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In this note we explain that the conjecture of the pinching of the bisec-
tional curvature mentioned in [HGY] and [CHY] is proved by a combination
of the arguments from the proofs of the Theorem 1.2 in [CHY], the The-
orem 2 in [HGY] and the Proposition 4 in [SY]. Moreover, we prove that
any compact Kahler-Einstein surface M is a quotient of the complex two
dimensional unit ball or the complex two dimensional plane if (1) M has
nonpositive Einstein constant and (2) at each point, the average holomorphic
sectional curvature is closer to the minimal than to the maximal.

1 Introduction

In [SY] the authors conjectured that any compact Kéhler surface with nega-
tive bisectional curvature is a quotient of the complex two dimensional unit
ball. They proved that there is a number a € (1/3,2/3) such that if at
every point P, Ku, — Kpin < a[Kmaz — Kmin, then M is a quotient of
the complex ball. Here, Kin (Kmaz, Kav) is the minimal (maximal, aver-
age) of the holomorphic sectional curvature. The number a they obtained
is a < m (almost 0.38, see [P2] page 398). In [HGY], Yi Hong!
pointed out that this is also true if a < 73[1+3/%] < 0.476. We also observed
in Theorem 2 that if a < %, then there is a ball-like point P. That is, at P,
Kooz = Kmin. We notice that \/1/—6 > 1/3. Therefore, we conjectured that
M is a quotient of the complex ball if a = % In general, we believe that we
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! For this part, it is due to Professor Hong. Notice that he was the first author there.



might not get a quotient of the complex ball if a > % Around 1992, Hong
Cang Yang almost proved this conjecture except some technical difficulties.
See the argument of the Theorem 1.2 in [CHY]. In [P1, P2], the author

used a different method and proved that a can be (3 + #) /11 (almost 0.48
according to [CHY] page 2628 right before Theorem 1.2), see [P1] page 669,
or [P2] page 398. In [CHY], the authors improved the constant to a < 3
that gave a proof of a weaker version of the conjecture.

In this note we first notice that in our proof of the Theorem 2 in [HGY]
(for which this author was responsible), we actually proved that if K, —
Kin = %[Kmam — Kpnin) at P, then P must be a ball-like point (for this
part, any negativity of the curvature is actually not needed except using
the result from [SY] when A = B). See the remark after the Theorem
1 in [HGY]. According to [SY] p.485, Proposition 4, the subset of ball-
like points is either the whole manifold or a real codimensional two real
analytic subvariety. Since the function considered in Theorem 1.2 of [CHY]
is bounded, it can be extended to the whole M and it is a constant and
must be zero. We notice that we only need that the bisectional curvature
is nonpositive. With this in mind, we can also have the possibility of the
flat case. That is, the manifold could also be a quotient of the complex
two dimensional complex plane if the Einstein constant is zero. This case
should also be included in the Main Theorem of [SY] in page 472, and also
for [HGY] Theorem A and Theorem 1.

Since [HGY] was only written in Chinese, we like to have a mostly self
contained account here. Also, we notice that [P1, 2] had something more
general than what we stated above. Therefore, we generalized our result to
the case of nonpositive Einstein constant. We have:

THEOREM Let M be a connected compact Kdhler-Einstein surface
with nonpositive scalar curvature, if we have

1
Kav - Kmin S §[Kmax - szn]

at every point, then M is a compact quotient of either the complex two
dimensional unit ball or the complex two dimensional complex plane.

This note is written in a way that for those experts who are familiar with
[HGY] and [CHY], the Introduction is enough for the conjecture in [HGY]
and [CHY]. For those experts who are familiar with [CHY], next (the second)
section is enough for that conjecture. We notice that we do not need the
nonpositivity of the bisectional curvature except applying the result of [SY]



or [CHY] for the case in which A = B. We shall give a complete proof of the
conjecture in the third section with a simpler explanation than that of [CHY]
for the last step, that also explains away the mystery of the negativity. In
the last section, we should apply our methods for our Theorem.

