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ScienceDirect
Schizophrenia is a complex disorder with high heritability.

Recent findings from several large genetic studies suggest a

large number of risk variants are involved (i.e. schizophrenia

is a polygenic disorder) and analytic approaches could be

tailored for this scenario. Novel statistical approaches for

analyzing GWAS data have recently been developed to be

more sensitive to polygenic traits. These approaches have

provided intriguing new insights into neurobiological

pathways and support for the involvement of regulatory

mechanisms, neurotransmission (glutamate, dopamine,

GABA), and immune and neurodevelopmental pathways.

Integrating the emerging statistical genetics evidence with

sound neurobiological experiments will be a crucial, and

challenging, next step in deciphering the specific disease

mechanisms of schizophrenia.
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Introduction
The etiology of schizophrenia is complex with substan-

tial genetic contributions. Uncovering the perturbed
www.sciencedirect.com 
neurobiology by better characterizing the genetic com-

ponent seems plausible as the heritability, or proportion

of variance in disease risk attributable to genetic differ-

ences, is estimated to be 60–80% [1]. Although the largest

genome-wide association study (GWAS) of schizophre-

nia identified an unprecedented number of risk loci, a

substantial ‘missing heritability’ remains. Studies of copy

number and rare variation not captured by GWAS have

added additional insights, but these have revealed few if

any Mendelian forms of schizophrenia [2].

The emerging picture is that schizophrenia is a ‘pathway

disease’ [3], where risk is determined by a large number of

genetic loci, each with small effect (i.e. it is polygenic)

that cluster within particular biological or functional

genomic modules. Assuming a large polygenic compo-

nent, the current low yield of GWAS is expected, as is an

opportunity to exploit substantial signal available in ge-

netic variants analyzed in aggregate. Because the herita-

bility is distributed across many loci, individual effects are

small. As such, the power for detecting them within a

GWAS depends not only on the heritability but also the

‘polygenicity’ of the phenotype (i.e. with equal heritabil-

ity a more polygenic phenotype will require larger sam-

ples; see Box 1). Here we review advances in statistical

approaches aimed at investigating polygenic phenotypes,

including to schizophrenia, discussing applications rele-

vant for disease neurobiology.

Main text
Schizophrenia is a polygenic disorder

Since 2011 the Psychiatric Genomics Consortium (PGC;

http://www.med.unc.edu/pgc) has performed successive

meta-analyses across a growing collection of schizophre-

nia GWAS. The first [4] used a combined 51 695 partici-

pants to identify 7 independent loci (genome-wide

significance, p < 5 � 10�8) explaining �0.5% of variabil-

ity in schizophrenia risk. Increasing the sample to

61 061 participants [5] identified 22 risk loci that

explained �1% of risk variability. The most recent

[6��] combined 150 064 participants to identify 108 loci

that explained �3% of the risk. Given the statistical

power of these studies, it is highly unlikely that any

single locus with even a moderate effect remains undis-

covered. Further, predictive models using collections of
Current Opinion in Neurobiology 2016, 36:89–98
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Box 1 Heritability, polygenicity and statistical power

Common SNPs surveyed in GWAS are estimated to account for 33% of the variability in risk for schizophrenia but the total number of contributing

loci, while thought to be ‘large,’ is not known. Estimating bounds on this quantity is important for study design but represents a technically

challenging inverse problem. Because the sum of per locus effects necessarily equals the heritability, positing a larger number of causal loci

equivalently posits a smaller average effect per locus and, correspondingly, reduced statistical power for discovery.

Box figures A–C demonstrate the relationship between the number of causal variants (M = 1000, 10 000, or 100 000) and per locus statistical power

for a fixed heritability (h2 = 0.33 on the liability scale). The statistical power at, or probability of detecting, a locus (at p < 5 � 10�8, ‘genome-wide

significance’) explaining a proportion of the variance in liability q2 with a sample size N and proportion of cases v is a function of the non-centrality

parameter from the allelic association chi-square test (Eqns. (1)–(3)). In box figures A–C the power to detect each of the M causal loci (colored lines)

at genome-wide significance is shown across a range of sample sizes (v = 0.25 as in the latest GWAS). The power curves for the expected mean,

10% and 90% single locus effects are highlighted (black lines) as is the current largest GWAS sample size for schizophrenia (grey vertical bar). For

the highlighted effects per locus variance explained and corresponding odds ratio, assuming a causal allele frequency of 0.10, are provided.

