
UC San Diego
UC San Diego Previously Published Works

Title
Memory-Based High-Level Synthesis Optimizations Security Exploration on the Power Side-
Channel

Permalink
https://escholarship.org/uc/item/37h6x4mp

Journal
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39(10)

ISSN
0278-0070

Authors
Zhang, Lu
Mu, Dejun
Hu, Wei
et al.

Publication Date
2020-10-01

DOI
10.1109/tcad.2019.2950380
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/37h6x4mp
https://escholarship.org/uc/item/37h6x4mp#author
https://escholarship.org
http://www.cdlib.org/


1

Memory-Based High-Level Synthesis Optimizations
Security Exploration on the Power Side-Channel

Lu Zhang, Dejun Mu, Wei Hu, Yu Tai, Jeremy Blackstone, and Ryan Kastner

Abstract—High-level synthesis (HLS) allows hardware design-
ers to think algorithmically and not worry about low-level, cycle-
by-cycle details. This provides the ability to quickly explore
the architectural design space and trade-offs between resource
utilization and performance. Unfortunately, security evaluation is
not a standard part of the HLS design flow. In this work, we aim
to understand the effects of memory-based HLS optimizations on
power side-channel leakage. We use Xilinx Vivado HLS to develop
different cryptographic cores, implement them on a Spartan-6
FPGA, and collect power traces. We evaluate the designs with
respect to resource utilization, performance, and information
leakage through power consumption. And we have two important
observations and contributions. First, the choice of resource
optimization directive results in different levels of side-channel
vulnerabilities. Second, the partitioning optimization directive
can greatly compromise the hardware cryptographic system
through power side-channel leakage due to the deployment of
memory control logic. We describe an evaluation procedure
for power side-channel leakage and use it to make best-effort
recommendations about how to design more secure architectures
in the cryptographic domain.

Index Terms—Hardware security, high-level synthesis, power
side-channel evaluation, design space exploration.

I. INTRODUCTION

H IGH-level synthesis (HLS) allows a designer to quickly
restructure their code using high-level behavioral de-

scriptions or instruct the tool to perform automatic architec-
tural optimizations such as data partitioning, pipelining, and
unrolling [1]. This enables her to rapidly generate different
architectures and explore a large design space [2]. This,
along with the availability of mature commercial HLS tools,
has lead to wider adoption of HLS in the hardware design
process. Using these tools, it can emancipate programmers
from extensive hand-coding in RTL and manual tuning. To
improve the quality of the HLS design flow, many possible
combinations of optimization strategies are introduced and
evaluated, resulting in many insightful guidelines for the HLS
programming community.

Manuscript received February 16, 2019; revised April 28, and July 29, 2019;
accepted October 8, 2019. This work is partly supported by NSF of China,
National Cryptography Fund of China, Innovation Fund of Shenzhen Research
Committee, the Shaanxi Provincial Key R&D Program, Technology Project
of State Grid Corporation of China under grant 61672433, MMJJ20170210,
201703063000517, 2018KW-005, 522722180007. This project is partly sup-
ported under NSF grants CNS-1563767, CNS-1527631, and CNS-1718586.

L. Zhang, D. Mu, W. Hu, and Y. Tai are with the School of Cyberspace,
Northwestern Polytechnical University, Xian, Shaanxi 710072, China (e-
mail: willvsnick@gmail.com; mudejun@nwpu.edu.cn; weihu@nwpu.edu.cn;
taiyu@mail.nwpu.edu.cn).

J. Blackstone and R. Kastner are with the Department of Computer Science
and Engineering, University of California, San Diego, CA 92093 USA (e-mail:
jblackst@ucsd.edu, kastner@ucsd.edu).

Cryptographic algorithms are commonly implemented in
hardware to improve throughput and power consumption [3].
This has naturally prompted studies on how different cryp-
tographic algorithms and architectures compare with respect
to performance, power consumption, and resource usage [4].
Many cryptographic cores naturally map into HLS languages,
making it an attractive approach for designing cryptographic
hardware. While it is easy to measure the performance, power,
and resource usage, there is not a standard, built-in way to
determine the security of a particular design [5]. It is thus im-
portant to understand how these HLS optimizations effect the
design’s security alongside the traditional power, performance,
and resource usage metrics. This is especially important in
the cryptographic domain where there are significant security
concerns regarding to side-channel leakage [6].

Power side-channels are one of the most exploited security
vulnerabilities for cryptographic hardware. This has been
studied for decades, and it is well-known that an attacker can
extract confidential information using a (often very simple) sta-
tistical analysis of the computation’s power consumption [7].
As a consequence, there have been a large number of defenses
against these power side-channel attacks including masking
and hiding [8], [9]. As these defenses get implemented, the
attacks become more sophisticated. This presents a game of
“cat and mouse” where designers attempt to mitigate the vul-
nerabilities with more sophisticated defenses at the same time
that attackers perform more complex attacks. HLS technique
allows one to quickly generate different architectures and em-
ploy various defenses. However, this requires an understanding
of the trade-offs when developing cryptographic systems using
HLS tools. This is the question that we aim to understand:
how do we effectively leverage HLS to create fast, small, and
secure cryptographic hardware module?

State-of-the-art HLS tools such as Vivado HLS [10] or
LegUp [11] deliver a rich set of local synthesis directives
that can optimize your design by providing many alternative
choices for design space exploration (DSE) [12]. This work
aims to better understand the implications of these local HLS
optimizations on the power side-channel. However, it is much
harder to distinguish the side-channel effects of each local
optimization directive individually due to the flexible nature of
HLS and the complexity of the HLS-generated architectures.
Moreover, with the exponential growth of design space, it is
always time-consuming and costly to do security evaluation
for HLS DSE. To address the limitations, we build a standard
framework to evaluate the side-channel effects of memory-
based HLS optimizations. As a result, the side-channel effects
of each HLS optimization directive become traceable and



2

controllable with respect to side-channel analysis (SCA).
How power side-channel vulnerabilities are formed during

HLS procedure is a key question to answer for the security
analysis. Essentially, the reason why most SCA attacks mainly
focus on the non-linear module in crypto-algorithms is due to
the facts that glitches happening inside the implementation
of non-linear substitution contribute a large fraction of dy-
namic power leakage. Meanwhile the substitution operation
correlates more with the implementation of internal memories
during HLS transformation. Thus, the implementation of S-
boxes provides a natural starting point for understanding the
effects of HLS optimization, and we mainly focus on S-
box optimization. Yet, how the HLS optimization directives
would affect the power vulnerabilities as well as the overall
performance of a specific design is still unknown.

To address this issue, our work represents a first step to
place the questions on an empirical, quantifiable basis. The
first issue we tackle is whether different HLS optimizations
change the power side-channel leakage. This answer is not
surprising – yes, they do. The second one is to understand why
the HLS optimization affects the security of the cryptographic
design. The third one is comparing HLS designs with well-
known RTL-based cryptographic designs and determining any
differences between these architectures generated using design
entry at different levels of abstraction. Our best-effort guidance
can substantially decrease the risks to generate an architec-
turally insecure design, providing more security insights for
designers. This paper is an extended version of the work
published in [13], the main contributions are as follows:

• Providing a framework to evaluate power side-channel
leakage as a security metric when performing HLS;

• Performing an in-depth security analysis on HLS parti-
tioning technology in cryptographic domain by exploring
the side-channel effects of different combinations of HLS
optimization directives using real-world power traces;

• Presenting the first experimental results that qualitatively
and quantitatively evaluate the consequences of memory-
based HLS optimizations;

• Demonstrating the best design trade-offs among the HLS-
generated benchmarks, comparing between HLS and RTL
benchmarks, and finally revealing more insights of HLS
optimizations on power side-channels.

The reminder of the paper is organized as follows. Section
II presents the preliminaries of behavioral synthesis and block
ciphers with respect to SCA security. Section III demonstrates
the basic criteria for SCA evaluation and the evaluation
metrics. Section IV shows the security evaluation workflow
and the reference architecture for HLS DSE. Section V shows
the general process for pragma-based HLS DSE and the
description of benchmarks. In Section VI, we analyze and
compare the experimental results. At last, we briefly review
related work in Section VII, and conclude in Section VIII.

II. PRELIMINARIES

This section provides the background. We first describe
the basic transformations of behavioral synthesis and discuss
the corresponding security concerns. Then, we introduce the

Substitution-Permutation networks widely used in block ci-
phers and its correlation with SCA attacks. Finally, we discuss
the limitations and solutions for the HLS DSE.

A. Behavioral Synthesis and Potential Security Challenges

Behavior synthesis seeks to automatically translate high-
level languages to register transfer level (RTL) expressions so
as to reduce the design effort. The main concerns, when con-
verting behavioral descriptions in HLS to micro-architectures
in RTL, are the transformations of arrays, loops, and functions.
Fig. 1 represents a motivational example, which demonstrates
the main transformations of HLS in detail as well as the
potential security challenges for each type of transformation.
In general, 1) Arrays in HLS description are always expressed
as memories in RTL description, and then implemented using
Block/LUT RAMs as storage instances. For example, the
memory-based optimization can guide the HLS tools to specify
the types of implementation (memories or registers) as well
as the number of ports (single-port or dual-port) for RAMs.
2) Loops in HLS have great effects on how to create a
finite state machine (FSM), thus generating the corresponding
control logic, and the loops also affect the design hierarchy.
For instance, the loop-based optimization can decide how
the loops are unrolled or pipelined, which mainly affects the
timing constraints and the throughput. 3) Functions are the
main body of behavioral description as it can define the main
hierarchy of design as well as the I/O ports or communication
protocols. For example, the function-based optimization can
specify whether two functions of a design should be inlined.