To the author, the conjecture in [SY] is very important for the complex
geometry. This work is heavily depended on the earlier works on this subject.
Although we are able to prove the conjecture in [HGY], [CHY]| and our
main theorem, there are more work need to be done in the direction of
compact complex surfaces with negative holomorphic bisectional or even real
sectional curvatures. Therefore, the author think that it is proper to write
this paper with an emphasis on the nonpositive holomorphic bisectional case
instead of our main theorem. We thank the referee for useful comments and
encouragements.

I thank Professors Poon, Wong and the Department of Mathematics,
University of California at Riverside for their supports. I thank Professor
Hong Cang Yang for showing me his work when I was a graduate student
in Berkeley. I also thank Professor Paul Yang for telling me the work [P1].

2 Existence of Ball-like Points

Here, we repeat the argument in the proof of the Theorem 2 in [HGY]. In
[HGY], we proved that:

Proposition 1.(Cf [HGY] p.597-599) Suppose that
1
Kav - Kmin S §[Kmax - szn]

for every point on the compact Kdahler Einstein surface with nonpositive
holomorphic bisectional curvatures. There is at least one ball-like point.

Proof: Throughout this paper, as in [SY] and [CHY], we assume that
{e1,e2} be an unitary basis at a given point P with

Ri111 = Ro393 = Kiin, Ri113 = Ro301 =0
A =2R193 — Ri111 > 0, B = [Ry313|

As in [SY], we always have that A > |B| and we assume that B > 0.
This also implies if the sectional curvatures have a 1/4 pinching, i.e., the
section curvature is inside an interval [—1a(P), —a(P)] at every point P for
a nonnegative function a(P), then M is covered by a ball. This was pointed



out in [CHY]. This is because if we let a(P) = —Ry111, & = X; +vV—1Y;,
then at least one of R(X7, X9, X1, X5) and R(X71,Ys, X1,Ys) is bigger or
equal to —1a(P). Same arguement works for the higher dimension case.
Our Theorem is a kind of the generalization of the 1/4 pinching.

If P is not a ball-like point, according to [SY], we can do as above for a
neighborhood U(P) of P whenever A > B (Case 1 in [SY] page 475). We
should handle the case in which A = B at the end of this proof. We write

a=e1 =Y aid, f=e2=> b0,

and
Slili = R(ela €1, €1, él) = Z R@kl‘azd]ak&l

and so on. In particular, we have

Slili - 52222 - Kmina Slili = 52221 =0

According to [SY], we have
1 1
Kmax = mzn+§(A+B)7 Kav = mzn""gA

1 2
_[Kmax - szn] S Kav - Kmin S _[Kmax - szn]
3 3

Our condition in the Proposition is therefore the same as A < 3B. As
in [HGY], we let &, = BF — 72,

If there is no ball-like point, by 1/3 < 7 < 1, there is a minimal point.

We shall calculate the Laplace of ®1 at a minimal point, which is not a
ball-like point. For example, when A = 3B, ®; = 1/9 achieves the minimum.
The Laplace at that point should be nonnegative.

We let

x; = V,; P = 2%[Revi51§1§ + 37V S1111]

As we pointed out earlier, we first assume that A does not equal to B
always, then we can apply the argument in the case 1 of [SY] page 475 at
the minimal point since A > B.

As in [SY]. [HGY], [CHY], we have:

ARy = —ARy195 + B

ARy315 = 3(Ry103 — A)B.



