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Generation and analysis of a mouse multitissue
genome annotation atlas

Matthew Adams1 and Christopher Vollmers2
1Department of Molecular, Cellular, and Developmental Biology, 2Department of Biomolecular Engineering, University of
California Santa Cruz, Santa Cruz, California 95064, USA

Generating an accurate and complete genome annotation for an organism is complex because the cells within each tissue can

express a unique set of transcript isoforms from a unique set of genes. A comprehensive genome annotation should contain

information on what tissues express what transcript isoforms at what level. This tissue-level isoform information can then

inform a wide range of research questions as well as experiment designs. Long-read sequencing technology combined with

advanced full-length cDNA library preparation methods has now achieved throughput and accuracy where generating

these types of annotations is achievable. Here, we show this by generating a genome annotation of the mouse (Mus musculus).

We used the nanopore-based R2C2 long-read sequencing method to generate 64 million highly accurate full-length cDNA

consensus reads—averaging 5.4 million reads per tissue for a dozen tissues. Using the Mandalorion tool, we processed these

reads to generate the Tissue-level Atlas of Mouse Isoforms which is available as a trackhub for the UCSC Genome Browser

and contains at least one full-length isoform for the vast majority of expressed genes in each tissue.

[Supplemental material is available for this article.]

For any model organism, a high-quality reference genome se-
quence and accompanying reference genome annotation are in-
valuable research resources (McGarvey et al. 2015).

This is especially true for the mouse which has been widely
used as a model organism for studying basic biology and biomed-
ical research for almost 100 years. Mice are small, easy to care for,
and have short life spans. Inbreeding ofmice has led to genetically
identical strains allowing for reproducible experiments. They share
over 15,000 protein-coding genes with humans and are suscepti-
ble tomany of the same diseases (Eppig et al. 2015). Mice are easily
genetically engineered to simulate many human conditions.
These features combined make mice critical for scientific research.

The initial mouse reference genome was published 20 years
ago (Mouse Genome Sequencing Consortium et al. 2002) and
has been improved since then to be highly complete and contigu-
ous (Church et al. 2011; Lilue et al. 2018; Bult et al. 2019).
Complementing these reference genome sequences, current refer-
ence genome annotations like GENCODE and RefSeq contain the
locations of genes, their exons, and how these exons can be com-
bined into transcript isoforms (Kawai et al. 2001; The ENCODE
Project Consortium 2004; McGarvey et al. 2015; Frankish et al.
2019). These reference genome annotations are absolutely essen-
tial for virtually all transcriptomics research and beyond, but
they lack information on what tissues and cell types express
what isoforms and at what level.

A resource containing this tissue-level isoform information
wouldbe highlyuseful for thedesignof a range of assays that require
knowledge of any gene of interest in any given tissue—from the de-
sign of CRISPRi probes, RT-qPCR primers, overexpression vectors,
and beyond. While short-read RNA-seq data exist for many mouse
tissues, including data for 80 tissues generated by ENCODE, short-
read RNA-seq is not suited to generate this type of isoform-level re-

source (Yue et al. 2014). However, in the last few years, third-gener-
ation long-read sequencing technology in the form of Oxford
Nanopore Technologies (ONT) and Pacific Biosciences (PacBio) se-
quencers and their cDNA library preparation protocols have ma-
tured. Using library preparation like Kinnex/MAS-seq and R2C2,
these sequencers are now capable of generating many millions of
highly accurate sequencing reads that are thousands of nucleotides
in length (Byrne et al. 2019a). For the analysis of transcriptomes, this
means that entire full-length transcripts can be captured as single
reads, including the poly(A) tails, transcription start sites (TSSs),
and all splice junctions. In theory, this type of throughput and accu-
racymakes it possible to generate accurate transcript isoformexpres-
sion information for many tissues. In fact, ENCODE and GTEx
consortia have generated deep full-length cDNA data for many hu-
man organs (Glinos et al. 2022; Reese et al. 2023). However, while
ENCODE also generated full-length cDNA data sets for mouse, it
did so for only a few tissues.

Here, we generated full-length cDNA data sets for 12 major
mouse tissues from the BALB/c mouse strain. To generate over
60 million accurate full-length cDNA reads across these 12 tissues,
we used the nanopore-based R2C2 long-read sequencing method
(Volden et al. 2018; Byrne et al. 2019b; Adams et al. 2020; Cole
et al. 2020; Vollmers et al. 2021; Volden andVollmers 2022) which
increases read accuracy and decreases length biases of ONT se-
quencers. We then analyzed these full-length cDNA reads with
the Mandalorion isoform identification pipeline. For each of the
12 tissues, Mandalorion processed ∼5 million R2C2 reads and pro-
duced genome annotations that, although certainly not complete,
contained at least one isoform for most genes expressed in that tis-
sue. Further, these tissue-specific genome annotations contained
information on how highly these isoforms were expressed.

In addition to creating and releasing these genome annota-
tions as the Tissue-level Atlas ofMouse Isoforms (TAMI)—available
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at https://genome.ucsc.edu/s/vollmers/TAMI, we also used its un-
derlying data set to investigate how isoform usage varied across
tissues.