HLS 
Description

RTL 
Description

Hardware 
Instance

SCA 
Attackers

Arrays

Loops

Functions

Memories

FSM control 
& Hierarchy

I/O Ports
& Hierarchy

Block/LUT
RAMs

Control logic

Compute & 
Adaptor logic

Compute Storage

Control Adaptor

Hardware Logic

S Shift
Rows

S Shift
Rows

No Pipelined Moment Pipelined MomentNo access to storage

S Shift
Rows

Power dynamics

Confidential key

… … …
…

No pipelined moment

Pipelined momentEach time the storage is accessed, there are power dynamics!

Fig. 1. The HLS translation workflow from the behavioral description to the
hardware instances and also the DPA implications of the HLS design flow.

The inherent relation between power side-channel leakage
and HLS workflow can be explained as follows. In terms
of the cryptographic security, the corresponding local opti-
mization directives can be divided into two categories: first,
the memory-based optimization directives (e.g., resource or
partitioning) can directly affect how to construct a memory
or decide the layout of multi-bank memory architectures.
Consequently, by carefully exploring how to synthesize or im-
plement this sub-architecture, the implication of side-channel
leakage in terms of HLS can be revealed. Second, the loop-
or function-based optimization directives (e.g., loop pipeline
or function inline) can affect the side-channel vulnerabilities
by changing the hierarchy of a design or by affecting the



3

FSM control. More precisely, by changing the substitution
highlighted in red in Fig. 2, the memory-based optimization
directives could directly affect the formation of side-channel
leakage. For example, as shown in Fig. 2, the leakage peaks
only appear in the first/third clock cycle, where the substitution
highlighted in red starts to operate. Note that, power dynamics
and confidential information are two essential ingredients in
the formation of side-channel leakage. Namely, only if the
power dynamics correlate with the confidential information
(e.g., the case of substitution), it is considered as side-channel
leakage. Otherwise, it is considered as the noises.

Operation 
1

Sub-
stitution

SC
A

 L
ea

ka
ge

Time slot

Clock

Operation 
2

Purely Leakage Moment No Leakage Moment Noisy Leakage Moment

1 2 3

Leakage Boundries

width

Height

width

Height

The Circuit for 
Substitution

Confidential Information

Power dynamics✔

✔

The Circuit for 
Operation 1, 2

Power dynamics

Confidential Information

✘

✘

The Circuit for 
Operation 3, 4

Power dynamics 

Confidential Information✘

✔

Noises

LeakageLeakage

}

Noises

Sub-
stitution

Operation 
3

Operation 
4

}

Fig. 2. The SCA leakage comparison between purely leakage moment, no
leakage moment and noisy leakage moment.

A major challenge of security evaluation in behavioral
synthesis is derived from the architectural complexity and
flexibility of HLS. Though some modifications in HLS de-
scription are so tiny, it can completely change the corre-
sponding expressions in RTL level, finally leading to many
architectural changes along with the security risks in hardware
implementation. Moreover, it is especially difficult to judge
whether the side-channel leakage changes are caused by a
single factor or criterion. For example, inserting a scheduling-
based optimization directive (e.g., pipeline or unroll) to the
HLS description may dramatically affect the hierarchy of
design as well as the FSM control. In this case, it is extremely
difficult to distinguish the side-channel effects of each HLS op-
timization directive separately as the architectural changes are
made everywhere also depending on the implementation rules
provided by HLS tools. For the memory-based optimization, it
might not incur too many changes in the hierarchy or the FSM
control. Yet, the appearing challenge is lack of a golden noise-
free reference design, facilitating a fair and efficient security
comparison among these micro-architectures.

B. Block Ciphers and Problem Formulation

Block cipher is defined as a deterministic algorithm per-
forming on fixed-length groups of bits, called a block, with
an unvarying transformation that is specified by a symmetric
key. By combining simple operations such as substitutions
and permutations, the security level of such algorithms can be

effectively enhanced. Therefore, the Substitution-Permutation
Networks (SPN) operate as both important and widely adopted
elementary structure in the design of modern block ciphers,
aiming at satisfying the Shannon’s “Confusion” and “Diffu-
sion” properties. Generally, the “Confusion” is performed by a
layer of S-boxes to achieve the non-linear transformation. The
“Diffusion” is performed through the linear permutation called
P-box. Meanwhile, several alternating “rounds” or “layers”
of SPN structures are performed in order to generate the
final ciphertext. The best example for such SPN structure is
Rijndael, the cipher which has been standardized to become
the AES. Indeed, there exist various versions of block ciphers
that are based on the SPN-based structure (e.g., PRESENT).

Depending on the application scenario, there might exist
some architectural differences among those block ciphers.
However, given the nature of SCA, most side-channel attackers
only choose the “Confusion” operation of one chosen time-
slot (e.g, a part of the non-linear transformation layer) as a
target, rather than the entire cipher. The typical SCA scenario
assumes an attacker already knows the cipher plaintexts or
ciphertexts, the “Confusion” operation is generally indexed
with values depending from both plaintexts (or ciphertexts)
and a portion of the secret key. Subsequently, by comparing
the power prediction taken by the portion of the secret key
with the measured power consumption, the actual value of the
key portion can be revealed through the use of a statistical tool.
As the “Confusion” causes more power consumption due to
the complex implementation of S-boxes, it represents an easy
information leakage spot for attackers. While “Diffusion” is
implemented only using simple wiring, it has little effects on
leakage dynamics. Fig. 3 shows a motivational example.

Fig. 3 (c) represents the MTD (Measurement-To-Disclosure)
comparison between two well-known block cipher Rijndael
AES and PRESENT, as shown in Fig. 3 (a) (b), and our
proposed reference design (REFERENCE), as shown in Fig.
5 (a). Two important observations can be obtained from this
example. 1) Observation 1: For different ciphers, attackers
firstly have to decide the suitable time-slot to launch the
attack. For example, the last round of Rijndael AES is always
chosen as the targeted time-slot, since it is the only round for
AES without the operation of “MixColumns”, in which the
leakage arising from the operation of “SubBytes” can achieve
the maximization. PRESENT has more intermediate states to
target due to its rather simple implementation. 2) Observation
2: The stand or fall of a design is not specific to different types
of ciphers but rather to the fact that how to implement the S-
boxes using memory primitives inside, including not only the
specific layout of memories but also the unique structure of
each memory. We stress that our analysis is not limited to
cryptographic ciphers such as AES or PRESENT, but are also
relevant for any other block ciphers in which the similar SPN-
based structure is adopted.

This paper makes use of those observations to facilitate the
HLS DSE. Based on observation 1, we obtain the experience
that the first challenge for attackers is to locate the suitable
time-slot (e.g., a small chunk of the power trace), when the
FSM starts to call the S-boxes. As a result, the problem for
attackers is converted to a problem of deciding when the



4

Attacker

(a) Block Cypher AES. n ∈ {	10, 12, 14}

SBOX 1 SBOX 2 SBOX 3 SBOX 4

REFERENCE PRESENT AES

AES PRESENT REFERENCE

SBOX1 SBOX2 SBOX3 SBOX4

Time slot

Subkey 0

Plaintext

……

……

……

Subkey 1 Subkey n

SPN 
Network

Round 0 Round 1 Round n

Ciphertext

Attacker

(b) Block Cypher PRESENT. n ∈ {	26, 31}

SPN 
Network

Attacker

Time slot

(c) MTD Comparison between AES, PRESENT and REFERENCE

……

……

……

……

Subkey 0 Subkey 1 Subkey n

Plaintext

Round 0 Round 1 Round n

SPN 
Network

Ciphertext

Fig. 3. The function diagrams of the block ciphers (a) AES (the key expansion omitted) and (b) PRESENT (the key expansion omitted). (c) the MTD metric
comparison between block cipher AES, PRESENT and the proposed noise-free reference architecture (REFERENCE).

S-boxes start to operate. From observation 2, we can know
that the different constructions of S-boxes do deliver different
amount of side-channel vulnerabilities. However, evaluating
the side-channel effects of memory-based HLS optimizations
on block ciphers is always time-consuming and error-prone.
Because it is inherently hard to evaluate the effect of a single
optimization directive without considering the effects of other
architectural changes that simultaneously happen to the entire
design. Therefore, we propose an alternative approach, which
facilitates the security evaluation for DSE by purely focusing
on the construction of substitution subsystem that is generated
by HLS tools. However, one of the main challenges in pragma-
based HLS DSE resides in how to provide a fair evaluation
for different optimization directives. To address these limita-
tions, there exists an urgency to design a golden noise-free
architecture, which allows us to perform a pragma-based DSE
and separately evaluating the effects of each memory-based
HLS optimization directive on the power side-channel, while
regardless of the timing concerns caused by other tasks.

