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We cross-correlate galaxy weak lensing measurements from the Dark Energy Survey (DES) year-one (Y1)
data with a cosmic microwave background (CMB) weak lensing map derived from South Pole Telescope (SPT)
and Planck data, with an effective overlapping area of 1289 deg2. With the combined measurements from four
source galaxy redshift bins, we reject the hypothesis of no lensing with a significance of 10.8σ. When employing
angular scale cuts, this significance is reduced to 6.8σ, which remains the highest signal-to-noise measurement
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of its kind to date. We fit the amplitude of the correlation functions while fixing the cosmological parameters to
a fiducial ΛCDM model, finding A = 0.99 ± 0.17. We additionally use the correlation function measurements
to constrain shear calibration bias, obtaining constraints that are consistent with previous DES analyses. Finally,
when performing a cosmological analysis under the ΛCDM model, we obtain the marginalized constraints of
Ωm = 0.261+0.070

−0.051 and S8 ≡ σ8
√
Ωm/0.3 = 0.660+0.085

−0.100. These measurements are used in a companion work
that presents cosmological constraints from the joint analysis of two-point functions among galaxies, galaxy
shears, and CMB lensing using DES, SPT and Planck data.

I. INTRODUCTION

As a photon from a distant source travels through the Uni-
verse, its path is perturbed by the gravitational potential of
large-scale structure, an effect known as gravitational lens-
ing (for a review see e.g. [1]). The observed amplitude of
the perturbations to the photon’s trajectory depends on both
the matter distribution and geometry of the Universe, making
gravitational lensing a powerful cosmological probe. Further-
more, because these perturbations are induced by gravitational
effects, they are sensitive to all forms of matter, including dark
matter, which is difficult to probe by other means. The use
of gravitational lensing to constrain cosmology has developed
rapidly over the last decade [2–10] due to improvements in in-
strumentation andmodeling, and increases in the cosmological
volumes probed by surveys [11, 12].

In this study, we use two sources of photons to measure the
effect of gravitational lensing: distant galaxies and the cosmic
microwave background (CMB). Gravitational lensing caused
by the large-scale distribution of matter distorts the apparent
shapes of distant galaxies; similarly, gravitational lensing dis-
torts the observed pattern of temperature fluctuations on the
CMB last scattering surface. These distortions are expected to
be correlated over the same patch of sky since the CMB pho-
tons pass through some of the same intervening gravitational
potentials as the photons from distant galaxies. The two-point
correlation between the galaxy lensing and CMB lensing fields
can therefore be used as a cosmological probe.

Several features of the cross-correlation between galaxy
lensing and CMB lensing make it an appealing cosmologi-
cal observable. First, unlike two-point correlations between
galaxies and lensing, the lensing-lensing correlation consid-
ered here has the advantage that it is not sensitive to difficult-
to-model effects such as galaxy bias [13]. Second, since it
is a cross-correlation between two independently measured
lensing fields from datasets of completely different nature, it
is expected to be relatively robust to observational systemat-
ics. For instance, systematics associated with galaxy shape
measurement, like errors in the estimate of the point spread
function, will have no impact on the inference of CMB lensing.
Third, the use of the CMB lensing field provides sensitivity to
the distance to the last scattering surface; the large distance to
the last scattering surface in turn provides a long lever arm for
constraining cosmology.

Measurement of the two-point correlation between galaxy
lensing and CMB lensing was first reported by [14] using
CMB lensing measurements from the Atacama Cosmology
Telescope [15] and galaxy lensing measurements from the
Canada-France-Hawaii Telescope Stripe-82 Survey [16]. Sev-
eral subsequent measurements were made by [17] (Planck

CMB lensing + CFHTLens galaxy lensing), [18] (Planck and
SPT CMB lensing + DES-SV galaxy lensing), [19] (Planck
CMB lensing + CHTLenS and RCSLenS galaxy lensing), and
[20] (Planck CMB lensing + KiDS-450 galaxy lensing).
Here we measure the correlation between CMB lensing and

galaxy lensing using CMB data from the South Pole Telescope
(SPT) and Planck, and galaxy lensing data from year-one (Y1)
observations of the Dark Energy Survey (DES; [21]). We
perform a number of robustness checks on the measurements
and covariance estimates to show that there is no evidence
for significant systematic biases in the measurements over the
range of angular scales that we include in the model fits.
The measurements presented here represent the highest

signal-to-noise constraints on the cross-correlation between
galaxy lensing and CMB lensing to date. We use the mea-
sured correlation functions to place constraints on cosmolog-
ical parameters (in particular Ωm and S8 = σ8

√
Ωm/0.3). The

cosmological constraints obtained here are complementary to
those from DES-Y1 galaxy clustering and weak lensing [12],
which are sensitive to somewhat lower redshifts.
This work is part of a series of four papers that use cross-

correlations between DES data and CMB lensing measure-
ments to constrain cosmology:

- Measurement of correlation between galaxy lensing and
CMB lensing (this paper)

- Measurement of correlation between galaxies and CMB
lensing [22]

- Methodology for analyzing joint measurements of cor-
relations between DES data and CMB lensing [23]

- Results of joint analysis of correlations between DES
data and CMB lensing [24].