As the polygenic component of a trait becomes distributed over more loci, the expected yield of a GWAS is greatly diminished (noted by the shifting

to the right of the power density from A to B to C) and increasingly more causal loci will not reach statistical significance. Importantly, the heritability

becomes distributed among SNPs at different significance levels, also depending on the number of causal loci and sample size (Supplementary

Materials and Figures S7–9). Multivariate enrichment tests, by aggregating across loci, aim to test the hypothesis that heritability is aggregated in

some collections of modestly significant variants more abundantly than others. Further, assuming the causal loci are, in fact, not randomly

distributed with respect to genomic or biological modules, the power to discover individual loci can be increased by exploiting auxiliary information

with advanced statistical models (see Leveraging enrichment to prioritize schizophrenia loci section). (See Supplementary Materials for

extended simulation background, methods, figures and code) (Box Figure).

Box equations

The mean effect size, E(q2), as proportion of variance in liability

explained by the locus,

Eðq2Þ ¼
h2

chip

M
(1)

The non-centrality parameter, l, of the chi-square statistic from the

allelic association contingency table can be approximated [25] as,

�l�ðq
2Ni2vð1�vÞÞ
ð1�kÞ2

(2)

The power, 1 � b, to detect an effect of size q2 is given by the non-

central chi-square distribution,

1�b ¼ Pðx2
d;l > x2

d;0;ajl; dÞ (3)

where k is the population prevalence of disease, i = (z/k),

z = F(F�1(k)) = height of the standard normal curve at the truncation

point (liability threshold) corresponding to a tail probability of k; d

the degrees of freedom for the chi-square test (1 for an allelic test);

and a the chosen false positive rate = 5 � 10�8 for GWAS;

X2
d,l;a = chi-square  statistic corresponding to the 1 � ath

quantile, assuming d degrees of freedom and a non-centrality

parameter l.

*Approximate formula taken from the reference is appropriate only for

small q2 (confirmed by simulation) and assuming a multiplicative model of

genotype relative risk. For precision, simulations are based on an explicit,

verbose transformation from q2 to x2
d;l;a, also assuming a multiplicative

model of relative risk (see supplementary materials), however, the

qualitative relationship among parameters holds in both cases.

Box Figure
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The relationship between power, sample size, and polygenicity.

The power to detect a causal locus, assuming fixed heritability, depends

on both the sample and the number of causal loci. When 1000 causal loci

were assumed the power to detect each causal locus was the highest

(A). When 10 000 causal loci were assumed, power was intermediate (B),

while with 100 000 casual loci were the power to detect each causal

locus was greatly diminished (C), even at extreme sample sizes.

Current Opinion in Neurobiology 2016, 36:89–98 www.sciencedirect.com
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thousands of variants not reaching significance in each

study explained substantially more, as much as 6%, 8%

and 18% of the risk, respectively [4,5,6��]. Similarly, the

chip heritability, an estimate of the risk attributable to all

of the single nucleotide polymorphisms (SNPs) analyzed

in a given GWAS (see below), suggests 33% of the

variability could be explained [6��,7]. Taken together

this evidence suggests that schizophrenia is highly poly-

genic, with many individually small effects yet to be

localized. Concurrently, several statistical approaches

have been used to identify functional modules where

these hidden effects may cluster (i.e. are ‘enriched’ for

polygenic effects).