C. Overview of Memory-based Optimization in HLS Tools

There exist various commercial or academic HLS tools
[14] in literature, which construct the memory sub-system
in their specific way. DWARV [15] is an academic HLS
tool that provides many performance-optimized options. It has
flexible strategies to optimize the memory architectures. For
example, it allows to allocate the variables or arrays to external
memory (e.g., local on chip buffers) or internal memories
(e.g., BRAMs) by configuring the corresponding pragmas.
LEGUP [11] is an academic HLS tool that allows the use of
optimization in the form of Tcl. For example, it allows the use
of memory partitioning, which is similar to the ones of Vivado
HLS. BAMBU [16] is an academic HLS tool that tries to build
a hierarchical data-path to a dual-port BRAM. This memory
infrastructure facilitates the connection to external devices or
to the bus linking the off-chip memories. Vivado HLS [10] is a
maturely commercial HLS tool that provides many parameter-
based mapping optimization to memories. Among the HLS
tools, the commercial Vivado HLS is a more powerful one in
that it supports more features and being more robust than the
academic tools. Therefore, we take the performance-optimized
optimization of Vivado HLS as an exemplar.

III. POWER SIDE-CHANNEL LEAKAGE DETECTION AND
METRICS DESCRIPTION

In this section, we first introduce the related work in HLS
for security that is emerging recently. Then we introduce the
SCA evaluation methodologies and the metrics.

A. Emerging Interests of Security with HLS

Modern chip design methods are lack of the necessary
investment in scalable security mechanisms, increasing the
risks to be hacked (e.g., side-channel attacks). Hence, the
program of Automatic Implementation of Secure Silicon
(AISS) was proposed by DARPA in order to facilitate the
automatic exploration of economics versus security trade-offs.
The novelty of this approach is due to the facts that design
complexity and cost of integration make it nearly impossible to
address newly security issues after finishing the entire design
flow. Therefore, AISS aims to provide an approach being
beneficial for rapidly evaluating architectural alternatives that
best address the required design and security metrics, as well
as building cost models to optimize the economics versus
security tradeoff. The methodology for security evaluation of
HLS proposed in this paper provides a means of evaluating
side-channel effects of architectural changes due to HLS
optimization and it is beneficial for providing more solutions
to solve the problems existed in AISS, simultaneously bringing
greater automation to the security design process. As a result,
the burden of security inclusion can be largely decreased.

B. Examining the Side-Channel Leakage

Side-Channel leakage evaluation aims to categorize an im-
plementation based upon its vulnerability to attack. For first-
order leakage detection, the non-specific t-test is considered as
the most common assessment for early-stage assessment [17].
Intuitively, one virtue of non-specific t-test is its independence
from any power model and intermediate value. Hereby, it is
adopted as a standard method to investigate the existed first-
order power side-channel leakage. The basic idea of non-
specific t-test is to check if two datasets have identical mean
and variance. In such a test, two datasets (D1 and D2) are
available. Data in D1 is collected by feeding identical plaintext
to the encryption module for m times. While Data in D2 is
measured by sequentially feeding various plaintexts n times.



5

Yet, the key for D1 and D2 is a constant value. A Welch’s
t-test [18] is performed by computing the equation (1).

t̂(d1, d2) =
µ̂d1 − µ̂d2√
σ̂2
d1

m +
σ̂2
d2

n

(1)

where d1 ∈ D1 and d2 ∈ D2, and µ̂ and σ̂ represent
the sample mean and sample variance, respectively. It is
noteworthy that, from the prospective of practical experience,
the null hypothesis of non-specific t-test could be rejected
with sufficient evidence only when the result value |t| > 4.5.
Therefore, the existence of a leakage could be detected.

C. Quantifying Side-Channel Leakage as a Metric

Side-channel attack was first proposed by Kocher in 1999
by exploiting Difference-of-Means test as distinguisher [19].
Among all non-profiled first-order side-channel methods, Cor-
relation Power Analysis (CPA) is considered as the most
efficient and optimal one against first-order side-channel leak-
age [20]. To quantify the security of a specific design, we
apply the number of Measurements-to-Disclosure (MTD) as
the metric for side-channel security evaluation. In such an
attack, randomly generated plaintexts are chosen and fed to the
encryption module continuously. While the encryption key is
constant for all the measurements. During encryption, power
traces are recorded and then correlate to power consumption
predicted by the power model. Such comparison can be fairly
performed by means of Pearson’s Correlation Coefficient for
each key hypothesis k̂, using equation (2).

ρ̂(r, hk̂) =
cov(r, hk̂)

σ̂(r) · σ̂(hk̂)
(2)

where r and hk̂ denote the real recorded measurement
and hypothetical power consumption, respectively. While the
covariance and standard deviation are denoted as cov and
σ̂, respectively. In a successful case, the key hypothesis k̂c
corresponding to the correct guess can lead to a significant ρ̂c
(ρ̂c ∈ (−1, 1)) value by a large amount than a wrong guess.
During the MTD ranking process in HLS DSE, a higher MTD
value indicates that the benchmark is more secure in terms of
the SCA security. Note also that, if the CPA attack on a specific
architecture can not lead to any key recoveries, the MTD value
of the design is marked as 100,000+ or SD.

IV. PROPOSED FRAMEWORK FOR POWER SIDE-CHANNEL
EVALUATION IN HIGH-LEVEL SYNTHESIS

In this section, we introduce the proposed framework for
side-channel evaluation in HLS and demonstrate the imple-
mentation details of the reference architecture.

A. General Side-Channel Evaluation Workflow

Our overall workflow is shown in Fig. 4. The goal is to
create different architectures, collect consistent power traces,
and evaluate each architecture’s resilience to power SCAs. The
upper row of Fig. 4 shows the workflow of building differ-
ent memory structures depending on the #pragma resource

configuration in HLS-readable source codes. First, we create
a C code reference design for “SubBytes” module. Second,
these C codes are modified manually to create HLS-readable
codes. Third, Vivado HLS generates RTL from the input HLS
codes. The lower row of Fig. 4 presents the workflow of
deploying the partitioning strategies that results in different
memory layout. First, a #pragma array partition directive
is added to the source code, where the #pragma resource
directive is located. Second, by changing the tunable options
both in resource and array partition directive, we can generate
the partitioning benchmarks that belong to the corresponding
pragma-resource series. After this point, a similar procedure
is performed for all the benchmarks. Afterward, we extract the
corresponding memory sub-system from HLS-converted RTL
and implant it into the reference architecture in Fig. 5 (a). Then
these benchmarks are synthesized and implemented using ISE
Design Suite v14.7 in turn to obtain resource utilization and
performance information, respectively. Finally, we run these
benchmarks on the side-channel evaluation SAKURA-G board
and collect traces for further security evaluation. For security
evaluation, we start our work by performing the non-specific
t-testing, as described in Section III-B. Simultaneously, we
perform a first-order CPA attack to quantify the power leakage
as a security metric, as shown in Section III-C.

B. Reference Architecture and Approach

In HLS DSE, we have to tackle a large number of bench-
marks in order to explore the Pareto-optimal design. However,
as the amount of data required for SCA grows exponentially
along with the growth of design space, the traditional way
for SCA security evaluation is extremely time-consuming and
costly. Therefore, we propose a new methodology for HLS
DSE. Our approach dramatically reduces the time and effort
for SCA evaluation in memory-based HLS DSE by simplifying
the SPN structure into a golden noise-free reference architec-
ture, as shown in Fig. 5 (a). It has removed all external circuit
that may cause undesirable noise in power side-channel while
it keeps the basic features of an SPN structure.

The top-level block diagram of the reference architec-
ture consists of four basic components: input/output signals,
state registers, non-linear transformation module (Substitution
Layer) and HLS/RTL benchmark IP library. The input signals
include plaintext, encryption key, clock, and start signal. After
being XORed, the intermediate values are loaded into the state
registers. The output is the corresponding ciphertext taken
from the state registers. For all benchmarks, we implement
each design by replacing the corresponding non-linear sub-
module in the substitution layer. As the reference architecture
uses state registers to store the intermediate values so the
Hamming Distance between value updates in the registers can
describe the real-world power consumption precisely, thus it
is considered as a perfect power leakage model in this case.

C. Approach Generality and Experimental Limitation

The generality of the approach derives from the leakage
mechanism of power side-channel. Considering the scenarios
shown in Fig. 5 (b) and (c), some registers for loop pipelining



6

Partitioning Specification
BLOCKRAM_nP_M0
BLOCKRAM_nP_M2
BLOCKRAM_nP_M4
BLOCKRAM_nP_M8

BLOCKRAM_nP_M16

Partitioning Specification
LUTRAM_1P_M0
LUTRAM_1P_M2
LUTRAM_1P_M4
LUTRAM_1P_M8

LUTRAM_1P_M16

Resource  Specification
ROM_1P_LUTRAM
ROM_2P_LUTRAM

ROM_1P_BRAM
ROM_2P_BRAM
ROM_nP_BRAM

MUX

uint8_t SubBytes(uint8_t index)
{    static const uint8_t sbox[] = {

0x63, 0x7c, 0x77, … , 0xab, 0x76,
…                                              …
0x8c, 0xa1, 0x89, … , 0xbb, 0x16;}

#pragma  HLS resource variable = sbox
core=ROM_1P_BRM

return sbox[index];    }

uint8_t SubBytes(uint8_t index)
{ static const uint8_t sbox[] = {

0x63, 0x7c, 0x77, … , 0xab, 0x76,
…                                              …
0x8c, 0xa1, 0x89, … , 0xbb, 0x16;}

#pragma  HLS resource variable = sbox
core=ROM_1P_BRM

#pragma  HLS ARRAY_PARTITION variable 
= sbox block factor =2 dim=2 

return sbox[index];    }

High-speed 
Oscilloscope

PXIe-5186 and 
TDS5104B

SAKURA-G

Side-Channel Attack

Leakage Detection

ISE DESIGN SUITE

Resource  Optimization

Memory  Layout
A. B. C. D. 

