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Abstract
In recent years, the role of Artificial Intelligence (AI) in medical imaging has become increasingly prominent, with the 
majority of AI applications approved by the FDA being in imaging and radiology in 2023. The surge in AI model develop-
ment to tackle clinical challenges underscores the necessity for preparing high-quality medical imaging data. Proper data 
preparation is crucial as it fosters the creation of standardized and reproducible AI models while minimizing biases. Data 
curation transforms raw data into a valuable, organized, and dependable resource and is a fundamental process to the success 
of machine learning and analytical projects. Considering the plethora of available tools for data curation in different stages, 
it is crucial to stay informed about the most relevant tools within specific research areas. In the current work, we propose a 
descriptive outline for different steps of data curation while we furnish compilations of tools collected from a survey applied 
among members of the Society of Imaging Informatics (SIIM) for each of these stages. This collection has the potential to 
enhance the decision-making process for researchers as they select the most appropriate tool for their specific tasks.

Keywords Artificial intelligence · Open source · Data curation · Toolkits

Introduction

Artificial intelligence (AI) continues to play a significant 
role in medical imaging. As of 2023, the highest percentage 
of AI algorithms cleared by the FDA were for imaging (83%) 
and radiology (75%) [1, 2]. The increasing rate of AI model 

development to address clinical challenges has escalated the 
need to prepare high-quality medical imaging data. Optimal 
data preparation is of paramount importance since it leads 
to the development of standard, reproducible AI models and 
alleviates biases [3].
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Data curation for AI model development is a multifaceted 
and challenging process. Data curation creates a dataset rep-
resentative of the problem domain. Crucially, the representa-
tiveness of the data directly influences the performance and 
generalization capabilities of the AI models [4]. Effective 
data curation ensures that raw data is transformed into a 
high-quality, organized, and reliable resource that underpins 
the success of machine learning and analytical endeavors 
[5]. The ideal tool for data curation should assist develop-
ers and researchers in preparing the data in the fastest and 
most well-curated manner. Such tools not only save time but 
also contribute to the accuracy and robustness of models. 
Staying well-versed in these tools empowers professionals 
to navigate the complex journey from raw data to refined 
information, thus unlocking the true potential of data-driven 
innovations [6]. Given the abundance of tools, each targeting 
distinct aspects of data preparation but often sharing consid-
erable similarities, it is crucial for researchers and develop-
ers to remain well-informed about the most applicable tools 
within their particular research domains.

Gaining knowledge regarding available tools not only 
helps selecting the best tool for the assigned task (e.g., 
detection, segmentation, or classification) but also can 
point out the possible limitations the user might face if 
starting to work with the inappropriate tool (for instance a 
tool that can only create one label in multi-label segmenta-
tion task).

In the current study, we aim to provide a descriptive out-
line for the phases of data curation while we furnish com-
pilations of tools gathered from a survey carried out among 
members of the Society of Imaging Informatics (SIIM) for 
each of these stages. This compilation serves to enhance the 
decision-making process for researchers as they select the 
suitable tool for their specific tasks.

Method

For data collection, a survey consisting of questions 
requesting researchers to identify their preferred tool, 
provide a description of the tool, and highlight its core 
features was created and shared with 500 members of 
the Society of Imaging Informatics (SIIM). A total of 
54 responses from 26 medical informatics centers were 
collected. Duplications, general answers that did not 
introduce a specific tool, not open-access, and in-house 
solutions (not publicly available) were excluded, result-
ing in the inclusion of a total of 28 tools. The tools in 
the next phase were carefully investigated by the authors 
(S.V, B.K, E.M, P.R, S.F, M.M, A.T) to be character-
ized based on the core features, including cloud features, 
input data, de-identification functions, data conversion, 
data normalization, data labeling, data annotation, stor-
age, workflow, and federated learning support. In the 

Table 1  Tools used for data curation with their specific core features

“Both” indicate cloud-based and non-cloud-based features. “DCM” is an abbreviation of DICOM files

Tool De- 
identification

Viewer Cloud-based Input/output Conversion Normalization

3D slicer ✓ ✓ Both1 DCM2, NIfTI/DCM, NIfTI ✓ ✓
Anonymizer (RSNA) ✓ DCM/DCM + spreadsheet
CTP (Clinical trial processor) ✓ ✓ DCM/DCM
DICOM image analysis and archive 

(DIANA)
✓ Both DCM/DCM

dicom2nifti DCM/NIfTI ✓
DCM2niix ✓ DCM/NIfTI ✓
Highdicom Both Numpy/DCM ✓
Horos ✓ ✓ Both DCM/DCM
ImageJ/FIJI ✓ ✓ DCM, NIfTI/DCM, NIfTI ✓ ✓
ITK-SNAP ✓ DCM, NIfTI, PNG, JPEG/

NIfTI
✓ ✓

MANGO ✓ DCM, NIfTI/NIfTI ✓ ✓
MIDRC ✓ ✓ ✓ DCM, DCM mapping/

attribute
✓ (Harmonization)

The Medical Imaging Interaction 
Toolkit (MITK)

✓ DCM, NIfTI/DCM, NIfTI ✓ ✓

MONAI label Both DCM, NIfTI/DCM, NIfTI ✓ ✓
MOOSE DCM/NIfTI ✓ ✓
Niffler ✓ DCM/NIfTI ✓
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subsequent sections, we briefly describe different steps 
of data curation with a collected list of tools that are 
particularly useful for each task (Tables 1 and 2). Refer-
ences and links to all tools are given in the supplemen-
tal material. We created the SIIM Tools Survey GPT 
(https:// chat. openai. com/g/ g- X6o0w 5duF- siim- tools- 
survey) using GPT4 as a chatbot based on the collected 
information.

