256π2

{∫
B

tr
[
Q̃C

(
dQ̃C

)4 ]
+ 8

∫
M

tr
[
iAQC(dQC)2 − (AQC)2dQC − i

3
(AQC)3 + iA3QC − AQCF − AFQC

]}
.

(B.69)

Real class in (2 + 1)-D

The gauged nonlinear sigma model can be derived from the results in preceding sub-
section by 1) restricting the order parameter QC ∈ U(n)

U(n/2)×U(n/2)
to the sub-manifold

QR ∈ O(n)
O(n/2)×O(n/2)

, 2) restricting the gauge group from U(n) to O(n), and 3) divide the

effective action by a factor of two (see B.4.1). The resulting gauged nonlinear sigma
model action is

W [QR, A] =
1

4λ3

∫
M

d3x tr
[(
∂µQ

R + i[Aµ, Q
R]
)2]
− 2πi

512π2

{∫
B

tr
[
Q̃R

(
dQ̃R

)4 ]
+ 8

∫
M

tr
[
iAQR(dQR)2 − (AQR)2dQR − i

3
(AQR)3 + iA3QR − AQRF − AFQR

]}
(B.70)
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Here A is the gauge connection for the O(n) gauge group. Again the entire O(n) sym-
metry is anomaly free, agreeing with the free fermion prediction.

Complex class in (3 + 1)-D

The emergent symmetry is U+(n)×U−(n). The gauged WZW term was written down
by Witten [26] with a minor correction in Ref.[60]. To simplify the notation, we will define

α1 := dQCQC†, α2 := QC†dQC.

The derivation is rather long, so we shall not repeat it here. The result is [26]

W [QC, A+, A−]

= − 1

2λ2
4

∫
M

d4x tr
[(
QC† (∂µQC − iQCA+,µ + iA−,µQ

C))2
]

− 2π

480π3

{∫
B

tr
[
(QC†dQC)5

]

+ 5

∫
M

tr


−i
(
A+α

3
2 +A−α

3
1

)
− ((dA+A+ +A+dA+)α2 + (dA−A− +A−dA−)α1)

+dA−dQ
CA+Q

C† − dA+d(QC†)A−Q
C +A+Q

C†A−Q
Cα2

2 −A−QCA+Q
C†α2

1

+ 1
2

(
(A−α1)2 − (A+α2)2

)
− i
(
A3
−α1 +A3

+α2

)
+i
(
(dA+A+ +A+dA+)QC†A−Q

C − (dA−A− +A−dA−)QCA+Q
C†)

−i
(
A−Q

CA+Q
C†A−α1 +A+Q

C†A−Q
CA+α2

)
+
(
A3

+Q
C†A−Q

C −A3
−Q

CA+Q
C†)+ 1

2 (QCA+Q
C†A−)2


}

(B.71)

Under the infinitesimal gauge transformation, the action transforms as

δW =
2πi

48π3

∫
M

tr
[
ε+

(
(dA+)2 − i

2
d(A3

+)
)
− ε−

(
(dA−)2 − i

2
d(A3

−)
)]

The situation is similar to the (1 + 1)-D case: there is an anomaly if we gauge U+(n) and
U−(n) independently. However, there is no anomaly if we only gauge the diagonal part
of U(n). This is consistent with the free fermion prediction.

Real class in (3 + 1)-D

The gauged nonlinear sigma model for the real class in (3 + 1)-D can be derived from
the results of the preceding subsection by 1) restricting the order parameter QC ∈ U(n)

to the submanifold QR ∈ U(n)
O(n)

(the space of symmetric unitary matrix), 2) restricting the

gauge group from U+(n)× U−(n) which transforms QC according to

QC → g†− ·QC · g+,
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to the sub-group U(n) (the global symmetry group in the real class is U(n) ), which
transforms QR according to

QR u∈U(n)−−−−→ uT ·QR · u,

and 3) divide the action by a factor of two (see B.4.1). The resulting gauged nonlinear
sigma model is

W [QR, A]

= − 1

4λ2
4

∫
M

d4x tr
[(
QR† (∂µQR − iQRAµ + i(−ATµ )QR))2

]
− 2π

960π3

{∫
B

tr
[
(QR†dQR)5

]

+ 5

∫
M

tr


−i
(
Aα3

2 + (−AT )α3
1

)
−
(
(dAA+AdA)α2 + (d(−AT )(−AT ) + (−AT )d(−AT ))α1

)
+d(−AT )dQRAQR† − dAd(QR†)(−AT )QR +AQR†(−AT )QRα2

2 − (−AT )QRAQR†α2
1

+ 1
2

(
((−AT )α1)2 − (Aα2)2

)
− i
(
(−AT )3α1 +A3α2

)
+i
(
(dAA+AdA)QR†(−AT )QR −

(
d(−AT )(−AT ) + (−AT )d(−AT )

)
QRAQR†)

−i
(
(−AT )QRAQR†(−AT )α1 +AQR†(−AT )QRAβ

)
+
(
A3QR†(−AT )QR − (−AT )3QRAQR†)+ 1

2 (QRAQR†(−AT ))2


}
.

(B.72)

Here we have used the definition

α1 := dQRQR†, α2 := QR†dQR.

Under the infinitesimal gauge transformation,

QR → eiε
T

QReiε

A→ A+ dε+ i[A, ε],

the gauged nonlinear sigma model acquires an addition piece

δW =
2πi

96π3

∫
M

tr
[
dε
(
AdA− i

2
A3
)

+ dεT
(

(−AT )d(−AT )− i

2
(−AT )3

)]
(B.73)

manifesting the ‘t Hooft anomaly of associated with U(n).

However, if we only gauge the O(n) subgroup of U(n)

εT = −ε, AT = −A.