Finally, we hope the generation of this resource in a stream-
lined and cost-efficient way provides a blueprint for future genome
annotation efforts of other organisms.

Results

Generating accurate full-length cDNA data from 12 mouse tissues

We constructed tissue-level, long-read transcriptome data using
commercially available high-quality RNA (Takara Bio) from 12
mouse tissues (brain, eye, heart, kidney, lung, liver, salivary gland,
smooth muscle, stomach, spinal cord, spleen, testis) each pooled
together from dozens to hundreds of BALB/c mice (Fig. 1). We pre-
pared full-length cDNA using a modified Smart-seq2 protocol (see
Methods). To increase sequencing coverage of longer transcripts,
which are biased against in the sequencing process, some of the
cDNA was size-selected for molecules >2 kb in length by gel
electrophoresis.

We then prepared non-size-selected (nss) and size-selected
(ss) full-length cDNA for ONT sequencing using the R2C2
protocol.

Because the LRGASP effort had shown that preparing and se-
quencing R2C2 DNA can introduce different biases between
batches (Pardo-Palacios et al. 2024b), we aimed to minimize these
batch effects. To do so, we pooledDNA fromall samples before pre-
paring it for sequencing (see Methods). In addition to minimizing

batch effects, pooling samples also streamlined sample prepara-
tion and sequencing. Further, because every sample was present
in each sequencing library at approximately the same ratio we
could sequence our sample pools across many ONT flow cells—
both on the MinION and PromethION—and combine the result-
ing data, all while generating very similar read numbers for each
sample.

We sequenced the resulting, pooled DNA using R9.4 pore
chemistry and SQK-LSK110 library preparation kits. After basecall-
ing the raw signal data usingGuppy (v5) (Wick et al. 2019), we gen-
erated accurate full-length cDNA consensus reads using the C3POa
pipeline (Volden et al. 2018), which also demultiplexed the result-
ing consensus reads into their tissue of origin. In this way, we pro-
duced 64 million full-length cDNA consensus reads, averaging 5.4
million reads per tissue (Fig. 2, top). For nss libraries, the median
insert lengthwas∼750 bpwhile the ss libraries had amedian insert
length ∼2 kb (Fig. 2, center). Further, the full-length R2C2 consen-
sus reads were very accurate, with the median per base identity for
nss and ss reads being 99.8% and 98.9%, respectively (Fig. 2, bot-
tom). The lower accuracy of the ss reads was due to longer cDNA
inserts being covered less often by ONT raw reads.

Evaluating gene-level expression quantification

Next, we investigated whether the full-length cDNA R2C2 reads
we generated could be used for gene detection and expression
quantification. To this end, we compared the R2C2 data set to pub-
licly available Illumina RNA-seq data generated for different sam-
ples of the same 12 tissues (Brawand et al. 2011; Mustafi et al.
2011; Merkin et al. 2012; O’Rourke et al. 2015; Gluck et al. 2016;
Huntley et al. 2016; Söllner et al. 2017), and data available at the
NCBI Sequence Read Archive (SRA; https://www.ncbi.nlm.nih
.gov/sra) under accession SRR2927121. First, we aligned R2C2
and Illumina RNA-seq reads to the GRCm39 mouse reference ge-
nome sequence using minimap2 (Li 2018) and STAR (Dobin
et al. 2013) aligners, respectively. While minimap2 does not
use a genome annotation to aid alignment, STAR used the
GENCODE vM30 annotation.We then quantified gene expression
based on both R2C2 and Illumina RNA-seq alignments using
featureCounts (Liao et al. 2014) and the GENCODE vM30 annota-
tion. By default, featureCounts counts the number of reads that
overlap with each gene in the annotation by at least one base
pair and ignores reads that overlap with more than one gene.

The first analysisweperformedaimed todetermine if our R2C2
sequencing depth was enough to detect all genes expressed in the
samples. To perform saturation analysis, we subsampled both
R2C2 and Illumina RNA-seq data. We counted genes as detected if
featureCounts assigned them at least one read in the subsampled
Illumina and R2C2data sets.We saw the R2C2 data set approaching
a plateau but with fewer total genes detected than the Illumina data
(Fig. 3A,B). This can be attributed to the almost 10-fold difference in
read counts, but also the fact that, in contrast to full-length cDNA
sequencing, fragmentation-based short-read Illumina RNA-seq can
detect genes entirely independently of their length.

Next, we compared the genes detected by the full R2C2 and
IlluminaRNA-seq data sets. Across all tissues, Illumina RNA-seqde-
tected more genes than R2C2 (Supplemental Table S1). For each
tissue, we then determined the number of genes detected by either
R2C2 only, Illumina RNA-seq only, or bothmethods (Fig. 3C). The
majority of genes detected were identified by both methods and
more genes were identified by Illumina RNA-seq only than R2C2
only. However, the genes that were identified by only one of the

Figure 1. Experimental overview. Full-length cDNA was created from
total RNA extracted from 12 BALB/c mouse tissues. Pooled cDNA, both
non-size-selected and size-selected (see text), was prepared for ONT se-
quencing by the R2C2 method. ONT raw reads were demultiplexed and
consensus called using C3POa which identifies and combines low-accura-
cy subreads to create high-accuracy consensus reads. To generate a tissue-
level transcriptome for each tissue, R2C2 consensus reads were then pro-
cessed into isoforms using the Mandalorion pipeline. (SC) spinal cord,
(St) stomach, (SM) skeletal muscle, (SG) salivary gland.
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two methods were generally expressed at very low levels (Fig. 3D).
This also explains why genes might be missed by either method
and also why Illumina RNA-seq with its higher read count might
detect more genes than R2C2 (Fig. 3D).

