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Abstract: When designers set out to create a mathematics learning activity, they have a fair 
sense of its objectives: students will understand a concept and master relevant procedural 
skills. In reform-oriented activities, students first engage in concrete situations, wherein they 
achieve situated, intermediary learning objectives (SILOs), and only then they rearticulate 
their solutions formally. We define SILOs as heuristics learners devise to accommodate 
contingencies in an evolving problem space, e.g., monitoring and repairing manipulable 
structures so that they model with fidelity a source situation. Students achieve SILOs through 
problem-solving with media, instructors orient toward SILOs via discursive solicitation, and 
designers articulate SILOs via analyzing implementation data. We describe the emergence of 
three SILOs in developing the activity Giant Steps for Algebra. Whereas the notion of SILOs 
emerged spontaneously as a framework to organize a system of practice, i.e. our collaborative 
design, it aligns with phenomenological theory of knowledge as instrumented action. 

 
When mathematics-education designers set out to create a new learning activity, they bear in mind the activity’s 
ultimate pedagogical objective. Reform-oriented designers, however, bear in mind intermediary objectives, too, 
for students’ immersive experiences in situated, multimodal, spatial–dynamical activities designed to foster 
grounded understanding of the ultimate target concepts. Broadly, reform-oriented activities unfold in two steps: 
 

 In Step 1, learners interact with media—physical or virtual materials and ready-made objects—to 
solve problems that require manipulating, organizing, and/or transforming these media with attention 
to quantitative relations as well as emerging patterns or principles pertaining to these relations.  

 In Step 2, learners are guided to reflect on, and rearticulate their insights using normative semiotic 
systems, including frames of reference, vocabulary, and symbolic notation and to reenact discovered 
processes as standard algorithms using the formal representations (Diénès, 1971; Freudenthal, 1983). 

 
This paper focuses primarily on Step 1. Step 1 is of immense importance to the construction of 

knowledge (Kamii & DeClark, 1985; Piaget & Inhelder, 1969; Thompson, 2013). And yet, we find, educational 
designers have little, if any, conventional forms, nomenclature, or methodology for articulating Step 1 learning 
objectives prior to the design process. Perhaps, we submit, this disconcerting lacuna in the design toolkit is 
related to the ultimate futility of attempting to articulate Step 1 learning objectives prior to building and refining 
activities and observing people engage with them. Namely, Step 1 objectives emerge only through the design 
process. Yet this emergent nature of a design’s Step 1 objectives, we further submit, should not deter us from 
eventually defining those objectives. This paper resulted from reflecting on an apparent omission in our own 
design process: Building a certain design, we kept referring nebulously to a set of latent, contextualized, 
mathematically oriented, informal ideas we wanted students to discover via engaging in its Step 1 activities. The 
objective of this paper is to name that unnamed class of ideas and define its role within the design process. We 
will name this class situated, intermediary learning objectives (SILOs) and demonstrate how this ontological 
innovation lends coherence to a comprehensive, complex, multi-stage process. We hope that, through this paper, 
fellow designers will join us in “learning and becoming in [design] practice” (the ICLS 2014 theme). 

In the remainder of this paper we: overview relevant educational-research literature (Section 1); present 
Giant Steps for Algebra (Chase & Abrahamson, 2013) (Section 2); explain how three SILOs emerged via 
developing the design materials and analyzing pilot implementation data and how these SILOs inform our 
technological redesign (Section 3); and offer implications for theories of knowing and learning (Section 4). 

Theoretical Background: Constructing Means for Constructing Meaning 
When we design concrete activities for mathematics learning, what are our learning objectives for these 
activities? These are not quite mathematical learning objectives per se, because they may not be articulated in 
formal register and might not even involve numerical values. And yet we do eventually form clear ideas for 
what the students should be discovering about the target concepts through engaging in the concrete activities. In 
so doing, we implicitly exercise a theoretical view on the relation between the manual and the mental. One such 
view is ascribed to John Dewey, who characterized conceptual learning as the individual’s process of 
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formalizing their reflection on experience—their guided passage from implicit know-how through to articulated 
know-that. Such characterizations of grounded understanding are not only vital for building theories of learning 
but also bear direct implications for the practice of designing effective learning environments that seek to guide 
children from informal experience to formal concept. This schematic conceptualization of grounded 
mathematics learning as an experience-to-concept two-step process cuts across multiple theories and 
frameworks, including our own. 