At P wehave a; =by =1 and ay = b; =0, Va; = Vby =0, Vay+ Vb = 0.
Therefore, we write y;1 = Va2 and y;5 = V;a2. We also have:

Alay + @) = —|Vag|? Aaz +b2) =0
ViRi113 = —Ayi — Byio
since
0 = VS;115 = VRy115 + 2R5113Vas + BVag + Ry111 Vb,
ie.,
VRi113 = —AVay — BVas.
This also gives a similar formula for V;R;115. Similarly,
VSini = VR
VSiz13 = VRi313
ASing = —24% [y —4BRe) yngin — AR1s + B
ReAS 315 =4AY Reyafiz + 2B _ |y|* + 3(Ry105 — A)B.
ViSi513 = —Afja2 — Byn
V251313 = Ay + Byiz
ViSia13 = —A(67% — 1)yas — 5ATys1 + 23
V381513 = BATI2 + A(67% — 1)j11 + Ty
As in [HGY] p. 598, at P we have:

27AB 672
APy = ——+ —-ASimi
1 = 5472
+ > (IVSizsl* + [VSiz5*) + Vs > IVSif
127
t Iz > Re(ViSi1i1(Vi(Siz13 + Saiar)) (1)

27[BAT(T? — 1) — 47 ) |y[* +4(1 — 37*) > Re(yir¥i2)]

+ Jya2 + Ty + |y + Tyiel?

+ %H:El + A[(1 = 679z — 57yo1] > + |22 + A[(672 — V)y11 + 5Ty1a]
— 187%[y12 + Ty l® + [y21 + Ty22|?]

+ %[Re[(ym + Ty22)71] — Re[(y21 + 7y11)T2]]



Here we notice that A®; has two general terms. The first term has
nothing to do with x and y, and therefore can be regarded as constant term
to them. That term is always nonpositive since % <7<1.

The second term can be regarded as a hermitian form h to x and y. We
can separate z and y into two groups: x1,%2; in one group and z2, y1; in
the other. These two groups of variables are orthogonal to each other with
respect to this hermitian form. That is, h = hy + hg with hy (or hs) only
depends on the first (second) group of variables.

We need to check the nonpositivity for each of them.

For x2, y11, Y12, the corresponding matrix of hso is:

And the matrix for hq of 21, yo1, Yoo is:

S N
O Onll

When P is a critical point of ®;, then 21 = z9 = 0. The matrices on
y is clearly semi negative. Therefore, if there is no ball-like point, then we
have that at the minimal point of ®;, 72 =1 or A = 0 since 7 > %

If A =0, then we have a ball-like point. And we are done.

On the otherhand?, if 7 = 1, we have A = B at P. Since P is a minimal
point, this implies that A = B on the whole manifold. According to [SY]
page 475 case 2, we have a smooth coordinates with K,,,, = Ry1;7 (this
works fortunately when A = B always. In general, the original argument
might not always work since one might not have A = B always nearby.
However, as [SY] case 1 pointed out under our condition the directions for
K are always isolated. Therefore, it might be better one chose K4z
instead of K,,;, from the very beginning. But this is not in the scope of
this paper). Using this new coordinate, we can define the similar function
Ay and By. In general, By = 3(A— B) and A1 = —1(A+ 3B). In our
case, By = 0 and A1 = —2A. Using this new coordinate, one can do the
calculation for any of the functions in [SY], [P1], [P2] (or [CHY], see the
next section) that the set of ball-like points is the whole manifold. If one
does not like Polombo’s function ®,, ([P2] page 418) with a = —% (e.g., [P2]
page 417 Lemma), then one might simply use the function with & = —1 (in



[P1, P2], not the vector we mentioned in this paper earlier), i.e., the new
function is proportional to ®3 = (3B — A)A. In our case, this is just 242,
1

We can apply ®3. This is relatively easy that we just leave it to the readers
(or see (4) in the generalization). One can also use the function in [SY]
page 477

1
372 — i = 5(/12 +3B?).

We can also still use the argument in [SY] case 1, in which the minimal
vectors are not isolated any more but they are points in a smooth circle
bundle over the manifold that we could just choose a smooth section instead.