In addition to detecting genes, we analyzedwhether R2C2was
quantitative in determining their expression.We did so by again us-
ing featureCounts output for each analyzed tissue. After converting
the raw read counts determined by featureCounts to reads per mil-
lion (RPM), we compared R2C2-derived to Illumina RNA-seq-de-
rived gene expression for each tissue. We found that R2C2 gene
expression was most correlated to Illumina RNA-seq gene expres-
sion for the same tissue with Pearson r value ranging from some-
what correlated (Spleen r=0.22) to well correlated (Lung r=0.78)
(Fig. 3E,F; Supplemental Table S2). Neuronal tissues (brain, spinal
cord, eye) also showed a high correlation between tissues.

The lower correlation between R2C2 and Illumina RNA-seq in
some tissues could be due to biological differences between the

RNA samples we used and those underlying the publicly available
Illumina data, like the overall health status of the animal, or, most
importantly, what part of the tissue was sampled. These differenc-
es highlighted the limitation of using publicly available data.
Generally, the gene overlap and high expression correlation be-
tween R2C2 and Illumina data in at least some tissues suggest
that combining R2C2 data from ss and nss cDNAdoes not substan-
tially distort gene content and expression.

Characterizing tissue-level isoforms

To take full advantage of our long-read data, we aimed to use the
full-length R2C2 consensus reads tomove beyond gene-level anal-
ysis and define comprehensive sets of isoforms for each of the
12 tissues in this study. To identify isoforms in a way that has
high Recall and Specificity, especially with unannotated isoforms,
we analyzed the R2C2 reads we produced using the Mandalorion

Figure 2. R2C2 read characteristics. (Top) Read counts inmillions split between nss and ss libraries. (Center) Insert length split between nss and ss libraries.
(Bottom) Read accuracy of C3POa full-length consensus reads split between nss and ss libraries.
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Figure 3. R2C2 and Illumina RNA-seq detect largely the same genes at similar levels. Gene-level saturation curve analysis of R2C2 data (A) and Illumina
RNA-seq data (B). (C) Comparison of genes detected by either R2C2 or Illumina RNA-seq or both. (D) Expression levels as determined by R2C2 and Illumina
RNA-seq for genes detected by either R2C2 or Illumina RNA-seq or both (colors as in A). (E) Pearson’s correlation between gene expression values was
determined by R2C2 and RNA-seq for each tissue. (F) Scatterplot of kidney gene expression values as determined by R2C2 and Illumina RNA-seq. (SC)
spinal cord, (St) stomach, (SM) skeletal muscle, (SG) salivary gland.
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(v4.0) tool (Volden et al. 2023; Pardo-Palacios et al. 2024b).
Mandalorion identifies, filters, and quantifies isoforms to create
high-confidence sets of transcript isoforms and was identified by
the LRGASP effort to have a good balance of sensitivity and preci-
sion (Pardo-Palacios et al. 2024b).

For the individual tissue data sets, Mandalorion identified
between 22,727 (salivary gland) and 63,948 (testis) isoforms
(Supplemental Table S3). To investigate whether we sequenced
these transcriptomes to exhaustion, i.e., more reads would not
result in more isoforms being identified, we performed a satura-
tion analysis for each tissue (Fig. 4A). We did not reach saturation
for any tissue which meant our transcriptome annotations are

not exhaustive and are likely to miss many low abundance
transcripts.

Next, wewanted to compare the isoformswe identified to the
149,419 isoforms transcribed from 56,691 genes (21,668 of them
protein-coding) present in the GENCODE vM30 annotation. For
this comparison, we used SQANTI3 (Tardaguila et al. 2018;
Pardo-Palacios et al. 2024a) which assigns experimentally identi-
fied isoforms to annotated isoforms and genes and further classi-
fies them. On average, ∼2 isoforms each were assigned to
between 12,023 (salivary gland) and 26,784 (testis) genes (Supple-
mental Table S3). Between 61% (testis) and 88% (lung) of these
genes were present in the GENCODE annotation (Supplemental

A

C

D

E

B

×

RNA-seq

Figure 4. Characterization of tissue-level transcriptomes. (A) Isoform saturation curves for each tissue. (B) Isoform category distributions for each tissue as
determined by SQANTI3 (full splice match [FSM], novel in catalog [NIC], novel not in catalog [NNC], incomplete splice match [ISM], intergenic [IG], an-
tisense [AS]). (C) Isoform length distribution for each tissue compared to GENCODE vM30 basic protein-coding transcripts. (D) For each tissue, genes are
rank-ordered based on their expression level in Illumina RNA-seq data. Genes are marked by a vertical colored line if at least a single isoform is assigned to
them in the respective tissue; 0, 1, and 5 RPM levels in RNA-seq data are indicated by black lines. The percentage of genes expressed higher than that RPM
with at least one isoform assigned to them is shown adjacent to those lines. (E) Screenshot of the testis, spleen, and kidney tracks from the TAMI trackhub as
displayed on the UCSC Genome Browser.
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Table S3). Across all tissues, an average of 91% of these annotated
genes were classified as the gene type “protein_coding” by GEN-
CODE, followed by “lncRNA” (7%) and “processed_pseudogene”
(1%) (Supplemental Table S4).