It is noted to mention that some words and steps might 
have been used in different categories or instead of each 
other in AI data preparation studies. For example, some 
might categorize the “annotation” and “curation” as two 
separate categories in their studies [7], while the “annota-
tion” is considered part of data curation in other studies 

[8]. Likewise, in the current work, we consider and 
describe these steps as subsets of data curation.

Data Curation

Data curation is an important process in model develop-
ment, applied to data from the time it is first acquired to 
the point it is ready for use by AI (Fig. 1). Tools have been 
widely developed to address some or all of the steps for 
data curation [7].

Data curation can be referred to as the process of col-
lecting, sorting, filtering, tagging, normalizing, standard-
izing, converting, and management of data prior to feeding 

Table 2  Tools used for data annotation with their specific core features

“Both” indicate cloud-based and non-cloud-based features. “DCM” is an abbreviation of DICOM files

Tool Cloud base Input/output Labeling Segmentation Active 
learning

Object 
detection

3D  
rendering

Co- 
registration

Classification

3D slicer Both1 DCM2, NIfTI/
DCM, NIfTI

✓ ✓ + auto seg-
mentation

✓ ✓ ✓

Computer vision 
annotation tool

Both JPEG, PNG/Json ✓ ✓ ✓

Horos Both DCM/database in 
text files with 
comments or 
notes

✓

ImageJ TIFF, PNG, 
JPEG, DCM, 
FITS

✓ ✓ ✓ ✓

ImageJ/FIJI DCM, NIfTI/
DCM, NIfTI

✓ ✓ ✓ ✓ ✓ ✓

ITK-SNAP DCM, NIfTI, 
PNG, JPEG/
NIfTI

✓ ✓ + auto seg-
mentation

✓ ✓ ✓

Labelme Both JPEG/JSON ✓ ✓ ✓ ✓
MANGO DCM, NIfTI/

NIfTI
✓ ✓

Markit DCM/CSV ✓ ✓ ✓
MONAI label Both DCM, NIfTI/

DCM, NIfTI
✓ ✓ + auto seg-

mentation
✓ ✓

The Medical 
Imaging Inter-
action Toolkit 
(MITK)

DCM, NIfTI/
DCM, NIfTI

✓ + auto seg-
mentation

✓ ✓

MOOSE DCM/NIfTI (3D) ✓ ✓ + auto seg-
mentation

NCI Imaging 
Data Commons 
(IDC)

✓ DCM, NIfTI/
DCM, NIfTI

✓

Prodigy DCM, NIfTI/
DCM, NIfTI 
(2D) + text data

✓ ✓ ✓

Ril-contour NIfTI/NIfTI ✓ + auto seg-
mentation

✓

https://chat.openai.com/g/g-X6o0w5duF-siim-tools-survey
https://chat.openai.com/g/g-X6o0w5duF-siim-tools-survey
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the data to AI models for development purposes (Fig. 2). 
This broad category of tasks plays a crucial role in optimiz-
ing model development in the field of medical imaging [4].

De‑Identification

In the United States, the Health Insurance Portability and 
Accountability Act (HIPAA) de-identification approaches, 
including “Safe Harbor” and “Expert Determination” deline-
ates a comprehensive set of distinct categories of protected 
health information (PHI) that necessitate removal prior to 
the use of a medical document for many research endeavors 
[9]; most countries outside the US also have similar require-
ments for privacy preservation. It is worth noting that insti-
tutions have a range of de-identification methods to select 
from since there is not a concrete consensus on using a spe-
cific method. The data objects must undergo modifications 
that involve eliminating unnecessary PHI and substituting 
essential PHI with research identifiers. The research identi-
fiers maintain the connection between data objects in addi-
tion to establishing a disassociation between the data and 
the human entity which served as the subject of the trial 

(Fig. 3). There are two types of de-identification [10]. One is 
“anonymization,” which replaces all PHI with either nothing 
or random data; anonymized data is completely devoid of 
any information that could potentially disclose the patient’s 
identity. The second approach is “pseudonymization.” In this 
approach, a known identifier replaces PHI, and there is a 
separate file that stores the mapping from this identifier to 
the PHI [11]. The latter approach enables researchers to con-
duct follow-up studies and additional multi-modal analyses 
in their future works and is common in clinical trials.

PHI is nearly always present in the meta-tags of medi-
cal images (e.g., DICOM header). Patient data can also 
be part of the image (pixels), which is called “burned-in” 
data. This may be introduced by post-processing software 
that puts PHI into the pixels, especially in cases of some 
older imaging devices. Specific tools are introduced to 
adhere to the mandates of HIPAA in addition to ensur-
ing the preservation of data quality and reliability, but 
no gold standard tool for pixel-level de-identification 
has been introduced yet. In addition to textual PHI de- 
identification, it is possible to identify an individual based 
on the images themselves, such as facial reconstruction in 
neuroradiology imaging [12]. For this purpose, defacing 
tools such as “Mridefacer” [13] will alter voxels in the 
facial region of an MRI scan while preserving the brain 
structure. A list of data de-identification tools that are 
commonly applied for de-identification in our survey is 
demonstrated in Table 1.