Under such condition the two terms in Eq.(B.73) cancel. Thus the O(n) subgroup
anomaly free. This agrees with the free fermion anomaly.
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B.6.2 Anomalies with respect to the discrete groups

After gauging the anomaly-free part of the continuous group, it is straightforward to
determine how the resulting action transform under discrete symmetries. The necessary
input is the transformation of the gauge field and the QC,R. Here we simply state the
results. In (1+1)-D and (3+1)-D there is no anomaly with respect to discrete symmetries
after gauging the anomaly-free part of the continuous symmetries. In (2 + 1)-D, gauging
the continuous symmetry breaks the time-reversal symmetry as discussed in subsection
4.12.2.

B.7 Soliton’s statistics

As discussed in subsection 4.13.1 of the main text, in (2 + 1)-D and (3 + 1)-D the
mass manifolds for QC,R support solitons for sufficiently large n (number of flavors). In
this appendix, we follow Ref.[27] to determine the statistics of soliton. This is achieved
by computing the Berry phase, arising from the WZW term, of an adiabatic self-rotating
soliton.

Here is our strategy. (1) We write down the QC,R configuration corresponding to a
static unit soliton. (2) Based on the result of (1), we write down the QC,R configuration
corresponding to an adiabatic self-2π-rotating soliton. (3) We plug the QC,R configuration
constructed in (2) into the WZW term to compute the Berry phase.

Because the space-time manifold SD is incompatible with the QC,R configuration of a
single soliton4, in this section we shall follow Ref.[27] and use

M = SD−1 × S1

as the space-time manifold. Here SD−1 is in the spatial manifold and S1 is the loop in
time. The extended manifold needed to define the WZW term is [27]

B = SD−1 ×D2,

where D2 is a two-dimensional disk with the boundary ∂D2 = S1 being the time loop.

B.7.1 Complex class in (2 + 1)-D

4On SD, the infinite future corresponds to a single point. It follows that QC,R is a constant matrix
at infinite future. This is incompatible with the single soliton configuration.
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The mass manifold is
U(n)

U(n/2)× U(n/2)
.

For n ≥ 4 both homotopy groups π2 (relevant to the existence of soliton) and π4 (relevant
to the existence of the WZW term) are stabilized (see table B.1). This is the situation
we shall focus on in the following.

To write down a static soliton configuration, let us begin with n = 2. This is because
as far as π2 (relevant to the existence of soliton) is concerned, it stabilizes at n = 2, for
which the mass manifold is

U(2)

U(1)× U(1)
= S2,

and QC is a 2×2 hermitian matrix. Here a unit soliton is a degree 1 map from the spatial
manifold S2 to the mass manifold S2. An example of such map is

QC
sol(θ, φ) = ~n · ~σ where ~n = (sin θ cosφ, sin θ sinφ, cos θ), (B.74)

where θ and φ are the usual coordinates on S2. This can be verified by computing the
topological invariant associated with the soliton quantum number

I2 =
i

16π

∫
tr
[
QC

sol(dQ
C
sol)

2
]

= 1.

For n ≥ 4 we can write down a static unit soliton configuration as the direct sum of
the 2× 2 QC

sol(θ, φ) in Eq.(B.74) with a number of Pauli matrices Z, i.e.,

QC
sol(θ, φ) = ~n(θ, φ) · ~σ ⊕ Z ⊕ Z... =


n3 n1 − in2 0 0

n1 + in2 −n3 0 0
0 0 1 0
0 0 0 −1

⊕ Z... (B.75)

To construct the configuration of a 2π-self-rotating soliton (around, e.g., the nx axis)
we introduce the following space-time dependent QC, namely,

QC(θ, φ, τ) = RT (τ) ·QC
sol(θ, φ) ·R(τ), where

R(τ) =



e+i τ

2 0 0 0
0 e−i

τ
2 0 0

0 0 1 0
0 0 0 1

⊕ I...
 (B.76)

Here τ ranges from 0 to 2π along the time loop, and QC
sol(θ, φ) is given by Eq.(B.75).

As discussed earlier, in order to calculate the Berry phase arising from the WZW
term, we needs to extend the space-time manifold from M = S2 × S1 to B = S2 ×D2.
However, this extension is complicated by the fact that the orthogonal matrices R(τ) in
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Eq.(B.76) is not single-valued as τ runs through the time loop (note, however, QC(θ, φ, τ)
is single valued). To overcome this difficulty, we use the algebraic fact observed by Witten
[27] that to reproduce the same QC(θ, φ, τ), one can replace the R(τ) in Eq.(B.76) by the
following single valued matrix

R(τ) =




1 0 0 0
0 e−iτ 0 0
0 0 e+iτ 0
0 0 0 1

⊕ I...
 .

After such replacement, one can extend it to S2 ×D2 by writing

Q̃C(θ, φ, τ, u) = R̃T (τ, u) ·QC
sol(θ, φ) · R̃(τ, u), where

R̃(τ, u) =




0 0 0 0
0 sinu e−iτ cosu 0
0 − cosu sinu e+iτ 0
0 0 0 1

⊕ I...
 , (B.77)

where u ∈ [0, π].

It’s straightforward, though slightly tedious, to plug Eq.(B.77) in the WZW term to
obtain

WWZW[Q̃C] =− 2πi

256π2

∫
B

tr
[
Q̃C (dQ̃C)4

]
= iπ.

Therefore we conclude that the Berry’s phase due to the self-rotation is −1, implying the
unit soliton is a fermion.

B.7.2 Real class in (2 + 1)-D

The relevant mass manifold is O(n)
O(n

2
)×O(n

2
)
. From table B.2, both π2 and π4 are stabi-

lized for n ≥ 10. In the following we shall restrict ourselves to such situation.

