
UCSF
UC San Francisco Previously Published Works

Title
Immune profiles and DNA methylation alterations related with non-muscle-invasive 
bladder cancer outcomes

Permalink
https://escholarship.org/uc/item/37k432nz

Journal
Clinical Epigenetics, 14(1)

ISSN
1868-7075

Authors
Chen, Ji-Qing
Salas, Lucas A
Wiencke, John K
et al.

Publication Date
2022-12-01

DOI
10.1186/s13148-022-01234-6

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/37k432nz
https://escholarship.org/uc/item/37k432nz#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Chen et al. Clinical Epigenetics           (2022) 14:14  
https://doi.org/10.1186/s13148-022-01234-6

RESEARCH

Immune profiles and DNA methylation 
alterations related with non-muscle-invasive 
bladder cancer outcomes
Ji‑Qing Chen1, Lucas A. Salas1, John K. Wiencke2, Devin C. Koestler3, Annette M. Molinaro2, 
Angeline S. Andrew4, John D. Seigne5, Margaret R. Karagas1, Karl T. Kelsey6 and Brock C. Christensen1,7,8*  

Abstract 

Background: Non‑muscle‑invasive bladder cancer (NMIBC) patients receive frequent monitoring because ≥ 70% will 
have recurrent disease. However, screening is invasive, expensive, and associated with significant morbidity making 
bladder cancer the most expensive cancer to treat per capita. There is an urgent need to expand the understanding 
of markers related to recurrence and survival outcomes of NMIBC.

Methods and results: We used the Illumina HumanMethylationEPIC array to measure peripheral blood DNA methyl‑
ation profiles of NMIBC patients (N = 603) enrolled in a population‑based cohort study in New Hampshire and applied 
cell type deconvolution to estimate immune cell‑type proportions. Using Cox proportional hazard models, we identi‑
fied that increasing CD4T and CD8T cell proportions were associated with a statistically significant decreased hazard 
of tumor recurrence or death (CD4T: HR = 0.98, 95% CI = 0.97–1.00; CD8T: HR = 0.97, 95% CI = 0.95–1.00), whereas 
increasing monocyte proportion and methylation‑derived neutrophil‑to‑lymphocyte ratio (mdNLR) were associated 
with the increased hazard of tumor recurrence or death (monocyte: HR = 1.04, 95% CI = 1.00–1.07; mdNLR: HR = 1.12, 
95% CI = 1.04–1.20). Then, using an epigenome‑wide association study (EWAS) approach adjusting for age, sex, 
smoking status, BCG treatment status, and immune cell profiles, we identified 2528 CpGs associated with the hazard 
of tumor recurrence or death (P < 0.005). Among these CpGs, the 1572 were associated with an increased hazard and 
were significantly enriched in open sea regions; the 956 remaining CpGs were associated with a decreased hazard 
and were significantly enriched in enhancer regions and DNase hypersensitive sites.

Conclusions: Our results expand on the knowledge of immune profiles and methylation alteration associated with 
NMIBC outcomes and represent a first step toward the development of DNA methylation‑based biomarkers of tumor 
recurrence.

Keywords: DNA methylation, Non‑muscle‑invasive bladder cancer, Immune profile, Immunomethylomic, 
Recurrence, Survival
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Background
In 2021, the estimated number of bladder cancer deaths 
is projected to be 17,200, with an estimated number of 
new cases of 83,730 in the USA. Bladder cancer is the 
fourth most common cancer among men and twelfth 
most common among women, which may in part be due 
to smoking prevalence rates being higher in men than 
women as cigarette smoking accounts for half of all cases 
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(47%) in the USA. [1]. Seventy-five percent of bladder 
cancers are diagnosed as low-grade non-muscle invasive 
tumors, NMIBC [2]. Cystoscopy is used for diagnosis 
(biopsy) with transurethral excision of localized tumors 
as the primary treatment [3–5]. Although transurethral 
excisions can successfully control the disease and mor-
tality from bladder cancer among patients with localized 
tumors is low, 45% of NMIBC cases have recurrences 
within 12  months of surgery [6]. In addition, frequent 
invasive follow-up via cystoscopy without prognostic 
markers leads to significant patient morbidity and comes 
with a considerable cost burden to the health care sys-
tem, estimated at approximately $4 billion dollars annu-
ally in the USA [7]. To control the patient and healthcare 
burdens associated with NMIBC, there is an imminent 
need for biomarkers to identify those at the highest risk 
of tumor recurrence.

Peripheral blood immune profiles have been associated 
with different outcomes in bladder cancer patients and 
may have clinical utility for NMIBC prognosis [8–13]. 
For instance, in NMIBC, patients with elevated neu-
trophil-to-lymphocyte ratio (NLR) had poorer cancer-
specific survival than patients with lower NLR [9–11]. 
Thus, elevated NLR could be a potential predictor of 
overall survival and cancer-specific survival for this dis-
ease. Other studies have indicated that bladder cancer 
patients with increased lymphocyte-to-monocyte ratio 
had poorer overall survival and cancer-specific survival 
[12, 13]. In addition, Bacillus Calmette–Guérin (BCG), a 
commonly used intravesical immunotherapy for NMIBC 
administered post-surgery, has been reported to reduce 
the proportion of natural killer T cells, memory CD4T, 
CD8T, and regulatory T cells in the peripheral blood of 
NMIBC patients [8]. Together, circulating immune pro-
files might be promising markers for reducing adverse 
outcomes in NMIBC patients. Previous studies have 
relied on complete blood count differential (CBC) tests 
to determine immune profile variables [14, 15]. The CBC 
test relies on fresh blood samples and is incapable of pro-
viding proportions of specific lymphocyte subtypes [16].