Partitioning Optimization

Memory Structure
A. B. C. D.

ISE DESIGN SUITE

1. Create HLS source code, and add tunable 
resource and partitioning parameters.

2. Generating corresponding 
HLS-based benchmarks.

3. Implement design  on reference architecture
and extract resource parameters.

4. Run each design and 
collect power traces.

5. Launch side-channel 
security evaluation.

Fig. 4. The workflow to design each benchmark and perform the security evaluation. First, we create the benchmark using HLS or an existing RTL
implementation. We evaluate only architectural changes related to the S-box, and therefore, we create a test harness focused on gathering the power consumption
only in that module. The S-box architectures are synthesized to FPGA and executed with different power traces collected with an oscilloscope.

ADD
Key
Text

CLK

Out

Start

State
Reg

Substitution 
Layer

M
U

X

Ci Ci+1

HLS and RTL 
Benchmark IPs

(a) Reference Architecture

Memory
Sub-system

(b) Module-Pipelined Architecture

… … … …

Round 1

… …

S-Box

(c) Round-Pipelined Architecture

Round n

Shift
Row

Mix
Colum

Benchmark (a) (b) (c)
MTD Y Y+△1 Y+△2

… …

Benchmark (a) (b) (c)
T-value X X+△1 X+△2

…
…

S-Box Shift
Row

Table I

Table II

Reg Reg Reg Reg

Mix
ColumReg S-BoxReg Shift

RowReg

RegReg S-BoxReg Shift
RowReg

Fig. 5. The implementation details of the proposed (a) Reference Architecture,
(b) Module-Pipelined Architecture, and (c) Round-Pipelined Architecture.

and sub-modules are added to the original reference circuit in
order to accelerate the throughput. In terms of the security, the
side-channel vulnerabilities mainly originate from the value
changes of the registers in red due to the fact that most
power consumption is actually triggered by the registers at
the internal side of substitution circuits. More importantly,
the dynamic leakage consumption is actually generated due to
the glitches happening in the following memory instances or
combinational circuits that the internal registers supply. There-
fore, the sub-architecture that includes the triggering registers
and the substitution module within both pipelined architectures
is equivalent to the proposed reference architecture from the
perspective of side-channel leakage. Assume that, we can
obtain the MTD and T-test results of architecture (a), (b), and
(c), as shown in Table I and II of Fig. 5. Hence, by comparing
the metric values mentioned above, ∆1 and ∆2 can precisely
describe the side-channel effects due to the use of particular
loop- or function-based HLS optimization.

In terms of the platforms, the primary combinational logic
in both Altera and Xilinx FPGAs are equivalent, which is
a dual-output 6-input LUT fabricated by TSMC. The only
difference is that the 6-LUTs in Altera FPGA have more
inputs than the ones in Xilinx FPGAs. For memory, some
block RAMs in Xilinx are equivalent to the ones in Altera.
For HLS tools, there might exist a little difference among

the performance-optimized runs within various HLS tools,
however, the side-channel leakage mechanism revealed by the
exemplar of Vivado HLS is beneficial for understanding the
side-channel effects in other scenarios. More importantly, the
concept of constructing the golden noise-free design can be
surely performed in other FPGA platforms as well as being
beneficial for security evaluation in other HLS tools.

V. INVESTIGATED HLS OPTIMIZATION DIRECTIVES AND
BENCHMARKS DESCRIPTION

In this section, we briefly present the overview of memory
space allocation and the notion of HLS DSE, then introduce
how to perform local optimization using Vivado HLS as well
as the details of each investigated HLS optimization directive.

A. Memory Space Allocation in HLS

HLS tools feature several optimizations to improve the
design performance from the application perspective. Among
them, the most important one that corresponds to side-channel
security is the optimization with respect to memory space
allocation. This type of HLS optimization hints the HLS tools
to map or partition software data structures onto dedicated
internal memories in order to achieve their design goals. By
either changing the manual code (e.g., BAMBU) or configuring
the local synthesis optimization, which is in the form of
pragmas (e.g., Vivado HLS and DWARV) or Tcl (e.g., LEGUP)
directives, designers can fully control the implementation of
overall underlying micro-architecture at the behavioral level.
Here, we consider the case of Vivado HLS as an exemplar
to show the side-channel effects incurring from the use of
different optimization strategies with respect to memory space
allocation as well as generating the most optimal design.

B. HLS Resource Pragma Exploration

Pragma HLS resource in Vivado HLS enables us to de-
termine which type of library resource is used to implement
a variable or operation in RTL. Here, we use the memory



7

templates (hardware cores) expressed as RTL description in
the component library of Vivado HLS to implement an array
in C code. A template example would be

#pragma HLS resource variable=<name> core=<core> la-
tency=<int>

where variable is an argument that specifies which object
the pragma is assigned to, core is used to determine the
hardware template in the library to implement the variable, and
latency specifies the latency of the core. Then we can place the
pragma HLS resource in the C source within the body of the
function where the variable is defined. As a result, it allows
us to control the transformation of a variable or operation in
HLS-readable description. Therefore, by changing the options
of the core argument, we could start our pragma-based DSE
with respect to SCA security. Furthermore, the number of ports
required for the memory expression in RTL can be determined
by setting the HLS resource pragma as well. For example,
if we want to implement an internal array (S-box) within
“SubBytes” function of AES as a dual-port block RAM, we
can configure the arguments as shown in Fig. 6 (left):

01 #include “AES.h”
02       // specify the resource from HLS 
03       unit8_t  SubBytes(unit8_t index)
04     { static const unit8_t    sbox[ ] = {
05           0X63, 0X7c, … … , 0X76, 
06              … …
07           0X8c, 0Xa1, … … , 0X16; }
08 #pragma HLS resource variable =
09 sbox core = ROM_2P_BRAM  
10          return sbox[index]; }
11       void main( ) {
12     SubBytes( ); ShiftRows( ); 
13         MixColums( );}

Original HLS-readable C codes
01 (* rom_style = “block”*) reg [DW-1:0] 
02         ram[MEM_SIZE-1:0];
03   initial begin           //array initialization
04   $readmemh( “./SubBytes_rom.dat”, ram);
05   end
06   always     @(posedge clk)                
07       begin        //port-1 of block RAM 
08          if (ce0) begin q0<=ram[addr0]; end
09       end
10   always     @(posedge clk)
11       begin      //port-2 of block RAM
12 if(ce1)    begin q1<=ram[addr1]; end
13       end

Dual-port block RAM RTL Description

Fig. 6. Code example for original HLS-readable C codes of “SubBytes” in
AES (left) and HLS-generated dual-port block RAM RTL description (right).

Then we can obtain the RTL description of “SubBytes”
function made by Vivado HLS, which describes the details of
array initialization and array access for block RAMs, as shown
in Fig. 6 (right). As an array within “SubBytes” function
is only read as a static variable, it is typically implemented
as a ROM after RTL synthesis. More precisely, during array
initialization, the values within S-box are assigned to the block
RAMs at the start of execution, which takes one clock cycle.
Then each time the “SubBytes” function is executed, value is
extracted from the corresponding location in the memory as
the outputs, depending on the memory address provided as the
inputs, which takes the other clock cycle. As we have set the
block RAM as a dual-port instance, multiple elements can be
accessed simultaneously in each clock cycle.

Consequently, by turning the argument core of HLS resource
pragma to different template options, we can get a range
of HLS-based architecturally unique benchmarks. In general,
there exist three types of “S-box” implementations according
to the hardware templates in Vivado HLS. 1) ROM LUTRAM:
one method is to implement a registered ROM of HLS using
FPGA LUT memories, then achieving the functional goals by
either loading the entries of the S-box to the ROM or fetching
the desired value inside as S-box output. Each component in
the registered ROM is accessed independent of the others,

thus it can be configured either as one- or dual-port mem-
ory instance (e.g., ROM 1P LUTRAM, ROM 2P LUTRAM).
Note that, multi-port architecture such as ROM nP LUTRAM
can be generated, but practically, it can not work correctly
due to the memory-port conflicts. Therefore, we do not take
it into consideration. 2) ROM BRAM: the other option is to
use FPGA block RAM memories (i.e., RAMB8BWER); these
memories are configurable as single- or dual-port instance
(e.g., ROM 1P BRAM, ROM 2P BRAM), which follows the
timing constraints of BRAM template in Vivado HLS. For
ROM nP BRAM hardware template, adding ports increases
the throughput while requiring more resources. 3) MUX:
Another technique is to store the S-box entries into the FPGA
fabric as constants and use a multiplexer to decide between
them. This architecture is implemented as non-registered com-
binational logic, thus only one clock cycle is used to complete
the entire function.

To demonstrate a parallel controlled trial, we further per-
form experiments on five hand-written RTL-based architec-
tures, which are from currently available open-source bench-
marks for side-channel analysis [21]. All those RTL-based
benchmarks are implemented using LUT primitives (e.g.,
LUT-4, LUT-6, etc. for Xilinx FPGA) and not directly driven
by any clock signal. For details, LUT benchmark describes the
S-box by using case statement sentence. And COMP bench-
mark is implemented by using composite field implementation
based on multiplicative inverse circuit. While PPRM1 and
PPRM3 are both performed using Positive Polarity Reed-
Muler logic, but with one and three logic stages, respectively.
WDDL is achieved using wave dynamic differential logic, as
a famous countermeasure against first-order SCA attacks [22].