Data Format and Conversion

One of the initial considerations for choosing a tool is the 
“data format” that the user is working with. Digital Imag-
ing and Communications in Medicine (DICOM) is known 
as the standard file format and communication profile in 
radiology [14]. The NIfTI file format was later developed 
to store volumetric image data, such as 3D MRI scans, in 
a standardized manner. It covers a wide array of 2D, 3D, 
and 4D data formats, including both structural and func-
tional MRI, diffusion tensor imaging (DTI), and positron 
emission tomography (PET) scans [15]. NIfTI is used in 
medical imaging because it directly supports 3D and 4D 
data, while JPEG is primarily a 2D format (there is a 3D 
JPEG standard, but we are not aware of any annotation tool 
that supports it). Most deep-learning models require input 

Fig. 1  Workflow of required 
steps for proper model develop-
ment

Fig. 2  Demonstration of steps required for optimal data curation



2019Journal of Imaging Informatics in Medicine (2024) 37:2015–2024 

in the form of matrices or tensors. This typically involves 
converting the DICOM images into a pixel array represen-
tation or converting them to a standard image format like 
JPEG, PNG, or NIfTI format.

If a tool only accepts JPG format, one can not work on 
NIfTI images with it. “ImageJ” is a tool that receives and 
saves several types of data, including JPEG, PNG, FITS 
(Flexible Image Transport System), TIFF (Tag Image 
File Format), and DICOM. One of the software that was 
widely used by our survey participants was the dcm2niix. 
It is exclusively developed for the conversion of DICOM 
files to NIfTI format, providing multiple options to use 
the original DICOM’s metadata in the naming of the 
output NIfTI file. This can be considered an advantage 
since converting DICOM to alternative formats can lead 
to losing metadata information related to images, which 
is not desired by users in many AI applications [16]. 
Converting tools mentioned in our survey can be found 
in Table 1.

Image Normalization

In medical imaging, it refers to the process of adjusting the 
intensity values or pixel sizes of medical images to a more 
consistent scale or range. Normalization plays an impor-
tant role in medical image curation as different imaging 
devices or techniques can produce images with varying 
intensity ranges, scales, and statistical distributions [6]. In 
this regard, many software have introduced tools for data 
normalization, such as “MONAI Label” and “Mango.” In 
addition, one important part of normalization is harmo-
nization, which makes studies from various institutions 

consistent and compatible. In our survey, the “Medical 
Image and Data Resource Center” (MIDRC) was the 
only tool that harmonizes imaging studies through Logi-
cal Observation Identifiers Names and Codes (LOINC) 
mapping. It yields common long names and thus enables 
searching and efficient cohort building.

Cloud Computing and Operating Systems

Cloud computing refers to the utilization of off-premise 
computing services and infrastructure provided by a separate 
entity for storing, managing, and processing medical image 
data. It involves the storage of medical images and related 
information on remote servers hosted in data centers over the 
Internet [17]. On the other hand, a non-cloud tool is executed 
on local hardware. Users must install the software on these 
local servers and continuously manage their maintenance, 
updates, and security [18]. This maintenance overhead, and 
also the upfront cost, may be incentivizing institutions to use 
cloud computing more for their AI development pipelines. 
However, cloud computing has some challenges in terms 
of operational management, interface efficiency, financial 
costs, and security preservations [19].

When choosing a suitable tool, developers should con-
sider the operating system required by the tool as well. 
While most tools introduced in our survey are agnostic, 
meaning they run on any common operating system, some 
tools only work on specific operating systems. In our sur-
vey, “Horos,” which is used for data de-identification and 
labeling, works exclusively on Mac; on the other hand, 
“Niffler” and “Moose” are solely available for Linux 
operating systems.

Fig. 3  De-identification by 
RSNA anonymizer tool—the 
images uploaded from the path 
provided by the “Directory” 
tab or a PACS connected by the 
“Q/R SCU” tab are processed 
and exported to the output path 
by use of the “Export” tab; the 
images can be viewed in the 
“Viewer” tab, and their original 
identifiers can be tracked by the 
“Index” tab
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Table 1, derived from our survey, illustrates the tools that 
exhibit the characteristics outlined above.

Annotation and Labeling

Image annotation and labeling are often used inter-
changeably, but they are two different tasks commonly 
used for the analysis of medical imaging. Annotations 
represent the regions that contain the developer’s object 
of interest; they might be in the form of a bounding box 
or a freeform delineation around the portion of the image 
thought to represent the object or pathology of interest. 
Labels provide a textual or categorical representation of 
the identified regions or structures. Labeling is the pro-
cess of classifying the images or the annotations into cer-
tain categories [20]. Labeling is required for most clas-
sification tasks, and annotation may also be required. For 
example, a chest radiograph can be labeled as “pneumo-
nia” or “normal” without a need for annotating the sus-
pected region; it can also be used in companion with an 
annotation task for labeling multiple pathologies anno-
tated in an image, such as “consolidation,” “pneumotho-
rax,” or “mass.” Table 2 demonstrates the core features 
of collected tools for annotation and labeling.

Segmentation

Annotation tasks can be conducted by finely delineating the 
exact borders of an object, as in segmentation (Fig. 4). Seg-
menting a large number of data manually is tedious and time-
consuming. Semi-automated and fully automated tools that 
facilitate the process of segmentation [21, 22] are available. 
“Semi-automated segmentation” is a combination of manual 
user input and automatic algorithms. In this approach, the user 
typically initiates the segmentation by providing an initial anno-
tation or seed region in the image. The tool then applies algo-
rithms to propagate and refine the segmentation based on the 
user-provided information, which can be adjusted and corrected 
by the user [23]. On the other hand, “fully automatic segmenta-
tion” tools do not require user input or intervention for explicit 
segmentation [24]. They analyze the image data and identify 
the regions of interest based on the learned template.