Our prior work has established methods to infer the 
immune profiles in archival samples using immune cell-
type-specific DNA methylation [17, 18]. DNA meth-
ylation plays an essential role in gene regulation for cell 
lineage specification [19, 20]. Differentially methyl-
ated regions (DMRs) have been used to distinguish cell 
types, including leukocyte subtypes, and form the basis 
of reference-based deconvolution methods for esti-
mating specific immune cell-type proportions [18, 21, 
22]. Compared with cytological methods for determin-
ing cell type abundances and proportions, such as flow 
cytometry, DNA methylation-based cell-type deconvo-
lution does not require a fresh substrate, intact cells, or 

batch-sensitive reagents, is reproducible and cost-effec-
tive relative to time-sensitive blood processing [23, 24]. 
With cell-type deconvolution approaches, it is possible to 
identify immune cell-type profiles and test their relation-
ship with cancer outcomes in archived samples [25]. This 
study used the archival blood samples of NMIBC patients 
to test the association between the immune profiles and 
outcomes in bladder cancer patients.

In the present study, we sought to identify immune 
profiles and epigenetic features associated with disease 
recurrence in the hope that such information might help 
improve the management of NMIBC. Here, we hypoth-
esized that CpG-specific DNA methylation and DNA 
methylation-derived immune cell profiles are associated 
with recurrence-free survival in NMIBC patients. We 
used archival blood samples from a population-based 
case–control study to obtain genome-scale DNA meth-
ylation profiles. We then investigated the association 
between the methylation-derived immune profiles and 
outcomes in NMIBC patients. Preliminary work from 
our group observed an association between methylation-
derived NLR (mdNLR) and survival in bladder cancer 
patients using a smaller sample size (223 cases) and an 
early genome-scale methylation array (HumanMethyla-
tion27K array) [26]. In this study, we increased the sam-
ple size (603 cases), used a new more comprehensive 
array (HumanMethylationEPIC array) with 30 times as 
many measured features, and a new cell type deconvo-
lution library [18] to estimate immune cell-type propor-
tions. An epigenome-wide association study (EWAS) and 
enrichment analyses were used to determine possible 
CpG sites and gene sets associated with recurrence-free 
survival.

Results
Profiles of DNA methylation were obtained from 685 
peripheral blood samples using the Human Methylatio-
nEPIC array. Eighty-two subjects were excluded due to 
low-quality CpG value or bisulfite intensity (n = 11), or 
without muscle-invasive status, histopathology re-review, 
tumor grade, smoking status, and pack-years (n = 71) 
(Fig.  1). The remaining subjects (N = 603) included in 
the study group were 75.8% men (n = 457), 82.9% ever-
smokers (n = 500), and had a median age of 66 (Table 1). 
We estimated the cell-type proportions for each patient 
using methylation values by performing FlowSorted.
Blood.EPIC (see Additional file 7: Figure S1 for the distri-
bution). Neutrophil-to-lymphocyte ratio (NLR) was then 
calculated according to the ratio of neutrophil proportion 
to lymphocyte proportion (B cell + CD4T cell + CD8T 
cell + NK cell), and the median methylation-derived NLR 
(mdNLR) was 1.97. Further details of study population 
characteristics are described in Table 1.
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To characterize 10-year recurrence-free survival (RFS), 
we generated Kaplan–Meier curves for each covariate 
and fit a Cox proportional hazard regression model for 
univariate analyses and multivariable analyses, respec-
tively. In the Kaplan–Meier analysis, the NMIBC patients 
aged > 65 had a worse probability of RFS compared 
with the NMIBC patients with age ≤ 65 (P = 0.0006). 
Females had a greater probability of RFS compared with 
males (P = 0.002), and the NMIBC patients with high-
grade tumors (grade 3 + 4) had a lesser probability of 
RFS than those with low-grade tumors (grade 1 + 2) 
(P = 8.0 ×  10−5). Ever-smokers had a worse probability 
of RFS than the NMIBC patients who were never smok-
ers (P = 3.0 ×  10−4). NMIBC patients with low mdNLR 
had a greater probability of RFS than the patients with 
high mdNLR (P = 0.002) (Fig.  2). Consistent with the 
Kaplan–Meier results, in a multivariable Cox model, 
age > 65 (HR = 1.01, 95% CI = 1.00–1.03), high tumor 
grade (HR = 1.48, 95% CI = 1.17–1.87), ever-smoking 

(HR = 1.65, 95% CI = 1.22–2.25), and mdNLR (HR = 1.12, 
95% CI = 1.04–1.20) were significantly associated with an 
increased hazard of RFS (Table 2).