The main goal of this work is to present the measurement of
the correlation between galaxy lensing and CMB lensing, and
to subject this measurement to robustness tests. Consequently,
we keep discussion of the cosmological modeling brief and
refer the readers to [23] for a more in depth discussion of the
cosmological modeling used in these papers.
This work is organized as follows. In Sec. II we present

the theoretical background of the analysis and the required
formalism used throughout the analysis. We describe the data
products used in Sec. III and the methodology used to make
the measurements in Sec. IV. The results are presented in Sec.
V, while the cosmological parameter fits are shown in Sec. VI.
Finally, we present our conclusions in Sec. VII.
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II. THEORY

We are interested in the cross-correlation between CMB
lensing and galaxy lensing. CMB lensing is typically mea-
sured in terms of the spin-0 lensing convergence, κ, which is
proportional to a (weighted) integral along the line of sight of
the matter density [25]. Galaxy lensing, on the other hand, is
most easily measured via the spin-2 shear field, γ, by measur-
ing shapes of many galaxies. The γ and κ signals are related,
and one could in principle convert from γ to κ [e.g. 26]. How-
ever, the conversion process is lossy, and not necessary for
our purposes since we can directly correlate κ and γ. The
galaxy shear signal is estimated from the coherent distortion
of the shapes of galaxies. In this analysis, we measure the
correlation of the CMB lensing convergence, κCMB, with the
tangential component of the galaxy shear, γt (i.e. the com-
ponent orthogonal to the line connecting the two points being
correlated). The advantages of using γt are that it is trivially
computed from the observed shear and that γt is expected to
be robust to additive systematics in the shear measurement
process.1 This approach was recently used by [19], who found
it to yield higher signal-to-noise than alternative approaches;
the same approach was also taken by [27].

To quantify the correlation between CMB lensing and
galaxy lensing, we use the angular two-point function,
wγtκCMB (θ). To model this correlation, we begin by calcu-
lating the theoretical cross-power spectrum between the CMB
lensing convergence and the galaxy lensing convergence, κCMB
and κs, which we denote with CκsκCMB (`). In harmonic-space
and using the Limber approximation [28, 29], we have:

Cκ is κCMB (`) =
∫ χ∗

0

dχ
χ2 qκ is (χ)qκCMB (χ)PNL

(
k =

` + 1
2

χ
, z(χ)

)
,

(1)

qκ is =
3ΩmH2

0
2c2

χ

a(χ)

∫ χh

χ
dχ′

nis(z(χ′)) dzdχ′

n̄is

χ′ − χ
χ′

,

(2)

qκCMB (χ) =
3ΩmH2

0
2c2

χ

a(χ)
χ∗ − χ
χ∗

. (3)

Here, χ is the comoving distance, χ∗ is the comoving distance
to the last scattering surface, a(χ) is the cosmological scale
factor at distance χ, nis(z) is the redshift distribution of the
source galaxies in the ith redshift bin, n̄is =

∫
dz nis(z) is

the angular number density in this redshift bin, and PNL(k, z)
is the non-linear matter power spectrum at wavenumber k
and redshift z. We calculate PNL using the Boltzmann code
CAMB2 [30, 31] with the Halofit extension to nonlinear scales
[32, 33] and the [34] neutrino extension.

The harmonic-space cross-spectrum between the CMB and
galaxy convergences can be transformed to a position-space

1 Any additive systematic affecting the shear measurements that is constant
over scales of interest will vanish when averaging γt over azimuthal angle;
this is not true for the Cartesian components of γ.

2 See camb.info.

correlation function by taking the Hankel transform

wγ
i
t κCMB (θ) =

∫ ∞

0

`d`
2π

Cκ is κCMB (`)J2(`θ)F(`), (4)

where J2 is the second order Bessel function of the first kind
and F(`) describes filtering that is applied to the CMB lensing
map (see §III). We set

F(`) =
{

exp(−`(` + 1)/`2
beam), for 30 < ` < 3000

0, otherwise, (5)

with `beam ≡
√

16 ln 2/θFWHM ≈ 2120, where θFWHM = 5.4′.
The low and high-pass ` cuts are imposed to reduce biases in
the CMB lensing map; the Gaussian smoothing is applied to
ensure that large oscillations are not introduced when trans-
forming from harmonic to position-space (i.e. aliasing from
band limited measurements).

III. DATA

A. Galaxy weak lensing

DES is an optical galaxy survey conducted using the 570
Megapixel DECam instrument [35] mounted on the Blanco
Telecope at the Cerro Tololo Inter-American Observatory
(CTIO) located in Chile. In this analysis, we use the Y1
data that are based on observation runs between August 2013
and February 2014 [36]. We only use the data in the area
overlapping with the SPT footprint3; the overlap area is ap-
proximately 1289 deg2 between −60◦ < Dec. < −40◦, after
applying a mask to remove poorly characterized regions.
Two independent shape measurement algorithms — Meta-

calibration and Im3shape — were used to generate two
different shear catalogs from DES-Y1 data. These algorithms
and the corresponding catalogs are described in detail in [37].
In this analysis, we only consider the Metacalibration shear
estimates because of the higher signal-to-noise ratio of that
catalog.

Metacalibration [38, 39] is a recently developed tech-
nique for measuring galaxy shears that uses the data itself for
calibration, rather than relying on external image simulations.
The methodology has been demonstrated to yield a multiplica-
tive shear bias below 10−3 on simulations with galaxies of re-
alistic complexity [39]. Briefly, Metacalibration performs
shear calibration by applying artificial shears to the observed
galaxy images andmeasuring the response of the shear estima-
tor. The shear catalog used in this work was based on jointly
fitting images in three bands (riz).
The full Metacalibration catalogue is split into 4 pho-

tometric redshift bins: 0.20 < z < 0.43, 0.43 < z < 0.63,
0.63 < z < 0.90, 0.90 < z < 1.30, where z is the mean of the
estimated redshift probability distribution for each galaxy and

3 DES-Y1 data also covers the SDSS Stripe-82 region, though the cosmology
analysis focuses on the SPT region.
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FIG. 1. Redshift distribution of galaxies nis(z) for the 4 tomographic
bins for Metacalibration. The black line shows the CMB lensing
kernel.

the binning is chosen to be consistent with that used in [12].
The redshift distributions, nis(z), for each of the samples were
estimated using the BPZ code [40]. Detailed validation of
these distributions can be found in [41–43]. We also checked
that using an independent nis(z) estimation from the high qual-
ity COSMOS2015 photometric redshift catalog [41, 44] results
in negligible change in the final cosmological constraints.