For each tissue, SQANTI3 further categorized each
Mandalorion isoformbased onhow their splice sites and junctions
compare to annotated isoforms in the GENCODE vM30 annota-
tion reference file (Fig. 4B).

The four main categories SQANTI3 uses are “full splice match”
(FSM), “incomplete splice match” (ISM), “novel in catalog” (NIC),
and “novel not in catalog” (NNC). If the set of splice junctions
present in a Mandalorion isoform is identical to all splice junctions
present in an annotated reference isoform, the Mandalorion iso-
form is categorized as a “FSM”. Importantly, the 5′ and 3′ ends of
the FSM isoforms donot have tomatch those of their annotated ref-
erence isoform. If the set of splice junctions present in a Mandalo-
rion isoform is a continuous but incomplete subset of splice
junctions present in an annotated isoform, the Mandalorion iso-
form is categorized as an “ISM”. If all splice sites present in a Man-
dalorion isoform are present in any annotated isoform, the
Mandalorion isoform is categorized as “NIC”. If at least one splice
site present in aMandalorion isoform is not present in any annotat-
ed isoform, the Mandalorion isoform is categorized as “NNC”.

There are additional SQANTI3 categories, like “intergenic”
(IG), “antisense” (AS), “genic intron,” and “genic genomic,” de-
scribing isoforms falling outside of genes, on the opposite strand
of a gene, within intron, or within introns and exons, respectively.

However, across tissues, we see ∼80%–90% of isoforms falling
into the four main categories at similar rates (average FSM 54%,
NIC 16%, NNC 6%, ISM 8%), with the exception of the testis which
showed a higher number of NNC isoforms indicating the use of
manyunannotated splice junctions (Fig. 4B; Supplemental Table S5).

Across tissues, isoformswere ∼2 kb inmedian lengthwith the
exception of the testis which contained shorter isoforms overall
(Fig. 4C). The isoforms we identified were, therefore, shorter
than the protein-coding transcript isoforms present in GENCODE.
In particular, due to R2C2 read length limitations, the isoforms we
identified lacked the long tail >6 kb of isoforms present in GEN-
CODE annotations, which represented 7.5% and 17.7% of all
and protein-coding GENCODE transcript, respectively.

Although missing low-expressed and very long isoforms, we
wanted to check whether the isoform-level genome annotations
we generated would still represent valuable resources by at least
containing the major isoforms for many expressed genes. We,
therefore, quantified the percentage of genes expressed in the
IlluminaRNA-seqdata forwhichwe identified at least one isoform.
We found that, on average across tissues, Mandalorion identified
at least one isoform for ∼75% and ∼86% of genes with >1 RPM
and 5 RPM expression levels in the Illumina RNA-seq data, respec-
tively (Fig. 4D).

In summary, we generated isoform-level genome annotations
which are likely to lack low abundance and very long isoforms.
These genome annotations contained tens of thousands of new,
high-confidence isoforms (NIC, NNC). Finally, they contained at
least one isoform for the majority of medium to highly expressed
genes which should make them a valuable resource for molecular
biology research and experimental design.

Tissue-level Atlas of Mouse Isoforms

To make this resource as easily accessible for researchers as possi-
ble, we have created a trackhub for the UCSC Genome Browser

(Navarro Gonzalez et al. 2021). Entitled TAMI, this trackhub is
available at https://genome.ucsc.edu/s/vollmers/TAMI for the
GRCm39 (GCA_000001635.9) version of the mouse genome.
TAMI contains separate tracks for each tissue (Fig. 4E) which con-
tain isoform models identified by Mandalorion for that tissue.
Isoform expression levels are normalized within each gene and
that normalized expression is then shown by the color of each iso-
form. Absolute expression in RPM can be seen by positioning the
cursor over an isoform. An alignment between the R2C2 read-
based consensus sequence of each isoform and the corresponding
genomic sequence is available by clicking the isoform. These align-
ments might highlight potential sequencing errors as well as vari-
ation between the BALB/c isoforms and the GRCm39 genome
which is based on the C57BL/6 strain. Overall, the goal of the
TAMI track is to give researchers fast and intuitive information
about their genes of interest.

Investigating unique TSS usage in testis

When creating and inspecting the TAMI tracks for release, we ob-
served that, often, isoforms expressed in testis would use unique,
testis-only TSSs. This made sense considering testis is known to
be themost transcriptionally complex tissue inmammals in terms
of the number of expressed genes and isoforms (Kaessmann 2010).

