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A note on random projections for preserving paths on a manifold

Nakul Verma
CSE, UC San Diego

naverma@cs.ucsd.edu

Abstract

Random projections are typically used to study low distortion linear embeddings that approxi-

mately preserve Euclidean distances between pairs of points in a set S ⊂ R
D. Of particular interest

is when the set S is a low-dimensional submanifold of RD. Recent results by Baraniuk and Wakin
[2007] and Clarkson [2007] shed light on how to pick the projection dimension to achieve low dis-
tortion of Euclidean distances between points on a manifold. While preserving ambient Euclidean
distances on a manifold does imply preserving intrinsic path-lengths between pairs of points on a
manifold, here we investigate how one can reason directly about preserving path-lengths without
having to appeal to the ambient Euclidean distances between points. In doing so, we can improve
upon Baraniuk and Wakin’s result by removing the dependence on the ambient dimension D, and
simplify Clarkson’s result by using a single covering quantity and giving explicit dependence on
constants.

1 Introduction

Random projections have turned out to be a powerful tool for linear dimensionality reduction that approxi-

mately preserve Euclidean distances between pairs of points in a set S ⊂ R
D. Their simplicity and universal-

ity stems from the fact the target embedding space is picked without looking at the individual samples from
the set S. Interestingly, recent results by Baraniuk and Wakin [2007] and Clarkson [2007] show that even
if the underlying set is a non-linear manifold (say of intrinsic dimensionality n), a random projection into a
subspace of dimension O(n) suffices to preserve interpoint Euclidean distances between the pairs of points.

It turns out that requiring Euclidean distances to be approximately preserved between pairs of points in a
manifold is in a sense the strictest condition one can pose. This condition suffices to imply that the random
projection will also preserve several other useful properties on manifolds. For instance, if one has a random
projection that can approximately preserve the Euclidean distances, it will also approximately preserve the
lengths of arbitrary curves on the manifold, and the curvature of the manifold.

Here we are interested in analyzing whether one can use random projections to reason directly about pre-
serving the lengths of arbitrary paths on a manifold, without having appeal to interpoint Euclidean distances.
There is a two fold reason for doing this: i) one can possibly get a sharper bound on the dimension of tar-
get space by relaxing the Euclidean interpoint distance preservation requirement, and ii) since paths—unlike
Euclidean distances—are inherently an intrinsic quantity, it should require a different technique to show path
length preservation. Thus, giving us an alternate, direct proof.

In this manuscript, we make progress on both fronts. We can remove the dependence on ambient dimen-
sion from the bound provided by Baraniuk and Wakin [2007], as well as simplify the bound provided by
Clarkson [2007] by giving an explicit bound for all settings of the isometry parameter (and not just asymp-
totically small values). Our key lemma (Lemma 6) uses an elegant chaining argument on the coverings of
vectors in tangent spaces providing an alternate proof technique.

2 Random projections for preserving paths on a manifold

2.1 Notation and Preliminaries

Let M ⊂ R
D be a smooth compact n-dimensional submanifold of RD. For any two points p and q, we

shall use DG(p, q) to denote the geodesic distance between points p and q when the underlying manifold is
understood from the context.



Recall that the length of any given curve γ : [a, b] → M is given by
∫ b

a ‖γ′(s)‖ds (that is, length of a
curve is an infinitesimal sum of the lengths of vectors tangent to points along the path). It thus suffices to
bound the distortion induced by a random projection to the lengths of arbitrary vectors tangent to M .

Since path lengths depend intimately on tangent vectors, we also need to know how the tangent vectors
vary locally in the ambient space. This relationship between the local curvature of M in the ambient space

R
D is captured formally by the notion of the second fundamental form (see e.g. Chapter 6 of do Carmo

[1992]). It is a symmetric bilinear form Bp : Tp × Tp → T⊥
p (for any p ∈ M , tangent space Tp and normal

space T⊥
p ). We shall assume that the norm of the second fundamental form of M is uniformly bounded by

1/τ . That is, for all p ∈ M , unit u ∈ Tp, and unit η ∈ T⊥
p , we have 〈η,Bp(u, u)〉 ≤ 1/τ .

