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Abstract

Time-of-flight (TOF) capability is becoming an important capability offered in both commercial 

and research PET scanners. Often commercial vendors and laboratory researchers develop and 

utilize proprietary electronics for their devices. Consequently, it is challenging for independent 

research groups to develop their own TOF-PET scanners. In this investigation, we tested a 

prototype scanner consisting of commercially available TOF-capable modules from Hamamatsu 

Photonics that can be used as building blocks for PET scanners. The scanner consists of a ring of 

16 modules, for a total diameter of 26.7 cm. Testing demonstrated that the scanner is capable of 

sustaining ~1 MHz single counting rate with a peak noise equivalent count rate (NECR) of 117.5 

kHz at 75.25 MBq measured with NEMA NU-4 “rat” phantom. Spatial resolution of 2.3 mm 5 

mm from the center of the scanner was measured. Energy resolution of 17.2% at 511 keV was 

measured. Peak sensitivity of 1.28% is reported. All the measurements were performed with 

energy cuts from 350 to 700 keV Finally, scanner timing resolution was found to be 462 ps. 

Results from testing of a prototype scanner constructed using newly released TOF-capable 

detector modules produced by Hamamatsu demonstrated the promise for these devices to create 

high performance PET system with TOF capabilities.
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I. Introduction

Time-of-flight (TOF) resolution on the order of several hundreds of picoseconds is 

becoming an essential capability for high performance PET imaging. First proposed nearly 

40 years ago [1–3], TOF utilizes the difference between accurately measured arrival times of 
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annihilation photons to estimate the positions of positron annihilations. Despite initial 

success, further progress on TOF-capable scanners was achieved only some 20 years later 

with the introduction of faster and brighter scintillators [4–6]. Development of high-gain 

semiconductor low-level light sensors, silicon photomultipliers (SiPMs), also contributed to 

the rapid adoption of TOF techniques to PET imaging [7–10]. TOF has the potential to 

improve signal-to-noise ratio, improve spatial resolution and decrease the radiation dose 

and/or scan time compared to non-TOF scanners [11–15].

Currently, individual research groups only gain access to TOF technology by purchasing 

scanners from commercial vendors or by undertaking costly development programs to create 

their own hardware [16–20]. To address this lack of access to TOF technology, Hamamatsu 

Photonics (HPK) recently brought to market a line of complete TOF-capable imaging 

modules [21]. These devices can be customized with different scintillation arrays, offering 

pixel sizes from 1.5 to 4 mm. They can be daisy-chained with common timing and data 

transfer lines, allowing construction of custom TOF-PET scanners. The aim of this study is 

to evaluate the ability of new, commercially available TOF-capable detector modules to 

create a small PET system. Specifically, we assessed the performance of a prototype, small 

diameter PET scanner constructed from the modules.

II. Methods

A. Apparatus description

Each HPK module (C13500–4075LC-12) contains a 12×12 array of 4.1×4.1×20 mm LFS 

scintillator elements (4.205 mm pixel pitch) individually coupled to a 12×12 array of multi-

pixel photon counters (MPPCs). The total detection area is ~50×50 mm2. The modules are 

hermetically sealed to make them light and air tight. The MPPC array is read out with two 

digital boards. Each board contains an array of four application-specific integrated circuits 

(ASIC). Each ASIC digitizes 18 analog channels, providing information about event 

position, energy and timing. Energy estimation is implemented as time-over-threshold (ToT) 

with resolution of 4 ns. Event timing is provided by a timestamp, common for all the 

channels served by an ASIC. A module is housed in an aluminum casing to provide 

mechanical robustness and light weight. Individual modules were mounted inside 3D-

printed plastic holders. Fans were included inside the housing to cool the electronics. Each 

complete detector module weighs approximately 0.5 kg.