The systematic analysis confirmed this unique TSS usage. We
found that the 63,948 isoforms expressed in testis originated from
31,158 nonoverlapping TSSs. Of those, 16,522 were unique to
testis. This number of unique, tissue-restricted TSSs in the testis
was much higher than any of the other tissues we investigated
(Fig. 5, top).

First, wewanted to validate these unique tissue-restricted TSSs
using candidate cis-regulatory elements by ENCODE (cCREs) (The
ENCODE Project Consortium et al. 2020). These cCREs were deter-
mined using a mix of ChIP-seq, ATAC-seq, and DNA-seq, and

Figure 5. Unique TSSs in testis are bound by testis-specific transcription
factors. (Top) Number of isoforms, overall TSSs, and TSSs unique to a tissue
are shown for each tissue. (Bottom) Heatmap of the percent of unique TSSs
of each tissue overlapping with ENCODE cCREs of the indicated tissues or
with testis-specific transcription factor binding sites. Each row represents
an individual heatmap normalized between 0 and the maximum for that
row (shown as text within each row). Therefore, color intensity cannot
be compared between different rows. (SC) spinal cord, (St) stomach,
(SM) skeletal muscle, (SG) salivary gland, (SI) small intestine.
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included regulatory features like potential promoters. For analysis,
we downloaded these cCREs for eight tissues (testis, brain, small in-
testine [equivalent to smoothmuscle], heart, spleen, liver, kidney,
and lung) that matched tissues we analyzed for TAMI. We then
evaluated the percentage of unique TSSs of each tissue that over-
lapped with these cCREs. We found that a higher percentage of
unique TSSs of a specific tissue overlapped with cCREs of that spe-
cific tissue than the unique TSSs of the other 11 tissues (Fig. 5, bot-
tom). This showed that the unique tissue-restricted TSSs we
identified based on isoforms matched candidate regulatory ele-
ments of their respective tissues, which in turn were identified
with an entirely different set of methods by ENCODE.

Second, we wanted to validate the unique TSSs of the testis
with transcription factor ChIP-seq data from ChIP-Atlas (https://
chip-atlas.org) (Oki et al. 2018). First, we evaluated the expression
patterns of the transcription factors that had been investigated in
testis (Supplemental Fig. S1, left). We found that, based on our
R2C2 data, several of these transcription factors were indeed
most highly expressed in testis. The binding sites of these testis-
specific transcription factors, as determined by many distinct
ChIP experiments, were generally enriched in TSS unique to the
testis (Supplemental Fig. S1, right).

Based on this analysis, we selected a single ChIP-seq experi-
ment for just six testis-specific transcription factors—TAF7L,
TCFL5, SOX30, MYBL1, RFX2, TBPL1 (Zhou et al. 2013, 2017;
Kistler et al. 2015; Martianov et al. 2016; Yin et al. 2021;
Cecchini et al. 2023). We found that 23% of unique testis TSSs
but only ∼3% of the unique TSSs of the other tissues overlapped
with their combined binding sites (Fig. 5, bottom).

This indicated that, within the testis, testis-specific transcrip-
tion factors create isoform diversity through the use of unique
TSSs. The high percentage of NNC isoforms in testis suggests
that those unique TSS are often unannotated.

Differential isoform usage across tissues

The quantitative nature of the R2C2 approach as well as the mul-
tiplexed setup of our sequencing strategy allowed us to compare
isoform expression across tissues. To avoid the complexity ofmerg-
ing 12 individual annotations, we used Mandalorion to identify
isoforms from the combined data set of all 12 tissues and to quan-
tify the expression of those isoforms in each tissue.

First, we evaluated which tissues were expressing the same
isoforms—at any level—by calculating Jaccard indexes for each
pair of tissues (Fig. 6A). Again, testis proved an outlier, having low-

er Jaccard indexes, i.e., the smallest overlap of isoforms, than any
other tissue. As expected, neuronal tissues (brain, spinal cord, and
eye) had high Jaccard indexes with each other. The stomach and
smooth muscle (small intestine), both parts of the digestive sys-
tem, also had a high Jaccard index.

Second, to systematically identify genes with differential iso-
form expression across tissues, we first identified 7457 genes that
had a combined isoform expression of at least 50 R2C2 reads
(∼10 RPM) in at least two tissues. We then performed a χ2 contin-
gency table test on the relative isoform usage of each of those
genes. After Bonferroni correction, we found 3742 genes with sig-
nificant differential isoform usage at P≤0.01. An example of one
such gene, Rab3il1 shown in Figure 6, highlights differential iso-
form usage across tissues particularly in regards to the use of alter-
native TSS and first exons, as well as alternative internal exon
usage within the same tissue.

Overall, our analysis shows if a gene is expressed moderately
high in at least two tissues, it is more likely than not (3742 out of
7457 or ≈50.2%) to show differential isoform expression.

Discussion

Here, we have presented a genome annotation atlas for themouse,
highlighting the immense isoform diversity between different tis-
sues. We used the ONT-based R2C2 method to sequence over 60
million full-length transcripts across 12 tissues.We compiled these
reads using the Mandalorion tool (Volden et al. 2023; Pardo-
Palacios et al. 2024b) and the resulting isoforms formed the basis
for the first release of the TAMI which is hosted as a trackhub on
the UCSC Genome Browser.