To begin with, our distinction between situated and general knowledge is a hallmark of Realistic 
Mathematics Education (RME). Freudenthal (1983), founder of RME, developed a pedagogical methodology 
based on the principle that children should create their own models of problematic realistic situations. 
Gravemeijer (1999) elaborates on the function of modeling activities in RME, emphasizing the imperative of 
letting students’ models emerge: “The premise here is that students who work with these models will be 
encouraged to (re)invent the more formal mathematics” (p. 159, original italics). This progress from explorative 
actions to consistent rules that generalize these actions is theorized more explicitly in RME via the formulation 
of two related constructs, “model of” and “model for.” A “model of” results from modeling a particular 
situation. A general “model for” eventually emerges from noticing homology across mathematically analogous 
“models of.” Our SILOs (situated, intermediary learning objectives) can be viewed as a checklist detailing 
structural properties and relations inherent to a “model of.” In turn, we deliberately articulate the SILOs in 
linguistic forms that would also capture general conceptual structures, just as in a “model for.” 

This ontological relation between actions, objects, and concepts has long fascinated theorists of human 
activity. For example, distributed cognition is a theory of human practice that elucidates relationships among 
participants to a collective human practice and the artifacts that mediate this collaboration (Clark, 2003). 
Broadly, the array of tools supporting our cognitive activities—pen and paper, calculator, computer, and so 
on—are cognitive artifacts, that is, artificial tools or devices that carry, elaborate, and report information during 
problem solving (Norman, 1991). As such, mathematical learning can be theorized as developing psychological 
structures for regulating the mental activity of distributing quantitative problems over available cognitive 
artifacts. This effect is dialectical: even as we learn to act and think in new ways as facilitated by these tools, 
they in turn bear the potential of reifying for our reflection what and how we act and think (Hutchins, 2010). It 
follows that different material instantiations of one and the same mathematical concept may bear different 
pedagogical affordances, because their uptake forges different cognitive routes, different neural residue. SILOs 
articulate this residue pragmatically in terms of the models’ structural properties that students learn to monitor. 

And yet, this emergence of cognitive structures from mediated actions with external media is not at all 
guaranteed. A novice might learn to problem-solve using a cognitive artifact that embodies a mathematical 
function yet without ever understanding this function or how the artifact embodies it. Is this cause for concern? 
We turn to discuss the psychological construct of transparency, which captures relations between, on the one 
hand, artifacts inherent to a cultural practice and, on the other hand, a social agent’s understanding of how 
features of these artifacts mediate the accomplishment of their objectives. Thus when we say that an artifact 
is transparent, we refer to the subjective relation between a particular agent and the artifact (Meira, 2002). 

For educational designers, the notion of transparency suggests a particular framing. Namely, the role of 
designers can be conceptualized as creating learning tools that learners can render subjectively transparent. In a 
word, the transparency perspective confers upon educators the role of enabling students to see and learn how 
mathematical artifacts do what they do. For example, in a study of physically distributed problem solving, 
Martin and Schwartz (2005) found that participants generated more salient and transferable conceptualizations 
of fractions when using “obdurate” square tiles as opposed to classical pie-shaped manipulatives. Why? From 
the theoretical lens of transparency, the pie pieces obscured the notion of “whole” precisely because the study 
participants did not need to assume agency in distributing onto those media their tacit sense of whole—the circle 
implicitly did that work for them. On the other hand, those students who worked with square tiles were obliged 
to construct the whole themselves, and that more challenging, agentive experience apparently endured. 

Whereas mathematical models per se are often static, such as those fraction squares, they are created 
through active engagement. Indeed, scholars of embodiment pay close attention to perceptuomotor routines as 
these relate to conceptual knowledge. In particular, when students operate physically within concretized 
conceptual domains, design-based researchers attend to how the students carry out spatial–dynamical analogs of 
formal operations (Antle, 2013). An application of embodiment theory to mathematics education is embodied 
design (Abrahamson, 2009), “a pedagogical framework that seeks to promote grounded learning by creating 
situations in which students can be guided to negotiate tacit and cultural perspectives on phenomena under 
inquiry” (Abrahamson, 2013, p. 224). When students participate in embodied-design activities, they solve 
problems that initially do not bear symbolical notation, do not require calculation, and do not call for 
quantitative solutions; they call only for qualitative judgments, informal inference, or naïve physical actions.  