Also, this paragraph is not needed in the following Corollary 1 and
Lemma 1 since in those two propositions, we already have A = 3B. With
A = B, one could readily get that A =B = 0.

If A=0, Kpar = Kiin and P is a ball-like point. We have a contradic-
tion. Therefore, the set of ball-like points is not empty.

Q. E. D.

Observe that if A = 3B at P, then ®; achieves the minimal value at P
and A # B unless P is a ball-like point. That is the first part of the proof
of Proposition 1 goes through. That is, P must be a ball-like point.

Corollary 1. Assume the above, if Kuy — Kpmin = %[Kmaz — K] at
P, then P is a ball-like point.

Therefore, we have:

Lemma 1. If K,y — Kpin <
Kav — Kmin < 3[Kmaz — Kmin) on
ball-like points.

%[Kmax — Kpin] on M, then we have
M — N, where N is the subset of all the

Therefore, we can apply the argument of [CHY]. To do that one need
following Proposition 4 in [SY]:

Propositon 2.(Cf [SY], also [HGY Theorem 3]) If N # M, then N is
a real analytic subvariety and codimN > 2.

As in [SY], Proposition 2 give us a way to the conjecture by finding
a superharmonic function on M which was obtained by Hong Cang Yang
around 1992. In [SY] and [HGY], the authors used ® = 6 B2 — A%, In [P2],
Polombo used (114 —3B)(B — A) + 16 AB, see [P2] page 417 Lemma. One
might ask why do we need another function but do not use our ®;. The
answer is that by a power of ®1, we can only correct the Laplace by |[V®1|2.

2 The paragraph is not needed for the proofs of Corollary 1 and Lemma 1. Also, in
this special case, the original frame in [SY] actually work. So, one could simply apply [SY]



But that could only change the upper left coefficients of our matrices as it
only provides |z|? terms. In the case of ®1, it does not work since 770
but the coefficients of |y12|?, |yo1|? are zeros.

Therefore, we need another function, which was provided by Hong Cang
Yang.

Remark 1. Whenever there is a bounded nonnegative function f on M
such that (1) f(N) =0, (2) f is real analytic on M — N and (3) Af <0 on
M—N, then f =0. Here N could be just a codimension two subset. See [SY],
[HGY] and [CHY]. The reason is that if we define My = {z € M|gis(x,N)>s}
and hs = OM;, then the measure of hy is smaller than O(s) when s tends to
zero. Therefore,

20 B 20 o f B
0>In2 Afw" > / (| Afw"s 'ds = / | =Zdr]slds.
Mos s JM, s Jn, On
But by applying an integration by parts to the single variable integral, the
last term is about (§)~* fh% (f —g)dr — 0 since f is bounded and f — g
tends to 0 near N, where g is the f value of the corresponding point on hs.
For example, if f = r® with a > 0, then

8f _ a—1 a—1

I ar® " =as
and of
" %dT =0(s") — 0.

Therefore, Af =0 and f is a constant, which must be zero.

Now, let f = (3B — A)?, this is natural after the proof of Proposition
1, we will show in the next section that Af < 0 for a < % (see also a
proof in [CHY]). Therefore, A = 3B always. By the Corollary 1, we have
A = B = 0. This function is also related to the functions in [P2] page 417
with a3 = a3 = 0. In [P2] Polombo had to pick up functions with a1 = as
to avoid a complication of the singularities. See [P2] page 406 and the first
paragraph in page 418 (see also [P1], the last paragraph of page 668). While
we shall completely resolve the difficulty in the next section.