We next investigated the association between 
immune cell-type proportions and RFS in multivari-
able models. CD4T (HR = 0.98, 95% CI = 0.97–1.00) 
and CD8T cell proportion (HR = 0.97, 95% CI = 0.95–
1.00) were significantly associated with the decreased 
hazard of RFS. Monocyte cell proportion (HR = 1.04, 
95% CI = 1.00–1.07) was significantly associated with 
the increased hazard of RFS. Both B cell and NK cell 
proportion hazard estimates were < 1 but not statisti-
cally significant (Additional file  1). We also examined 
the 10-year overall survival (OS) in univariate mod-
els and the multivariable models. Observed associa-
tions with RFS were consistent for OS for: age, male, 
high tumor grade, ever-smoking, and mdNLR (Table 3 
and Additional file  7: Figure S2). In addition, CD4T, 
CD8T, B cell, and NK cell proportion were significantly 

Fig. 1 Flow chart of study
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associated with the decreased hazard of death; neutro-
phil cell proportion was significantly associated with 
the increased hazard of death (Additional file 2).

Next, we assessed the relation of NMIBC patient 
outcomes with DNA methylation. First, Cox pro-
portional hazards models were fit for each CpG con-
trolling for age, stratified sex, tumor grade, smoking 
status, and stratified BCG receiving status. Without 
adjustment for immune cell proportions, we identi-
fied 27,575 CpGs whose methylation was associated 
with a significant (P < 0.005) difference in hazard of 
RFS (Fig.  3A, Additional file  3). We then conducted 
similar analyses controlling for age, sex, tumor grade, 
smoking status, BCG status, and winsorized immune 
cell proportions. As expected and demonstrating the 

importance of adjusting for cell-type proportions, the 
fully adjusted models were attenuated and identified 
2528 CpGs whose methylation was associated with a 
significant difference (P < 0.005) in the hazard of RFS. 
The 10 CpGs most strongly (with smallest P-value) 
associated with hazard of RFS corresponded to 10 
genes: TMCO4 (cg04738197), LENG9 (cg12057190), 
CDC42EP5 (cg12057190), LNP1 (cg02540094), 
TOMM70A (cg02540094), RUNX2 (cg08012149), 
TBXAS1 (cg01584377), SSH1 (cg16237760), SFXN2 
(cg08609163), and COG3 (cg06172950). 1572 CpGs 
were associated with the increased hazard of RFS, and 
956 CpGs were associated with the decreased hazard 
of RFS (Fig.  3B). The complete list of RFS-associated 
CpGs is provided in Additional files 4 and 5.

To gain a better understanding of the regions where 
the hazard-associated CpGs were located, we tested for 
enrichment of CpG island region context among CpG 
loci associated with a significant change in the hazard 
of RFS. We found that 1572 CpGs associated with the 
increased hazard of RFS were significantly enriched in 
the open sea (OR = 1.14, 95% CI = 1.03–1.27) and were 
significantly depleted in CpG island S Shore regions 
(OR = 0.82, 95% CI = 0.67–0.99). The 956 CpGs associ-
ated with a decreased hazard of RFS were significantly 
enriched in CpG island N Shore regions (OR = 1.30, 
95% CI = 1.06–1.57) and were significantly depleted in 
CpG island (OR = 0.60, 95% CI = 0.46–0.78) (Fig.  4A). 
We also tested for enrichment of other gene regulatory 
regions among CpG loci associated with a significant 
change in the hazard of RFS.

Location of CpGs in regulatory regions also was 
investigated and the CpGs associated with the 
increased hazard of RFS were significantly enriched 
in enhancer regions (OR = 1.78, 95% CI = 1.43–2.18), 
DNase hypersensitive sites (DHS) (OR = 1.25, 95% 
CI = 1.13–1.40), 5’UTR regions (OR = 1.37, 95% 
CI = 1.17–1.60) and gene body (OR = 1.15, 95% 
CI = 1.04–1.27); however, these CpGs were signifi-
cantly depleted in regions 200–1500 bps upstream of 
the transcription start site (TSS1500) (OR = 0.85, 95% 
CI = 0.73–0.99). In addition, while the CpGs associ-
ated with a decreased hazard were strongly enriched 
in enhancer regions (OR = 4.18, 95% CI = 3.44–5.05) 
and DHS (OR = 2.46, 95% CI = 2.13–2.86), they were 
depleted for TSS200 (OR = 0.70, 95% CI = 0.48–0.99), 
gene body (OR = 0.85, 95% CI = 0.74–0.97) and tran-
scription factor binding sites (TFBS) (OR = 0.68, 95% 
CI = 0.55–0.83) (Fig.  4B). Using the CpGs associated 
with hazard of RFS from cell-type unadjusted models 
in tests for enrichment gave results that were largely 
consistent with those above based on CpGs from fully 
adjusted models (Additional file 7: Figure S3).

Table 1 Characteristics of subjects after excluding subjects with 
missing values

Exclude subjects with missing values in muscle-invasive status, pathology 
reviewing status, tumor grade, smoking status, or pack-years

NMIBC (n = 603)

Age

Median (Q1, Q3) 66 (57,71)

Sex

Male 457 (75.8%)

Female 146 (24.2%)

Tumor grade

Grade 1 290 (48.1%)

Grade 2 162 (26.9%)

Grade 3 125 (20.7%)

Grade 4 26 (4.3%)

Smoking status

Never 103 (17.1%)

Ever 500 (82.9%)

BCG: immunotherapy

No 514 (85.2%)

Yes 89 (14.8%)

NLR

Median (Q1, Q3) 1.97 (1.40, 2.93)

10-year dead status

Alive 423 (70.1%)

Deceased 180 (29.9%)

10-year survival

Median (Q1, Q3) 120.0 (105, 120)

10-year recurrence status

No 193 (32.0%)

Yes 295 (48.9%)

Missing 115 (19.1%)