16 detector units were daisy-chained and arranged in a ring geometry with a diameter of 

26.7 cm and axial coverage of ~5 cm. A Korad KA3305P multi-channel power supply was 

used to provide power to the modules and control electronic boards. Electronics include two 

power supply boards, three timing distribution boards and a data relay board. A relay board 

receives data from the modules and sends it to a host PC via an optical data link. A 10 MHz 

timing signal was generated internally by the data relay board and distributed through the 

master timing board to slave timing boards and, ultimately, to the detector modules. Fig.1 

shows the connection of two modules. Fig. 2 shows the complete prototype scanner using 16 

modules.
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Data acquisition was coordinated by connecting the module electronics shown in Fig. 1 to a 

Dell Optiplex workstation (i7 processor, 32 Gb of RAM) running Windows 7 Professional 

OS. Hamamatsu proprietary data acquisition software version 1.0.8.1, written in C#, was 

utilized to acquire raw data from the scanner. Our revision of the firmware supported 16-

bytes per event data format. Event data in such format are reported only for the highest 

energy channel, thus estimation of light sharing and inter-crystal Compton scatter was not 

possible.

The system does not possess external triggering capabilities. Thus, the software stores 

singles data from all the detectors to a hard drive. These data are then accessed by Java-

based, custom software that determines coincidence events and converts the data to list-

mode data for further processing and reconstruction. The system provides a timing step of 

15.625 ps, allowing for a narrow timing window for better rejection of random events. After 

some experimentation, we chose to utilize 1 ns window.

B. Calibration and preliminary measurements

Energy calibration of the system was performed with 22Na and 137Cs sources, as well as 202 

and 307 keV lines of 176Lu using the formalism described in [24]. Timing correction was 

performed by rotating a line source filled with 18F placed outside the useful field of view 

(12.5 cm away from the center). The source was rotated at an angular speed of 1 degree/

second and measurements were repeated 5 times with source activities around 250 μCi. 

Timing spectra were obtained for each line-of-response (LOR) and their centers were 

calculated by fitting the timing distributions to a Gaussian function. Locations of the line 

source were calculated using angular velocity and data timestamps. Timing calibration 

offsets were calculated as the differences between the centers of the timing spectra and 

predictions for each LOR based on the location of the radioactive line source. Assessment of 

the sustainable count rate was performed by placing a 74 MBq 18F source at various 

distances from the detectors faces.

C. NEMA NU-4-based evaluations

The basic performance characteristics of the scanner were assessed using the NEMA NU4–

2008 protocol. Specifically, spatial resolution was measured by stepping a point source of 
22Na (50μCi) mounted in a 1cm3 block of acrylic to several radial positions at two axial 

positions: center of the scanner and 12 mm (1/4 of the FOV) away from the center. Images 

were reconstructed using filtered back projection (FBP) and maximum likelihood 

expectation minimization (MLEM) iterated until a stable point source width was obtained 

(15 iterations)) reconstruction algorithms. The full width-at-half-maximum (FWHM) of 

intensity profiles acquired from images of the point source are reported as spatial resolution. 

Detection sensitivity was measured by stepping the same point source to 28 positions along 

the central axis of the scanner. These data were used to calculate detection sensitivity at each 

location. Throughout system assessment we utilized an energy window of 350 to 700 keV. 

Noise equivalent counting rate (NECR) was measured using the “rat-like” phantom with a 

starting activity of 96 MBq of 18F. Random and scattered events were estimated, as per 

NEMA NU-2008 standard, by measuring total and combined scatter and random rates from 

data acquired as the source decays. The intrinsic coincidence rate due to the presence of 
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176Lu was evaluated with no source in the field of view. These data are used to estimate true 

coincidence rates. Scatter fraction was estimated using low activity data points, where 

random rates are negligible. Finally, image uniformity and spillover ratios were measured 

from MLEM-reconstructed images of the phantom.

D. Timing resolution measurements and phantom imaging

To measure the system’s timing resolution, a 70 μCi 18F line source was placed at the center 

of the scanner. A data set containing approximately 100 million total events was then 

acquired. Timing calibration offsets were applied and an overall timing spectrum was fit to a 

Gauss function. FWHM of the fit is reported as timing resolution. Finally, reconstructed 

images of a mini-hot-rod phantom with rod diameters of 1.2, 1.6, 2.4, 3.2, 4 and 4.8 mm and 

the Hoffman brain phantom were obtained with and without timing information for 

comparison. They were filled with 18F solution with activities of 3.7 and 5.6 MBq 

respectively. Data were acquired for 5 minutes. An energy threshold window of 350 to 700 

keV and 1 ns gate time were applied in post-processing. Phantom data were reconstructed 

using the MLEM reconstruction algorithm [22] with modeled attenuation corrections based 

on knowledge of the phantom’s photon attenuation characteristics.