Unlike the case of complex class, the stabilized π2 is

π2

(
O(n)

O(n
2
)×O(n

2
)

)
= Z2,

rather than Z. As a consequence, unlike the soliton in the preceding section, there is no
integral form of topological invariant we can use to test whether a proposed QR

sol configu-
ration indeed corresponds to the non-trivial element of Z2. The purpose of the following
subsection is to establish such a testing method.
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How to test whether a proposed Z2 soliton is trivial or not

Let’s consider the “fibration”

F
i−→ E

p−→ B. (B.78)

Here F stands for “fiber space”, E stands for “total space”, and B stands for “base
space”. “Fibration” means that locally (i.e., in a small neighborhood of the base space
B), the total space is the Cartesian product of the base space and the fiber space. In
Eq.(B.78) i and p stand for the inclusion and projection maps, respectively. They satisfies
the property that image of i is the kernel of p. It is a non-trivial theorem that the fibration
in Eq.(B.78) induces the following long exact sequence of mappings between homotopy
groups (see, e.g., [59])

...πn(F )
i∗−→ πn(E)

p∗−→ πn(B)→ πn−1(F )
i∗−→ πn−1(E)

p∗−→ πn−1(B)... (B.79)

Here i∗, p∗ stand for the map between mapping classes induced by the inclusion and
projection, respectively. Eq.(B.79) has the property that for two consecutive mappings
between homotopy groups, the image of the preceding map is equal to the kernel of the
subsequent map.

In our case

F = O
(n

2

)
×O

(n
2

)
, E = O(n), B =

O(n)

O(n
2
)×O(n

2
)
.

The inclusion and projection maps in Eq.(B.78) are defined by

(O1, O2)
i−→ O :=

(
O1 0
0 O2

)
where O1,2 ∈ O

(n
2

)
and O ∈ O(n)

O
p−→ S := O · diag(+1, ...,+1︸ ︷︷ ︸

n/2

,−1, ...,−1︸ ︷︷ ︸
n/2

) ·OT , where S ∈ O(n)

O(n
2
)×O(n

2
)
.

(B.80)

Our goal is to decide whether a given

S2 f2−→ O(n)

O(n
2
)×O(n

2
)

(B.81)

is topologically trivial or not. To answer that we consider the following sub-sequence of
Eq.(B.79)

π2(O(n))
p∗−→ π2

(
O(n)

O(n
2
)×O(n

2
)

)
β∗−→ π1

(
O
(n

2

)
×O

(n
2

))
i∗−→ π1(O(n)).
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where it is known that

π2(O(n)) = 0

π2

(
O(n)

O(n
2
)×O(n

2
)

)
= Z2

π1

(
O
(n

2

)
×O

(n
2

))
= Z2 × Z2

π1(O(n)) = Z2.

The map

π1

(
O
(n

2

)
×O

(n
2

))
i∗−→ π1(O(n))

sends
Z2 × Z2 → Z2 via (s1, s2)→ (s1 + s2 mod 2).

Hence the kernel of this map is (0, 0) and (1, 1). According to Eq.(B.79) these should be
the image of the map

π2

(
O(n)

O(n
2
)×O(n

2
)

)
β∗−→ π1

(
O
(n

2

)
×O

(n
2

))
,

or equivalently,

Z2
β∗−→ Z2 × Z2. (B.82)

The requirement that the image of the map in Eq.(B.82) be (0, 0), (1, 1), implies that

s
β∗−→ (s, s). (B.83)

Therefore the soliton configuration, which is an representative of the s = 1 element

of π2

(
O(n)

O(n
2

)×O(n
2

)

)
, is mapped to a configuration representative of the (1, 1) element

of π1

(
O
(
n
2

)
×O

(
n
2

))
under β. Hence if we can tell whether a representative map of

π1(O(n/2)) is trivial or not, we can deduce whether the configuration in Eq.(B.81) is
topologically non-trivial by applying β to it.

But this requires us to know how to construct the β map. To achieve that we consider
the following commutative diagram (a diagram is commutative if different paths leading
from the same initial space to the final space are the same map. The fact that the
following diagram is commutative is by construction.)

S1 D2 S2

O(n
2
)×O(n

2
) O(n) O(n)

O(n
2

)×O(n
2

)

f1

δ1

λ

γ2

f2

i p



APPENDIX B. APPENDICES OF PART III 155

Here δ1 is the inclusion map which maps S1 to the boundary of the 2-dimensional disk
D2; γ2 is the map that compactifies the boundary of D2 to single point; f2 is the map
in Eq.(B.81) and f1 is the map obtained by applying β to f2, i.e., β[f2] = f1. By
knowing whether f1 is a non-trivial map representing (1, 1) in Eq.(B.83) we can deduce
whether f2 is a non-trivial soliton configuration. In the commutative diagram λ is the
homotopy lift of f2 ◦ γ2. The fact that such a lift exists is because D2 is homeomorphic
to a two dimensional cube, i.e., a square, hence by the homotopy lifting property λ exists.

Because the image of γ2 ◦ δ1 is a point, so does the image of f2 ◦γ2 ◦ δ1 = p ◦ λ ◦ δ1.
This implies (λ ◦ δ1)[S1] is in the kernel of the map O(n)

p−→ O(n)
O(n

2
)×O(n

2
)
. Since (λ ◦ δ1)[S1]

is projected to a point in the base space, it must be contained entirely in a single fiber
O
(
n
2

)
×O

(
n
2

)
. Therefore the sought-after f1 is given by

f1 = λ ◦ δ1.

The above arguments allows us take the map f2 as input and produce the map f1 as
output, i.e., we have constructed β.