10-year recurrence

Median (Q1, Q3) 17.7 (6.9, 67.1)

Missing 115
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To further understand the biological function of the 
hazard-associated CpGs, Gene Set Enrichment Analy-
sis (GSEA) Molecular Signature Database (MSigDB) 
was used to explore the potential gene sets which might 
associate with the tumor recurrence or death of NMIBC 
patients. The input was 2528 RFS associated CpGs 
from the Cox model EWAS adjusting for immune cell 

composition. In the top 10 hazard-associated gene sets in 
gene ontology (GO) terms, some gene sets were related 
to neurological system processing (Additional file 7: Fig-
ure S4A), and most related genes were associated with 
the increased hazard of RFS in NMIBC (Additional file 7: 
Figure S4B). Since mdNLR was associated with the haz-
ard of recurrence or death of NMIBC, we were interested 

Fig. 2 Kaplan–Meier analysis of 10‑year recurrence‑free survival (RFS). 10‑year RFS curves stratified by A age, B sex, C tumor grade, D smoking 
status, E BCG treatment status or F mdNLR level. P‑values for log‑rank tests are shown
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in immune-related gene sets. We checked the immuno-
logic signature gene set, and the top 10 gene sets and their 
genes were related to immune cell regulation. However, 
only one gene set (BCELL VS MDC UP: up-regulated 
genes in B cells compared with myeloid dendritic cells 
after vaccination for influenza) consisting of 41 genes was 
significantly associated with RFS (FDR < 0.05) (Additional 
file  7: Figure S4C-D). Results from GO term analyses 
using 27,575 CpGs from the cell-type unadjusted models 
identified 5 pathways related to immunologic regulation 
among the top 10 pathways. Further, in the immunologic 

signature gene set specifically, we observed the top 10 
pathways were associated with monocytes and lympho-
cytes (Additional file 7: Figure S5).

Locus overlap analysis (LOLA) was used to test the 
enrichment of CpGs in genomic regions. As our analy-
sis was conducted on blood samples, results focus on the 
genomic regions within hematopoietic stem cells. When 
controlling for immune cell profiles, the 2528 CpGs asso-
ciated with the hazard of RFS in NMIBC patients were 
most significantly enriched in Histone H3 acetylated at 
lysine 9 and 14 (H3K9K14ac) (Q-value = 1.9 ×  10−20) 

Table 2 Cox proportional hazards 10‑year recurrence‑free survival models

HR: hazard ratio, CI: confidence interval, mdNLR: methylation-derived neutrophil to lymphocyte ratio

Stratification was used on sex and BCG treatment status for proportional assumption
$ The model controlling for age, sex, tumor grade, smoking status, BCG treatment status, and mdNLR
* Winsorization was used on the top 2% values for fitting linearity assumption
# Initial recurrence or the death whose cause was unknown

n (%)  event# n (%) no-events# Event occurrence months Multivariable$ model

Mean Median HR (95% CI) P value

Age 373 (61.9) 230 (38.1) 65.6 62.0 1.01 (1.00–1.03) 0.024

Tumor grade

1 + 2 263 (58.2) 189 (41.8) 69.9 79.0 Referent group

3 + 4 110 (72.8) 41 (27.2) 52.8 26.7 1.48 (1.17–1.87) 1.0E−3

Smoking status

Non‑smoker 47 (45.6) 56 (54.4) 82.3 120.0 Referent group

Ever‑smoker 326 (65.2) 174 (34.8) 62.2 51.9 1.65 (1.22–2.25) 1.0E−3

mdNLR* 373 (61.9) 230 (38.1) 65.6 62.0 1.12 (1.04–1.20) 3.0E−3

Table 3 Cox proportional hazards 10‑year overall survival models

HR: hazard ratio, CI: confidence interval, mdNLR: methylation-derived neutrophil to lymphocyte ratio
* Winsorization was used on the top 2% values for fitting linearity assumption

All covariates modeled met proportionality assumptions #: the median survival month for each variable is 120

n (%) deceased n (%) alive Survival months Multivariable model

Mean# HR (95% CI) P value

Age 180 (29.9) 423 (70.1) 104.3 1.07 (1.04–1.08) 8.7E−9

Sex

Male 156 (34.1) 301 (65.9) 102.2 Referent group

Female 24 (16.4) 122 (83.6) 111.1 0.62 (0.40–0.96) 0.032

Tumor grade

1 + 2 118 (26.1) 334 (73.9) 106.6 Referent group

3 + 4 62 (41.1) 89 (58.9) 97.7 1.54 (1.12–2.12) 8.0E−3

Smoking status

Non‑smoker 19 (18.4) 84 (81.6) 110.8 Referent group

Ever‑smoker 161 (32.2) 339 (67.8) 103.0 1.66 (1.03–2.67) 0.039

BCG treatment

No 152 (29.6) 362 (70.4) 104.8 Referent group

Yes 28 (31.5) 61 (68.5) 101.9 1.04 (0.68–1.60) 0.842

mdNLR* 180 (29.9) 423 (70.1) 104.3 1.46 (1.32–1.60) 6.0E−15
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(Additional file  7: Figure  S6A). LOLA results for the 
27,575 CpGs associated with the hazard of RFS from cell 
type unadjusted models were most significantly enriched 
in cistrome of the promyelocytic leukemia protein (PML) 
(Q-value < 0.05) (Additional file 7: Figure S6B).