Since many of the image annotation tools are open-
source, they benefit from constant improvement and expan-
sion by new extensions being developed. A good example 
is the recently introduced tools of automatic segmentation, 
annotating several body organs with the click of a button. 
These tools, including MONAI bundle model zoo [25] and 
the “segment anything model (SAM)”-based medical imag-
ing tool (MedSAM) [26], have introduced extensions to be 

Fig. 4  Multi-class segmentation 
and 3D rendering by ITK-
SNAP software. Segmentation 
is performed by the “paint” 
tool on the provided medical 
image (hidden in the figure for 
visualization purposes). Users 
can use the color palette, edit 
with the “eraser,” shift between 
multiple labels through the 
“Active label” tool, and change 
the opacity of labels for better 
visualization. Multiple object 
masks can be saved and loaded 
as a single file, each object 
showing a unique anatomical 
region
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used on popular tools used in our surveys such as 3D Slicer 
and OHIF; so that the operator can edit the generated anno-
tations and extract different measures from the annotated 
masks.

Object Detection

It is a gross detection of an object without distinguish-
ing its exact borders to enhance the training process by 
focusing on the region of interest and assigning a class 
label for that region [27]. This task can be performed by 
tools such as Label Me, Markit, or Prodigy. They store the 
coordinates of the manually generated, so-called bounding 
boxes in formats, such as JSON, to feed the deep learning 
object detection models (Fig. 5).

Active Learning

It is another feature in segmentation that helps annota-
tors by providing suggestions on challenging regions dur-
ing annotation. They guide annotators to data points that 
would result in improvement of model performance. This 
can also be used to optimize segmentation performance 
over time after initial segmentation [28, 29].

Co‑registration

It is the alignment of two or more volumetric images 
based on specific mathematical transformations [30]; it 
provides multi-parametric information about the structure 

or region of interest [31, 32]. By aligning images, co-
registration enables one to combine voxels for anatomi-
cal structures from different image types like functional 
MRI, T1-weighted, diffusion-weighted images (DWI), or 
pre- and post-contrast images [33]. 3D slicer, ITK-SNap, 
MITK, and ImageJ were applications that included co-
registration functions in our survey.

Table 2, derived from our survey, demonstrates the 
tools that encompass the features outlined above.

Data Collection and Storage

Medical imaging data are usually acquired by submitting a 
query from identified data sources such as Picture Archiv-
ing and Communications Systems (PACS). The query con-
tains various search criteria such as patient demographics 
(e.g., age, gender), examination type (e.g., X-ray, MRI), 
body region (e.g., head, abdomen), imaging modality, and 
date range. Since most studies focus on a specific dis-
ease and since the PACS usually does not store diagnostic 
codes, it is often necessary to first query a diagnosis data-
base or registry and then perform the PACS query.

“Atlas” is a platform to support design and observational 
analyses. It is used for phenotyping and cohort definitions 
for target, control, and outcome populations. Another plat-
form for data retrieval is “DIANA,” which is capable of de-
identification, cohort definition, and radiation dose moni-
toring for prospective oncology studies [34].

While nearly every radiology or imaging practice has 
a PACS, some open-source storage solutions for DICOM 
images were introduced in our survey. “Orthanc” is a stan-
dalone DICOM server that provides an extensible platform 
for storing, retrieving, and managing medical images. It 
can be easily integrated into existing PACS infrastructures. 
“MIDRC” exists on the Gen3 Platform for intake, storage, 
viewer, cohort building, and data downloading [35]. With 
the increasing size and complexity of medical imaging 
datasets, cloud computing platforms such as “NVIDIA 
DGX Cloud,” “AWS,” “Google Cloud,” or “Microsoft 
Azure” provide scalable infrastructure for data storage, 
processing, and training. These platforms offer a range of 
tools and services that facilitate data management, distrib-
uted computing, and access to powerful GPUs for acceler-
ated AI training.

Federated Learning

Obtaining ethical and legal approvals such as Institutional 
Review Boards (IRB) or data use agreements with health-
care research institutions is a prerequisite for starting 

Fig. 5  Bounding box generation by the “Labelme” software—two-
point coordinates selected on an ultrasound frame (the green and red 
dot) are used to generate 2D rectangular boxes. The boxes’ center 
coordinates and dimensions in two axes are saved to be used as the 
“region of interest” or as labels for object detection tasks
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data collection. With the rapid advances of AI in medi-
cal imaging, further collaboration in multi-institutional 
frameworks is a key component in eliminating biases 
and the development of reproducible and standardized 
models. This goal was previously only pursued by data 
sharing among institutions and involved significant dif-
ficulties, including limited data storage and data privacy 
challenges. Data privacy concerns or legal restrictions 
limit the accessibility and usability of the required data.  
Federated Learning was introduced as a possible solution 
in medicine [4]. Federated learning is a privacy-preserving  
approach in which the data is used locally to train a 
model, and the weights from the local training are sent 
to a central server. Then the updates from all sites are 
combined, and the new weights are sent back to all the 
sites. The weights from multiple institutions are itera-
tively updated and shared with the central model until its 
performance reaches the ending criteria [36]. Tools such 
as “NVIDIA FLARE” and “MLFlow” provide an environ-
ment for researchers to adapt existing AI model workflow 
to federated learning.