Embodied designs clearly demarcate the two-step design framework that is thematic to this essay and, 
as such, underscore the informal nature of Step-1 situated, intermediary learning objectives (SILOs). That is, if 
we theorize perceptual judgment and motor action as bearing seeds of mathematical concepts, then we need 
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language for bridging actions and concepts. SILOs articulate subtle elements of learners’ informal inferential 
reasoning about perceptual judgments or motor-action solution strategies that they are to discover and refine. 

With the introduction of embodied design, our literature survey shifts from evaluating implications of 
learning theory for pedagogical design to educational research work dealing directly with the development of 
design frameworks for grounded mathematical learning. 

A profound contribution to the design of mathematics learning environments comes from Richard Noss 
and collaborators, whose learning theory and design frameworks co-emerged dialectically through empirical 
research studies (Noss, Healy, & Hoyles, 1997). Of particular relevance to our thesis is their set of design 
heuristics promoting students’ situated abstractions, “in which abstraction is conceived, not so much as pulling 
away from context [i.e. the particular features of a situated learning activity], but as a process of constructing 
mathematical meanings by drawing context into abstraction, populating abstraction with objects and 
relationships of the setting” (Pratt & Noss, 2010, p. 94, citing Noss & Hoyles, 1996). Pratt and Noss (2010) 
implicate the epistemological root of mathematical concepts in children’s purposeful construction of utility for 
new ideas that are instantiated into designed artifacts in the form of interaction potentialities. The SILOs 
framework differs from that of situated abstractions in terms of grain size, ontological and epistemological foci, 
and pedagogical underpinnings. In particular, SILOs articulate a set of initially unavailable interaction 
constraints that the learner determines, implicates, and wills as potentially conducive to more effective problem 
solving with a given cognitive artifact; in response, each of these willed constraints is then materialized into the 
artifact by the instructor who grants the learner’s will by enabling into functionality a pre-programmed “hidden” 
constraint. SILOs are thus functional concretizations of the user’s wish-list into working technological features 
of an interactive device. Yet SILOs are complementary to situated abstractions in the sense that SILOs can be 
conceptualized as articulating prerequisite structural conditions for enabling and appreciating utility. 

In summary, although scholars may differ acutely in their epistemological positions on the constitution 
of mathematical knowledge, they generally agree that models—forms or structures that learners use in 
organized activities to promote problem-solving processes—can serve instrumental roles in conceptual 
development. Having both situated and singled out our proposed heuristic construct of SILO in a legacy of 
educational theory, philosophy of knowledge, and design frameworks, we now turn to demonstrate this 
construct’s application in an actual case of design practice, namely Giant Steps for Algebra. The next section 
will explain the design problem that gave rise to this design, and then we explain the design itself.  

Setting the Context: Designing Giant Steps for Algebra (GS4A) 
The story of learning algebra in schools is often told as the challenge of progressing from arithmetic to algebra. 
A main character in this story is the “=” sign or, rather, students’ evolving meanings for this sign (Herscovics & 
Linchevski, 1996). When students first encounter algebraic propositions, such as “3x + 14 = 5x + 6”, their 
implicit framing of these symbols is operational, because the framing will have been fashioned by a history of 
solving arithmetic problems such as “3 + 14 = __”, where you operate on the left-hand expression and then fill 
in your solution on the right (Carpenter, Franke, & Levi, 2003). Yet algebraic conceptualization of the “=” sign 
should be relational, as this sense contributes to correct treatment of algebraic equations (Knuth, Stephens, 
McNeil, & Alibali, 2006). Given that the arithmetic visualization of “=” apparently impedes students’ transition 
to algebra, how might this visualization be countervailed? One way is to plant an alternative metaphor. 