We also ran a differentially methylated regions analysis 
using DMRcate. In this study, we found 11 CpGs in a spe-
cific genome region overlapping with the gene BLCAP. 
NMIBC patients without tumor recurrence or death 
within 10  years had a higher mean of methylation lev-
els for this region compared with NMIBC patients with 

tumor recurrence or death within 10 years, and one CpG 
in this region was significant (FDR = 2.63 ×  10−14) (Addi-
tional files 6, 7: Figure S7).

Discussion
In this study, we tested whether immune profiles and 
epigenetic features are associated with NMIBC recur-
rence. Although previous work observed the association 
between NLR and overall survival in NMIBC patients, it 
was in a smaller study sample and used DNA methylation 
data from a dated (second generation) array platform 

Fig. 3 Volcano plots of recurrence‑free survival (RFS) associated CpGs from the epigenome‑wide association study (EWAS) analyses. The Cox 
multivariable model that was fitted in EWAS was shown in each plot. CpGs are colored in red (A) 12,105 CpGs were associated with the increased 
hazard of NMIBC 10‑year RFS, and 15,470 CpGs were associated with the decreased hazard of NMIBC 10‑year RFS. (B) 1572 CpGs were associated 
with the increased hazard of NMIBC 10‑year RFS, and 956 CpGs were associated with the decreased hazard of NMIBC 10‑year RFS
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with ~ 27,000 CpGs. In this study, our sample size was 
nearly three times larger and DNA methylation data 
was collected using the current genome-scale platform 
(fourth generation), measuring ~ 860,000 CpGs for which 
an optimized cell-type deconvolution library exists to 
determine highly accurate immune cell-type proportions. 

We extended tests of association with the patient out-
comes beyond the methylation-derived neutrophil-to-
lymphocyte ratio (mdNLR) to include leukocyte-specific 
cell-type proportions. Our findings suggest that elevated 
mdNLR increased the hazard of RFS in NMIBC patients. 
These findings are consistent with previous studies 

Fig. 4 Genomic context enrichment analysis of CpG sites whose methylation state is significantly associated with recurrence‑free survival. 
Enrichment analysis of (A) relation to CpG island and (B) genomic context of NMIBC recurrence‑free survival associated CpGs. The 2528 CpGs from 
EWAS (P < 0.005) were tested for enrichment versus all modeled CpGs. The bar represents the 95% confidence interval. Mantel–Haenszel was used 
to test RFS‑associated CpGs enrichment of CpG island‑related gnome context. An odds ratio larger than 1 means enrichment, and an odds ratio 
smaller than 1 indicates depletion



Page 9 of 14Chen et al. Clinical Epigenetics           (2022) 14:14  

demonstrating that NLR was significantly higher in high-
risk NMIBC patients [27], and increased NLR was posi-
tively associated with poor prognosis [28, 29]. While past 
studies have shown a significant association between 
NLR and outcomes in NMIBC patients using the conven-
tional method of CBC tests [30–32], this study uses NLR 
derived from blood methylation profiles. Compared with 
flow cytometry, estimation using the differentially meth-
ylated regions (DMR) library has several advantages: it 
does not require long sample processing time, large vol-
ume of blood, or intact cells as DNA and 5-methylcyto-
sine are both stable [33]. The advantage of our approach 
is the ability to use archived samples that many investiga-
tors may already have. Moreover, utilizing blood samples 
to monitor patient outcomes is less invasive compared 
with a cystoscopy, the routine screening method. For 
NMIBC patients with a high risk of tumor recurrence, 
BCG is the standard intravesical immunotherapy to 
induce immune system eliminating bladder cancer cells 
that might be left after surgery [8, 34, 35], and therefore, 
blood immune profile is a potential prognostic factor. 
Immune profiling with DNA methylation data is a prom-
ising avenue for assessing NMIBC prognosis.

As NLR is composed of lymphocyte and neutrophil 
proportions, we also considered the association between 
each methylation-derived immune cell type proportion 
and patient outcomes. Interestingly, increased CD4T and 
CD8T cell proportions were associated with decreased 
NMIBC recurrence-free survival and overall survival. 
Prior work has shown that NMIBC patients with a high 
CD4T cell count in BCG pretreatment microenviron-
ment have a significantly prolonged recurrence-free sur-
vival compared to patients with a low CD4T cell count 
[35]. In addition to the immune cell types explored in this 
study, other cell types have been shown to affect NMIBC 
development, such as GATA3 + T cells, regulatory T 
cells, and tumor-associated macrophages [35]. Other 
work showed an increased  CD8+ILT2+ T cell proportion 
was associated with a significantly increased hazard of 
NMIBC recurrence [36]. Further, peripheral neutrophil 
x platelet/lymphocyte was inversely correlated with high-
risk NMIBC recurrence-free survival [37]. These results 
demonstrate the potential of immune cell profiles in eval-
uating the prognosis of NMIBC patients, and future work 
mapping DNA methylation profiles of additional immune 
cell types and states could add detail to investigations of 
immune profiles and bladder cancer outcomes. In addi-
tion, peripheral immune cell distribution is affected by 
potentially residual confounding factors such as, infec-
tion [38], inflammation [39], lifestyles, treatments [40, 
41], obesity [42], chronic alcohol consumption [43], and 
type 2 diabetes [44]. Since our study includes hundreds 
of subjects and has a decade or more of follow-up time, 

in the future, we will re-explore the effect of these resid-
ual confounding factors on the association of circulating 
immune cell distribution and NMIBC outcomes. In the 
future, we will perform higher resolution methylation cell 
mixture deconvolution to resolve additional immune cell 
types and employ blood count on prospectively collected 
samples. Together, these data will allow us to understand 
if specific subsets of neutrophils or lymphocytes contrib-
ute to high NLR in patients with poor outcomes.