C. HLS Partition Pragma Exploration

Pragma HLS array partition in Vivado HLS provides com-
mendations on how to split an entire array into smaller
arrays or individual elements. Here, we use the array partition
pragma to partition the array in C code into a variety of multi-
memory architectures. A template example would be

#pragma HLS array partition variable=<name> <type> fac-
tor=<int> dim=<int>

where variable is an argument that determines the array to
be partitioned, type is used to specify the partition strategy
provided by Vivado HLS, factor controls the number of
the smaller arrays to be created, and dim allows a multi-
dimensional array to determine which dimension is to be
partitioned. Then it is used by placing the array partition
pragma in the boundaries of function where the array is
defined. Consequently, changing both the type argument and
the factor argument of the pragma array partition allows us
to explore the security aspects of the memory sub-system.

In RTL-level description, applying the array partition di-
rective results in architecture with multiple small memories or
registers instead of one large memory. Vivado HLS supports
three styles of partitioning schemes expressed as block, cyclic
and complete. For example, consider a simple case of a
2-dimensional array with 6×6 elements. In block scheme,
contiguous elements in the original array are divided equally.



8

In cyclic scheme, interleaving blocks of the original array are
selected to constitute the partitioned memory banks. In com-
plete scheme, each element in the original array is separated
individually. As a consequence, it could effectively increase
the amount of the read- and write-port of the storage, thus
potentially improving the throughput of a design. However, the
number of memory instances alongside the scale of memory
control logic increases simultaneously as the design penalties.

To figure out more insights about how array partition-
ing affects the power side-channel leakage, we combine the
pragma resource and pragma array partition together as op-
timization strategies for the original design to obtain a range
of multi-memory architectures. Although each multi-memory
architecture is different depending on its specific optimization
configuration, the top-level block diagram of a partitioned
memory system basically shares the same structure. It is
generally composed of memory banks, address translation unit,
control FSM, read/write registers and input/output MUXs. For
example, assuming to partition an S-box, which holds 256
elements inside, into four parallel memory banks by setting the
factor argument to 4 and dim argument to 2. Thus, each mem-
ory bank stores 64 elements, and all the banks are accessed
simultaneously. Following those memory banks is the memory
control logic, which is instantiated as the combinations of
MUX and LUT primitives. Note that, there exists no obviously
architectural difference between block partition and cyclic
partition in terms of SCA security. Therefore, we only take
one of them into consideration in the SCA evaluation.

TABLE I
PRAGMA-BASED CONFIGURATION AND BENCHMARKS DESCRIPTION.

Benchmarks(HLS) Resource Template Partition Scheme & Num.

LUTRAM1P M0

ROM 1P LUTRAM

Complete/Unpartitioned/0
LUTRAM1P M2 Block/Cyclic/2
LUTRAM1P M4 Block/Cyclic/4
LUTRAM1P M8 Block/Cyclic/8

LUTRAM1P M16 Block/Cyclic/16

With respect to the number of partitioned banks, massive
architecturally unique designs can be created by specifying
the corresponding partition scheme and partition number,
respectively. Here, we choose the “ROM 1P LUTRAM” HLS
template as an exemplar. As shown in Table I, we can see
that four benchmarks (from LUTRAM1P M2 to M16)) with
different partition configuration are derived from the same
baseline architecture (LUTRAM1P M0), which is generated
by applying a specific pragma resource template.

VI. PRACTICAL EVALUATION

In this section, we provide an evaluation of different bench-
marks using a testing framework that includes the same test
harness, SAKURA board, oscilloscope, evaluation and attack
(see Section IV-A). We perform pragma-based HLS DSE
among those architectures with respect to throughput, resource
utilization, and power side-channel resilience in Section VI-B.
To determine the security of the design, we evaluate each
benchmark using first-order leakage detection in Section VI-C
and first-order CPA attack in Section VI-D.

A. Experimental Setup

We implemented all the benchmarks depicted above on the
widely-used side-channel evaluation board SAKURA-G, which
featuring a Xilinx Spartan-6 XC6SLX75 FPGA for cryptogra-
phy implementation and a Spartan-6 XC6SLX9 FPGA as the
controller, as shown in Fig. 7. The implementation in Fig. 5 (a)
is considered as the reference architecture. Moreover, all the
implementations were served using 24MHz clock frequency.
In order to sample aligned power traces, reference design
will provide a control signal for measurement triggering. The
evaluation board is connected with Host PC through the USB
interface for data communication. Then the leakage traces
are recorded by means of TDS5104B and PXIe-5186 as
high-speed oscilloscopes at a sampling rate of 1GS/s and a
differential probe is used to monitor the voltage drop by a 1
Ω resistor from measurement point J3 on the board.

Control 
FPGA

Target
FPGA

Oscilloscope

PC

Trigger

Plaintext

CiphertextDone

Start

PC

Traces Storage Measurements

SAKURA-G board

Time

Po
w

er

Fig. 7. Experimental setup demonstrating the SAKURA-G board, our
measurement oscilloscope and PC for data acquisition.

B. Design Space Analysis

We performed a pragma-based security DSE of HLS opti-
mizations by considering three metrics: Throughput, Resource
Usage and Security Metrics (Leakage & MTD). To compare
the benchmarks for HLS DSE, we measure the benchmarks
by following the criteria below.

1) Security dominance (SD): security is highlighted as a
dominating aspect in HLS DSE by considering both qualitative
(e.g., a confidence level) and quantitative (e.g., MTD) security
metrics. This means that if a design is both qualitative and
quantitative secure, then it is considered as the dominating
design. If a design only satisfies one of the security metrics,
it is considered to be the less optimal one. If neither of the
security metrics is satisfied, it is considered as an insecure one
even if other performances are considerably good enough.

2) Pareto Dominance (PD): assume the scenario that the
benchmarks have either qualitative or quantitative SCA leak-
age, then we would follow the PD criteria to rank these
architectures. To give a quantitative criterion, we measure the
PD dominating design by calculating the equation (3):

PD(T,R,M) =
T

Tm
+
Rm −R
Rm

+
M

Mm
(3)

where T denotes the throughput, Tm denotes the maximum
of throughput, which is a constant with the value 128; R
denotes the sum of resource usage, Rm denotes the maximum



9

sum of resource usage, which is a constant with the value
998; M denotes the number of measurements to disclosure
the secrets, Mm denotes the maximum of MTD, which is a
constant with the value 1339. The higher the PD value is, the
more Pareto-optimal the design is.

Table II describes the pragma HLS resource-oriented bench-
marks. Our goal is to evaluate the spectrum of architectural
choices for the S-boxes. These include benchmarks from exist-
ing RTL implementations (the first five labeled as “RTL”) and
HLS-based benchmarks (the last six labeled as “HLS”). The
first column of Table II shows the name of the architecture, the
second column gives the throughput, column three reports the
resource usage (Slices/LUTs/BRAM), and column four shows
metrics related to its vulnerability to power SCAs – “Leakage”
is related to the t-test and denotes whether the design shows a
difference in the t-test results; a secure design has NO leakage.
MTD denotes the number of traces required to recover the key.

TABLE II
THROUGHPUT, RESOURCE USAGE, AND POWER SIDE-CHANNEL LEAKAGE

OF DIFFERENT S-BOX ARCHITECTURES. WE EVALUATE TWO METRICS FOR
SECURITY – USING THE T-TEST (YES MEANS LIKELY LEAKAGE) AND THE

NUMBER OF MEASUREMENTS TO DISCLOSURE (MTD) USING CPA.

Benchmarks Throughput Resource Leakage & MTD

LUT(RTL) 8bits/cycle 8/32/0 YES/133
COMP(RTL) 8bits/cycle 23/54/0 YES/293
PPRM1(RTL) 8bits/cycle 99/216/0 YES/55
PPRM3(RTL) 8bits/cycle 26/53/0 YES/163
WDDL(RTL) 8bits/cycle 150/432/0 NO/100,000+
MUX(HLS) 8bits/cycle 9/9/0 YES/340

LUTRAM1P(HLS) 8bits/cycle 12/32/0 YES/165
LUTRAM2P(HLS) 16bits/cycle 88/179/0 YES/294
BlockRAM1P(HLS) 8bits/cycle 0/0/1 YES/100,000+
BlockRAM2P(HLS) 16bits/cycle 0/0/1 YES/100,000+
BlockRAMnP(HLS) 128bits/cycle 0/0/8 NO/100,000+

Remarks: This experiment shows that the implementation of
S-boxes not only affects the throughput and the sum of resource
usage but also incurring different levels of security risks.
Note that, most benchmarks, which are primarily implemented
using the LUTs, all could be hacked successfully, regardless
of whether the benchmarks are RTL hand-written or HLS-
generated. That means the LUTs, which are well-adopted logic
primitives, show a natural weakness for attackers. However,
the SCA threats also vary greatly depending on the imple-
mentation method and the number of resources. For instance,
the WDDL benchmark, mostly implemented by LUTs, also
shows robustness against SCAs due to the use of dynamic
differential logic, which can effectively balance the switching
events of logic gates. For benchmarks using block RAMs, they
all show their natural robustness against SCAs. Among them,
the BlockRAMnP in Vivado HLS is the Pareto-optimal design
as it consumes a small number of resources but has the largest
throughput. It is the most secure design as it neither shows
first-order leakage nor leads to any key recoveries.