Polygenicity sensitive statistical approaches

Variance components models have been used for nearly

a century to partition phenotypic variance into genetic

(typically polygenic) and environmental components

[8]. Traditionally, family or twin populations were used

to estimate the contribution of the expected genetic

covariance (i.e. 1 for monozygotic twins, 0.5 for first

degree relatives, 0 for unrelated, among others) to

phenotypic similarity as the additive, or narrow-sense,

heritability (h2). More recently this approach has been

extended by substituting the realized genetic covari-

ance, with additive genetic similarity computed  directly

from observed SNP data, for its expectation [9]. This

approach uses unrelated individuals, who vary slightly

about the population mean in realized genetic related-

ness. Because observed markers are sampled from a

given microarray (or ‘chip’) it is distinguished from

heritability (h2) as the chip heritability (h2
chip). Impor-

tantly, the h2
chip only captures variability at a subset of

the genome and is therefore expected to be less than

the h2, but nonetheless, it can be seen as an estimate of

the upper bound of variance explainable by discoveries

from a GWAS using the same SNPs and adequate

sample size (review [10]).

Estimates of h2
chip can also be used to compare the con-

tributions of different classes of SNPs [11–13]. By esti-

mating chip heritability from classes of SNPs separately

and contrasting the results, one can partition the herita-

bility among SNP sets, quantifying enrichment. Chip co-

heritability extends this approach to multiple pheno-

types, estimating the proportion of covariance between

two traits explainable by a SNP set, providing a metric for

the overlap and directional consistency of SNP effects

between the traits [14]. Risk profile scores (RPS) actual-

ize variance explained estimates. For up to hundreds of

thousands of SNPs, per allele effects estimated in large

GWAS are used to compute effect size weighted total risk

alleles carried by individuals in an independent sample

(an RPS) [15�]. The RPS can be used to test for associa-

tions between aggregate schizophrenia risk and other

phenotypes in healthy or patient populations [15�,16].

Note, variance explained by RPS is generally expected to
www.sciencedirect.com 
be much less than corresponding chip heritability

estimates because it is limited by the precision of

the individual SNP effects estimated in the reference

GWAS [16].

A diverse class of enrichment methods compares distribu-

tions of test statistics, Z’s, or corresponding p-values, p’s,
from a GWAS for SNPs in different categories. These tests

measure the abundance of extreme test statistics or low p-

values relative to that expected under null among the

classes. Maurano et al. [17] introduced this as ‘fold-enrich-

ment,’ while Andreassen et al. [18��,19,20�,21] and Schork

et al. [22��] show equivalent ‘conditional QQ-plots’ (Sup-

plementary Materials). Schork et al. [22��] also measured

this enrichment as the mean(Z2 � 1), a related quantity.

These approaches can be applied to SNPs within different

genome functions [17,22��,23��] or to detect co-localization

of SNP effects across multiple traits [18��,19,20�,21]. Tra-

ditionally, genome-wide ‘enrichment’ of this type was

attributed to statistical artifacts from poor study design

(population stratification or cryptic relatedness) [24], in

part because GWAS were initially predicted to uncover

relatively few loci of moderate effect. Recently, this trend

has been shown to be consistent with the many small but

real effects expected under a polygenic architecture [25]

more or less confirmed for schizophrenia [26]. This poly-

genic perspective has become the prevailing view among

recent schizophrenia GWAS reports [6��,26].

Methods for assessing enrichment of associations in ‘path-

ways’ test for co-localization of variants associated with

groups of genes or regulatory elements involved in related

biological processes that may be defined either by expert

knowledge or molecular studies. Briefly, multiple SNP

effects are typically combined into a gene-level statistic

and then gene-level statistics are aggregated into a path-

way statistic to shed insights into biological processes,

although many variations have been proposed (reviews of

pathway analysis [2,27�,28�]). The dependence on a sin-

gle approach can be reduced by combing pathway en-

richment methods into consensus scores, as with

schizophrenia and across psychiatric disorders [29].

Linkage disequilibrium (LD) score regression offers an

estimate of chip heritability from GWAS summary statis-

tics alone by regressing SNPs’ association statistics (Z2)

on their ‘LD scores’, the sum of the squared correlations

(r2 LD) between the minor allele count of one SNP and

all other SNPs, a measure of the amount of genetic

variation the SNP represents (introduced in [26]). The

LD score heritability can also be partitioned among

functional genomic classes [65], providing a theoretically

grounded enrichment test extending the approach of

Schork et al. [22��]. Bulik-Sullivan et al. [66] use the

LD score regression to estimate LD score genetic corre-

lations, providing a test for co-localization of associations

akin to chip co-heritability.
Current Opinion in Neurobiology 2016, 36:89–98
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Mathematically sophisticated multivariate approaches,

often Bayesian in formulation, explicitly model the entire

distribution of test statistics from a GWAS (e.g. [30–34]).