Workflow

Data handling, model development, and performance 
evaluation are considered three requisites of building AI 
algorithms. Each of these tasks is divided into steps based 
on the data at hand and the general approach to model 
development. Establishing a workflow enables developers 
to gain an overview of the whole network, follow defined 
steps, and track their model’s performance in each task 
at hand. Platforms, such as MD.ai and MLflow, provide 
a workflow with a wide range of applications from data 
preparation to evaluation.

Security Considerations

Radiology departments and AI developers must adhere to 
stringent data protection regulations ensuring the security  
and privacy of patient data. In addition to data de-identification  
mentioned above, there are other key considerations for 
securing patient data. “Data encryption,” “availability,”and 
“integrity” are major concepts for data security framework. 
Data must be encrypted both at rest and in transit. This 
ensures that even if data is intercepted or accessed with-
out authorization, it remains unreadable and secure [37]. 
Backup strategies and data recovery solutions are essential 
components of a comprehensive security plan [38]. Cloud 
service providers should provide robust security meas-
ures, compliance with healthcare regulations, and features 
that support the secure handling of radiology images and 

associated patient data. Some examples of clouds follow-
ing this structure are AWS, Microsoft Azure Health Data 
Services, and Google Cloud Healthcare API. In addition 
to the cloud services, there are open-access tools in the 
imaging informatics space, which can be integrated with 
non-cloud products to promote information security. “Wire 
Shark” [39], which points out to analyzing network traffic, 
“Shodan” [40], which discovers internet-connected devices, 
and “Nmap” [41], which maps the network and identifies 
possible unauthorized connections.

Discussion

Continuous improvements in AI model developments 
may overcome obstacles of data curation for optimal data 
preparation. The challenging task of removing burned-in 
data or defacing during de-identification may eliminate 
parts of the metadata critical for advanced processing 
[42]. Khosravi et al. [43], in a recent work, developed 
a deep learning model to detect and anonymize radio-
graphic markers. The AI tools for automatic segmenta-
tion have substantially improved. Many developers build 
emergent deep learning models to curate specific body 
parts or tumors. For example, Wasserthal et al. proposed 
a deep learning model entitled “Total Segmentator” for 
segmenting 117 anatomical structures [44]. In another 
study, Cai et al. introduced a deep learning model for 
the segmentation of intracranial structures in brain CT 
scans [45]. Furthermore, deep learning studies focus-
ing on superresolution and mask interpolation based on 
voxel values are vastly under investigation. These tech-
niques potentially improve the quality of medical images 
with low resolution and further reduce hallucinations in 
imaging reconstructions [46]. These developments may 
increase inter-reader agreements, creating a more fea-
sible workspace for annotators in the future. No matter 
what the purpose, the optimal tool should have intuitive 
interfaces, clear workflows, and comprehensive docu-
mentation to facilitate its application. Furthermore, soft-
ware support for these tools is desirable, like NVIDIA AI 
Enterprise [47], which supports MONAI, MONAI Label, 
and FLARE.

In addition to the aforementioned tools, platforms such 
as “MIDRC” provide researchers with data commons and 
valuable machine learning algorithms, including a metrol-
ogy tree to help AI investigators determine appropriate 
performance metrics and a bias awareness tool to help AI 
investigators identify potential sources of bias and under-
stand methods of mitigation [48]. Online competitions 
and challenges such as the Brain Tumor Segmentation 
(BraTS) Challenge [49] and the RSNA Kaggle Competi-
tion [50] have brought together developers and provided 
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opportunities to showcase their expertise, collaborate with 
peers, and push the boundaries of medical image analysis 
and artificial intelligence. These platforms drive innova-
tion–refining algorithms and advancing medical imaging 
for AI applications.

Training and support resources provided by tool develop-
ers or the research group community can also influence the 
process of choosing the appropriate tool. The particular pref-
erences and skill levels of the users are important factors to 
be considered for optimizing their adoption and productivity.

In our study, we excluded commercial and not open-
source tools despite covering a wide range of data curation 
tasks. For instance, MD.ai [51] was used by several par-
ticipants of the survey as an image viewer, de-identifier, 
format converter, and segmentation tool, even though it 
is not open source. Additionally, imaging formats such as 
“Analyze” and “minc” [52], as well as co-registration tools 
such as Advanced Normalization Tool (ANT) [53], which 
are vastly known, were not mentioned by participants in 
the current study.

Conclusion

This study provides a comprehensive overview of available 
open-source tools, drawing from the insights and experi-
ences of the SIIM community. By curating a list of practical 
and widely used tools, we aimed to streamline the process 
of tool selection for researchers, enabling them to make 
informed decisions based on community expertise.

It is important to recognize the dynamic nature of the 
field of AI. As advancements continue to be made and new 
tools emerge, our work can serve as one of the starting points 
for researchers seeking to navigate the ever-expanding land-
scape of open-source tools. By incorporating feedback from 
the community and staying abreast of the latest develop-
ments in the field, we aim to continually improve the utility 
and relevance of our resources for researchers.
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Declarations 

Ethical Approval This work has been established based on a survey 
conducted by the Society of Imaging Informatics (SIIM) Research 
Committee and collaboration with the Mayo Clinic Artificial Intel-
ligence Laboratory (MayoAILab).