Bacillus Calmette–Guérin (BCG) is the most com-
monly used immunotherapy for high-risk NMIBC. 
After transurethral resection of bladder tumors, NMIBC 
patients may receive BCG intravesical therapy to induce 
an immune response in the bladder to attack cancer 
cells. Previous studies have shown that tumor immune 
environments may interact with BCG and interfere with 
the efficacy of this therapy. For instance, IL-12 secreted 
by BCG-induced monocytes was increased in NMIBC 
patients without tumor recurrence, a phenomenon that 
may involve the innate immune memory of circulating 
monocytes [45]. Nevertheless, patients receiving BCG 
in our study did not have peripheral immune cell pro-
files that differed from patients who were BCG naïve, and 
BCG was not significantly associated with NMIBC out-
comes. As the number of patients with BCG treatment 
was relatively low (N = 89; 14.8%) and limited power to 
observe possible therapy induced changes in peripheral 
immune profiles, future work is needed to address the 
potential associations of BCG with peripheral immune 
profiles and patient outcomes. Most BCG-treated 
patients were already high-risk. In addition, blood sam-
ples were collected only after surgery or initial BCG 
treatment. To assess the changes in immune profiles over 
time, having multiple blood draws is necessary for future 
work.

This EWAS identified several CpGs associated with 
NMIBC recurrence-free survival when controlling for 
stratified sex, age, tumor grade, smoking status, stratified 
BCG receiving status, and immune cell profiles. With a 
P-value < 0.005, 2528 CpGs were found to be associated 
with the hazard of RFS.

Among the top CpGs whose methylation was asso-
ciated with NMIBC recurrence or death in the fully 
adjusted models, some genes have been previously asso-
ciated with bladder cancer. Slingshot homolog-1 (SSH1) 
had a positive association with tumor grade, tumor inva-
sion, and tumor recurrence of bladder cancer patients 
[46]. Runt-related transcription factor 2 (RUNX2) is 
a key factor of osteoblast differentiation and has been 
reported to be associated with epithelial-mesenchymal 
transition in bladder tumors. Furthermore, RUNX2 could 
predict early recurrence in bladder cancer patients with 
high accuracy [47, 48]. Similar to past studies, SSH1 and 
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RUNX2 were associated with the increased risk of tumor 
recurrence in our study. In addition, NMIBC patients 
with tumor recurrence within ten years had significantly 
higher methylation levels in the gene body of these two 
genes compared with patients without tumor recurrence.

When not adjusting for immune cell profiles, 27,575 
CpGs were associated with the decreased hazard of RFS. 
The top 10 CpGs with the most significant P-value cor-
responded to 6 genes: BCL11A (cg24361098), TMCO4 
(cg04738197), MICALCL (cg01518090), GRAP2 
(cg21012238), TRAM2 (cg15085626), and KIRREL 
(cg10570484). While these genes have not been reported 
to be associated with bladder cancer outcomes, they have 
been reported to be involved in mechanisms promoting 
cancer development in tumors [49–52] or blood [53, 54]. 
Although we measured blood methylation in this study, 
we plan to measure tumor methylation and will explore 
the association of CpGs in these genes with NMIBC out-
comes. What was more interesting is that the model, with 
or without controlling for immune cell profiles, led to 
different results. While immune cell profiles are usually 
not adjusted in the Cox model, we controlled for immune 
cell profiles since the immune system plays a key role in 
tumor development. This study presents a new perspec-
tive to demonstrate the difference between models with 
or without adjusting for immune profiles, indicating 
the need for further investigation on the involvement of 
immune profiles in outcome analyses.

Through DMR analysis, we found NMIBC patients 
with tumor recurrence or death within 10  years had a 
lower methylation level in the BLCAP region compared 
with patients without tumor recurrence or death. The 
bladder cancer-associated protein (BLCAP) gene encodes 
a protein that stimulates apoptosis. It has been reported 
that loss of protein expression is associated with bladder 
tumor progression, and the application of staining pat-
terns for this protein could be a potential biomarker in 
bladder cancer [55]. In functional analysis, strong nuclear 
expression of BLCAP was associated with expression of 
p-STAT3 and overall poor disease outcome. Additionally, 
BLCAP was discovered to interact with STAT3 physically 
and may involve the STAT3-mediated progression of pre-
cancerous lesions to invasive bladder tumors [56]. These 
results were consistent with our finding that NMIBC 
patients with poor outcomes had lower methylation lev-
els in the BLCAP region. Since the model we used for 
DMRs analysis was adjusted for immune cell profiles, we 
are curious whether immune cells may play roles in the 
interaction between BLCAP and STAT3 and will inves-
tigate this in the future. The CpG site with significantly 
lower methylation (cg10642330) is located in the 5’ UTR 
of BLCAP and the gene body of NNAT. The methylation 
beta value of this CpG site in NNAT had been reported 

significantly higher in prostate cancer tissue relative to 
adjacent normal tissues [57]. Though no CpG site in the 
BLCAP region was significantly associated with the haz-
ard of tumor recurrence or death in the adjusted EWAS, 
five BLCAP CpGs (cg26083330, cg23757721, cg13790727, 
cg03061677, and cg04489586) were associated in the 
model not controlling for immune cell proportions (not 
including the DMR analysis site cg10642330). In the 
future, we will investigate the relation of BLCAP tumor 
methylation with survival outcomes.