To avoid implicit experimenter bias, the measurements were
blinded while most of the analysis was being performed. The
measurements were not compared with theoretical predictions
and the axes were removed prior to unblinding. For cosmo-
logical parameters estimations, the contours were shifted, and
the axes were removed.

B. CMB lensing map

We use the CMBweak lensingmap described in [45], which
was created from a combination of the SPT and Planck CMB
temperature data. Details of the κCMB procedures used to cre-
ate the map can be found in [45]; we provide a brief overview
below.

The lensing map is derived from a minimum-variance com-
bination of SPT 150 GHz and Planck 143 GHz temperature
maps over the SPT-SZ survey region (20h to 7h in right ascen-
sion and from −65◦ to −40◦ in declination). By combining
SPT and Planck maps in this way, the resultant temperature
map is sensitive to a greater range of modes on the sky than
either experiment alone. Modes in the temperature maps with
` > 3000 are removed to avoid systematic biases due to astro-
physical foregrounds such as the thermal Sunyaev-Zel’dovich
effect (tSZ) and the cosmic infrared background (CIB) [46],

whereas modes with ` < 100 are removed to reduce the effects
from low-frequency noise. The quadratic estimator technique
[47] is used to construct a (filtered) estimate of κCMB. Simu-
lations are used to remove the mean-field bias and to calculate
the response function which is used to properly normalize the
amplitude of the filtered lensing map.
The output lensing convergence map is filtered further to re-

move modes with ` < 30 and ` > 3000 and is smoothed with
a Gaussian beam with full width at half maximum of 5.4′.
Point sources (dusty-star forming and radio galaxies) with flux
density above 6.4 mJy in the 150 GHz band are masked with
apertures of r = 3′, 6′, 9′ depending the brightness of the point
source. Additionally, in order to reduce contamination of the
κCMB map by thermal Sunyaev-Zel’dovich (tSZ) signal, we
apply a mask to remove clusters detected at signal-to-noise
S/N > 5 in the SPT CMB maps, and DES redMaPPer clus-
ters with richness λ > 80; these clusters are masked with an
aperture of r = 5′. The effectiveness of this masking at reduc-
ing tSZ contamination was investigated in [23]. Such masking
could in principle induce a bias because clusters are associ-
ated with regions of high lensing convergence. However, it
was shown in [23] that this bias is negligible due to the small
fraction of area masked relative to the total area used.4
The effect of the uncertainty on the calibration of the CMB

temperature was investigated in [45], and it was found to be at
most 0.20σ of the statistical uncertainty when the calibration
is conservatively varied by 1% (although it is known to better
than 1% as noted in [48]).

IV. METHODS

A. Two-point measurement

Our estimator for the angular correlation function at the
angular bin specified by angle θα is

wγtκCMB (θα) =
∑Npix

i=1
∑Ngal

j=1 f iκ κ
i
CMBei jt Θα(θ̂i − θ̂ j)

s(θα)
∑

f iκ
, (6)

where the sum in i is over all pixels in the CMB convergence
map, the sum in j is over all source galaxies, and θ̂ represents
the direction of the κCMB pixels or source galaxies. ei jt is the
component of the corrected ellipticity oriented orthogonally
to the line connecting pixel i and source galaxy j [see e.g. 49].
The κCMB value in the pixel is κiCMB and f iκ is the associated
pixel masking weight, which takes a value between zero and
one (i.e. zero if the pixel is completely masked). The function
Θα(θ) is an indicator function that is equal to unity when the
angular separation between θ̂i and θ̂ j is in the angular bin
specified by θα, and zero otherwise. Finally, s(θα) is the
Metacalibration response, which can be estimated from the
data using the procedure described in [37]. We find that s(θ) is

4 Less than 1% of the survey area is lost by applying a mask that removes
437 clusters.
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approximately constant over the angular scales of our interest,
but different for each redshift bin. We evaluate the estimator
in Eq. 6 using the TreeCorr package.5
We perform the wγtκCMB (θ)measurements in 10 logarithmic

bins over the angular range 2.5′ < θ < 250′. Later we remove
a sub-range of these scales in the likelihood analysis, where the
scale cuts are determined such that they prevent known sources
of systematic error from biasing cosmological constraints (see
Sec. IVD).

B. Modelling of systematic effects in galaxy shear
measurements

Eq. 4 forms the basis for our model of the measured cor-
relation functions. We improve on this basic model by also
incorporating prescriptions for systematic errors in the esti-
mated shears and redshift distributions of the galaxies. We
describe these models briefly below. For more details, readers
should refer to [23] and [50]. The computation of the model
vectors and sampling of parameter space is performed using
CosmoSIS [30, 32, 51–56].

1. Photometric redshift bias

The inference of the redshift distribution, nis(z), for the
source galaxy sample is potentially subject to systematic er-
rors. Following [23], [50] and related past work [5, 57–59], we
account for these potential systematic errors in themodeling by
introducing a photometric redshift bias parameter which shifts
the assumed nis(z) for the source galaxies. That is, the true
redshift distribution for the ith source galaxy bin, nis,unbiased(z),
is related to the observed redshift distribution, nis(z), via:

nis,unbiased(z) = nis(z − ∆iz,s), (7)

where ∆iz,s is the redshift bias parameter, which is varied inde-
pendently for each source galaxy redshift bin.

Priors on the ∆iz,s are listed in Table I. The ∆iz,s values for the
three lowest redshift bins were obtained by cross-correlating
the source galaxy sample with redMaGiC Luminous Red
Galaxies (LRGs) [60], which havewell characterized redshifts.
The ∆iz,s value for the highest redshift bin comes from compar-
ing nis(z) derived from BPZ and the COSMOS2015 catalog.
The derivation of these priors is described in [41], with two
other supporting analyses described in [42] and [43].