The balance metaphor is undoubtedly the most common visualization of algebraic propositions. This 
metaphor is typically introduced to students by invoking interactions with relevant cultural artifacts such as the 
twin-pan balance scale (see Figure 1a). The equivalence-as-balance conceptual metaphor enables a relational, 
rather than operational, view of algebraic equations. In particular, it grounds the rationale of algebraic 
algorithms, such as “Remove 3x from both sides of the equation,” in interactions with a familiar artifact. 

 
 

  
a. b. 

Figure 1. (a) Balance scale and (b) number-line instantiations of “3x + 14 = 5x + 6” 
 

Still, students’ persistent difficulty in transitioning from arithmetic to algebra suggests that the balance 
metaphor may not be the ideal method for building a relational understanding of equations (Jones, Inglis, 
Gilmore, & Evans, 2013). Moreover, the historical substitution of twin-pan scales with electronic scales may 
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have rendered the metaphor unfamiliar to many students. We thus wondered, “What alternative metaphor might 
facilitate students’ passage from arithmetic to algebra?” Our search revealed that Dickinson and Eade (2004) 
tackled a similar problem. They used the number line as a diagrammatic form for modeling linear equations (see 
original work in Figure 1b.). Giant Steps for Algebra (GS4A) is based on this “double-measuring-stick” model. 

Looking at the number-line diagram in Figure 1b, note the combination of above-the-line and under-
the-line symbolic indices of one and the same line segment. This element offers two perceptually contrasting yet 
conceptually complementary visualizations of a single perceptual stimulus (Abrahamson & Wilensky, 2007). 
Further note how this number-line diagram “discloses” that 2x + 6 = 14, so that 2x = 8, and therefore x = 4. 

In accord with distributed-cognition theory, this model of algebraic equivalence appears to facilitate the 
offloading of a rule onto a diagram’s inherent logico-figural constraints, so that the problem solver can focus on 
critical inferences, all the while sustaining a sense of understanding for the solution steps. In the number-line 
model, but not in the twin-pan model, we are able to construct logical relations between variable and integers 
directly by attending at a single location to spatial properties such as adjacency and containment.  

Finally, inspired by the RME principles, GS4A begins not directly with diagrammatic models of 
existing symbolic expressions but with an asymbolic situation that the student is required to model 
diagrammatically. This situation is presented in the form of a narrative about an agent who travels along a path, 
and the number-line emerges as a “model of” this journey. Per embodied design, we thus sought to engage and 
leverage students’ tacit knowledge about simple ambulatory motion and spatial relations, and per constructivist 
pedagogy we draw on students’ elementary arithmetic fluency. 

The GS4A problem narrative depicts a quasi-realistic situation, in which the agent performs two 
consecutive journeys that begin at the same point of departure and end at the same destination yet differ in 
process. These two journeys correspond to two equivalent algebraic expressions. For example the algebraic 
proposition “3x + 2 = 4x – 1” is told as a Day-1 journey of “3x + 2” and a Day-2 journey of “4x – 1”, as follows: 
 

Egbert the Giant has stolen the elves’ treasure. He escaped their land and voyaged to a desert 
island. After docking, Egbert set off walking along a path. You are Eöl the Elf. You are 
positioned on this island to spy on Egbert and find out what he does with the treasure. Starting 
from the port and walking straight along the only path, Egbert walked 3 giant steps and then 
another 2 meters. He buried some of the treasure, covered it up really well, and then went 
back to the ship, covering up his tracks. On the next day, Egbert wanted to bury more treasure 
in exactly the same place, but he was not sure where that place was. Setting off along the 
same path, he walked 4 steps and then, feeling he’d gone too far, he walked back one meter. 
Yes! He’d found the treasure! He buried the rest of the treasure in exactly the same spot as the 
day before. Egbert then covered up the treasure as well as all his tracks, so that nobody will 
know where the treasure is. He returned to the ship and sailed off. Your job is to tell your 
fellow elves exactly where the treasure is: tell them how many meters they need to walk from 
the docks to the hidden treasure. 
 
We thus designed GS4A as an environment wherein students develop a notion of variable as a specific 

quantity: a numerical value that is consistent within a local situation. The specific value of the variable would 
initially be unknown to the student but could eventually be determined by triangulating available information 
about the Day-1 and Day-2 journeys. Yet triangulating depictive information—as we learned by tinkering with 
the design ourselves and observing children attempt to solve the problem—carries certain implicit demands of 
structural precision and coordination. These “trivial” mechanical details surfaced as conceptually critical. 