Our results reveal several features of peripheral blood 
immune profiles that are associated with outcomes in 
NMIBC patients. We showed that higher CD4 or CD8 
proportions were associated with decreased hazard of 
recurrence or death and further established that high 
NLR is associated with an increased hazard of RFS. The 
EWAS portion of our study also points to epigenetic 
reprogramming within the immune compartment being 
involved in tumor recurrence of NMIBC patients. Future 
study in a prospective setting will assess the clinical util-
ity of incorporating methylation in predicting hazard of 
recurrence and shaping recommendations for disease 
surveillance. In addition to immune cells, future work 
examining cell-type proportions in tumor microenvi-
ronments of NMIBC patients is needed to understand 
the relationship between peripheral immune profiles 
with tumor-infiltrating immune profiles and patient out-
comes. This work contributes to our understanding of 
associations of methylation-derived immune profiles and 
NMIBC patient outcomes and could further contribute 
to developments in epigenetic biomarkers of cancer.

Conclusions
Here we demonstrate the associations of non-muscle-
invasive bladder cancer outcomes with immune profiles. 
In addition, we identify preliminary evidence of discrete 
and regional CpG methylation associations with bladder 
cancer outcomes. The findings could contribute to devel-
oping epigenetic biomarkers for recurrence-free survival 
in non-muscle-invasive bladder cancer.

Methods
Study subjects and samples
The subjects and data used in this study are described 
in more detail in prior publications [58–60]. Briefly, 
subjects were recruited from all three phases of a New 
Hampshire population-based bladder cancer case–con-
trol study [61]. The first wave of this study (phase 1) col-
lected blood samples from 331 individuals diagnosed 
with incident bladder cancer between July 1994 and 
June 1998. The second study wave (phase 2) collected 
blood samples from 243 individuals diagnosed between 
July 1998 and December 2001. Finally, the third study 
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wave (phase 3) obtained blood samples from 194 indi-
viduals recruited and diagnosed between July 2002 and 
December 2004. All the subjects were identified using the 
New Hampshire State Cancer Registry, hospital pathol-
ogy departments, and hospital cancer registries, and all 
blood samples were collected after the time of diagnosis 
(time range: 20–1790 days). Among patients, 40 patients 
received BCG treatment in phase 1, 29 patients received 
BCG in phase 2, and 19 patients received BCG in phase 
3. All patients with BCG treatment had blood drawn after 
receiving BCG (time range: 7–1542 days). An outline of 
data filtering and inclusion/exclusion criteria applied to 
these data are shown in Fig.  1. Briefly, subjects without 
muscle-invasive status, histopathology re-review, tumor 
grade, smoking status, or pack-years were removed from 
the study. Subjects that withstood the aforementioned 
exclusion criteria were retained and used in downstream 
statistical analyses.

DNA extraction, quantification, and bisulfite modification
Each blood sample was maintained at 4C and frozen 
within 24 h of blood draw. A hundred μl buffy coat was 
used to extract DNA. The QIAMP DNA blood & Tissue 
kit was used to extract DNA from blood samples accord-
ing to the manufacturer’s protocol. Extracted DNA was 
quantified by using the Qubit 3.0 Fluorometer. After 
bisulfite modification, an established 5  mC microarray 
protocol optimized for Illumina methylation arrays was 
used to determine the genome-wide 5mC profile. DNA 
samples were subjected to bisulfite conversion (accord-
ing to the manufacturer’s protocol of the Zymo EZ DNA 
methylation Kit) with an input of 750 ng per sample and 
whole-genome amplified prior to array hybridization. 
Recovered substrate ssDNA were submitted for DNA 
methylation array processing.

DNA methylation data
Bisulfite-modified DNA samples were measured for 
their DNA methylation status using the MethylationE-
PIC array, which interrogates > 860,000 CpG sites. Probe 
intensity data (iDAT files) from the EPIC methylation 
array were processed for quality control via the R pack-
age minfi [62] and ENmix [63] in R version 3.6. After 
quality control, 11 samples with low-quality CpG values 
or bisulfite intensity (threshold: 7000) were excluded 
from the study. The data were then normalized and 
conducted background correction through preprocess-
Noob procedure from minfi. The ComBat [64] was used 
to adjust for potential batch effect. Probes with a detec-
tion P > 1.0 ×  10−6 in more than 10% of the samples were 
excluded (32,414). Also, 98,826 probes, which are cross-
reactive, SNP-associated, and non-CpG (CpH) methyla-
tion [65], as well as 17,120 probes on sex chromosomes, 

were excluded. In total, 726,856 probes were used in 
downstream statistical analyses in downstream statistical 
analyses. IlluminaHumanMethylationEPICanno.ilm10b4.
hg19 [66] was used to annotate CpG sites. Relation to 
CpG island was defined by the “Relation_to_Island” as 
in the Illumina annotation used in the genomic context 
analysis. ‘5’UTR,’ ‘Exon,’ ‘Gene Body,’ and ‘3’UTR’ con-
texts were defined by having ‘5UTR,’ ‘ExonBnd,’ ‘Body’ 
and ‘3UTR’ in UCSC_RefGene_Group. ‘Enhancer’ context 
was defined by having a record in the Phantom5_Enhanc-
ers. ‘DHS’ context was defined by finding a record in the 
DNase_Hypersensitivity_NAME. ‘TFBS’ context was 
defined by having a record in the TFBS_NAME.