In the following we apply the construction discussed above to the following proposed
soliton configuration5

f2 : (θ, φ)→ QR
sol = (n1XI + n2EE + n3ZI)⊕ Z ⊕ Z... (B.84)

where
~n = (sin θ cosφ, sin θ sinφ, cos θ).

Because QR
sol is a real symmetric matrix, it can be diagonalized by orthogonal trans-

formation

QR
sol = W ·




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⊕ Z ⊕ Z...
 ·W T

where

W (θ, φ) =


cos θ

2
cosφ − cos θ

2
sinφ − sin θ

2
0

cos θ
2

sinφ cos θ
2

cosφ 0 − sin θ
2

sin θ
2

0 cos θ
2

cosφ cos θ
2

sinφ
0 sin θ

2
− cos θ

2
sinφ cos θ

2
cosφ

⊕ I...
Naively, one might think W (θ, φ) is a mapping between S2 and O(n). However, this is
not true. To see it, let’s inspect W (0, φ) and W (π, φ).

W (0, φ) =


cosφ − sinφ 0 0
sinφ cosφ 0 0

0 0 cosφ sinφ
0 0 − sinφ cosφ

⊕ I...,
5It is illuminating to compare QR

sol with QC
sol in Eq.(B.75), namely, QR

sol = Re[QC
sol]⊗I+Im[QC

sol]⊗E.
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W (π, φ) =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⊕ I...
The fact that W (0, φ) depends on φ and W (π, φ) does not implies that we should view
W as a mapping between D2 and O(n), where θ = 0 corresponds to the boundary while
θ = π corresponds to the center of D2 (i.e., the radius of D2 is π − θ). In fact, W is the
map λ in the commutative diagram, namely,

λ = W.

Hence the map f1 is given by

f1(φ) = W (0, φ) =


cosφ − sinφ 0 0
sinφ cosφ 0 0

0 0 cosφ sinφ
0 0 − sinφ cosφ

⊕ I... (B.85)

=

{(
cosφ − sinφ
sinφ cosφ

)
⊕ 1...

}
⊕
{(

cosφ sinφ
− sinφ cosφ

)
⊕ 1...

}
.

To summarize, given the map f2 in Eq.(B.84), we have obtained the map f1 in the com-
mutative diagram via Eq.(B.85).

Now we are ready to determine whether Eq.(B.84) is a topological non-trivial soliton
configuration. It is known that the following map from S1 to O(n/2)

f̃1(φ) =

{(
cosφ ∓ sinφ
± sinφ cosφ

)
⊕ 1...

}
is a representative of the generator of π1(O(n/2)) = Z2. Thus the mapping class of f1 in
Eq.(B.85) is the (1, 1) element of π1(O(n/2) × O(n/2)) = Z2 × Z2. It follows that f2 in

Eq.(B.84) is a representative of the generator of π2( O(n)
O(n/2)×O(n/2)

) = Z2, i.e., it is a soliton
configuration.

The Berry phase of a self-rotating Z2 soliton

To calculate the Berry’s phase due to a 2π self-rotation of the soliton in Eq.(B.84), we
rotate the soliton configuration to produce QR(θ, φ, τ) in the same way in the appendix
B.7.1. After all dust settles, we end up with

QR(θ, φ, τ) = Re[QC(θ, φ, τ)]⊗ I + Im[QC(θ, φ, τ)]⊗ E =
cos θ 0 sin θ cos(φ+ τ) − sin θ sin(φ+ τ)

0 cos θ sin θ sin(φ+ τ) sin θ cos(φ+ τ)
sin θ cos(φ+ τ) sin θ sin(φ+ τ) − cos θ 0
− sin θ sin(φ+ τ) sin θ cos(φ+ τ) 0 − cos θ

⊕ Z ⊕ Z...
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Similarly, we can extend the space-time to one extra dimension by defining

Q̃R(θ, φ, τ, u) := Re[Q̃C(θ, φ, τ, u)]⊗ I + Im[Q̃C(θ, φ, τ, u)]⊗ E.

(It’s easy to check it suffices all the properties we want for extension). Plugging the
extended Q̃R

2 into the WZW term, we find

WWZW [QR] =2πi

− 1

512π2

∫
B

tr
[
Q̃R (dQ̃R)4

] = iπ.

Hence the soliton is again a fermion.

B.7.3 Complex class in (3 + 1)-D

The mass manifold in this situation is U(n). π3 (relevant to the existence of soliton)
and the π5 (relevant to the existence of the WZW term) are both stabilized for n ≥ 3. In
the following, we shall restrict ourselves to such conditions.

The fact a unit soliton in this mass manifold is a fermion has already been discussed in
[27]. We briefly repeat the argument here for completeness. To construct a static soliton
we start from n = 2 (as far as π3 is concerned, it stabilizes for n ≥ 2 with π3(U(n)) = Z.)
Thus the n = 2 unit soliton is just the degree one map of S3 → SU(2) ∼ S3 6. We can
choose the unit soliton configuration to be

QC
sol(~Ω) =

(
Ω0 + iΩ3 i(Ω1 − iΩ2)
i(Ω1 + iΩ2) Ω0 − iΩ3

)
where

Ω2
0 + Ω2

1 + Ω2
2 + Ω2

3 = 1

are the coordinate on S3. For n ≥ 3 one can write the unit soliton as

QC
sol(~Ω) =

(
Ω0 + iΩ3 i(Ω1 − iΩ2)
i(Ω1 + iΩ2) Ω0 − iΩ3

)
⊕ 1⊕ 1...

Next, we rotate the unit soliton in, say, the Ω1-Ω2 plane by 2π. The time-dependent
soliton configuration can be written as

QC(~Ω, τ) =

e−i τ2 0 0
0 e+i τ

2 0
0 0 1

⊕ 1...