As a final piece of notation, we require a notion of covering on our manifoldM . We define the α-geodesic
covering number of M as the size of the smallest set S ⊂ M , with the property: for all p ∈ M , there exists
p′ ∈ S such that DG(p, p

′) ≤ α.

2.2 Main Result

Theorem 1 Let M be a smooth compact n-dimensional submanifold of R
D

with the norm on its second
fundamental form uniformly bounded by 1/τ . Let G(M,α) denote the α-geodesic covering number of M .

Pick any 0 < ǫ < 1 and 0 < δ < 1. Let φ be a random projection matrix that maps points from R
D into a

random subspace of dimension d (d ≤ D) and define Φ :=
√

D/dφ as a scaled projection mapping.

If d ≥
{

64
ǫ2 ln 4G(M,τǫ2/218)

δ + 64n
ǫ2 ln 12

δ

}
, then with probability at least 1− δ we have the following:

For any path-connected points p and q in M ⊂ R
D and any path γ from p to q in M , and their corresponding

projections Φ(p), Φ(q) and Φ(γ) in Φ(M) ⊂ R
d
,

(1− ǫ)L(γ) ≤ L(Φ(γ)) ≤ (1 + ǫ)L(γ),

where L(β) denotes the length of the path β.

3 Proof

As discussed earlier, it suffices to uniformly bound the distortion induced by a random projection to the length
of an arbitrary vector tangent to our manifold M . So we shall only focus on that. We start by stating a few
useful lemmas that would help in our discussion.

Lemma 2 (random projection of a fixed vector – see e.g. Lemma 2.2 of Dasgupta and Gupta [1999])

Fix a vector v ∈ R
D. Let φ be a random projection map that maps points from R

D to a random subspace of
dimension d. Then,

i) For any β ≥ 1,

P

[

‖φ(v)‖2 ≥ β
d

D
‖v‖2

]

≤ e(β−1−lnβ)(−d/2).

ii) For any 0 < ǫ < 1, we have

P

[

‖φ(v)‖2 ≤ (1 − ǫ)
d

D
‖v‖2 or ‖φ(v)‖2 ≥ (1 + ǫ)

d

D
‖v‖2

]

≤ 2e−dǫ2/4.

Lemma 3 (covering of a Euclidean unit-sphere – Chapter 13 of Lorentz et al. [1996]) Let Sn be an
n-dimensional Euclidean unit sphere. Then there exists a ǫ-cover of Sn of size at most (12/ǫ)n. That is, there
exists a set C ⊂ Sn, of size at most (12/ǫ)n, with the property: for any x ∈ Sn, exists c ∈ C such that
‖x− c‖ ≤ ǫ.

Lemma 4 (covering of a section of a manifold – implicit in the proof of Theorem 22 of Dasgupta and

Freund [2008]) Let M ⊂ R
D be a smooth compact n-dimensional manifold with 1/τ uniform bound on the

norm of its second fundamental form. For any x ∈ R
D

and 0 < r ≤ τ/2, let M ′ := M ∩ B(x, r). Then,
M ′ can be covered by 9n balls of radius r/2. That is, there exists C ⊂ M ′ with size at most 9n, with the
property: for any p ∈ M ′, exists c ∈ C such that ‖p− c‖ ≤ r/2.