Table III summarizes the benchmarks obtained by applying
different combinations of pragma HLS resource and pragma
HLS array partition strategies, where the first column de-
scribes the name of the benchmarks, the second column gives
the number of partitioned banks, the third column shows

the partition scheme applied on each benchmark, the fourth
column presents the throughput, the eighth column reports the
“Leakage” and “MTD” metrics, the ninth column shows the
PD value or SD label, and the remaining columns indicate
the number of resource usage - Slice Reg, LUTs, BRAM,
respectively. For the ease of comparison, we visualized these
results according to three measures: MTD, Throughput, and
Resource Usage in Fig. 8. The upper row demonstrates the
MTD comparison for each “resource” series of benchmarks.
The lower row illustrates the Throughput and Resource Usage
comparisons among all the series. Fig. 9 demonstrates the
comparison of PD values for all the benchmarks.

1) HLS Partition and SCA Security: Note that, in the
upper row of Fig. 8, we can see that, regardless of which
“resource” series (LUTRAM or BlockRAM) they belong to,
all the benchmarks become SCA-attackable after partitioning
into multi-memory architecture using HLS array partition op-
timization. It indicates that the partition optimization in Vivado
HLS could compromise your hardware system in terms of SCA
security, regardless of which types of resource primitives are
used to achieve the designs. Moreover, with the increase of
the partition number, the MTD value decreases sharply due
to the multi-memory layout. It is particularly obvious for
the BlockRAM-series benchmarks because the benchmarks
all show strong robustness before partitioning. However, over
60% of the benchmarks are SCA-attackable after partitioning.

2) Leakage Source and Noise Analysis: To figure out the
source of the SCA leakage, we further make comparisons
between Resource Usage and MTD. More precisely, in Fig.
8, we can see that, with the growth of LUTs, the MTD values
decrease obviously, indicating that the number of LUTs plays
an important role in the robustness against SCA attacks. For
instance, considering the case of BlockRAM1P and Block-
RAM2P series, BlockRAM1P M0 and BlockRAM2P M0
have the same number of “Slice Reg” and “BRAM”, however,
since dual-port block RAM requires more LUTs to establish
the memory control logic, the benchmarks in BlockRAM2P
series show 42% reduction in average MTD value (more
vulnerable) compared with the corresponding MTD values
in BlockRAM1P series. We can thus assume that the side-
channel leakage is essentially from the deployment of memory
controller logic rather than saying it is from the block RAMs
themselves. Indeed, the number of block RAMs obviously
shows more effects on the environmental noise level.

3) Security Dominance and Pareto Dominance: In Fig.
9, it shows that, among all the PD-marked benchmarks, the
Pareto dominance is BlockRAM1P M4, which has the highest
PD value of 1.823. Meanwhile, we can obtain five Security
Dominance designs, which are BlockRAM1P M0, Block-
RAM1P M2, BlockRAM2P M0, BlockRAMnP M0, Block-
RAMnP M2, respectively. To evaluate the security level of
these architectures, we further delve deeper into the leakage
detectability analysis in the following section.

C. Leakage Detectability Analysis

We performed the non-specific t-test as described in Section
III-B. One straight benefit of non-specific t-test is its natural



10

TABLE III
THROUGHPUT, RESOURCE USAGE, AND POWER SIDE-CHANNEL LEAKAGE OF DIFFERENT S-BOX ARCHITECTURES. WE EVALUATE TWO METRICS FOR

SECURITY – USING THE T-TEST (YES MEANS LIKELY LEAKAGE) AND THE NUMBER OF MEASUREMENTS TO DISCLOSURE (MTD) USING CPA.

Benchmarks(HLS) Partition Num. Partition Scheme Throughput Slice Reg LUTs BRAM Leakage & MTD PD

LUTRAM1P (M0-M16)

0 Complete/Unpartitioned 8bits/cycle 146 174 0 YES/165 0.865
2 Block/Cyclic 8bits/cycle 155 183 0 YES/136 0.825
4 Block/Cyclic 8bits/cycle 170 197 0 YES/249 0.881
8 Block/Cyclic 8bits/cycle 202 233 0 YES/269 0.828

16 Block/Cyclic 8bits/cycle 266 315 0 YES/219 0.644

LUTRAM2P (M0-M16)

0 Complete/Unpartitioned 16bits/cycle 154 263 0 YES/294 0.927
2 Block/Cyclic 16bits/cycle 172 224 0 YES/1008 1.481
4 Block/Cyclic 16bits/cycle 202 251 0 YES/573 1.099
8 Block/Cyclic 16bits/cycle 266 324 0 YES/450 0.870

16 Block/Cyclic 16bits/cycle 395 488 0 YES/124 0.333

BlockRAM1P (M0-M16)

0 Complete/Unpartitioned 8bits/cycle 138 80 1 YES/100,000+ SD
2 Block/Cyclic 8bits/cycle 139 81 2 YES/100,000+ SD
4 Block/Cyclic 8bits/cycle 138 97 4 YES/1339 1.823
8 Block/Cyclic 8bits/cycle 138 99 8 YES/512 1.199

16 Block/Cyclic 8bits/cycle 138 117 16 YES/392 1.084

BlockRAM2P (M0-M16)

0 Complete/Unpartitioned 16bits/cycle 138 84 1 YES/100,000+ SD
2 Block/Cyclic 16bits/cycle 140 86 2 YES/1011 1.652
4 Block/Cyclic 16bits/cycle 138 118 4 YES/760 1.432
8 Block/Cyclic 16bits/cycle 138 122 8 YES/407 1.160

16 Block/Cyclic 16bits/cycle 138 158 16 YES/145 0.921

BlockRAMnP (M0-M16)

0 Complete/Unpartitioned 128bits/cycle 138 140 8 NO/100,000+ SD
2 Block/Cyclic 128bits/cycle 154 223 16 YES/100,000+ SD
4 Block/Cyclic 128bits/cycle 138 412 32 YES/238 1.595
8 Block/Cyclic 128bits/cycle 138 444 64 YES/192 1.496

16 Block/Cyclic 128bits/cycle 138 732 128 YES/281 1.210

(1) LUTRAM1P Series (2) LUTRAM2P Series (3) BlockRAM1P Series (4) BlockRAM2P Series (5) BlockRAMnP Series

M0 M2 M4 M8 M16

M
TD

 V
alu

e

0

50

100

150

200

250

300

M0 M2 M4 M8 M16
0

200

400

600

800

1,000

1,200

M0 M2 M4 M8 M16
0

200
400
600
800

1,000
1,200
1,400

SD

M0 M2 M4 M8 M16
0

200
400
600
800

1,000
1,200
1,400

SD

M0 M2 M4 M8 M16
0

200
400
600
800

1,000
1,200
1,400

SD

M0 M2 M4 M8 M16

Nu
m

be
r

0

100

200

300

400

500
Throughput
Slice Reg
LUTs
BRAM

M0 M2 M4 M8 M16
0

100

200

300

400

500
Throughput
Slice Reg
LUTs
BRAM

M0 M2 M4 M8 M16
0

50

100

150

200

250
Throughput
Slice Reg
LUTs
BRAM

M0 M2 M4 M8 M16
0

50

100

150

200

250
Throughput
Slice Reg
LUTs
BRAM

M0 M2 M4 M8 M16
0

100
200
300
400
500
600
700
800

Throughput
Slice Reg
LUTs
BRAM

Fig. 8. The comparisons of SCA security evaluation metric (MTD), Throughput, Slice Reg, LUTs, BRAM among all HLS-generated benchmark series.

M0 M2 M4 M8 M16

PD
 v

al
ue

0.65

0.7

0.75

0.8

0.85

0.9

LUTRAM1P Series

M0 M2 M4 M8 M16

0.4

0.6

0.8

1

1.2

1.4

1.6

LUTRAM2P Series

M0 M2 M4 M8 M16

1.1

1.2

1.3

1.4

SD

BlockRAM1P Series

M0 M2 M4 M8 M16

1

1.2

1.4

1.6

1.8

SD

BlockRAM2P Series

M0 M2 M4 M8 M16

1.3

1.4

1.5

1.6

1.7

1.8

1.9

SD

BlockRAMnP Series

Fig. 9. The comparison of PD dominance design and SD dominance design among all HLS-generated benchmark series.



11

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
LUTRAM1P_M0

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
LUTRAM1P_M2

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
LUTRAM1P_M4

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
LUTRAM1P_M8

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
LUTRAM1P_M16

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
LUTRAM2P_M0

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
LUTRAM2P_M2

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
LUTRAM2P_M4

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
LUTRAM2P_M8

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
LUTRAM2P_M16

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
BlockRAM1P_M0

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
BlockRAM1P_M2

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
BlockRAM1P_M4

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
BlockRAM1P_M8

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
BlockRAM1P_M16

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
BlockRAM2P_M0

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
BlockRAM2P_M2

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
BlockRAM2P_M4

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
BlockRAM2P_M8

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
BlockRAM2P_M16

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
BlockRAMnP_M0

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
BlockRAMnP_M2

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
BlockRAMnP_M4

Time[ns]
0 200 400 600

t v
alu

e

-50

0

50
BlockRAMnP_M8

Time[ns]
0 200 400 600

t v
alu

e
-50

0

50
BlockRAMnP_M16

Fig. 10. First-order side-channel leakage detection results. The y-axis denotes the t-test result for that specific time. A large t value indicates a higher chance
for leakage detection. The red threshold lines show the |t| > 4.5, which is the widely used value to indicate that the t-test rejects the null hypothesis.

independence from any estimated power models, which allows
for more fair and efficient comparisons for HLS DSE. Prac-
tically, it could identify stable first-order leakage after using
100,000 traces. Fig. 10 depicts the details of first-order leakage
among all HLS-generated benchmarks.