 ·QC
sol(~Ω) ·

e+i τ
2 0 0

0 e−i
τ
2 0

0 0 1

⊕ 1..


=

1 0 0
0 e+iτ 0
0 0 e−iτ

⊕ 1..

 ·QC
sol(~Ω) ·

1 0 0
0 e−iτ 0
0 0 e+iτ

⊕ 1..


6Note that π3(U(n)) = Z originates from the SU(n) part of U(n). Among other things, it means

that we can limit ourselves to the SU(n) WZW term for the Berry phase calculation.
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where τ ∈ [0, 2π] = S1 is the time parameter. One can extend the configuration to
B = S3 ×D2, where D2 is the two-dimensional disk with radius u ∈ [0, π], by

Q̃C(~Ω, τ, u) =

1 0 0
0 sinu e+iτ − cosu
0 cosu sinu e−iτ

⊕ 1...

 ·QC
sol(~Ω) ·

1 0 0
0 sinu e−iτ cosu
0 cosu sinu e+iτ

⊕ 1..


(B.86)

Plugging Eq.(B.86) into the WZW term gives

WWZW [Q̃C] =2πi

 i

480π3

∫
B

tr
[ (
Q̃C†dQ̃C

)5 ] = iπ.

Hence the unit soliton is a fermion.

B.7.4 Real class in (3 + 1)-D

The mass manifold is U(n)/O(n). Here π3 (relevant to the existence of soliton) and
π5 (relevant to the existence of the WZW term) are both stabilized for n ≥ 6. To write
down the degree one soliton in U(n)/O(n), let’s first look at the fibration

O(n)
i−→ U(n)

p−→ U(n)/O(n). (B.87)

Here the projection p is defined by

u
p−→ uS = uT · u, where u ∈ U(n), uS ∈ U(n)/O(n). (B.88)

After the homotopy groups are stabilized, the long exact sequence associated with Eq.(B.87)
is given by

...π4(U(n)/O(n))→ π3(O(n))
i∗−→ π3(U(n))

p∗−→ π3(U(n)/O(n))→ π2(O(n))...

... 0 → Z i∗−→ Z p∗−→ Z2 → 0 ...

This implies that we can construct the unit soliton in U(n)/O(n) by taking a unit soliton
in U(n), namely QC

sol in appendix B.7.3, and perform the projection map in Eq.(B.88),
namely,

QR
sol =

(
QC

sol

)T ·QC
sol.

The time dependentQR(~Ω, τ) can be constructed by the similar projection ofQC(~Ω, τ),
i.e.,

QR(~Ω, τ) =
(
QC(~Ω, τ)

)T
·QC(~Ω, τ).
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The extended Q̃R can also be constructed by the same projection

Q̃R(~Ω, τ, u) =
(
Q̃C(~Ω, τ, u)

)T
· Q̃C(~Ω, τ, u).

The result Q̃R(~Ω, τ, u) can be substituted into the WZW term to obtain

WWZW [QR] =2πi

 i

960π3

∫
B

tr
[ (
Q̃R†dQ̃R

)5 ] = iπ

Therefore the unit soliton is again a fermion.

B.8 Bosonization for small flavor number

In this appendix we discuss the bosonization in cases when n, the number of flavors,
is less than the value necessary to stabilize πD+1(mass manifold), or the WZW term.

In some cases, although the homotopy group πD+1(mass manifold) is not yet stabi-
lized, it already contains Z as a subgroup. For instance, for real class in (3 + 1)-D,
π5(U(3)/O(3)) = Z×Z2. The nonlinear sigma model derived from fermion integration in
appendix B.4 contains the level-1 WZW term, which is 2π times the topological invariant
of the Z part of π5. This is also true for n = 6, 8 of the non-charge-conserved cases in
(2 + 1)-D. In these cases the story is unchanged.

In other cases πD+1(mass manifold) is a finite abelian group, e.g., Z2, or even 0. This
requires a case-by-case study. Here, instead of attempting at studying all possible cases,
we shall focus on the case that is relevant to the applications in section 5 of the main text,
namely, the case of n = 2 complex class in (2 + 1)-D (which is relevant to the discussions
in subsection 5.3.2 of the main text).

B.8.1 Complex class in 2 + 1 D with n = 2

The mass manifold is
U(2)

U(1)× U(1)
= S2

and

π4(S2) = 0, but π3(S2) = Z.

The generator of π3(S2) is called Hopf map [61]. The question at hand is whether this
signifies the presence of a topological term in the nonlinear sigma model. A similar situ-
ation occurs for, e.g., the non-linear sigma model describing the anti-ferromagnetic spin
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chains in (1 + 1)-D. There, the mass manifold is S2 and π3(S2) = 0 but π2(S2) = Z.
In the nonlinear sigma model, there is a topological term associated with the π2 in the
non-linear sigma model, the θ term, which is responsible for the difference between the
integer and half-integer spin chains [62, 63, 44].

To answer the question posed above, the derivation in appendix B.4 is not applicable.
This is because the Hopf term (or the θ term) is invariant under arbitrary infinitesimal
deformation of QC.

B.8.2 Mass manifold enlargement

One way to proceed is to enlarge the mass manifold (or the target space of the order
parameter). The idea [64] is as follows. If two order parameter configurations cannot
be deformed into each other, as in the case where configurations correspond to different
elements of πD (in this case π3), we can enlarge the mass manifold so that after the
enlargement, one configuration can be continuously deformed to the other. One can then
compute the Berry phase difference caused by infinitesimal order parameter variation
using the method explained in B.4, and integrate the result. However, it is important
to note that enlarging the mass manifold requires adding extra fermion flavors. It is im-
portant to make sure that the initial and the final order parameters couple to the added
fermion flavors in a trivial way (i.e., in the added flavor space, the order parameters
are the same constant) so that the Berry phase difference is originated from the original
fermions. Finally, one accounts for the Berry phase by picking the coefficient in front of
the πD (here π3) topological invariant.