Lemma 5 (relating closeby tangent vectors – implicit in the proof of Propositions 6.2 and 6.3 of Niyogi

et al. [2006]) Let M ⊂ R
D

be a smooth compact n-dimensional manifold with 1/τ uniform bound on the
norm of its second fundamental form. Then,
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centers of balls

level 0: 1 center
p0,1

level 1: ≤ 9n centers

level 2: ≤ 92n centers

≤ τǫ2/218

≤ τǫ2/217

Figure 1: A hierarchy of covers of S ⊂ B(p, τǫ2/218) for some point p in an n-manifold M with condition number

1/τ . Observe that at any level i, there are at most 9ni points in the cover. Also note that the Euclidean distance between

any point pi,k at level i and its parent pi−1,j in the hierarchy is at most τǫ2/217+i.

i) Pick any two path-connected points p, q ∈ M . Let u ∈ TpM be a unit length tangent vector and
v ∈ TqM be its parallel transport along the (shortest) geodesic path to q. Then, i) u·v ≥ 1−DG(p, q)/τ ,

ii) ‖u− v‖ ≤
√

2DG(p, q)/τ .

ii) If p, q ∈ M such that ‖p− q‖ ≤ τ/2, then DG(p, q) ≤ τ(1 −
√

1− 2‖p− q‖/τ) ≤ 2‖p− q‖.

Lemma 6 Let M ⊂ R
D be a smooth compact n-dimensional manifold with 1/τ uniform bound on the norm

of its second fundamental form. Pick any 0 < ǫ < 1. Fix some p in M and let S := {p′ ∈ M : DG(p, p
′) ≤

τǫ2/218}. Let φ be a random orthoprojector from R
D

to R
d
. Then, if d > 30n ln 9,

P

[

∃p′ ∈ S : ∃v′ ∈ Tp′M : ‖φ(v′)‖ ≤ (1− ǫ)

√

d

D
‖v′‖ or ‖φ(v′)‖ ≥ (1 + ǫ)

√

d

D
‖v′‖

]

≤ 2(en ln(108/ǫ)−(d/30) + en ln(12/ǫ)−(dǫ2/64)).

Proof: Note that the set S is path-connected, and (see for instance Lemma 4) for any Euclidean balls B(x, r),
S ∩B(x, r) can be covered by 9n balls of half the radius. We will use this fact to create a hierarchy of covers
of increasingly fine resolution. For each point in the hierarchy, we shall associate a covering of the tangent
space at that point. We will inductively show that (with high probability) a random projection doesn’t dis-
tort the lengths of the tangent vectors in the covering by too much. We will then conclude by showing that
bounding the length distortion on tangent vectors in the covering implies a bound on the length distortion of
all vectors in all the tangent spaces of all points in S. We now make this argument precise.

Constructing a hierarchical cover of S: Note that S is contained in a Euclidean ball B(p, τǫ2/218). We
create a hierarchy of covers as follows. Pick a cover of S ⊂ B(p, τǫ2/218) by 9n balls of radius τǫ2/219 (see
Lemma 4). WLOG, we can assume that the centers of these balls lie in S (see e.g. proof of Theorem 22 of
Dasgupta and Freund [2008]). Each of these balls induces a subset of S, which in turn can then be covered
by 9n balls of radius τǫ2/220. We can continue this process to get an increasingly fine resolution such that
at the end, any point of S would have been arbitrarily well approximated by the center of some ball in the
hierarchy. We will use the notation pi,k to denote the center of the kth ball at level i of the hierarchy (note
that with this notation p0,1 = p). (see Figure 1).

A tangent space cover associated with each point in the hierarchy: Associated with each pi,k, we have
a set Qi,k ⊂ Tpi,k

M of unit-length vectors tangent to M at pi,k that forms a (ǫ/6)-cover of the unit-vectors

in Tpi,k
M (that is, for all unit v ∈ Tpi,k

M , there exists q ∈ Qi,k where ‖q‖ = 1 such that ‖q − v‖ ≤ ǫ/6).