2. Shear calibration bias

In weak lensing, one estimates galaxy shapes, or ellipticities
using a suitably chosen estimator. These estimators are often
biased and need to be calibrated using either external image

5 https://github.com/rmjarvis/TreeCorr

simulations (e.g. the Im3shape method) or manipulation of
the data itself (e.g. the Metacalibration method). The shear
calibration bias refers to the residual bias in the shear estimate
after the calibration process, or the uncertainty in the calibra-
tion process. In particular, we are mainly concerned about the
multiplicative bias in the shear estimate, which can arise from
failures in the shape measurements, stellar contamination in
the galaxy sample, false object detection and selection bias
[61, 62].
Following [23] and [50], we parameterize this systematic

error in shear calibration with a single multiplicative factor,
(1 +mi), for each redshift bin i. With this factor, the observed
correlation function becomes:

w
γtκCMB
obs (θ) = (1+mi)wγtκCMB

true (θ) i ∈ {1, 2, 3, 4}. (8)

We let the bias parameter for each redshift bin vary with a
Gaussian prior listed in Table I based on [37].

3. Intrinsic alignment

In addition to the apparent alignment of the shapes of galax-
ies as a result of gravitational lensing, galaxy shapes can also
be intrinsically aligned as a result of their interactions with
the tidal field from nearby large scale structure. The intrin-
sic alignment (IA) effect will impact the observed correlation
functions between galaxy shear and κCMB [63, 64]. The impact
of IA can be modeled via:

CκsκCMB
obs (`) = CκsκCMB

true (`) − CκCMBI(`), (9)

where CκCMBI(`) is calculated in a similar way as Eq. 1, but
with replacing the galaxy lensing kernel with:

W I(χ) = A(χ(z))C1ρcritΩm

D(z)
nis(z(χ))

n̄is

dz
dχ
, (10)

where D(z) is the linear growth function. Here we have em-
ployed the non-linear linear alignment model (see [52] for de-
tails) and included the redshift evolution of the IA amplitude
via

A(χ(z)) = AIA
(

1 + z
1 + z0

)ηIA

, (11)

We use fixed values z0 = 0.62, C1ρcrit = 0.0134, while letting
AIA and ηIA vary, as done in [12].

C. Covariance

The covariance matrix of wγtκCMB (θ) is computed analyti-
cally, using the halo-model to estimate the non-Gaussian con-
tributions. Details of the covariance calculation can also be
found in [23] and [50]. However, we make a small modifica-
tion in calculating the noise-noise covariance term, which we
measure by cross-correlating κCMB noise and rotated galaxy
shears. This modification is needed to incorporate the geom-
etry of the mask, which the analytic covariance neglects, and

https://github.com/rmjarvis/TreeCorr
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parameter fiducial prior
cosmology
Ωm 0.309 [0.1, 0.9]

As/10−9 2.14 [0.5, 5.0]
ns 0.967 [0.87, 1.07]
w0 -1.0 fixed
Ωb 0.0486 [0.03, 0.07]
h0 0.677 [0.55, 0.91]
Ωνh

2 6.45 × 10−4 [0.0006,0.01]
ΩK 0 fixed
τ 0.066 fixed

shear calibration bias
m1 0.010 (0.012, 0.023)
m2 0.014 (0.012, 0.023)
m3 0.006 (0.012, 0.023)
m4 0.013 (0.012, 0.023)

intrinsic alignment
AIA 0.44 [−5, 5]
ηIA -0.67 [−5, 5]
z0 0.62 fixed

source photo-z error
∆1
z,s -0.004 (-0.001,0.016)
∆2
z,s -0.029 (-0.019,0.013)
∆3
z,s 0.006 (0.009,0.011)
∆4
z,s -0.024 (-0.018,0.022)

TABLE I. The fiducial parameter valuesa and priors for cosmolog-
ical and nuisance parameters used in this analysis. Square brackets
denote a flat prior over the indicated range, while parentheses denote
a Gaussian prior of the form N(µ, σ).
a We use the Planck TT,TE,EE+lensing+ext best-fit values from [65] for
the cosmological parameters and the marginalized 1D peaks for the DES
nuisance parameters from the DES-Y1 joint analysis [12].

this correction increases the covariance by ∼ 30%. We com-
pare the theoretical estimate of the covariance to an estimate
of the covariance derived from the data in Sec. VB.

D. Angular scale cuts

There are several effects that may impact the observed corre-
lation functions that we do not attempt to model. As shown in
[23], the most significant unmodelled effects for the analysis of
wκCMBγt are bias in κCMB due to the thermal Sunyaev-Zel’dovich
(tSZ) effect, and the impact of baryonic effects on the matter
power spectrum. To prevent these effects from introducing sys-
tematic errors into our cosmological constraints, we exclude
the angular scales from our analysis that are most impacted.
The tSZ bias is greatest at approximately 3−5 Mpc and slowly
decreases at both smaller and larger scales. In contrast, the im-
pact of the baryonic effects is greatest below roughly 4 Mpc,
and negligible at larger scales (see Fig. 4 of [23]). Based on
these results, it was demonstrated that the impact of the sum of
these effects can be mitigated by excluding small scales from
the analysis.

In this study we adopt the scale cuts directly from [23]. The
scale cuts exclude angular bins below 40 arcminutes for the two
lowest redshift bins, and scales below 60 arcminutes for the

two highest redshift bins.6 For the angular scales beyond the
scale cuts, the baryonic effects have negligible impact to our
measurements, while the tSZ effect still remains. We quantify
this residual bias in Sec. VC.
We note that the scale cut choices made in this analysis were

motivated from consideration of the full 5×2pt data vector, and
not from consideration of wγtκCMB (θ) alone. This choice was
made because one of the main purposes of this work is to pro-
vide the measurements of wγtκCMB (θ) that will be incorporated
into the companion analysis of [24]. Since the other four two-
point functions also contribute some potential bias in the 5×2pt
analysis, the scale cut choice adopted here is conservative for
the analysis of wγtκCMB (θ) alone.