Using this technique, Abanov [54] enlarged U(2)
U(1)×U(1)

= S2 to

U(l + 1)

U(l)× U(1)
= CPl

and showed that the nonlinear sigma model from the n = 2 fermion integration contains
a θ = π Hopf term. In the following we will choose an alternative enlargement, namely,

U(2)

U(1)× U(1)
= S2 → U(4)

U(2)× U(2)
.

We will show that the result is consistent with that of Abanov. Because of the Hopf term,
the unit soliton has fermion statistics [55].

B.8.3 The derivation of the Hopf term
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The Hopf map is a map from S3 with coordinate (Ω0,Ω1,Ω2,Ω3) where
∑3

i=0 Ω3
i = 1

to S2 with coordinate (n1, n2, n3) where
∑3

i=1 n
2
i = 1. More explicitly,

~Ω
Hopf−−→ ~n = z†σaz where z :=

(
Ω0 + iΩ1

Ω2 + iΩ3

)
. (B.89)

The QC of the non-linear sigma model is given by

QC(~Ω) =
3∑

a=1

na(~Ω) · σa = 2 z(~Ω) z(~Ω)† − I2, (B.90)

where z is given by Eq.(B.89). In writing down the 2nd equality we have used the identity

3∑
a=1

σaijσ
a
kl = 2δilδjk − δijδkl.

In Eq.(B.90) the 2× 2 matrix QC has eigenvalues ±1, and z is the eigenvector associated
with eigenvalue +1.

In the following, we enlarge the order parameter so that QC can be deformed to σz.
To do so, we add two additional fermion flavors and enlarge the mass manifold to

U(4)

U(2)× U(2)
.

In the enlarged space the order parameter is given by

Q′
C
(~Ω) = QC(~Ω)⊕ (−Z) =

(
QC(~Ω) 0

0 −Z

)
=

(
2 z(~Ω) z(~Ω)† − I2 0

0 −Z

)
(B.91)

where z(~Ω) is given by Eq.(B.89). Here the fermions associated with extra flavors couple
to the mass term Y ⊗ (−Z) (see table 4.2). Although the QC given by Eq.(B.90) cannot

be deformed to a constant configuration in the space U(2)
U(1)×U(1)

= S2 (i.e., within the first

2× 2 block) because
π3(S2) = Z,

it is possible to deform the 4× 4 Q′C to a constant matrix. This is because

π3

(
U(4)

U(2)× U(2)

)
= 0.
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Now we explicitly construct such a deformation. First we rewrite Eq.(B.91) as

Q′
C
(~Ω) =

(
2 z′(~Ω) z′(~Ω)† − I3 0

0 +1

)

where z′(~Ω) :=

Ω0 + iΩ1

Ω2 + iΩ3

0

 .

We then write down a continuous deformation, as a function of u, as follows

Q̃′
C
(~Ω, u) =

(
2 z̃′(~Ω, u) z̃′†(~Ω, u)− I3 0

0 +1

)

z̃′(~Ω, u) :=


(
− cosu (Ω0 + iΩ1) ,− cosu (Ω2 + iΩ3) , sinu

)T
for u ∈ [π

2
, π](

cosu, 0, sinu
)T

for u ∈ [0, π
2
).

(B.92)

This extends the configuration from the space-time M = S3 at u = π to a four dimen-
sional disk B = D4 with u ∈ [0, π]. Here ∂B =M and with u as the radial direction of
D4. For u = π Eq.(B.92) reduces to Eq.(B.91), while for u = 0

Q̃′
C
(~Ω, u = 0) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 +1

 = Z ⊕ (−Z).

Therefore at u = 0 and u = π the fermions associated with the added flavors couples to
exactly the same mass term Y ⊗ (−Z) according to table 4.2.

Eq.(B.92) constitutes an extension we need to define the WZW term (which is sta-

bilized at n = 4). Now we can plug Eq.(B.92) into the WZW term of the U(4)
U(2)×U(2)

non-linear sigma model. When all dust settles we obtain

WWZW[Q̃′
C
] =− 2πi

256π2

∫
B

tr
[
Q̃′

C
(dQ̃′

C
)4
]

= iπ.

This result agrees with that of Ref.[54] and suggests the existence of a θ = π Hopf term.

B.8.4 Gauging small n non-linear sigma models

In appendix B.6, we have shown how to gauge the nonlinear sigma models. Recall
that the non-trivial gauge coupling terms all originate from the WZW term. For small
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n, the WZW term does not exist. One might think we need to re-derive the gauging
procedure. Fortunately, we can use the mass manifold enlargement idea discussed in the
preceding subsection to derive the coupling between QC,R and the gauge field. Without
going into details we (1) add additional fermion flavors until the WZW term is stabilized.
(2) Proceed as usual to gauge the continuous symmetries. (3) Restrict QC,R to the proper
sub-mass manifold and the gauge group to the proper subgroup (so that the gauge field
does not couple to the added fermion flavors). Following this procedure, we gauged the
small n nonlinear sigma model following the same try-and-error method.

As an example, we shall write down the charge-U(1) gauged nonlinear sigma model
for n = 2 in the (2 + 1)-D complex class. As shown in appendix B.8.3, the bosonized
theory the S2 nonlinear sigma model with the θ = π Hopf term. Plugging QC = naσa

into the gauge coupling part in Eq.(B.69), we arrive at

W [β, A] =
1

λ3

∫
M

d3x (∂µn̂)2 + iπH(n̂) +

∫
M

d3x

[
iAµ

(
1

8π
εabcεµνρna∂νn

b∂ρn
c

)]
,

where the last term makes the S2 solitons carry U(1) charge. For QC in the l = 0 and l = 2

component of te mass manifold, we have a constant configuration QC = ±I ∈ U(2)
U(2)×U(0)

.