The Emergence of Situated, Intermediary, Learning Objectives in a Design Process  
The GS4A SILOs emerged during our research team’s meetings and coalesced over iterated cycles of analyzing 
empirical data collected in pilot implementations of the design. The SILOs enabled us to coordinate within a 
single linguistic nexus divergent aspects and objectives of our multi-disciplinary tasks: (1) the target concept 
(algebra); (2) elements of the design (GS4A); and (3) observations of student behavior (in videotaped studies).  

During early trials of the design, we used a variety of different modeling media. This turned out to be 
fortuitous, in that it ultimately led to us identifying the SILOs. As we argue in Chase and Abrahamson (2013), 
when the students built a model from scratch, they understood its latent mathematical content better—it was 
more transparent to them—than in cases where the prefabricated media “did the work” for them (as in Martin & 
Schwartz, 2005). For example, students were more likely to understand the notion of a variable when they used 
paper and pencil to painstakingly scale up a drawing that depicted an unfolding sequence of giant steps, than 
when they were allowed to painlessly stretch an elastic ruler whose intervals scale up uniformly. 

Qualitative data analyses suggested the following set of three SILOs for GS4A. (Note that although we 
articulate the SILOs here as rule-based propositions we do not wish to imply that participants used these forms.) 

 

ICLS 2014 Proceedings 26 © ISLS



 
 
 

 

1. Consistent measures. All variable units (giant steps) and all fixed units (meters) are respectively 
uniform in size both within and between expressions (days); 

2. Equivalent expressions. The two expressions (Day 1 and Day 2) are of identical magnitude—they 
share the “start” and the “end” points, so that they subtend precisely the same linear extent (even if 
the total distances traveled differ between days, e.g. when a giant oversteps and then goes back); 

3. Shared frame of reference. The variable quantity (giant steps) can be described in terms of the unit 
quantity (meters). 
 

Articulating the SILOs gradually increased the coherence and effectiveness of our work. In particular, 
it dawned on us that we should use these SILOs in planning a technological version of our mechanical design. 
In this technological redesign, the SILOs would form a blueprint for an activity architecture, wherein 
transitioning from each interaction phase to the next would be linked to demonstrating mastery over one of the 
SILOs. The idea was thus to step learners through an activity sequence, all the while enabling them to build and 
sustain subjective transparency of the emerging model. Each SILO would be implemented in this design in the 
form of some aspect of the model that the learner would be required to build manually (virtually) before that 
property was instantiated and monitored automatically. Borrowing the notion of “levels” from popular computer 
games—that is, the gradual rewarding of manifest competency with increased power that is linked to increased 
task demand—in GS4A we level transparency. That is, as the users master each SILO, they receive new control 
over the environment in the form of enhanced affordances that instantiate that specific SILO automatically.  

In GS4A, leveling transparency is engineered as follows. The user encounters a problem narrative and 
is encouraged to solve it on the screen. A continuous blue path extends horizontally across the screen (see 
Figure 2). On the left of this line there is a small flag (the “start” location). Below the line there is a standard 
drawing toolbox with buttons for either selecting a color (giant steps are red, meters are green), toggling 
between journey days (Days 1 or 2), or editing (removing or clearing model elements). A floating “treasure 
box” (see in Figure 2, in the top-right corner) can be placed at any location. If a user selects the “Giant Step” 
button and then clicks on the screen, a red arch will appear that connects the giant’s last location along the path 
(a grey node) to the clicked location (a new grey node). Similarly, “Meters” are green arcs.  

 

 
 

Figure 2. In Level 1, “Free Form,” users create all parts of the model manually. Note that the giant steps (red 
arches) are not quite uniform in size; neither are the meters (green arches). 

 
SILOs are psychological constructs—they are about what a child knows (or, at least, about the 

designer’s best understanding of what the child knows). Levels, on the other hand, are technical constructs—
they are about an activity’s technological affordances, that is, what a pedagogical system performs for you. And 
yet SILOs and levels are closely related: each SILO articulates a knowledge criterion for entering a new level, 
and then each level, in turn, orients the child to achieve some next SILO, as outlined in Table 1 (see next page).  