We will define the individual vectors in Qi,k as follows. The set Q0,1 is any (ǫ/6)-cover of the unit-sphere

in Tp0,1M . Note that, by Lemma 3, we can assume that |Q0,1| = L ≤ en ln(12/ǫ). For levels i = 1, 2, . . .,
define Qi,k (associated with the point pi,k) as the parallel transport (via the shortest geodesic path using the
standard manifold connection, see Figure 2) of the vectors in Qi−1,j (associated with the point pi−1,j) where
pi−1,j is the parent of pi,k in the hierarchy. Note that parallel transporting a set of vectors preserves certain
desirable properties – the dot product, for instance, between the vectors being transported is preserved (see,
for instance, page 161 of Stoker [1969]). Thus, by construction, we have that Qi,k is a (ǫ/6)-cover, since
parallel transport doesn’t change the lengths or the mutual angles between the vectors being transported.
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p

M v′

v

q

Figure 2: Parallel transport of the vector v at point p ∈ M to the point q ∈ M . The resulting transported vector is
v′. Parallel transport is the translation of a (tangent) vector from one point to another while remaining tangent to the
manifold. As the vector is transported infinitesimally along a path, it is also required to be parallel. Note that the resulting
vector v′ is typically path-dependent: that is, for different paths from p to q, the transport of v is generally different.
However, as expected, the transport does not change the length of the original vector. That is, ‖v‖ = ‖v′‖.

A residual associated with each vector in the tangent space cover: For i ≥ 1, let qi,kl be the lth vector

in Qi,k, which was formed by the transport of the vector qi−1,j
l in Qi−1,j . We define the “residual” as

ri,kl := qi,kl − qi−1,j
l (for l = 1, . . . , L). Then we have that ‖ri,kl ‖ is bounded. In particular, since ‖qi−1,j

l ‖ =

‖qi,kl ‖ = 1 (since the transport doesn’t change vector lengths), and since DG(pi−1,j , pi,k) ≤ 2‖pi−1,j −
pi,k‖ ≤ τǫ2/216+i (cf. Lemma 5)

‖ri,kl ‖2 ≤ 2DG(pi−1,j , pi,k)/τ ≤ ǫ22−i−15.

Effects of a random projection on the length of the residual: Note that for a fixed ri,kl (corresponding to a
fixed point pi,k at level i in the hierarchy and its parent pi−1,j in the hierarchy), using Lemma 2 (i), we have
(for β > 1)

P

[

‖φ(ri,kl )‖2 ≥ β
d

D
‖ri,kl ‖2

]

≤ e(β−1−lnβ)(−d/2). (1)

By choosing β = 2i/2 in Eq. (1), we have the following. For any fixed i and k, with probability at least

1 − en ln(12/ǫ)e(2
i/2−1−ln 2i/2)(−d/2) ≥ 1 − en ln(12/ǫ)−di/30, we have ‖φ(ri,kl )‖2 ≤ ǫ22i/2 d

D‖ri,kl ‖2 ≤

ǫ22−(i/2)−15(d/D) (for l = 1, . . . , L). By taking a union bound over all edges in the hierarchy, (if d >
30n ln 9)

P

[

∃ level i : ∃ ball k at level i with center pi,k : ∃ residual ri,kl : ‖φ(ri,kl )‖2 ≥ ǫ22−(i/2)−15(d/D)
]

≤

∞∑

i=1

eni ln 9en ln(12/ǫ)e−di/30 ≤ 2en ln(108/ǫ)−(d/30).

Effects of a random projection on the vectors in the tangent space cover: We now use the (uniform) bound

on ‖φ(ri,kl )‖2 to conclude inductively that φ doesn’t distort the length of any vector qi,kl too much (for any

i, k, and l). In particular we will show that for all i, k and l, we will have (1− ǫ
2 )

d
D ≤ ‖φ(qi,kl )‖2 ≤ (1+ ǫ

2 )
d
D .

Base case (level 0): Since |Q0,1| ≤ en ln(12/ǫ) we can apply Lemma 2 (ii), to conclude with probability at

least 1− 2e−dǫ2/64+n ln(12/ǫ), for all q ∈ Q0,1, (1− ǫ
4 )

d
D ≤ ‖φ(q)‖2 ≤ (1 + ǫ

4 )
d
D .