To rank the security level of these Security Dominance
architectures, we compare these SD benchmarks by fol-
lowing the criterion below. For instance, as seen in Fig.
10, BlockRAM2P M0 is the least optimal one as it has a
higher leakage peak and a wider time range of leakage.
While BlockRAMnP M0 is the most optimal design as the
“leakage” is only floating inside the leakage boundaries of
t-test (highlighted in red), indicating that there exists no
first-order leakage. Following the same criterion, the rank
is BlockRAMnP M0, BlockRAMnP M2, BlockRAM1P M0,
BlockRAM1P M2, BlockRAM2P M0, respectively (from most
optimal to least optimal). In addition, we can observe that

the benchmarks in BlockRAM2P series obviously show more
informative leakage than the benchmarks in other BlockRAM-
based series. This observation reconfirms our assumption
that, with the growing number of partitions, the scales of
memory control logic increase sharply due to the use of dual-
port memory instance, which simultaneously leading to more
“LUTs” consumption, finally resulting in a more vulnerable
architecture for SCA attackers. Note that, when the number
of partitions is set as 2, the benchmark in BlockRAMnP series
show less first-order leakage since the noises originating from
the block RAMs have a predominant effect on the power side-
channel in this case. However, with the growth in the number
of partitions, the leakage effects caused by the controller logic
become the predominant one, which results in more obvious
leakage for other benchmarks in BlockRAM nP series.

Remarks: These experiments show that the use of dual-port
block RAM can incur larger first-order side-channel leakage.



12

Number of Traces
0 200 400 600 800 1000

C
or

re
la

tio
n

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
LUT
COMP
PPRM1
PPRM3
MUX
WDDL

Number of Traces
0 200 400 600 800 1000

C
or

re
la

tio
n

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
LUTRAM1P_M0
LUTRAM1P_M2
LUTRAM1P_M4
LUTRAM1P_M8
LUTRAM1P_M16

Number of Traces
0 200 400 600 800 1000

C
or

re
la

tio
n

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
LUTRAM2P_M0
LUTRAM2P_M2
LUTRAM2P_M4
LUTRAM2P_M8
LUTRAM2P_M16

Number of Traces
0 200 400 600 800 1000

C
or

re
la

tio
n

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
BlockRAM1P_M0
BlockRAM1P_M2
BlockRAM1P_M4
BlockRAM1P_M8
BlockRAM1P_M16

Number of Traces
0 200 400 600 800 1000

C
or

re
la

tio
n

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
BlockRAM2P_M0
BlockRAM2P_M2
BlockRAM2P_M4
BlockRAM2P_M8
BlockRAM2P_M16

Number of Traces
0 200 400 600 800 1000

C
or

re
la

tio
n

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
BlockRAMnP_M0
BlockRAMnP_M2
BlockRAMnP_M4
BlockRAMnP_M8
BlockRAMnP_M16

Fig. 11. Single key byte result of a first-order CPA on benchmarks with different combination of optimization strategies and the hand-written RTL benchmarks.

Thus it is more efficient and secure implementing the design
with 8 paralleled single-port block RAMs due to the fact that
the noise level increases significantly so that the leakage effects
are diminished or counteracted in this case. For BlockRAM1P
and BlockRAMnP templates in Vivado HLS, setting the num-
ber of partitions as 0 and 2 produces good results in terms
of side-channel security. However, applying array partition
in other cases could incur serious side-channel challenges.
Therefore, one security guideline for HLS designers is to avoid
partitioning the arrays or to be more careful about accessing
2 more memories that supply a combinational logic. It is both
true for the LUTRAM and BlockRAM instances in Vivado HLS.

D. Quantitative Leakage Analysis

We performed the first-order non-profiled CPA attack, as
described in Section III-C, on these benchmarks with known
randomly generated plaintexts and a fixed key. The practical
attack was presented following a divide-and-conquer approach
where each key byte is attacked in isolation. Our attack
models the dynamic consumption as HD(ci+1

⊕
ci), where

HD denotes the Hamming Distance, ci and ci+1 are the
intermediate input and output, respectively. Then we attempt
to identify the correct key guess on a byte-by-byte basis by
applying Pearson’s correlation as distinguisher and simultane-
ously record the number of traces required to recover the key
in each architecturally unique design as the security metric
(MTD) for further security-based HLS DSE.

Fig. 11 illustrates the detailed correlation values and the
general trend of the correlation value for all the benchmarks
across a single key byte. We can observe the effects of
HLS pragma resource and HLS pragma array partition on

the correlation coefficient values among all benchmarks. The
MTD results of CPA attack among all these benchmarks are
listed in detail, as shown in Table III. We discuss it together
with HLS DSE in Section VI-B. Here, we mainly focus on
the effect of applying HLS pragma resource and HLS pragma
array partition on the Pearson’s correlation coefficient.

From results shown in the upper left of Fig. 11, one im-
portant observation is that all the curves of correlation finally
converge to the different end value, indicating that the unique-
ness of architecture can lead to different levels of SCA leakage
and environmental noise. The upper middle and upper right
of Fig. 11 demonstrate the correlation details of benchmarks
in LUTRAM1P series and LUTRAM2P series, respectively.
We can see that the curves of Pearson’s correlation coefficient
for the partitioned benchmarks all converge to the lower end
values in comparison with the unpartitioned M0 benchmark,
indicating that the noise level of the designs increases obvi-
ously with the growth of memory partitions. The lower three
illustrations of Fig. 11 demonstrate that all the BlockRAM-
based benchmarks have the similar curve feature. Although the
block RAM primitives show their natural robustness against
SCA attacks, the connection between partitioned block RAMs
and controller logic results in unpredictable security risks.

Remarks: The experiment shows that array partition in HLS
tools can significantly affect the side-channel vulnerabilities.
For HLS designers, since memory-based optimization in HLS
can obviously change the memory sub-system, it is better to
consider the security of the entire sub-system including the
controller logic and memory banks rather than only focusing
on one of them, respectively. Apart from performance metrics,
security metrics should also be highlighted in order to create



13

fast, small, and secure cryptographic design with HLS tools.
Hence, HLS designers can quantitatively balance the security
in exchange of performance depending on the application
scenarios. For side-channel attackers, it is more beneficial to
attack the partitioned architectures generated by HLS tools.
Because up to 90% of the partitioned architectures might exist
unknown backdoors that potentially to be the leakage spots.

VII. RELATED WORKS

There are numerous efforts focusing on providing best-effort
optimization strategies to generate high-quality architectures
using HLS techniques. Li et al. [23] and Cong et al. [24]
performed a comprehensive study on behavioral synthesis
optimizations. They demonstrated a better combination of var-
ious HLS optimization strategies to obtain good performance.
Wang et al. [25] used an automatic memory partitioning
scheme to achieve an optimal design with high data throughput
and a small logic overhead. Cilardo et al. [26] better leveraged
the partitioning and unrolling optimizations to reduce the area
overhead of a specific design. However, most of them focus
on the performance enhancement of throughput and area, and
none of them consider the problem in terms of SCA security.

There also exist various works that spare pretty much efforts
on providing efficient side-channel leakage detection method-
ologies or practical side-channel attacks. Goodwill et al. [18]
used the statistical hypothesis testing as a standardized testing
program to detect potential side-channel vulnerabilities in your
design. Doget et al. [20] provided valuable comparisons in
terms of attack efficiency among most univariate attacks in
the literature. Standaert et al. [27] addressed the serious side-
channel threats for FPGA-security using well-known side-
channel attacks. Rostami et al. [28] summarized the mod-
els, methods and evaluation metrics for most hardware-based
attacks. Tang et al. [29] proposed some security metrics to
evaluate the tamper resistance of the pin mapping algorithms.
Yet, none of those works attempt to characterize the side-
channel effects caused by behavioral synthesis as well as the
relevant security metrics, aiming to evaluate the consequences
of applying those memory-based HLS optimization.

For HLS DSE and memory-based optimization, Pilato et
al. [30] provided a system-level optimization for a memory
system in order to automatically generate more efficient ar-
chitectures by means of their proposed methodology for HLS
DSE. Schafer [12] performed a new method to accelerate the
HLS DSE by classifying the HLS optimization knobs, and he
also performed an HLS resource sharing DSE by fixing the
bitwidth of internal variables in [31]. However, none of those
work focus on the SCA security DSE problem in HLS, there
thus exists a lack of guidelines for security-based HLS DSE.

Perhaps the most relevant work to ours is that done by
Sun et al. [32] and Homsirikamol et al. [4]. They are trying
to determine the most suitable HLS approach to implement
high-quality hardware cryptographic cores with minimal de-
velopment effort. This is similar in spirit to the goal in our
work since we also aim to provide comprehensive guidance
to optimize the HLS workflow. However, we focus more on
evaluating the consequences of those HLS optimizations from

the perspective of security, while other researchers show more
interests on the performance increment under an area budget.

VIII. CONCLUSION

In this paper, we investigated the effects of memory-based
architectural optimization on power side-channel leakage. We
developed a workflow to properly gather power traces. We gen-
erated a set of representative benchmarks that employ different
S-box architectural optimizations. We provide a comparison
between these different architectures in terms of “traditional”
design metrics of performance and resource usage alongside
the security metric related to power side-channel leakage.
This enables us to explore the design space and provide
concrete recommendations on architectures that are efficient
with respect to performance, resource usage, and security.
Future work will delve more architectural optimizations.