III. Results

A. Energy resolution and counting rate

A single pixel energy spectra obtained with a 22Na source before and after linearization are 

shown in Fig.3 a) and b). After calibration, the overall energy resolution of the scanner is 

17.2 % FWHM. Average energy resolution over all the crystals was 16.9 ± 2.7% (range 

13.7% to 17.9%). The single-detector maximum-counting rate is 968 kHz.

B. NEMA NU-4-based evaluations

Fig. 4a) and b) show plots of spatial resolution as a function of the source’s trans-axial 

displacement from the center of the scanner. A strong discrepancy can be noted between 2.3 

mm resulting from MLEM reconstruction and 6.1 mm obtained with FBP. Fig. 5 shows a 

plot of detection sensitivity measured with energy window of 350 to 700 keV. Peak 

sensitivity is 1.27%.

Results from measurement of count rate capability are shown in Fig. 6. Peak NECR is 117.5 

kcps at 75.25 MBq. The average counting rate of individual modules is 968 kcps, which 

agrees well with the ~1 MHz specified by the manufacturer. A sharp drop in counting rate at 

high activity levels is attributed to partial shutdown of bias voltage, which is a safety 

mechanism implemented by the manufacturer to protect the detector electronics from current 

spikes.

Fig. 7 displays single slices of the non-TOF-corrected images of the NEMA quality 

assurance phantom. Analysis of the uniformity section of the QA phantom produced a value 

of 18.2+/−1.18 %. Spillover ratios are 17% and 23% for the air and water filled areas, 

respectively. Finally, contrast recovery coefficients were measured to be 0.65, 0.42, 0.26, 

0.10 and 0 for 5, 4, 3, 2, and 1 mm-diameter rods, respectively.
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C. Timing resolution

While single pixel timing resolutions were within manufacturer’s specifications of ~300 ps, 

system timing resolution, however, is 462 ps FWHM. The difference in timing resolution 

between single pixel and system configurations is likely due to time jitter introduced by 

daisy-chaining the modules.

D. Phantom imaging

Slices of reconstructed volumes of mini-hot-rod and Hoffman brain phantoms are shown in 

Figs. 9 and 10. The 3.2 mm-diameter rods are clearly resolved. Incorporation of time-of-

flight information in the image reconstruction process improved, slightly, the ability to 

resolve the smaller rods. Images of the Hoffman brain phantom also demonstrated 

improvement in the ability to resolve small structures due to the addition of TOF 

information..

IV. Discussion

The commercial availability of TOF-capable imaging modules makes this technology 

available to a wider range of research groups. This access may enhance creation of custom 

PET scanners developed by smaller groups. We demonstrated this capability by constructing 

a relatively small diameter PET scanner that could be used as a small animal scanner, or as 

an ambulatory brain-PET scanner, for example. An attractive feature of the new detector 

modules is the ability to utilize them to create relatively large scanners. The modules can be 

daisy-chained with minimal amount of wiring; eliminating noise-prone analog data transfer. 

The timing distribution board can also be arranged into a single timing source configuration, 

supporting up to 128 detection modules. Multiple optical data links with rates of 10 Gbps 

per channel minimizes dead time associated with high data transfer rates.

The modules utilize the time-over-threshold method, with resolution of 4 ns, to estimate 

energy of the detected event. This method is prone to non-linearity [23] and requires 

calibration. Application of an exponential model for the shape of the detected signal [24] 

yielded a system energy resolution of 17.2%. This number may be further improved by fine 

adjustments of the threshold values for each MPPC.