Inductive hypothesis: We assume that for all vectors qi,kl ∈ Qi,k (for all k) at level i

(

1−
ǫ

4
−

ǫ

32

i∑

j=1

2−j/4

)
d

D
≤ ‖φ(qi,kl )‖2 ≤

(

1 +
ǫ

4
+

ǫ

32

i∑

j=1

2−j/4

)
d

D
. (2)

Inductive case: Pick any pi+1,k at level i + 1 in the hierarchy and let pi,j be its parent (i ≥ 0). Then, for

any qi+1,k
l ∈ Qi+1,k (associated with the point pi+1,k), let qi,jl ∈ Qi,j (associated with the point pi,j) be the
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vector which after the parallel transport resulted in qi+1,k
l . Then, we have:

‖φ(qi+1,k
l )‖2 = ‖φ(qi,jl ) + φ(ri+1,k

l )‖2

= ‖φ(qi,jl )‖2 + ‖φ(ri+1,k
l )‖2 + 2φ(qi,jl ) · φ(ri+1,k

l )

≥ ‖φ(qi,jl )‖2 + ‖φ(ri+1,k
l )‖2 − 2‖φ(qi,jl )‖‖φ(ri+1,k

l )‖

≥
d

D

(

1−
ǫ

4
−

ǫ

32

i∑

j=1

2−j/4

)

− 2

√
(

1 +
ǫ

2

)
d

D

√

ǫ22−(i/2)−15.5d

D

≥
d

D

[(

1−
ǫ

4
−

ǫ

32

i∑

j=1

2−j/4

)

−ǫ
√

2−(i/2)−12.5
︸ ︷︷ ︸

≥−ǫ2−(i/4)−(1/4)−5

]

≥
d

D

(

1−
ǫ

4
−

ǫ

32

i+1∑

j=1

2−j/4

)

.

Now, in the other direction we have

‖φ(qi+1,k
l )‖2 = ‖φ(qi,jl )‖2 + ‖φ(ri+1,k

l )‖2 + 2‖φ(qi,jl )‖‖φ(ri+1,k
l )‖

≤
d

D

(

1 +
ǫ

4
+

ǫ

32

i∑

j=1

2−j/4

)

+
ǫ22−(i/2)−15.5d

D
+ 2

√
(

1 +
ǫ

2

)
d

D

√

ǫ22−(i/2)−15.5d

D

≤
d

D

[(

1 +
ǫ

4
+

ǫ

32

i∑

j=1

2−j/4

)

+ǫ2−(i/2)−15.5 + ǫ
√

2−(i/2)−12.5
︸ ︷︷ ︸

≤+ǫ2−(i/4)−(1/4)−5

]

≤
d

D

(

1 +
ǫ

4
+

ǫ

32

i+1∑

j=1

2−j/4

)

.

So far we have shown that by picking d > 30n ln 9, with probability at least 1 − 2(en ln(108/ǫ)−(d/30) +

en ln(12/ǫ)−(dǫ2/64)), for all i, k and l,

(1− ǫ/2)(d/D) ≤ ‖φ(qi,kl )‖2 ≤ (1 + ǫ/2)(d/D).

Effects of a random projection on any tangent vector at any point in the hierarchy: Now, pick any
point pi,k in the hierarchy and consider the corresponding set Qi,k. We will show that for any unit vector

v ∈ Tpi,k
M , (1− ǫ)

√

d/D ≤ ‖φ(v)‖ ≤ (1 + ǫ)
√

d/D.

Define A := maxv∈Tpi,k
M,‖v‖=1 ‖φ(v)‖ and let v0 be a unit vector that attains this maximum. Let

q ∈ Qi,k be such that ‖v0 − q‖ ≤ ǫ/6. Now, if ‖v0 − q‖ = 0, then we get that A = ‖φ(v0)‖ = ‖φ(q)‖ ≤

(1 + ǫ)
√

d/D. Otherwise,

A = ‖φ(v0)‖ ≤ ‖φ(q)‖+‖φ(v0−q)‖ = ‖φ(q)‖+‖v0−q‖

∥
∥
∥
∥
φ

(
v0 − q

‖v0 − q‖

)∥
∥
∥
∥
≤ (1+ǫ/2)

√

d/D+(ǫ/6)(A).