3 Hong Cang Yang’s Function

Let ¥ =3B — A. About 1992, Hong Cang Yang considered f = U3,



Lemma 2. ([CHY] p.2630 (13)) We have:

3
+ §|V(ImR1212)|2 +6(B—A)> |y — vl

Let z; = V,;¥. Then

3
z1=Vi(3B—A) = §V1(Rlélé + Roto1 + 2R4117)

1
V=1Vi(ImRy313) = §V1(R1§1§ — Roto1)
1
= 3= ViRyi91 — ViR11

1 _
= 52’1 — VQRHQ + V2R111§

1
= 3% + (A= B)ya + (B — A)yn

3
2 =V2(3B - A) = §V2(Rzi2i + Ry313 + 2R4117)

V=1Vo(ImRy35) = %Vz(Rﬁﬂ — Ro1a1)
= —%22 + VaRiii1 + VaRi313
= —%Zg + ViRoni1 — Viliiis
= —%zg + (B — A)y12 + (A — B)yn

we can write the formula in the Lemma 2 as:

A-B
- 37‘1’2 lyi1 — yial”
A-B 1

2 > 2
+ 2 B Re[(y12 — y11)22 + (Y22 — yo21)Z1] + Z 3_B|z|

Similar to what we have in the last section, we have two general terms,
the first is negative as the constant term of z and y. The second is a



hermitian form on z and y. We can actually let w; = y;+1 — y;+o with ¢* #£ 4.
Then the second term is a sum of two hermitian forms. One of them is on
w1, z1 and the other is on wsg, z9. We notice that the second term is also
nonpositive on y (or nonpositive on w, if we assume that z = 0). We can
modify the coeficient of |z|? (only) by taking the power of ¥. More precisely,
if we let g = ¥%, to make sure that Ag < 0, after taking out a factor 3‘4_TB
we need

- 1/3 >0
1-3v~1(1-a)B | =2
1/3 9(A—(B) )

That is,
A—-3B+3(1-a)B-—A+B=3(1—-a)—2)B>0.

We have 1 —3a > 0. So, a < 1/3.
Therefore, we have:

Lemma 3. Ag <0 fora<1/3 on M — N.

This is exactly the same as what they had in [CHY]. Actually, the number
1/6 was already in [SY], [HGY], [P1, 2] for those quadratic functions.
So, finally we have:

Theorem 1. If Ky, — Kipin < %[Kmam — Kinl, then M has a constant
holomorphic sectional curvature.

Remark 2. The reason we did not get this earlier was that there was a
difficulty when A = B. In that case, the argument in [SY] page 475 case 2
seems not working. Polombo resolved the problem by using a function which
is symmetric to \; = —% and Ay = A_T?’B (see [P2] page 418 first paragraph
and the end of page 397). However, Hong Cang Yang’s function ¥ is only
—6X2 and therefore is not symmetric after all. To overcome the difficulty,
we let Q = {z € M|s=p}. Then according to [SY], all our calculation are
good on M — Q since N C Q. In [CHY] page 2632, there was a suggestion
to prove that codim 2 < 2, although it was not very well explained. Then
everything went through. The relation was that if we use the argument
in [SY] page 475 case 2, using the maximal instead of the minimal, we let
B1 = |R;3;5| then 2B = A— B. That is Q = {x € M|p,—o}. The argument
goes as follows:

Case 1: If Q2 is a closed region, we have:

0> / Ag
M—-Q

10



_ a/ go-19(=41 — 3B1)
—00 an

a— (_Al)
= a/_ag(2A) 1 on

_ —/AFlzo
Q

where F can be chosen from one of the functions in [P2] which satisfies the
symmetric condition on M, e.g., a power of ®5 in the proof of Proposition 1,
or one of our functions with a calculation using the new smooth coordinate
in [SY] page 475 with Ri117 = Kmaz (€.g., see (4) in the next section).
Actually, A; itself is proportional to the Ao in [P2] and is symmetric in the
sense of Polombo. On 2, F} is just our g since By = 0. We notice that
there is a sign difference for the Laplace operator in [P2]. Again, on €, since
A = B on a neighborhood, the set of minimal directions is a S' bundle
over €2, therefore, one might choose a smooth section of it locally that the
calculation of [SY] still works in our case. That is, one could simply choose
Fy to be g.