V. MEASUREMENT

The measured two-point angular correlation functions,
wγtκCMB (θ), for each of the source galaxy bins are shown in
Fig. 2. For each redshift bin we measure the correlation func-
tion in 10 angular bins logarithmically spaced between 2.5
and 250 arcminutes. We choose this binning to preserve rea-
sonable signal-to-noise in each angular bin, as discussed in
[23].

A. Testing the measurements

1. Correlation of κCMB with γ×

When cross-correlating the observed galaxy shears with the
κCMB map, we divide the observed shear into a tangential
component, γt, oriented tangentially to the line connecting
the two points being correlated, and a cross component, γ×,
which is parallel to the line connecting the two points. Weak
lensing is expected to produce a tangential shear component
only, and therefore the presence of a non-zero cross-correlation
with the cross-shear component would indicate the presence
of systematic errors.
In Fig. 2, we show the measured cross-correlation be-

tween the κCMB maps and the cross-component of the shear
(open points). As expected, we find that the measured cross-
correlation is consistent with zero in all redshift bins. We cal-
culate the χ2/ν (where ν is the number of degrees of freedom)
and probability-to-exceed (p.t.e.) between the measurement
and the null hypothesis (zero cross-correlation) for all redshift
bins combined, applying the angular scale cuts described in
Sec. IVD, and find χ2/ν = 6.9/14 and p.t.e = 0.94, indicating
consistency of the cross-shear correlation with zero. The χ2/ν
and p.t.e for the individual bins are summarized in Table II.

6 These angular scales cuts are applied to the two-point correlation mea-
surement between galaxy weak lensing and the CMB lensing map, not the
temperature map that is used to reconstruct the lensing map.
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FIG. 2. Measurements of wγtκCMB (θ) (filled circles) and wγ×κCMB (θ)
(open circles) using Metacalibration shear estimates and the
SPT+Planck CMB lensing map. The four panels show results for
the four source galaxy redshift bin. Faded points are removed from
the final analysis due to systematics or uncertainties in the modeling.
Also shown are the theoretical predictions using fiducial cosmology
with A = 1 (black), and with best-fit A (blue), where A in defined in
Sec. VIA.

B. Testing the covariance

As mentioned in Sec. IVB, we employ a theoretical co-
variance matrix (with a small empirical modification) when
fitting the measured correlation functions. To test whether
the theoretical covariance accurately describes the noise in the
measurements, we compare it to an estimate of the covariance
obtained using the “delete-one" jackknife method applied to
data.
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FIG. 3. The jackknife (upper left) and theory (upper right) correlation
matrix (Ci j/

√
CiiCj j ) for all the redshift bins. Lower panel: ratio of

the diagonal component of the covariance matrix for the theory and
the jackknife covariance in all redshift bins showing an agreement to
within 25% (shown as the gray band) for all the redshift bins.

To compute the jackknife covariance estimate, we divide the
source galaxy samples into Njk = 100 approximately equal-
area patches. The jackknife estimate of the covariance is then
computed as

Cjackknife
i j =

Njk − 1
Njk

∑
k

(dk
i − d̄i)(dk

j − d̄j), (12)

where dk
i is ith element of the wγtκCMB (θ) data vector that is

measured after excluding the shears in the ith patch on the sky,
and d̄ is

d̄i =
1

Njk

∑
k

dk
i . (13)

We have validated the jackknife approach to estimating the
covariance matrix of wγtκCMB (θ) using simulated catalogs. The
validation tests are described in Appendix B.
The theoretical and jackknife estimates of the covariance

matrix, and the ratio between the diagonal elements of the two
are shown in Fig. 3. It is clear from the top panels of the
figure that the covariance structure of the theoretical covari-
ance agrees qualitatively with the covariance measured from
the data. Furthermore, the bottom panel shows that the two co-
variances agree along the diagonal to better than 25%7 across

7 25% is approximately the scatter we see when comparing the covariance
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all redshift bins.

C. Estimating the impact of unmodeled systematics

While some sources of systematic error are modeled in the
analysis (namely photometric redshift and multiplicative shear
biases), there are several other potential sources of systematic
errors coming from unmodeled effects that could impact the
measurement of wγtκCMB (θ). Some of these, such as tSZ bias,
are minimized with angular scale cuts. One useful diagnos-
tic to determine the impact of residual systematic biases is to
identify the list of external quantities that could directly or in-
directly contaminate the signal and cross-correlate them with
the measured galaxy shears and CMB convergence. We ex-
pect these cross-correlations to be consistent with zero if these
external quantities are not introducing significant biases in the
measurements. One example of a quantity that could correlate
both with observed shear and CMB convergence is dust extinc-
tion: dust extinction is lower at high galactic latitudes, which
is where the density of stars is lowest, and therefore, could re-
sult in poor PSF modelling and biased shear estimates in those
areas. Meanwhile, dust is one of the foreground component of
the CMB temperature measurements, and one can expect po-
tential residuals in a single frequency temperature map. When
a contaminated temperature map is passed through the lensing
reconstruction pipeline, fluctuations from these foregrounds
get picked up as false lensing signal, which will be spatially
correlated with the variations in the galaxy shape measure-
ments, and therefore introduce biases in our measurements.