Plugging it into Eq.(B.69), we get

± i

4π

∫
M

d3x εµνρAµ∂νAρ, (B.93)

which gives σxy = ±1.

B.9 Massless fermions as the boundary of bulk

topological insulators/superconductors

The idea behind our bosonization is to fluctuate the bosonic order parameters (QC or
QR) to restore the full emergent symmetries of the massless fermion theory. These order
parameters are chosen so that when they are static, any QC,R(x) configuration will fully
gap out the fermions. As shown in appendix B.2, a static QC,R(x) configuration breaks
at least some of the emergent symmetries. Conversely, if the full emergent symmetries
are unbroken the fermion spectrum should remain gapless. Putting it succinctly, the
emergent symmetries protect the gapless fermions.

The above situation reminds us of the boundary gapless modes of SPTs. Therefore,
it is natural to suspect that each of the gapless fermion theories can be realized at the
boundary of certain emergent-symmetry-protected SPT. In this appendix, we show that
this is indeed the case. Moreover, we shall construct the bulk SPT explicitly.
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B.9.1 The Z classification

As discussed in Ref.[7], the classification of free fermionic SPTs can be determined
by checking how many copies of the boundary theory can be “stacked” together before
a symmetry allowed mass term emerges. For example, a ZN classification implies, after
stacking N copies of the massless fermion theory, a mass term can be found without
breaking any of the protecting symmetry (here the emergent symmetries). In the follow-
ing, we show that the emergent-symmetry-protected SPT has Z classification.

For the sake of generality, we shall use the the Majorana fermion representation, even
for complex classes. N copies of the boundary theory is described by the gamma matrices
and the matrices that execute symmetry transformations,

Γ
(N)
i =Γi ⊗ IN , i = 1, ..., d

T (N) =t⊗ IN
U (N) =u⊗ IN

Here t and u are orthogonal matrices obeying {t,Γi} = [u,Γi] = 0. The symbol t and
u stand for anti-unitary and unitary, respectively. It is important to note that t and u
represent the complete set of anti-unitary and unitary transformation matrices, from the
product of which all symmetry matrices can be constructed. In addition, Γi, t, u stand
for the gamma and symmetry matrices for one copy of the massless fermion theory.

Existence of a mass term for the stacked massless fermion theory, implies that there
exist a matrix M (N) that anti-commutes with all of the gamma matrices. The general
form of M (N) is

M (N) = ms ⊗ AN +ma ⊗ SN
where ms, SN and ma, AN are symmetric and anti-symmetric matrices, respectively. Since
Γ

(N)
i = Γi ⊗ IN , T (N) = t⊗ IN , U (N) = u⊗ IN it follows that

{ms,a,Γi} = {ms,a, t} = [ms,a, u] = 0

If such a ma 6= 0 exists, we can use it as the mass term for the original massless fermion
theory. This contradicts the statement that under the protection of emergent symmetry
there is no mass term. Thus ma = 0 and M (N) reduces to

M (N) = ms ⊗ AN . (B.94)

On the other hand, ms can then be used to construct an anti-unitary symmetry. By
our assumption, such anti-unitary symmetry matrix ms must be the product t’s and u’s.
Thus the matrix

T (N)′ = ms ⊗ IN

is an anti-unitary symmetry matrix of the stacked fermion theory. However such T (N)′

commutes with Eq.(B.94) which is a contradiction. (Recall that in Majorana fermion
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representation, a mass matrix must anti-commute with all anti-unitary symmetry ma-
trices.) Therefore M (N) can not exist for any N . Consequently, the classification of the
massless fermion theory must be Z.

B.9.2 Construction of the bulk SPT

To construct the bulk SPT, we follow the “holographic construction” in Ref.[8]. In
the following, we just summarize the results.

For a massless fermion theory, with gamma matrices {Γi| i = 1, 2, ..., d}, anti-unitary
symmetry t, and unitary symmetries {u}, we can construct the bulk matrices,

Γ
(bk)
i =

{
Γi ⊗ Z for i = 1, ..., d

Idim(Γi) ⊗X for i = d+ 1

T (bk) =t⊗ Z
U (bk) =u⊗ I

Here the label (bk) is for distinguishing the bulk from the boundary matrices. In [8], it’s
shown that as long as the boundary massless fermion is irreducible, and t,u prohibit any
mass term, then there is single allowed bulk mass term which respects all the symmetries7.
Such mass term is given by

M (bk) = Idim(Γi) ⊗ Y.

The above mass term can be used to regularize and gap out the fermion in the bulk.
In Wilson’s regularization, the SPT (single-particle) Hamiltonian in momentum space is
given by

h(bk)(k) =
d+1∑
i=1

sin ki Γ
(bk)
i +

(
d+ 1 +mB −

d+1∑
i=1

cos ki

)
M (bk)

When mB < 0, and when the lattice is cut open in the (d + 1)th direction (actually the
gapless boundary modes exist when the cut is along any direction), the boundary low
energy theory is that of the original massless fermions.

B.10 The decoupling of the charge-SU(2) gauge

field from the low energy non-linear sigma

model after confinement

7Here the irreducibility means the gamma and the symmetry matrices cannot be simultaneously
block-diagonalized non-trivially. The fact that this is true for our case is because the inclusion of the full
emergent symmetries. (Proof omitted.)
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In this appendix, we show that the charge-SU(2) gauge field is not coupled to Eq.(5.17).
To recap, the charge-SU(2) singlet QR is given by

QR = niNi where

Ni = (Y XY, IY Y, Y ZY, IIX, IIZ) .