This yields that A ≤ (1 + ǫ)
√

d/D, and thus for any unit v ∈ Tpi,k
M , ‖φ(v)‖ ≤ ‖φ(v0)‖ = A ≤

(1 + ǫ)
√

d/D. Now, in the other direction, pick any unit v ∈ Tpi,k
M , and let q ∈ Qi,k be such that

‖v − q‖ ≤ ǫ/6. Again, if ‖v − q‖ = 0, then we have that ‖φ(v)‖ = ‖φ(q)‖ ≥ (1− ǫ)
√

d/D. Otherwise,

‖φ(v)‖ ≥ ‖φ(q)‖ − ‖φ(v − q)‖ = ‖φ(q)‖ − ‖v − q‖

∥
∥
∥
∥
φ

(
v − q

‖v − q‖

)∥
∥
∥
∥

≥ (1− ǫ/2)
√

d/D − (ǫ/6)(1 + ǫ)
√

d/D ≥ (1− ǫ)
√

d/D.

Since φ is linear, it immediately follows that for all v ∈ Tpi,k
M (not just unit-length v) we have

(1 − ǫ)
√

d/D‖v‖ ≤ ‖φ(v)‖ ≤ (1 + ǫ)
√

d/D‖v‖.

Observe that since the choice of the point pi,k was arbitrary, this holds true for any point in the hierarchy.

Effects of a random projection on any tangent vector at any point in S: We can finally give a bound on
any tangent vector v at any p ∈ S. Pick any v tangent to M at p ∈ S. Then, for any δ > 0 such that δ ≤ τ/2,
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we know that there exists some pi,k in the hierarchy such that ‖p− pi,k‖ ≤ δ. Let u be the parallel transport
(via the shortest geodesic path) of v from p to pi,k. Then, we know that ‖u‖ = ‖v‖ and (cf. Lemmas 5)

‖ u
‖u‖ − v

‖v‖‖ ≤
√

4δ/τ . Thus,

‖φ(v)‖ ≤ ‖φ(u)‖+ ‖φ(v − u)‖ ≤ (1 + ǫ)
√

d/D‖u‖+ ‖(v − u)‖ ≤ (1 + ǫ)
√

d/D‖v‖+ 2
√

δ/τ.

Similarly, in the other direction

‖φ(v)‖ ≥ ‖φ(u)‖ − ‖φ(v − u)‖ ≥ (1− ǫ)
√

d/D‖u‖ − ‖(v − u)‖ ≥ (1 − ǫ)
√

d/D‖v‖ − 2
√

δ/τ.

Note that since the choice of δ was arbitrary, by letting δ → 0 from above, we can conclude

(1− ǫ)

√

d

D
‖v‖ ≤ ‖φ(v)‖ ≤ (1 + ǫ)

√

d

D
‖v‖.

All the pieces are now in place to compute the distortion to tangent vectors induced by a random projec-
tion mapping. Let C be a (τǫ2/218)-geodesic cover of M . Noting that one can have C of size at most
G(M, τǫ2/218), we have (for d > 30n ln 9)

P

[

∃c ∈ C : ∃p such that DG(c, p) ≤ τǫ2/218 : ∃v ∈ TpM : ‖φ(v)‖ ≤ (1 − ǫ)

√

d

D
‖v‖ or ‖φ(v)‖ ≥ (1 + ǫ)

√

d

D
‖v‖

]

≤ 2G(M, τǫ2/218)(en ln(108/ǫ)−(d/30) + en ln(12/ǫ)−(dǫ2/64)).

The theorem follows by bounding this quantity by δ.
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