We divide potential systematic contaminants into two cate-
gories: those that are expected to be correlated with the true
(i.e. uncontaminated) γ or κCMB, and those that are not. For
those systematics that are expected to be uncorrelated with the
true γ and κCMB, we estimate the contamination of wγtκCMB (θ)
via

wS(θ) =
wκCMBS(θ)wγtS(θ)

wSS(θ)
, (14)

where S is the foreground map of interest. This expression
captures correlation of the systematic with both κCMB and γ,
and is normalized to have the same units as wγtκCMB (θ). Unless
the systematic map is correlated with both γt and κCMB, it will
not bias wγtκCMB (θ) and wS(θ) will be consistent with zero.

We consider three potential sources of systematic error that
are expected to be uncorrelated with the true γ and κCMB:
γPSFres

t (the residual PSF ellipticity), EB−V (dust extinction)
and δstar (stellar number density). We use the difference be-
tween the PSF ellipticity between the truth (as measured from
stars) and the model for the PSF residual. Descriptions of
the EB−V and δstar maps can be found in [66]. The measured
wS(θ) for these quantities are plotted in Fig. 4 relative to the

computed from many Flask (described in Appendix A.) realizations and
using the jackknife method on a single Flask realization.

uncertainties on wγtκCMB (θ). The error bars shown are deter-
mined by cross-correlating the systematicmapswith simulated
κCMB, γt maps generated using the Flask package [67]. For
each of the potential systematics considered, we find that the
measured wS(θ) is much less than the statistical uncertainties
on the wγtκCMB (θ) correlation, implying that there is very little
impact from these systematics.
Astrophysical systematic effects that we expect to correlate

with the true γ and κCMB must be treated somewhat differently,
since in this case, Eq. 14 will not yield the expected bias
in wγtκCMB (θ). Two sources of potential systematic error are
expected to have this property, namely contamination of the
κCMB map by tSZ and the cosmic infrared background (CIB).
Since the tSZ and CIB are both correlated with the matter
density, these contaminants will be correlated with the true
shear and κCMB signals. For both contaminants, we construct
convergence maps of the contaminating fields across the DES
patch, which we refer to as κtSZ and κCIB. The estimates of
κtSZ and κCIB are generated as described in [23].
We estimate the bias induced to wγtκCMB (θ) by tSZ and CIB

by measuring wγtκtSZ (θ) and wγtκCIB (θ). These quantities are
plotted in Fig. 4, with error bars determined by measuring
the variance between the systematic maps with 100 simulated
sky realizations generated using the Flask simulations (see
Appendix A for details). We measure a bias over the angular
ranges of interest, with a maximum bias8 of ∼ 0.30σ (where σ
is the expected standard deviation for wγtκCMB (θ)). As shown
in [23], this level of bias results in a small shift to inferred
parameter constraints.

VI. PARAMETER CONSTRAINTS

We assume a Gaussian likelihood for the data vector of
measured correlation functions, ®d, given amodel, ®m, generated
using the set of parameters ®p:

lnL( ®d | ®m( ®p)) = −1
2

N∑
i j

(
di − mi( ®p)

)
C−1
i j

(
dj − mj( ®p)

)
,

(15)

where the sums run over all of the N elements in the data and
model vectors. The posterior on the model parameters can be
calculated as:

P( ®m( ®p)| ®d) ∝ L( ®d | ®m( ®p))Pprior( ®p), (16)

where Pprior( ®p) is the prior on the model parameters.
In the following sections, we will use this framework to

generate parameter constraints in four scenarios, each keeping
different sets of parameters free.

8 [23] uses theory data vectors and model fits to the measured biases to
calculate similar quantities, from which the scale-cuts are derived. In
contrast, the measurements shown in Fig. 4 are calculated using the κtSZ
map and the galaxy shape catalogs, and therefore includes scatter. Although
it may appear as though the scale cuts are removing less biased angular bins,
this is primarily due to the scatter in our measurements.
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FIG. 4. Ratios of the estimated systematic biases to γtκCMB from
various contaminants to the statistical uncertainties on γtκCMB. We
find that all systematics considered result in negligible bias to the
γtκCMB measurements. For the case of PSF residuals, the auto-
correlation wSS(θ) of some bins are close to zero, resulting in large
error bars for certain bins. As described in the text, contamination
from the tSZ effect and the CIB (bottom two panels) must be treated
somewhat differently from the other contaminants, since these two
potential sources of bias are known to be correlated with the signal.
While we find significant evidence for non-zero wγtκtSZ (θ), the size
of this correlation is small compared to the errorbars on wγtκCMB (θ),
and does not lead to significant biases in cosmological constraints.

We note that we made minor modifications to the analysis
after we unblinded the data. We originally computed the con-
straints on shear calibration and intrinsic alignment parameters
fixing the cosmology to the values obtained from DES-Y1 in
Sec.VI B andVIC.We later allowed the cosmological parame-
ters to vary but combined with the Planck baseline likelihood.
Consequently, we also switched to using models generated
assuming Planck best-fit values when fitting the correlation
amplitudes in Sec. VIA, so that the same framework is used
throughout the analysis.

A. Amplitude fits

We first attempt to constrain the amplitude of the observed
correlation functions relative to the expectation for the fidu-
cial cosmological model summarized in Table I. The fiducial
cosmological parameters are chosen to be the best-fitting pa-
rameters from the analysis of CMB and external datasets in
[65]; and nuisance parameter values (shear calibration bias,
intrinsic alignment and source redshift bias) are chosen to be
the best-fitting parameters from the analysis of [12]. In this
case, the model is given by ®d = A ®dfid, where A is an amplitude
parameter and ®dfid is the model for the correlation functions
computed using the fiducial cosmological model of Table I.
The model is computed as described in Sec. IVB.
The resultant constraints on A for each redshift bin (and for

the total data vector) are summarized in Table II. We find that
the measured amplitudes are consistent with A = 1, although
the first redshift bin is marginally high. We calculate the p.t.e
using the χ2 of the measurement fit to the fiducial model with
A = 1 and obtain 0.14, which suggests that this deviation is not
significant. We additionally note the mild correlation between
A and redshift, althoughwith our uncertainties, no conclusions
could be made.
The constraint on Ausing all redshift bins is A = 0.99±0.17.