Following appendix B.6 after gauging the charge-SU(2) symmetry, the O(8)
O(4)×O(4)

nonlinear
sigma model with k = 1 WZW term becomes

W [QR, a] =
1

4λ3

∫
M

d3x tr
[(
∂µQ

R + i[aµ, Q
R]
)2]
− 2πi

512π2

{∫
B

tr
[
Q̃R

(
dQ̃R

)4 ]
+8

∫
M

tr
[
iaQR(dQR)2 − (aQR)2dQR − i

3
(aQR)3 + ia3QR − aQRf − afQR

]}
.

(B.95)

Since all Ni commute with the charge-SU(2) group, it follows that QR = niNi commutes
with charge-SU(2) gauge field a. Hence the gauge coupling term in the stiffness term
vanishes.

To show this is also true for the gauged WZW term part, we shall take the

tr
[
aQR(dQR)2

]
term in Eq.(B.95) as an example. Plugging in QR = niNi, we obtain

tr
[
aQR(dQR)2

]
=
∑
i,j,k

tr[aNiNjNk]ni dnj dnk.

In the following we shall prove that each term in the sum vanishes, i.e.,

tr[aNiNj Nk] = 0 ∀(i, j, k).

To achieve that we insert a N2
l = 1 where l 6= i, j, k into the trace and leave it invariant,

i.e.,
tr[aNiNjNk] = tr[N2

l aNiNjNk].

Due to the commutivity between Nl and a and the anti-commutivity between Nl and
each of the Ni,j,k, we can move one Nl all the way to the right end and use the cyclic
property of trace to put it back to the front

tr[N2
l aNiNjNk] = −tr[NlaNiNjNkNl] = −tr[NlNlaNiNjNk] = −tr[aNiNjNk].

Thus
tr[aNiNjNk] = −tr[aNiNjNk]⇒ tr[aNiNjNk] = 0.

This proof can be applied to all gauge coupling terms in Eq.(B.95) because there is an odd
number of QRs for every term that couples to the gauge field. Therefore the charge-SU(2)
gauge field is not coupled to QR = niNi.
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B.11 The WZW term in the (3 + 1)-D real class

non-linear sigma model

In this section, we will show that upon the decomposition in Eq.(5.32) of subsection 5.2.3,
namely,

QR(x) = eiθ(x)GS(x),

the contribution of the WZW term is solely from the GS(x) part, i.e., namely

tr
[(
QR†dQR)5

]
= tr

[(
G†SdGS

)5
]

First, note that one can at most choose dθ once in the expansion of tr
[(
QR†dQR

)5
]

=

tr
[
(G†SdGS + idθ)5

]
, otherwise the differential form vanishes because (dθ)2 = 0. The only

term that can possibly survive other than tr
[
(G†SdGS)5

]
is then of the form

tr

[
dθ
(
G†SdGS

)4
]

= dθ
(
G†SdGS

)a (
G†SdGS

)b (
G†SdGS

)c (
G†SdGS

)d
tr
[
tatbtctd

]
Here {ta} are the complete basis for the generators of SU(n) in the fundamental rep-
resentation (note that GS are the symmetric special unitary matrices, which are special
kind of unitary matrices). In the following, we will show that for every term from the
trace tr

[
tatbtctd

]
, it is at least symmetric with respect to two of the indices in a, b, c, d.

If so, because the scalar valued one forms
(
G†SdGS

)a
anti-commute with each others

tr

[
dθ
(
G†SdGS

)4
]

vanishes.

We shall choose the conventions

tr [tata] =
1

2
δab (B.96)

[ta, tb] = ifabct
c (B.97)

where fabc is the structure constant for SU(n). Here the Einstein summation convention
is used. fabc is real and totally anti-symmetric. We shall also define

dabc = 2 tr
[
{ta, tb}tc

]
(B.98)

It can be shown simply that due to the cyclic property of trace and the hermiticity of ta,
dabc is real and totally symmetric with respect to a, b, c.

As a pre-step, we would calculate tatb. Because the identity matrix In together with
{ta} form a complete basis for all n × n complex matrices, we can decompose tatb in
terms of them. The coefficients can be calculated making use of Eq.(B.96), Eq.(B.97),
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and Eq.(B.98),

tatb =
1

n
tr
[
tatb
]
In + tr

[(
{ta, tb}+ [ta, tb]

)
tc
]
tc

=
1

2

[
1

n
δabIn + (dabc + ifabc)t

c

]
. (B.99)

The equation above implies

{ta, tb} =
1

n
δabIn + dabct

c (B.100)

For later usage, we will derive another formula for the product of two fabcs. By direct
expansion, one can prove the following identity

[ta, [tb, tc]] = {{ta, tb}, tc} − {{ta, tc}, tb}.

Using of Eq.(B.97) and Eq.(B.100) twice in the equation above, we get

fabefcde =
2

n
(δacδbd − δadδbc) + (dacedbde − dadedbce) (B.101)

Now we can calculate tr
[
tatbtctd

]
by applying Eq.(B.99) twice and carrying out the

trace. After some algebra and the help of Eq.(B.101), we get

tr
[
tatbtctd

]
=

1

4
tr

[(
1

n
δabIn + (dabc + ifabe)t

e

)(
1

n
δcdIn + (dcdf + ifcdf )t

f

)]
=

1

4

[ 1
n (δabδcd − δacδbd + δadδbc)

+ 1
2 (dabedcde − dacedbde + dadedbce)

+ i
2 (fabedcde + fcdedabe)

]
By the symmetry properties of δab and dabc, every term is least symmetric with respect
to two indices. For example, fabedcde is symmetric with respect to c, d. This concludes
our proof.
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