Case 2: If Q2 is a hypersurface. Same argument went through except that
fa(M_Q)(A)a_l% = 0 since A # 0 outside a codimension one subset and on
O = {z € Q|azo} the integral is integrated from both sides.

Therefore, 2 is a subset of codimension two and we can apply Remark
1. By the calculation in Remark 1, we see that ¢ is harmonic on M — Q.
Now, by Lemma 2, that implies that B(B —3A) =0 and hence A =B =0
by our assumptions.

4 The Generalization

Actually, in the first section of [SY], the authors did not require any neg-
ativity. We also see that in our second section, we do not really need any
negativity except when we applied the formula in the Lemma 2 in the third
section.

In the first section of [SY], they also considered the coordinate in which
R;111 achieves the maximal instead of the minimal. We let C' = R155 in the
earlier sections and C7 be the bisectional curvature for the maximal case.
Then

Kmin +C = Kma:c + Cl

11



be the Einstein constant Q).
1
C(1 -C= Kmin - Kmax = _§(A+B)
and
1 1 1 1
Ch=C- §(A—|—B) = §(Rﬁﬁ —B)= 5(@—01 — §(A—|—B) — B).
Therefore )
3C1=Q—§(A+B)—BSO
always. Also, C7 = 0 implies A =B =@ = 0.
The constant term in the Lemma 2 is

3[(3B — A)C — B(3A — B)] = 3[(3B — A)(Cy + %(A + B)) - B(34 — B)|

_ g[zxycl (A= B)(A+5B)] <0 3)
always. Therefore, we have the same result only if @ < 0 unless C; = 0.
As above if C; = 0 we have A = B = 0, then C' = 0 and therefore,
Kpin = Q = 0. The manifold is flat.

Now, with (7 < 0, we could also easily cover the arguments in both at
the end of the proof of Proposition 1 and in Remark 2 in the case of A = B.
If we denote the maximal direction by e+ and use * in the notation of the
corresponding terms to the minimal case, then similar to the calculation in
section 2 we obtain:

ARl*l_*l*l_* = —Alcl + B% - 2ACl S 0

See also [MZ] page 27 for a good calculation for this Laplacian at a maximal
direction for any complex dimension.
We also have:

VRysp1s0e = —A1Vags — B1Vag = 2AV ay-,
ASpeppe = 44> |y|* + 2AC).
Vi+Ay = =3V S 1+ 1+ = —3A1y5, = 6Ay5,,
VoAl = —6Ay,.

ViRisguisge = —A1759 = 0,

12



VQ*R1*2_*1*2_* = Alyil =0.

2°A(A%) = A(|A1]%) = Ba A1 | T AS g+ afa — 1] ATV A
= 3a><( 14AZ|y 2 +2A4C)

+ —1)2A)* ) Iy (4)
= ( A2 =3@-1)_ Iy P+

is nonpositive when a < 1/3. This is same as in the Lemma 3 and that in
[CHY].

Therefore, we concluded the general case. One might conjecture that
our Theorem is also true in the higher dimensional cases.

Remark 3. Notice that this generalization basically covers the results in
[P1] and [P2] for the K&hler-Einstein case (see [P2] page 398 Corollary). See
also [De| page 415 Proposition 2 for the W for a Kéahler surface. One might
ask whether our result could be generalized to the Riemannian manifolds
with closed half Weyl curvature tensors. This is out of the scope of this
paper although a similar result is true, i.e., if Ao < 1 at every point. To
make the relation between this paper and [P1], [P2] clearer to the readers,
we just mention that any one of the half Weyl tensors is harmonic if and only
if it is closed since the tensor is dual to either itself or the negative of itself.
The Remark (i) in [P2] page 397 says that if M is Riemannian-Einstein, the
second Bianchi identity says that the half Weyl tensors are closed (see also
[De] page 408 formula (9) and page 411 remark 1).
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