Statistical analysis
The estimation of cell-type proportions was processed 
through the estimateCellCounts2 from the FlowSorted.
Blood.EPIC package in Bioconductor (version 3.9; [18]). 
Methylation-derived neutrophil-to-lymphocyte ratio 
(mdNLR) was calculated by performing cell-mixture 
deconvolution to estimate the proportion of leukocyte 
subtypes and the ratio of neutrophil proportion to lym-
phocyte proportion was then computed. Individual leu-
kocyte cell-type proportions and mdNLR were included 
in outcome analyses as continuous variables for Cox 
proportional hazard regression. In addition, mdNLR 
was dichotomized based on the median mdNLR for the 
Kaplan–Meier method.

Ten-year overall survival was defined as the time inter-
val from the date of initial diagnosis to death within 
10  years (all deaths were related with bladder cancer). 
Subjects who were alive or lost to follow-up were cen-
sored at the last follow-up. Ten-year recurrence-free 
survival was defined as the time interval from the date 
of initial diagnosis to the first tumor recurrence or death 
(all causes), whichever occurred first within 10  years. 
Patients alive and free of the disease or lost to follow-
up were censored at the last follow-up. For both overall 
and recurrence-free survival, patient survival times over 
10  years were truncated at 10  years, and patients were 
censored if the first tumor recurrence or death occurred 
after 10 years. The median survival times for the two sur-
vival outcomes were estimated using the Kaplan–Meier 
method. In multivariable analyses, Cox proportional haz-
ard regression models were used to examine the asso-
ciation of each variable on bladder cancer outcomes and 
were fit via coxph in the survival R package. The propor-
tional hazards assumption was tested by using cox.zph 
from the survival R package. The cox.zph function tests 
the proportionality of all the predictors in Cox models by 
creating interactions with time. As sex and BCG treat-
ment status violated the proportional hazards assump-
tion, stratification on both variables was included. The 
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linearity assumption was examined via ggcoxfunctional 
from the R survminer package, and methylation-derived 
immune cell profiles were found to violate the linearity 
assumption. Hence, winsorization was used on methyla-
tion-derived immune cell profiles. The winsorization cut-
point of each immune cell profile is shown in Additional 
file 7: Figure S1. A P-value of < 0.05 was the significance 
threshold on multivariable analysis. Cox model results 
were presented using the stargazer R package.

Epigenome-wide association study (EWAS), enrichment 
analysis, and differentially methylated regions (DMRs)
An epigenome-wide association study (EWAS) was per-
formed using ewaff R package (https:// github. com/ peris 
hky/ ewaff) to investigate the association of CpG-specific 
DNA methylation and bladder cancer recurrence. We fit 
Cox proportional hazards models independently to each 
CpG, controlling for age, sex, tumor grade, smoking sta-
tus, Bacillus Calmette–Guérin (BCG) receiving status, 
and immune cell profiles. Since all P-values adjusted for 
false discovery rate from EWAS results are higher than 
0.05, we relaxed the threshold for genomic context and 
enrichment analyses using a P-value of < 0.005.

For CpG sites associated (P < 0.005) with bladder tumor 
recurrence, we examined whether those CpGs were 
enriched in CpG island-related genomic context or regu-
latory regions via using Mantel–Haenszel tests, adjusted 
for Illumina probe type to eliminate the difference in 
distributions on genomic context. CpG island-related 
genomic context includes open sea, north shelves, north 
shores, islands, south shores, and south shelves. Regula-
tory regions include enhancers, DNase hypersensitiv-
ity sites, 5’UTR, TSS1500, TSS200, 1st Exon, Exon, gene 
body, 3’UTR, and transcription factor binding sites. Next, 
the Locus Overlap analysis (LOLA) R package in Bio-
conductor (version 1.20.0; [67]) was used to investigate 
enrichment of genomic regions limited to tissue equal to 
“hematopoietic stem cell.” Finally, gometh and gsameth 
from the missMethyl package in Bioconductor (version 
1.6.2; [68]) were used to test the enrichment of gene sets 
for Gene Ontology (GO) terms and the C7: immunologic 
signature gene set in the Gene Set Enrichment Analysis 
(GSEA) Molecular Signature Database (MSigDB) cnet-
plot from the enrichplot package in Bioconductor (ver-
sion 1.10.1; https:// yulab- smu. top/ biome dical- knowl 
edge- mining- book/) was used to plot gene-concept net-
work plots.

Differentially methylated regions were identified 
and extracted through the dmrcate and extractRanges 
from the DMRcate R package [69]. The inputs were 
logit-transform of beta values (M-values). The pheno-
type of interest for comparison was “NMIBC patients 

with tumor recurrence within ten years or not” in 
our designed model. In addition, the designed model 
was adjusted for sex, age, tumor grade, smoking sta-
tus, BCG receiving status, and immune cell profiles. 
We relaxed the threshold for DMRs analysis using an 
FDR-corrected P-value of < 0.1. Then, the visualizeGene 
from the sesame package [70] was used for observing 
the methylation levels of CpGs in regions identified by 
DMRcate.
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