We hope these tracks and their source files will be a valuable
resource for genomics research by, for example, complementing
existing annotationswith tissue-specific information for transcrip-
tome-dependent RNA-seq analysis by tools like Salmon (Patro et al.
2017) and kallisto (Bray et al. 2016). Further, by identifying more
accurate transcript ends, TAMI might improve the analysis of
scRNA-seq data whose reads are most often limited to the 3′ or 5′

end of transcripts.
We also hope that TAMIwill be of value to bench scientists by

providing easy-to-access detailed isoform information and thereby
informing experimental design. For example, instead of cloning a
random isoform taken from GENCODE or RefSeq for overexpres-
sion, TAMI enables you to clone the isoform that is most expressed
by your gene of interest in your tissue of interest.

A B

Figure 6. Differential isoform usage. (A) Jaccard indexes for each pair of tissues, (B) Genome Browser shot of Rab3il1 is shown with GENCODE vM30
annotation on top and isoforms called by Mandalorion below. Right side, the relative usage of each isoform in each tissue, yellow indicates higher usage,
blue indicates lower usage. (SC) spinal cord, (St) stomach, (SM) skeletal muscle, (SG) salivary gland.
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TAMI v1.0 represents only a starting point for our annotation
efforts because it is limited in certain important ways. First, TAMI
v1.0 only includes 12 major tissues which leaves many tissues and
cell types unannotated. Further, the read numbers TAMI v1.0 is
based on are too low to exhaustively cover the transcriptome of
those 12 tissues often limiting it to the major isoforms of genes.
Additionally, despite size selection, these reads are too short to cap-
ture the longest mouse transcripts effectively. Finally, TAMI v1.0
still relies on ONT R9 chemistry, which has been replaced by the
more accurate R10 chemistry.

To address these shortcomings, we plan on using updated
technologies and methods including the PacBio Kinnex method,
automated cDNA size selection, and ONT R10 pores to generate
more, longer, andmore accurate full-length cDNA reads for a larger
number of tissues and cell types. In preparation for these data sets,
we have also recently rewritten the Mandalorion (Volden et al.
2023) tool to be capable of handling the much larger >100million
full-length cDNA read data sets that are now becoming a reality.
For the next version of TAMI, we are also working using tools
like IsoAnnotLite to predict open reading frames for protein-cod-
ing isoforms.

This will be an important follow-up because we found wide-
spread isoform diversity between tissues. Investigating how and
whether this isoform diversity between tissues creates biological
meaningful differences in the function of genes in these tissues
will benefit from the information on whether different isoforms
of a given gene encode different proteins.

Wewill also continue work to improve and validate gene and
transcript level quantification. In this study, we compared R2C2
full-length cDNA sequencing-based gene-level quantification to
quantification based on publicly available Illumina RNA-seq data
and found that the methods detected overlapping but distinct
sets of genes, with Illumina RNA-seq detectingmore genes overall.
We also found that gene-level expression quantificationhad some-
times low correlation between R2C2 full-length cDNA sequencing
and Illumina RNA-seq. To remove biological variability from this
comparison in the future, we will generate deeply sequenced
Illumina RNA-seq data sets on the same RNA samples used for
R2C2 full-length cDNA sequencing going forward.

Other limitations of TAMI v1.0 that we will not be able to ad-
dress are rooted in the reliance of the Smart-seq2-based cDNA syn-
thesis approach on oligo(dT) primers and size selection.While this
effectively excludes ribosomal RNA, it also excludes many other
species of RNA that are either short, not poly-adenylated, or
both which includes histone RNA and many short noncoding
RNA species like tRNA.

Another potential concern associated with TAMI is that we
analyzed the data we generated using Mandalorion, a tool we de-
veloped and maintained over the last 7 years, as opposed to other
isoform identification and quantification tools. While Mandalo-
rion has been shown by the LRGASP consortium and our own
manuscript to display a strong balance between Specificity and Re-
call—especially when identifying previously unannotated iso-
forms—other tools like IsoQuant have done so as well (Prjibelski
et al. 2022; Volden et al. 2023; Pardo-Palacios et al. 2024b). Indeed,
whenwe reanalyzed all the data in TAMIwith IsoQuant, the result-
ing isoform sets for each tissue were similar to the corresponding
Mandalorion sets (Supplemental Fig. S2A, left). IsoQuant also
identified testis as an outlier tissue in terms of isoform composi-
tion (Supplemental Fig. S2A, center, right). Additional analysis
by SQANTI3 showed that the different tools produced similar com-
positions of structural isoform categories (FSM,NIC,…) withMan-

dalorion producingmore FSM and IsoQuant producingmore NNC
isoforms (Supplemental Fig. S2B).