We shall now elaborate on this table, referring to its screenshot images. In Level 1, “Free Form,” users 
construct all elements of their model in freehand, analogous to drawing with pencil and paper. Some production 
imprecision naturally ensues, such as steps that are not quite the same size. The importance of precision (SILO 
1) will arise only once the learner attempts to coordinate measures across two journeys, marked above and 
below the path, and encounters misfits impeding the modeling process. Once users have articulated the 
imperative of consistency and labored over implementing this aspect in their models, they are evaluated as 
having graduated SILO 1, “Consistent Measures.” As a first concession, the program enters Level 2, “Fixed 
Meter,” in which the system relieves the learner of producing uniform meter units (see also Figure 3, next page). 

At this new level, the system supplements manual interaction with optional symbolic interaction. 
Namely, the learner can now use a control (see in the bottom-right corner of Figure 3) to set a numerical value 
that determines how many meters will be generated; at a click of a button, the program creates these units as 
figural elements on the screen. Unburdened by the tedious task of maintaining uniform meters, the user now 
attempts to equalize the two journeys (Day 1 & Day 2) by adjusting the variable size. Note that one and the 
same variable, a giant step size, applies both within each journey day and across both days. As in the case of 
meters, it is difficult to manually coordinate both within-day and between-days equivalences of variables. Once 
the user articulates that the variable should be consistent across the entire model, the interface enters Level 3. 
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In Level 3, “Stretchy,” not only is the meter unit size maintained automatically, but the variable size 
changes uniformly. So when the user drags any of the nodes along the path line, all variable units change size 
accordingly (please also compare Figures 4a and 4b, two page down). This supplementary affordance enables 
the user more felicitously to match the end points of Day 1 and Day 2, as follows. 

 
Table 1: Leveling Transparency: Matched SILOs and Levels in Giant Steps for Algebra Technological Design. 
 

SILO Level 
System Constraints, User Activity, and 

Behavior Criterion Interface 

1. Consistent 
Measures 

1. Free Form System offers no support in coordinating units 
or expressions. 

 

 Activity User builds all parts of the model manually; is 
perturbed by units’ unequal lengths within and 
between days; tries to equalize units via small 
adjustments but witnesses that increasing one 
unit decreases an adjacent unit sharing a node.  

 

 Criterion User expresses frustration in equalizing units.   

2. Equivalent 
Expressions 

2. Fixed 
Meters 

System generates meter units in predetermined 
size and maintains uniform size automatically. 

 

 Activity User builds variables manually; is perturbed 
by variable units’ unequal lengths 
within/between days; tries to equalize variable 
units but witnesses that increasing one unit 
decreases an adjacent unit sharing a node. 

 

 Criterion User expresses frustration with managing 
uniform variable units particularly in an 
attempt to equalize the two propositions (the 
spatial extents of Days 1 & 2). 

 

3. Shared 
Frame of 
Reference 

3. Stretchy System monitors for manual adjustment to the 
size of any of the variable units and 
accordingly adjusts the size of all variable 
units.  

 

 Activity User adjusts the variable size to equalize the 
two propositions 

  
 

   

 
 Criterion User reads off the value of a variable unit in 

terms of the number of known units (meters) it 
subtends, e.g., one giant step is 2 meters long. 

 

 

 
 

Figure 3. In Level 2, “Fixed Meter,” the (green) meters are automatically maintained as uniform in size (and 
therefore equal to each other), while the variable (red) giant steps are not automatically controlled thus. Users 

interact with a symbolic control (bottom-right corner) to generate meters. 
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a.       b. 

Figure 4. In Level 3, “Stretchy,” green arches (meters) are invariable and thus equal to each other, while red 
arches (giant steps) are variable yet always equal to each other via uniform scaling. A new control (bottom-right 

corner) now enables the user to generate a specified number of giant steps, not only meters. 
 

Note, in Figure 4a, that all the variable units are uniform, both above and below the line path, and yet the two 
journeys do not end at the same location, so that the only way of aligning the two trips would be by changing 
the uniform size of the variable (the red arcs). That is precisely what our hypothetical student did, so that the 
two trips ended in the same location thus determining the value of a single step as 2 meters (see Figure 4b).  