The performance of the system is comparable to many small diameter PET scanners, 

demonstrating the utility of the new modules. For example, the system energy resolution 

(17.2%) is equivalent to other scanners, range of 13.7% to 25% for LYSO-based scanners 

[25]. The results from NEMA NU4–2008-based testing demonstrated the ability to create a 

high-performing, small diameter PET scanner. The relatively poor spatial resolution 

measured using NEMA NU-4 protocol-required FBP-reconstructed images of a point source 

(~6 mm FHWM) (Fig. 4a) is surprising given the small cross sectional dimensions of the 

detector elements (4.1 × 4.1 mm2). The cause of this unexpected result is currently under 

investigation; it may be linked to the use of the winner-takes-all strategy used by the data 

acquisition electronics. To assess the magnitude of spatial resolution when an iterative 

reconstruction algorithm is used, resolution measurement were repeated on MLEM-

reconstructed images of the point source. Average resolution of approximately 2.2 mm 
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FWHM 5cm from scanner center (Fig. 4b) was achieved, which is similar to the values 

reported for other small-diameter scanner (range=~1.7 mm to ~2.3 mm) [26].

The peak sensitivity (1.27%) (Fig. 5) is slightly higher than the MicroPET P4 (1.19%) [26], 

which has dimensions very close to our system. Slight decrease in sensitivity values located 

approximately 1 cm away from the center can be attributed to different spacing of the central 

crystals in the block, 4.5 mm, compared to regularly spaced 4.2 mm outer crystals. Peak 

NECR (117.5 kcps) (Fig. 6) measured with the “rat-like” phantom is slightly lower than the 

MicroPET P4 (173 kcps) [26]. Image uniformity (18.2+/−1.18 %), spillover ratio for air-

filled cylinder (17%) and water-filled cylinder (23%) values (Fig. 7), respectively, are not in 

the range of other similar systems. These findings are due to current lack of corrections for 

Compton scattering.

Applying TOF for a small-diameter scanner, such as the one described in this work, will 

have only modest effect. This phenomenon is demonstrated by the moderate improvement to 

identification of small structures in images of the mini-hot rod phantom (Fig 9.) and 

Hoffman brain phantom (Fig. 10). Improvement was also hindered by the relatively poor 

system timing resolution (460 ps) (Fig. 8). Efforts to improve this phenomenon, likely due to 

time jitter introduced by attaching multiple modules, are currently under investigation.

V. Conclusion

In summary, we have demonstrated the ability to create a TOF-capable PET scanner 

utilizing newly available modules. Testing of the system revealed that its performance is 

similar to other systems designed for small animal imaging. And, while the size of the 

scanner is not large enough to definitively demonstrate the imaging advantages of ToF, the 

timing resolution measured for the system is comparable to other systems. The scalability of 

these modules facilitates construction of PET scanners of virtually any size. Thus, the 

introduction of these modules makes TOF capabilities available to research groups that 

would not normally have access to this increasingly important technology.
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Fig. 1. 
Main electronic components and two PET modules (Photo courtesy of Hamamatsu 

Photonics Corp)
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Fig. 2. 
Prototype PET scanner consisting of 16 modules arranged in ring geometry
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Fig. 3. 
(a) 22Na energy spectrum acquired from a single pixel before ToT linearization (b) 22Na 

energy spectrum acquired from a single pixel after ToT linearization
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Fig. 4. 
(a) Spatial resolution of the scanner obtained with FBP-reconstructed images. (b) Spatial 

resolution of the scanner obtained with MLEM-reconstructed images.
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Fig. 5. 
Sensitivity profile of the scanner measured with 350 to 700 keV energy window.
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Fig. 6. 
Counting rate curves of the prototype scanner measured with NEMA NU-4 “rat” phantom.
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Fig. 7. 
Single slices through the three regions of NEMA QA phantom.
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Fig. 8. 
Timing resolution of the scanner.
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Fig. 9. 
Single slices through a Derenzo resolution phantom. Images were reconstructed with no 

TOF (left), with 280 ps (center) and 460 ps (right) kernels.
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Fig. 10. 
Single slices through Hoffman brain phantom. Images were reconstructed with no TOF (left) 

kernel, with 280 ps (center) and 460 ps (right) kernels.
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