Beyond that, however, our comparison showed known
behavior of IsoQuant that made it unsuited for this study. First,
if IsoQuant identifies an isoform that matches an isoform in the
reference (FSM isoforms), it reports the TSS and transcription ter-
mination site (TTS) of the reference isoform (Supplemental Fig.
S2C). This means that the ends of IsoQuant FSM isoforms (which
comprise ∼50% of all isoforms in the study), in contrast toManda-
lorion FSM isoforms, do not reflect the actual reads present in the
sample and, therefore, might not reflect the actual biology of the
sample. Further, even for the other categories, IsoQuant isoforms
had lower CAGE peak support, i.e., support by an experimentally
determined TSS, than Mandalorion isoforms (Supplemental Fig.
S2D). While this is indirect evidence, it nonetheless indicates
that Mandalorion isoforms have ends that better reflect the actual
TSSs of the isoforms expressed within a sample. Because TSSs in
particular are very important for downstream experiments (locat-
ing the exact promoter, proper 5′UTR, and correct CDS) Mandalo-
rion was clearly the better choice for our study. However, we
contend that there are now many other isoform identification
tools that due to their design choices might uncover unique fea-
tures of the TAMI data set.

Finally, while TAMI is intended to merely complement the
excellent manually curated reference annotations like GENCODE
that are available for mouse, this paper shows that, going forward,
full-length cDNA-based annotation efforts could serve as reference
annotations for less researched organisms.

We think TAMI provides a blueprint for these efforts. The
generation of indexed cDNAmakes it possible to pool samples ear-
ly which in turn allows for the cost-effective generation of se-
quencing libraries. ONT sequencing, due to its low device cost,
can be performed in most molecular biology labs. Finally, data
analysis, including Mandalorion-based isoform identification,
can be performed on consumer-grade computers. All of this puts
genome annotation efforts within reach of individual laboratories
with moderate budgets.

Methods

Sample multiplexing

RNA was acquired from Takara Bio (Cat# 636644). Multiplexing
samples was done using one of two methods: the first used bar-
codedDNA splints for Gibson assembly then pooling samples after
rolling circle amplification (RCA), and the second method used
barcoded oligo(dT) for cDNA synthesis which allowed pooling be-
fore Gibson assembly. Both methods produce equivalent data.
Approximately 80% of the data used in this study was generated
by using barcoded oligo(dT) primers for multiplexing tissues.

Library preparation and sequencing

cDNA synthesis

RNA was first mixed with dNTPs and oligo(dT) primer, either bar-
coded or nonbarcoded, then denatured to remove the secondary
structure for 3 min at 72°C. First strand reverse transcription (RT)
using SMARTScribe Reverse Transcriptase (Clontech) and Smart-
seq2 template switching oligo (TSO) with DTT and SUPERaseIN
was performed for 1 h at 42°C then heat inactivated for 5 min at
70°C. Second strand synthesis and PCR with KAPA 2× master
mix and ISPCR primer with RNase A and lambda exonuclease
for 12 cycles (37°C for 30 min, 95°C for 3 min, 98°C for 20 sec,
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67°C for 15 sec, 72°C for 8 min, 72°C for 5 min, 4°C hold). cDNA
was cleaned up and ss using SPRI beads at a 1:0.85 (sample:beads).
After quantification by Qubit the cDNA libraries were pooled to-
gether if barcoded oligo(dT) primers were used, if not, cDNA
from individual tissues would still be kept separate. The cDNA
was then split for ss and nss R2C2 library preparation. For size se-
lection, cDNA was run on a 1% low melt agarose gel and every-
thing over 2 kb was excised and purified using beta-Agarase
digestion and SPRI bead clean up.

R2C2 library generation

ss and nss cDNA were further processed separately but identically.
cDNA libraries were circularized by Gibson assembly (NEBuilder
HiFi) with a short DNA split that overlaps with the ends of
the cDNA. For cDNA that was not barcoded during cDNA synthesis
a barcoded DNA split was used. To remove uncircularized mole-
cules, an exonuclease digestion with ExoI, ExoII, and Lambda
Exonuclease (all NEB) was carried out for 16 h at 37°C then heat
inactivated for 20 min at 80°C. The reaction was then cleaned us-
ing SPRI beads at a 1:0.85. The clean, circularized library is then
used as a template for RCA using Phi29 (NEB) with a random hex-
amer primer for 18 h at 30°C then heat inactivated for 10 min at
65°C. The Phi29 reaction was then debranched using T7 endonu-
clease for 2 h at 37°C before being cleaned and concentrated using
Zymo DNA clean and concentrator column. The library was quan-
tified by Qubit and gel extracted as described above but the region
extracted was a bright band just over the 10 kbmarker. After gel ex-
traction, the library was quantified again by Qubit.

ONT sequencing

Libraries barcoded during the Gibson assembly step were now
pooled together at equal mass. We used the Ligation Sequencing
Kit for genomic DNA (SQK-LS110) from ONT to prepare for se-
quencing following the manufacturer’s protocol. The final library
was loaded onto either an ONT MinION or PromethION
sequencer. Flowcells were nuclease flushed and loaded with addi-
tional library partway through sequencing based on pore availabil-
ity statistics shown in the MinKNOW software to increase
sequencing throughput.

Data processing

All ONT FAST5 files were basecalled using Guppy (v5) (Wick et al.
2019) with the super accurate configuration. R2C2 full-length con-
sensus readswere generated and demultiplexed byC3POa (v2.4.0).