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 

were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Center for Devices, Radiological Health Artificial Intelligence 
and Machine Learning (AI/ML)-Enabled Medical Devices. In: 
U.S. Food and Drug Administration. https:// www. fda. gov/ medic 
al- devic es/ softw are- medic al- device- samd/ artif icial- intel ligen ce- 
and- machi ne- learn ing- aiml- enabl ed- medic al- devic es

 2. Zhang K, Khosravi B, Vahdati S, Erickson BJ (2024) FDA Review 
of Radiologic AI Algorithms: Process and Challenges. Radiology 
310:e230242

 3. Leipzig J, Nüst D, Hoyt CT, Ram K, Greenberg J (2021) The role 
of metadata in reproducible computational research. Patterns (N 
Y) 2:100322

 4. Willemink MJ, Koszek WA, Hardell C, Wu J, Fleischmann D, 
Harvey H, Folio LR, Summers RM, Rubin DL, Lungren MP 
(2020) Preparing Medical Imaging Data for Machine Learning. 
Radiology 295:4–15

 5. Prevedello LM, Halabi SS, Shih G, Wu CC, Kohli MD, Chokshi 
FH, Erickson BJ, Kalpathy-Cramer J, Andriole KP, Flanders AE 
(2019) Challenges Related to Artificial Intelligence Research in 
Medical Imaging and the Importance of Image Analysis Com-
petitions. Radiology: Artificial Intelligence. https:// doi. org/ 10. 
1148/ ryai. 20191 80031

 6. Parmar C, Barry JD, Hosny A, Quackenbush J, Aerts HJWL 
(2018) Data analysis strategies in medical imaging. Clin Cancer 
Res 24:3492–3499

 7. Diaz O, Kushibar K, Osuala R, Linardos A, Garrucho L, Igual 
L, Radeva P, Prior F, Gkontra P, Lekadir K (2021) Data prepa-
ration for artificial intelligence in medical imaging: A compre-
hensive guide to open-access platforms and tools. Phys Med 
83:25–37

 8. Demirer M, Candemir S, Bigelow MT, et al (2019) A User Inter-
face for Optimizing Radiologist Engagement in Image Data Cura-
tion for Artificial Intelligence. Radiol Artif Intell 1:e180095

 9. Office for Civil Rights (OCR) (2012) Guidance regarding methods 
for DE-identification of protected health information in accord-
ance with the health insurance portability and accountability act 
(HIPAA) Privacy Rule. In: HHS.gov. https:// www. hhs. gov/ hipaa/ 
for- profe ssion als/ priva cy/ speci al- topics/ de- ident ifica tion/ index. 
html.

 10. Erickson BJ, Fajnwaks P, Langer SG, Perry J (2014) Multisite 
Image Data Collection and Management Using the RSNA Image 
Sharing Network. Transl Oncol 7:36–39

 11. Aryanto KYE, Oudkerk M, van Ooijen PMA (2015) Free DICOM 
de-identification tools in clinical research: functioning and safety 
of patient privacy. Eur Radiol 25:3685–3695

 12. Shahid A, Bazargani MH, Banahan P, Mac Namee B, Kechadi  
T, Treacy C, Regan G, MacMahon P (2022) A Two-Stage De- 
Identification Process for Privacy-Preserving Medical 
Image Analysis. Healthcare (Basel). https:// doi. org/ 10. 3390/  
healt hcare 10050 755

 13. GitHub - mih/mridefacer: Helper to aid de-identification of 
MRI images (3D or 4D). In: GitHub. https:// github. com/ mih/ 
 mride facer.

http://creativecommons.org/licenses/by/4.0/
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://doi.org/10.1148/ryai.2019180031
https://doi.org/10.1148/ryai.2019180031
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
https://doi.org/10.3390/healthcare10050755
https://doi.org/10.3390/healthcare10050755
https://github.com/mih/mridefacer
https://github.com/mih/mridefacer


2024 Journal of Imaging Informatics in Medicine (2024) 37:2015–2024

 14. Wiggins RH 3rd, Davidson HC, Harnsberger HR, Lauman JR, 
Goede PA (2001) Image file formats: past, present, and future. 
Radiographics 21:789–798

 15. Sriramakrishnan P, Kalaiselvi T, Padmapriya ST, Shanthi N, 
Ramkumar S, Kalaichelvi N (2019) An medical image file 
formats and digital image conversion. Int J Eng Adv Technol 
9:74–78

 16. Oladiran O, Gichoya J, Purkayastha S (2017) Conversion of JPG 
Image into DICOM Image Format with One Click Tagging. In: 
Digital Human Modeling. Applications in Health, Safety, Ergo-
nomics, and Risk Management: Health and Safety. Springer Inter-
national Publishing, pp 61–70

 17. Shini SG, Thomas T, Chithraranjan K (2012) Cloud Based Medi-
cal Image Exchange-Security Challenges. Procedia Engineering 
38:3454–3461

 18. Pareek A, Lungren MP, Halabi SS (2022) The requirements for 
performing artificial-intelligence-related research and model 
development. Pediatr Radiol 52:2094–2100

 19. Alshareef HN (2023) Current development, challenges, and future 
trends in cloud computing: A survey. Int J Adv Comput Sci Appl. 
https:// doi. org/ 10. 14569/ ijacsa. 2023. 01403 37

 20. Le KH, Tran TV, Pham HH, Nguyen HT, Le TT, Nguyen HQ 
(2023) Learning From Multiple Expert Annotators for Enhanc-
ing Anomaly Detection in Medical Image Analysis. IEEE Access 
11:14105–14114