A new hypothesis arises from the “leveling transparency” technological design architecture—a 
hypothesis informing our next study as well as a tentative theoretical insight. Namely, if users were introduced 
to the activity initially at Level 3, with its full slate of convenient interaction shortcuts, they could not appreciate 
these features as affordances, because they would not know what each feature accomplishes. As such, learning 
as constructing transparency is the process of coming to visualize an artifact’s features as affordances. 

Closing Words: SILOs Demarcate Structure-Oriented Mathematical Competency 
We have introduced a mathematics-education construct we call SILOs—situated intermediary learning 
objectives. We explained that this construct emerged through our reflective engagement in the process of 
developing a design for algebra. Sensing the potential of these heuristics as something we might wish to 
understand, generalize, and share, we reified and refined these tacit elements of our practice in the form of the 
construct “SILO.” SILOs are the structural and logical properties that a learner needs to figure out in order to 
utilize media made available in a particular learning environment so as to model a particular class of problem 
situations posed by the activity. Knowing a design’s collective SILOs, we maintain, indexes conceptual 
ontogenesis of a student who is learning target content. Moreover, the creation of a set of SILOs indexes the 
progress of a designer who is learning about the student’s learning process: by articulating the SILOs, the 
designer comes to know what the students should know who participate in activities enabled by the design. In a 
sense, SILOs are the educator’s heuristics for engineering, orienting, and monitoring the learner’s heuristics.  

SILOs are not a to-do list of requisite actions required by an expert responding to a particular class of 
problems (e.g., production rules for solving picture-based pre-algebraic problems, Koedinger & Terao, 2002). 
Rather, SILOs are an artifact’s set of necessary properties, any of whose violation would elicit from an expert 
adaptive action. We thus draw on the view of expertise not as the capacity of rote production but rather the skill 
of responsively recognizing and modifying perceived stimuli so that they embody target structures affording 
routine practice (Schoenfeld, 1998), such as inferring target information (e.g., the value of x). Of course this 
modeling skill must be developed. The practical function of SILOs is to organize and coordinate educators’ 
efforts to create, moderate, and evaluate opportunities for learners to reinvent this expertise. 

One might be tempted to describe GS4A as an exemplar of technological designs that scaffold algebra 
content. We hesitate to use that common term. In fact, our proposed design architecture for leveling 
transparency might be described as reverse scaffolding. Scaffolding is the asymmetrical social co-enactment of 
natural or cultural practice, wherein a more able agent performs for novices elements of a complex activity. The 
novices’ participation is thus simplified, so that they experience the activity’s purpose, meaning, and efficacy as 
well as a sense of competence. In GS4A, by way of contrast, the scaffolding is inherent to the design rationale 
but not the actual activity. That is, the design as a whole is a fortiori premeditated to enable and support guided 
reinvention of a mathematical concept. However, within the environment there is no co-enactment of any steps 
that students have not yet figured out themselves. The system co-constructs the model only once the student 
understands the necessity and functionality of each specific property of the model. Thus the pedagogical system 
relieves users of executing what they know to do rather than what they do not know to do. 

SILOs are subjective achievements—they articulate learners’ emergent, idealized system of target 
relations between reified elements in a problem space; they describe the “things” treated in the situation and 
imply how to treat them. As such, throughout this manuscript we have spoken of two emergent processes, each 
of which involves tinkering, discovery, and the objectification of implicit knowledge: (1) the child modeling a 
situation to infer quantitative information; and (2) the designer modeling the child’s behavior to infer learning 
objectives. These two problem-solving processes are isomorphic, parallel, iterative, and reciprocal. 
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It is our hope that the idea of SILOs per se as well as the process by which they emerged will resonate 
with the experiences of fellow designers. A potentially productive focus of such a dialogue would be regarding 
the ontological status, or pedagogical role, of the external constructions children build as they work on a situated 
problem, whether concrete or virtual. Additionally, we are fascinated by the designers’ early process of 
instantiating mathematical concepts. How does this process transpire? How do designers evaluate the quality, or 
epistemic fidelity, of these initial conceptual instantiations? We suspect that these two lines of inquiry—about 
design process and learning process, respectively—will turn out to be more similar than has been formerly 
suspected and, consequently, mutually informative. 
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