Furthermore, the resultant χ2 and p.t.e. values and indicate
that the model is a good description of the data. These values
are shown in the rightmost columns of Table II. This mea-
surement rejects the hypothesis of no lensing at a significance
of 6.8σ, and has a signal-to-noise ratio9 of 5.8σ. The latter
value can be compared directly with results from past work:
the cross-correlation measurement between Canada-France-
Hawaii telescope stripe-82 survey and Atacama Cosmology
Telescope obtained 4.2σ [14], RCSLens and Planck obtained
4.2σ [19], DES-SV and SPT-SZ obtained 2.9σ [18], KiDS-
450 and Planck obtained 4.6σ [20]. We also estimate the
detection significance and signal-to-noise ratio we would have
obtained with no scale cuts and find 10.8 and 8.2σ, respec-
tively. (We note that biases due to tSZ and baryonic effects both
tend to lower the cross-correlation amplitude; hence, these val-
ues are underestimates of the detection significance we would
have found in the absence of these biases.)

9 The two values are calculated using
√
χ2

null and
√
χ2

null − χ
2
min respectively.
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Sample A χ2/ν p.t.e.
0.20 < z < 0.43 1.90 ± 0.53 2.6/3 (0.4/4) 0.46 (0.98)
0.43 < z < 0.63 1.33 ± 0.36 2.9/3 (8.9/4) 0.41 (0.06)
0.63 < z < 0.90 1.04 ± 0.22 0.7/2 (4.3/3) 0.69 (0.23)
0.90 < z < 1.30 0.88 ± 0.20 1.0/2 (0.7/3) 0.60 (0.87)

all bins 0.99 ± 0.17 12.2/13 (6.9/14) 0.51 (0.94)

TABLE II. Results of the amplitude fitting analysis described in Sec.
VIA, assuming Planck best-fit ΛCDM cosmology. Results shown
correspond to Metacalibration measurements with angular scale
cuts applied. The numbers in enclosed in parentheses are fits for γ×
to A = 0.

Sample γtκCMB γγ

0.20 < z < 0.43 −− 0.02+0.15
−0.16

0.43 < z < 0.63 −0.08+0.47
−0.31 −0.04+0.09

−0.10
0.63 < z < 0.90 −0.06+0.20

−0.28 −0.10+0.05
−0.05

0.90 < z < 1.30 −0.14+0.14
−0.28 −0.05+0.06

−0.06

TABLE III. Constraints on mi from combining γtκCMB and γγ with
the Planck baseline likelihood. The constraints we obtain here are
weaker than those obtained through other simulation and data based
calibration methods described in [37].

B. Constraining shear calibration bias

In this section and Sec. VI C, we marginalize over the cos-
mological parameters and nuisance parameters (shear calibra-
tion bias, intrinsic alignment and source redshift bias) simulta-
neously over the ranges given in Table I but combine our mea-
surements with the Planck baseline likelihood.10 In addition,
instead of applying Gaussian priors on the shear calibration
biases, we vary them over the range [−1, 1] and evaluate the
constraining power that wγtκCMB (θ) has on these parameters.
From this, we obtain m2,3,4 =[−0.08+0.47

−0.31, −0.06+0.20
−0.28,

−0.14+0.14
−0.28]. The data does not constrain m1 well,

which could be explained by the small overlap be-
tween the CMB lensing and the galaxy lensing ker-
nel for this bin. These results are consistent with
the constraints from cosmic shear measurements when
the parameters are marginalized over in the same way:
m1,2,3,4 = [0.02+0.15

−0.16,−0.04+0.09
−0.10,−0.10+0.05

−0.05,−0.05+0.06
−0.06], but

significantly weaker than the imposed priors in [12], which
point to best-fit values of 0.012+0.023

−0.023 for all the bins. These
results are summarized in Table III, and the posterior distribu-
tions are shown in Fig. 5. Our analysis demonstrates the poten-
tial of using cross-correlation measurements between galaxy
lensing and CMB lensing to constrain shear calibration bias.
However, to reach the level of DES priors, the signal-to-noise
of the galaxy-CMB lensing cross-correlations would have to
improve by a factor of approximately 30.

10 Here we use the combination of low-` TEB and high-` TT likelihoods.

Probe AIA

γtκCMB 0.54+0.92
−1.18

γγ 1.02+0.64
−0.52

TABLE IV. Constraints on AIA assuming the non-linear alignment
model, when combining our wγtκCMB (θ)measurement and the Planck
baseline likelihood.

C. Constraining intrinsic alignment parameters

Using the same framework as Sec. VI B we attempt to con-
strain the non-linear alignment model parameters AIA and ηIA.
For the amplitude, we obtain AIA = 0.54+0.92

−1.18, which can be
compared to AIA = 1.02+0.64

−0.52, obtained from the DES-Y1 cos-
mic shear measurements. These results are in agreement with
each other, although it is noted that the values are not well
constrained. Since the product of galaxy weak lensing and
CMB lensing kernels span a wider redshift range compared
to the galaxy weak lensing kernel alone, we might expect to
obtain a better constraint on the redshift evolution parameter
ηIA using γtκCMB correlations over γγ. However, due to the
noise level of the CMB lensing map used in this analysis, we
find no significant constraint on this parameter. The results
are shown in Fig. 5, and are summarized in Table IV.