 21. Aiello M, Esposito G, Pagliari G, Borrelli P, Brancato V, Salvatore 
M (2021) How does DICOM support big data management? Inves-
tigating its use in medical imaging community. Insights Imaging 
12:164

 22. Eley KA, Delso G (2020) Automated Segmentation of the Crani-
ofacial Skeleton With “Black Bone” Magnetic Resonance Imag-
ing. J Craniofac Surg 31:1015

 23. Bianco S, Ciocca G, Napoletano P, Schettini R (2015) An interac-
tive tool for manual, semi-automatic and automatic video annota-
tion. Comput Vis Image Underst 131:88–99

 24. Sakinis T, Milletari F, Roth H, Korfiatis P, Kostandy P, Philbrick 
K, Akkus Z, Xu Z, Xu D, Erickson BJ (2019) Interactive seg-
mentation of medical images through fully convolutional neural 
networks. arXiv

 25. Website. MONAI Consortium. (2023). MONAI: Medical Open 
Network for AI (1.2.0). Zenodo. https:// doi. org/ 10. 5281/ zenodo. 
80182 87.

 26. Mazurowski MA, Dong H, Gu H, Yang J, Konz N, Zhang Y 
(2023) Segment Anything Model for Medical Image Analysis: an 
Experimental Study.

 27. Singh S, Ahuja U, Kumar M, Kumar K, Sachdeva M (2021) 
Face mask detection using YOLOv3 and faster R-CNN models: 
COVID-19 environment. Multimed Tools Appl 80:19753–19768

 28. Nath V, Yang D, Landman BA, Xu D, Roth HR (2021) Dimin-
ishing Uncertainty Within the Training Pool: Active Learning 
for Medical Image Segmentation. IEEE Trans Med Imaging 
40:2534–2547

 29. Yang L, Zhang Y, Chen J, Zhang S, Chen DZ (2017) Suggestive 
Annotation: A Deep Active Learning Framework for Biomedical 
Image Segmentation. In: Medical Image Computing and Com-
puter Assisted Intervention − MICCAI 2017. Springer Interna-
tional Publishing, pp 399–407

 30. Dean CJ, Sykes JR, Cooper RA, Hatfield P, Carey B, Swift S, Bacon 
SE, Thwaites D, Sebag-Montefiore D, Morgan AM (2012) An evalua-
tion of four CT–MRI co-registration techniques for radiotherapy treat-
ment planning of prone rectal cancer patients. BJR Suppl 85:61–68

 31. Huhdanpaa H, Hwang DH, Gasparian GG, et al (2014) Image 
coregistration: quantitative processing framework for the assess-
ment of brain lesions. J Digit Imaging 27:369–379

 32. Wildeboer RR, van Sloun RJG, Postema AW, Mannaerts CK, Gayet 
M, Beerlage HP, Wijkstra H, Mischi M (2018) Accurate validation 

of ultrasound imaging of prostate cancer: a review of challenges in 
registration of imaging and histopathology. J Ultrasound 21:197–207

 33. Chen DQ, Dell’Acqua F, Rokem A, Garyfallidis E, Hayes DJ, 
Zhong J, Hodaie M (2019) Diffusion Weighted Image Co- 
registration: Investigation of Best Practices. bioRxiv 864108

 34. Yi T, Pan I, Collins S, et al (2021) DICOM Image ANalysis and 
Archive (DIANA): an Open-Source System for Clinical AI Appli-
cations. J Digit Imaging 34:1405–1413

 35. The Medical Imaging and Data Resource Center Commons. 
https:// data. midrc. org/.

 36. Darzidehkalani E, Ghasemi-Rad M, van Ooijen PMA (2022) Fed-
erated Learning in Medical Imaging: Part I: Toward Multicentral 
Health Care Ecosystems. J Am Coll Radiol 19:969–974

 37. Eichelberg M, Kleber K, Kämmerer M (2020) Cybersecurity 
in PACS and Medical Imaging: an Overview. J Digit Imaging 
33:1527–1542

 38. Shah C, Nachand D, Wald C, Chen P-H (2023) Keeping Patient 
Data Secure in the Age of Radiology Artificial Intelligence: 
Cybersecurity Considerations and Future Directions. J Am Coll 
Radiol 20:828–835

 39. Wireshark · go deep. In: Wireshark. https:// www. wires hark. org/.
 40. Shodan. In: Shodan. https:// www. shodan. io/.
 41. Nmap: the Network Mapper - Free Security Scanner. https:// nmap. 

org/.
 42. Kohli MD, Summers RM, Geis JR (2017) Medical Image Data 

and Datasets in the Era of Machine Learning—Whitepaper from 
the 2016 C-MIMI Meeting Dataset Session. J Digit Imaging 
30:392–399

 43. Khosravi B, Mickley JP, Rouzrokh P, Taunton MJ, Noelle Larson 
A, Erickson BJ, Wyles CC (2023) Anonymizing Radiographs 
Using an Object Detection Deep Learning Algorithm. Radiol-
ogy: Artificial Intelligence. https:// doi. org/ 10. 1148/ ryai. 230085

 44. Wasserthal J, Breit H-C, Meyer MT, et al (2023) TotalSegmen-
tator: Robust Segmentation of 104 Anatomic Structures in CT 
Images. Radiology: Artificial Intelligence. https:// doi. org/ 10. 
1148/ ryai. 230024