Analysis

Gene-level analysis

R2C2 reads were aligned to the GRCm39 version of the mouse ge-
nome using minimap2 (v2.24-r1122) (Li 2018) with the following
arguments. -ax splice ‐‐secondary=no. Read accuracy was cal-
culated by identifyingmismatches and indels in those alignments.

Illumina reads were aligned using STAR aligner (v2.5.4b)
(Dobin et al. 2013) to a genome index built with the same version
of the genome and the GENCODE vM30 comprehensive annota-
tion with the following arguments:

‐‐outSAMattributes NH HI NM MD AS nM jM jI XS

‐‐quantMode GeneCounts.
For both R2C2 and Illumina data, gene-level expression was

quantified based on these aligned reads using featureCounts
(v1.6.0). The resulting counts were converted to RPM by dividing
the number of reads associatedwith each gene by the total number
of reads then multiplying by 1 million. Pearson’s correlation com-

paring Illumina and R2C2 gene quantification were produced us-
ing non-log-converted RPM featureCounts.

Gene-level saturation curves were produced by random sub-
sampling of the featureCounts output for each tissue and the com-
bined data set.

Isoform-level analysis

Isoforms were called based on R2C2 reads using the Mandalorion
Isoform analysis pipeline (v4.0) run on both individual tissue data
and the combined data set using defaults settings and the
GENCODE vM30 annotation and GRCm39 reference sequence.
Mandalorion isoforms were produced from both individual tissues
and the combined data set. The resulting isoforms were catego-
rized and compared to the GENCODE vM30 annotation using
the sqanti_qc.py script of SQANTI3 v5.1 (Pardo-Palacios et al.
2024a).

Isoform-level saturation curves were produced by random
subsampling R2C2 reads and running Mandalorion (Volden
et al. 2023) independently for each subsample. Differential iso-
form usage analysis was performed on the isoforms from the com-
bined data set using the χ2 contingency test with a custom Python
script utilizing SciPy (Supplemental Code; Jones et al. n.d.; Harris
et al. 2020).

Jaccard index

To compare isoform compositions of different tissues, we calculat-
ed Jaccard indexes for each pair of tissues. We used the isoforms
and their expression levels from the combined data set. Isoforms
were counted as present in a tissue if they had at least one read as-
sociated with them in that tissue. We then calculated the Jaccard
index as follows: ([Isoforms shared between tissues A and B]/
[Isoforms shared between tissues A and B+ Isoforms unique to tis-
sue A+ Isoforms unique to tissue B]).

To compare isoform compositions betweenMandalorion and
IsoQuant, we first compiled the gtfs from each tissue and tool us-
ing gffcompare (v0.12.6.OSX_x86_64) (Pertea and Pertea 2020).
We then parsed gffcompare output to determine shared and
unique isoforms for each pair of tissues/tools and calculated
Jaccard indexes as above.

TSS level analysis

A tissue-unique TSS was determined by first combining TSS that
were <100 nt apart within each tissue and then comparing the
combined TSSs of each tissue to all other tissues. A tissue-unique
TSS was defined as a TSS in one tissue that does not overlap with
TSSs in any other tissue.

cCRE analysis

cCREs for testis, brain, small intestine (equivalent to smooth mus-
cle), heart, spleen, liver, kidney, and lung were downloaded from
SCREEN: Search candidate cis-regulatory elements by ENCODE
(Registry of cCREs V3). The resulting tissue-specific BED files all
contained all cCRE locations in the entire data set. cCRE annotated
to be functional in each respective tissue were filtered from these
BED files and overlapped with the unique TSSs of each tissue in
the study.

ChIP-atlas-based testis TF analysis

A custom Python script was used to determine TSS overlaps with
publicly available ChIP-seq (https://chip-atlas.org, accessed in
Spring 2023) (Supplemental Code). Data from ChIP-Atlas were
downloaded as a BED file from the peak browser tool by selecting
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the following options: Assembly: M. musculus mm10, experiment
type: ChIP TF, Cell TypeClass: Gonads, Threshold for Significance:
50, ChIP Antigen: all, Cell Type: testis.

IsoQuant comparison

To compare isoform compositions of different tissues and tools, we
calculated Jaccard indexes for pairs of isoform sets. To make the
isoform sets comparable in principle, we applied a minimum cut-
off of three reads per isoformand excluded all single-exon isoforms
from all IsoQuant andMandalorion isoform sets. We used gffcom-
pare to compare the 24 filtered isoform sets (12 tissues × 2 tools).
We then parsed the gffcompare output and calculated the
Jaccard index as follows: ([Isoforms shared between tissues A and
B]/[Isoforms shared between tissues A and B+ Isoforms unique to
tissue A+ Isoforms unique to tissue B]).

Data access

The full-length consensus reads generated in this study have been
submitted to theNCBI BioProject database (https://www.ncbi.nlm
.nih.gov/bioproject/) under accession number PRJNA971991.
Isoform models in GTF format generated in this study are hosted
and updated at https://vollmerslab.sites.ucsc.edu/tami and also
available as Supplemental Data.
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