D. Cosmological parameter fits

The lensing cross-correlation measurements should be sen-
sitive to the information about the underlying dark matter
distribution and the growth of dark-matter structure in the
universe, and hence should be sensitive to Ωm and S8 ≡
σ8

√
(Ωm/0.3). The constraints that we obtain on these pa-

rameters are shown in Fig. 6, and are compared with the ones
obtained from the DES-Y1 cosmic shear results [11], DES-Y1
joint analysis [12] and CMB lensing alone [10]. The compari-
son between our results and that of cosmic shear is interesting
since we are essentially replacing one of the source planes in
[11] with the CMB. We find that the constraints that we obtain
for wγtκCMB (θ) are less constraining than but consistent with the
cosmic shear results. The marginalized constraints on Ωm and
S8 are found to be 0.261+0.070

−0.051 and 0.660+0.085
−0.100 respectively,

whereas [11] finds Ωm = 0.260+0.065
−0.037 and S8 = 0.782+0.027

−0.027.

VII. CONCLUSIONS

We have presented a measurement of the cross-correlation
between galaxy lensing as measured by DES and CMB lensing
as measured by SPT and Planck. The galaxy lensing measure-
ments are derived from observed distortions of the images of
galaxies in approximately the redshift range of 0.2 < z < 1.3;
theCMB lensingmeasurements, on the other hand, are inferred
from distortions of the CMB temperature map induced by in-
tervening matter along the line of sight of photons traveling
from the last scattering surface.
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The cross-correlation is detected at 10.8σ significance in-
cluding all angular bins; this is reduced to 6.0σ after removing
scales that we find to be affected by systematics such as tSZ
contamination of κCMB and the effects of baryons on the matter
power spectrum as described in [23].
We perform several consistency checks on the measure-

ments as well as tests for possible systematic errors. These
include performing null tests by cross-correlating κCMB with
stellar density, dust extinction, PSF residuals and the cross-
shear component, and testing our model for tSZ and CIB con-
tamination of the κCMB map. We find that of these possible
systematics, the tSZ effect dominates, and we mitigate this
bias by applying scale cuts to remove the angular scales that
are affected the most.
The analytical covariance matrix that we use is tested by

comparing with the jackknife covariance matrix estimated di-
rectly from the data. The diagonal elements of these covariance
matrices agree to within 25%, which is a reasonable agreement
given that the jackknife method produces a noisy estimate of
the underlying covariance.
Using the measured wγtκCMB (θ) correlation functions, we

perform parametric fits. Assuming a ΛCDM Planck best-fit
cosmology and fixing nuisance parameters to fiducial values
set by DES-Y1, we obtain a global best-fit amplitude of A =
0.99 ± 0.17 which is consistent with expectations from the
ΛCDM cosmological model (A = 1).
Next, we combine our measurement with the Planck base-

line likelihood, and vary the nuisance parameters and attempt
to constrain them. For the shear calibration bias parameters
we obtain the constraints m2,3,4 =[ −0.08+0.47

−0.31, −0.06+0.20
−0.28,

−0.14+0.14
−0.28], while m1 is not constrained well. These con-

straints are less stringent than the DES-Y1 priors derived from
data and simulations, it is anticipated that the γtκCMB corre-
lation will be able to constrain shear calibration bias to better
precision than these methods [68] for future surveys such as
CMB-S4 [69] and LSST [70].
For the amplitude of IA, we obtain the constraint AIA =

0.54+0.92
−1.18, which is in agreement with what is obtained from

DES-Y1 cosmic shear measurements. However, the red-
shift evolution parameter ηIA is not constrained well using
wγtκCMB (θ) measurement alone.
When we marginalize over the nuisance parameters using

the DES-Y1 priors listed in Table I, we obtain constraints on
cosmological parameters that are consistent with recent re-
sults from [37]: Ωm = 0.261+0.070

−0.051 and S8 ≡ σ8
√
Ωm/0.3 =

0.660+0.085
−0.100. While the constraining power of γtκCMB is rela-

tively weak, we obtain independent constraints on Ωm and S8,
which will help break degeneracies in parameter space when
all the probes are combined.
Future data from the full DES survey and SPT-3G [71]

should provide significant reduction in measurement uncer-
tainties on the wγtκCMB (θ) correlation function. Moreover, tSZ
contamination of the temperature-based CMB lensing map
necessitates removal of certain angular scales, which reduces
the signal-to-noise of the measurements significantly. For
SPT-3G, the CMB lensing map will be reconstructed using
polarisation data, which will have minimal tSZ contamina-
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tion.11 With these potential improvements, the γtκCMB cross-
correlation is a promising probe from which will be used to
extract constraints independent of those from galaxy shear or
CMB measurements alone.
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Appendix A: Flask simulations

In this work, we make use of the publicly available code
Flask [67], to generate correlated maps between shear and
CMB lensing. We use Flask to generate 120 full-sky log-
normal realizations of the density field and four galaxy shear
maps corresponding to the four redshift bins we use for the
data. Additionally, we generate a convergence map at z =
1089, and treat this as a noiseless CMB convergence map.

The galaxy shear catalogs are generated using galaxy number
densities and shape noise measured from data, and Gaussian
noise realizations generated from the noise power spectrum
of the CMB convergence maps are added to the noiseless
convergence map to produce data-like catalogs and maps. For
each full sky simulation, we extract out ten sub-catalogs by
applying theDES-Y1 angularmask, resulting in 1200 synthetic
galaxy shear catalogs and CMB convergence maps that have
noise properties matched to the real data.

Appendix B: Validation of jackknife covariance estimate

To test whether the jackknife covariance estimate provides a
reliable estimate of the true covariance over the scales consid-
ered, we make use of Flask simulation realizations. For each
of the simulated catalogues, we measure wγtκCMB (θ) using the
same procedure as applied to the real data. We then compute
the covariance matrix directly across the 1200 simulated cat-
alogs, which provides a low-noise estimate of the covariance
of wγtκCMB (θ) in the Flask simulations. (which we call “true"
Flask covariance). From the simulated catalogue, we also
compute the jackknife estimate of the covariance and compare
this with the true Flask covariance. We find that these are
consistent with each other to within 25%.
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