 45. Cai JC, Akkus Z, Philbrick KA, et al (2020) Fully Automated 
Segmentation of Head CT Neuroanatomy Using Deep Learning. 
Radiology: Artificial Intelligence. https:// doi. org/ 10. 1148/ ryai. 
20201 90183

 46. (2010) A non-local approach for image super-resolution using 
intermodality priors. Med Image Anal. 14:594–605

 47. NVIDIA AI: Advanced AI Platform for Enterprise. In: NVIDIA. 
https:// www. nvidia. com/ en- us/ ai- data- scien ce/? ncid= pa- 
srch- goog- 67985 5&_ bt= 66320 24183 41&_ bk= nvidia% 20ai%  
20ent erpri se&_ bm= e&_ bn= g&_ bg= 15350 30519 07& gclid= 
Cj0KC QiAuq KqBhD xARIs AFZEL mIEbO eKttE z3rSkz_ LGk- 
V8ppy EzFyf mpJXg RKyV5 hluz4 NdoxN 2GkaA lkKEA Lw_ wcB.

 48. Drukker K, Chen W, Gichoya J, et al (2023) Toward fairness 
in artificial intelligence for medical image analysis: identifica-
tion and mitigation of potential biases in the roadmap from data 
collection to model deployment. J Med Imaging (Bellingham) 
10:061104

 49. MICCAI BRATS - The Multimodal Brain Tumor Segmentation 
Challenge. http:// brain tumor segme ntati on. org/.

 50. RSNA 2022 Cervical Spine Fracture Detection. https:// kaggle. 
com/ compe titio ns/ rsna- 2022- cervi cal- spine- fract ure- detec tion.

 51. Ai MD MD.ai. https:// md. ai/.
 52. Larobina M, Murino L (2014) Medical image file formats. J Digit 

Imaging 27:200–206
 53. ANTs by stnava. https:// stnava. github. io/ ANTs/.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.14569/ijacsa.2023.0140337
https://doi.org/10.5281/zenodo.8018287
https://doi.org/10.5281/zenodo.8018287
https://data.midrc.org/
https://www.wireshark.org/
https://www.shodan.io/
https://nmap.org/
https://nmap.org/
https://doi.org/10.1148/ryai.230085
https://doi.org/10.1148/ryai.230024
https://doi.org/10.1148/ryai.230024
https://doi.org/10.1148/ryai.2020190183
https://doi.org/10.1148/ryai.2020190183
https://www.nvidia.com/en-us/ai-data-science/?ncid=pa-srch-goog-679855&_bt=663202418341&_bk=nvidia%20ai%20enterprise&_bm=e&_bn=g&_bg=153503051907&gclid=Cj0KCQiAuqKqBhDxARIsAFZELmIEbOeKttEz3rSkz_LGk-V8ppyEzFyfmpJXgRKyV5hluz4NdoxN2GkaAlkKEALw_wcB
https://www.nvidia.com/en-us/ai-data-science/?ncid=pa-srch-goog-679855&_bt=663202418341&_bk=nvidia%20ai%20enterprise&_bm=e&_bn=g&_bg=153503051907&gclid=Cj0KCQiAuqKqBhDxARIsAFZELmIEbOeKttEz3rSkz_LGk-V8ppyEzFyfmpJXgRKyV5hluz4NdoxN2GkaAlkKEALw_wcB
https://www.nvidia.com/en-us/ai-data-science/?ncid=pa-srch-goog-679855&_bt=663202418341&_bk=nvidia%20ai%20enterprise&_bm=e&_bn=g&_bg=153503051907&gclid=Cj0KCQiAuqKqBhDxARIsAFZELmIEbOeKttEz3rSkz_LGk-V8ppyEzFyfmpJXgRKyV5hluz4NdoxN2GkaAlkKEALw_wcB
https://www.nvidia.com/en-us/ai-data-science/?ncid=pa-srch-goog-679855&_bt=663202418341&_bk=nvidia%20ai%20enterprise&_bm=e&_bn=g&_bg=153503051907&gclid=Cj0KCQiAuqKqBhDxARIsAFZELmIEbOeKttEz3rSkz_LGk-V8ppyEzFyfmpJXgRKyV5hluz4NdoxN2GkaAlkKEALw_wcB
https://www.nvidia.com/en-us/ai-data-science/?ncid=pa-srch-goog-679855&_bt=663202418341&_bk=nvidia%20ai%20enterprise&_bm=e&_bn=g&_bg=153503051907&gclid=Cj0KCQiAuqKqBhDxARIsAFZELmIEbOeKttEz3rSkz_LGk-V8ppyEzFyfmpJXgRKyV5hluz4NdoxN2GkaAlkKEALw_wcB
http://braintumorsegmentation.org/
https://kaggle.com/competitions/rsna-2022-cervical-spine-fracture-detection
https://kaggle.com/competitions/rsna-2022-cervical-spine-fracture-detection
https://md.ai/
https://stnava.github.io/ANTs/

	A Guideline for Open-Source Tools to Make Medical Imaging Data Ready for Artificial Intelligence Applications: A Society of Imaging Informatics in Medicine (SIIM) Survey
	Abstract
	Introduction
	Method
	Data Curation
	De-Identification
	Data Format and Conversion
	Image Normalization
	Cloud Computing and Operating Systems
	Annotation and Labeling
	Segmentation
	Object Detection
	Active Learning
	Co-registration

	Data Collection and Storage
	Federated Learning
	Workflow
	Security Considerations
	Discussion
	Conclusion
	References