REFERENCES

[1] G. Martin and G. Smith, “High-level synthesis: Past, present, and future,”
IEEE Design & Test of Computers, vol. 26, no. 4, pp. 18–25, 2009.

[2] P. Meng, A. Althoff, Q. Gautier, and R. Kastner, “Adaptive threshold
non-pareto elimination: Re-thinking machine learning for system level
design space exploration on fpgas,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2016, 2016, pp. 918–923.

[3] P. Hamalainen, T. Alho, M. Hannikainen, and T. D. Hamalainen, “Design
and implementation of low-area and low-power aes encryption hardware
core,” in Digital System Design: Architectures, Methods and Tools, 2006.
DSD 2006. 9th EUROMICRO Conference on, 2006, pp. 577–583.

[4] E. Homsirikamol and K. Gaj, “Can high-level synthesis compete against
a hand-written code in the cryptographic domain? a case study,” in
ReConFigurable Computing and FPGAs (ReConFig), 2014 International
Conference on, 2014, pp. 1–8.

[5] L. Piccolboni, G. Di Guglielmo, and L. P. Carloni, “Pagurus: Low-
overhead dynamic information flow tracking on loosely coupled accel-
erators,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2685–2696, 2018.

[6] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks: Revealing
the secrets of smart cards. Springer, 2007, vol. 31.

[7] S. B. Ors, F. Gurkaynak, E. Oswald, and B. Preneel, “Power-analysis
attack on an asic aes implementation,” in Information Technology:
Coding and Computing, 2004. Proceedings. ITCC 2004. International
Conference on, vol. 2, 2004, pp. 546–552.

[8] S. Mangard, N. Pramstaller, and E. Oswald, “Successfully attacking
masked aes hardware implementations,” in International Workshop on
Cryptographic Hardware and Embedded Systems, 2005, pp. 157–171.

[9] W. Puech, M. Chaumont, and O. Strauss, “A reversible data hiding
method for encrypted images,” in Electronic Imaging, no. 6819, 2008,
p. 68191E.

[10] V.-H. Xilinx, “Vivado design suite user guide-high-level synthesis,”
2014.

[11] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. An-
derson, S. Brown, and T. Czajkowski, “Legup: high-level synthesis
for fpga-based processor/accelerator systems,” in Proceedings of the
19th ACM/SIGDA international symposium on Field programmable gate
arrays. ACM, 2011, pp. 33–36.

[12] B. C. Schafer, “Probabilistic multiknob high-level synthesis design space
exploration acceleration,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 35, no. 3, pp. 394–406, 2016.

[13] L. Zhang, W. Hu, A. Ardeshiricham, Y. Tai, J. Blackstone, D. Mu,
and R. Kastner, “Examining the consequences of high-level synthesis
optimizations on power side-channel,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), March 2018, pp. 1167–1170.

[14] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,
H. Hsiao, S. Brown, F. Ferrandi et al., “A survey and evaluation of
fpga high-level synthesis tools,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 35, no. 10, pp. 1591–
1604, 2015.

[15] R. Nane, V.-M. Sima, B. Olivier, R. Meeuws, Y. Yankova, and K. Bertels,
“Dwarv 2.0: A cosy-based c-to-vhdl hardware compiler,” in 22nd Inter-
national Conference on Field Programmable Logic and Applications
(FPL). IEEE, 2012, pp. 619–622.



14

[16] C. Pilato and F. Ferrandi, “Bambu: A modular framework for the high
level synthesis of memory-intensive applications,” in 2013 23rd Inter-
national Conference on Field programmable Logic and Applications.
IEEE, 2013, pp. 1–4.

[17] G. Becker, J. Cooper, E. DeMulder, G. Goodwill, J. Jaffe, G. Kenworthy,
T. Kouzminov, A. Leiserson, M. Marson, P. Rohatgi et al., “Test vector
leakage assessment (tvla) methodology in practice,” in International
Cryptographic Module Conference, vol. 1001, 2013, p. 13.

[18] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi, “A testing methodology for
side-channel resistance validation,” in NIST non-invasive attack testing
workshop, 2011, pp. 158–172.

[19] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Annual
International Cryptology Conference. Springer, 1999, pp. 388–397.

[20] J. Doget, E. Prouff, M. Rivain, and F.-X. Standaert, “Univariate side
channel attacks and leakage modeling,” in Journal of Cryptographic
Engineering, vol. 1, no. 2, 2011, pp. 123–144.

[21] S. Morioka and A. Satoh, “An optimized s-box circuit architecture for
low power aes design,” in International Workshop on Cryptographic
Hardware and Embedded Systems, 2002, pp. 172–186.

[22] K. Tiri and I. Verbauwhede, “A logic level design methodology for a
secure dpa resistant asic or fpga implementation,” in Design, Automation
& Test in Europe Conference & Exhibition, 2004.

[23] P. Li, L.-N. Pouchet, and J. Cong, “Throughput optimization for high-
level synthesis using resource constraints,” in Int. Workshop on Polyhe-
dral Compilation Techniques (IMPACT’14), 2014.

[24] J. Cong, M. Huang, P. Pan, Y. Wang, and P. Zhang, “Source-to-source
optimization for hls,” in FPGAs for Software Programmers. Springer,
2016, pp. 137–163.

[25] Y. Wang, P. Li, P. Zhang, C. Zhang, and J. Cong, “Memory partitioning
for multidimensional arrays in high-level synthesis,” in Proceedings of
the 50th Annual Design Automation Conference. ACM, 2013, p. 12.

[26] A. Cilardo and L. Gallo, “Interplay of loop unrolling and multidi-
mensional memory partitioning in hls,” in Proceedings of the 2015
Design, Automation & Test in Europe Conference & Exhibition. EDA
Consortium, 2015, pp. 163–168.

[27] F.-X. Standaert, L. v. O. tot Oldenzeel, D. Samyde, and J.-J. Quisquater,
“Power analysis of fpgas: How practical is the attack?” in International
Conference on Field Programmable Logic and Applications. Springer,
2003, pp. 701–710.

[28] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware
security: Models, methods, and metrics,” Proceedings of the IEEE, vol.
102, no. 8, pp. 1283–1295, 2015.

[29] J. Tang, M. Ibrahim, K. Chakrabarty, and R. Karri, “Synthesis of
tamper-resistant pin-constrained digital microfluidic biochips,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2018.

[30] C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, “System-
level optimization of accelerator local memory for heterogeneous
systems-on-chip,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 36, no. 3, pp. 435–448, 2017.

[31] B. C. Schafer, “Enabling high-level synthesis resource sharing design
space exploration in fpgas through automatic internal bitwidth adjust-
ments,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 36, no. 1, pp. 97–105, 2017.

[32] Z. Sun, K. Campbell, W. Zuo, K. Rupnow, S. Gurumani, F. Doucet, and
D. Chen, “Designing high-quality hardware on a development effort
budget: A study of the current state of high-level synthesis,” in Design
Automation Conference (ASP-DAC), 2016 21st Asia and South Pacific.
IEEE, 2016, pp. 218–225.

PLACE
PHOTO
HERE

Lu Zhang received his B.S. degree from Northwest-
ern Polytechnical University, Xi’an, Shaanxi, China,
in 2012, where he is currently pursuing his Ph.D.
degree. From January 2016 to January 2018, he was
a visiting graduate student with the Department of
Computer Science and Engineering, University of
California, San Diego.

His research interests include hardware security,
design automation and embedded systems and opti-
mization.

PLACE
PHOTO
HERE

Dejun Mu received the Ph.D. degree in Control
Theory and Control Engineering from Northwestern
Polytechnical University, Xi’an, Shaanxi, China, in
1994. He is currently a Professor with the School of
Cyberspace, Northwestern Polytechnical University,
China.

His current research interests include control the-
ories and information security, including network
information security, application specific chips for
information security, and network control systems.

PLACE
PHOTO
HERE

Wei Hu received his Ph.D. degree in Control
Science and Engineering from the Northwestern
Polytechnical University, Xi’an, Shaanxi, China, in
2012. He is currently an associate professor with the
School of Cyberspace, Northwestern Polytechnical
University, China.

His research interests include hardware security,
logic synthesis, and formal verification, reconfig-
urable computing and embedded systems.

PLACE
PHOTO
HERE

Yu Tai received his Ph.D. degree in Control Science
and Engineering from Northwestern Polytechnical
University, Xi’an, Shaanxi, China, in 2018. He is
currently a Research Assistant with the School of
Cyberspace, Northwestern Polytechnical University,
China.

His current research interests include hardware se-
curity, logic synthesis and optimization in hardware
information flow.

PLACE
PHOTO
HERE

Jeremy Blackstone is a Ph.D. student from the
Computer Science and Engineering, University of
California, San Diego. He received his B.S. and
Master degree in computer science from Howard
University in Washington, DC.

His current research interests include hardware
security and fault attacks.

PLACE
PHOTO
HERE

Ryan Kastner received the Ph.D. degree in Com-
puter Science from the University of California at
Los Angeles, Los Angeles, CA, USA, in 2002. He
is currently a Professor with the Department of
Computer Science and Engineering, University of
California at San Diego, San Diego, CA, USA. Prof.
Kastner is the Co-Director of the Wireless Embed-
ded Systems Master of Advanced Studies Program.
He also codirects the Engineers for Exploration
Program.

His current research interests include hardware
acceleration, hardware security, and remote sensing.