These approaches are diverse in their implementation,

but generally include a set of covariates (i.e. functional

genome annotations or secondary trait associations) that

are trained or fitted to predict the SNP test statistics.

Predominantly such models are used to prioritize candi-

dates among suggestive associations on the basis of the

covariates. The covariate-modulated mixture model

(CM3) method, for example, has been used to identify

a number of novel schizophrenia loci (see below). How-

ever, hypothesis testing can be performed on estimated

weights for each covariate to test enrichment as its

predictive power in the context of a particular model.

Regulatory variants play a role in schizophrenia

Regulatory variants may play an especially crucial role in

complex trait evolution and etiology [35], a hypothesis

well supported for schizophrenia (Table 1). GWAS have

particularly implicated variants related to genes

expressed in the brain and variance components models

show that a significantly larger proportion of the chip

heritability is accounted for by variants related to brain-

expressed genes [7]. Polygenic enrichment of SNPs

representing proximal gene elements (50UTRs, exons,

introns, 30UTRs, and/or promoters) implicates regulatory

elements at least as strongly as coding exons, a trend not

unique to schizophrenia [13,22��,65]. In fact, among the

108 loci recently identified, only 10 contained plausibly

causal non-synonymous coding variants [6��]. Enrichment

for brain tissue eQTLs, which may regulate genes proxi-

mally or distally, is shown for schizophrenia [6��,32,36]

and cross-disorder [37] associated loci. Enrichment tests

using GWAS discoveries [4,5] as well as more inclusive

polygenic pathway analyses [4,5,38,39] have confirmed an

excess of microRNA (especially mir137) targets within

candidate loci. Interestingly, evolutionarily conserved

regions [65], thought to represent uncharacterized regu-

latory elements, were also enriched for schizophrenia

associations. Enhancers (distal gene-regulatory elements)

active in multiple fetal and adult brain tissues

[6��,23��,40,65] are also enriched. An important experi-

mental report demonstrated the distal regulatory mecha-

nism underlying the CACNA1C gene loci in human

prefrontal cortex tissue and stem-cell derived neurons

[23��]. Functionally unannotated variants [13,22��,23��],
silenced DNA [65] and enhancers active in schizophrenia

irrelevant tissues [6��,65] showed depletions for both loci

discovered by GWAS and polygenic enrichment. Togeth-

er this supports the notion that schizophrenia is a pathway

disorder with disruptions perhaps driven by dysregula-

tion. Functional fine-mapping studies experimentally

characterizing causal regulatory mechanisms underlying

statistical candidate loci are crucially important for un-

derstanding the instantiation of schizophrenia suscepti-

bility within the genome. Part and parcel to this is a
Current Opinion in Neurobiology 2016, 36:89–98 
continued need to characterize gene regulation in cells

and tissues relevant for schizophrenia.

Neurobiological pathway perturbations in schizophrenia

Schizophrenia GWAS implicate immunity, neuronal mat-

uration, synaptic plasticity, calcium signaling and neuro-

transmission with genome-wide significant loci (Table 1)

[4,5,6��]. An across psychiatric disorders GWAS [37] also

supports calcium signaling. Differential co-expression

modules defined in brain tissue from schizophrenia

patients and healthy controls give support for GABAergic,

Glutamatergic and Oligodenrocyte function by polygenic

enrichment [41]. Broader enrichment in calcium signaling

may be driven specifically by altered expression of calci-

um channel subunits [5]. Similarly, synaptic gene enrich-

ment may be driven by gene subsets affecting cell-

adhesion, trans-synaptic signaling, structural plasticity

and excitability [5]. Consensus analyses implicated pre-

viously unreported pathways involved in histone modifi-

cation and post-synaptic density, in addition to immune

response, neuronal and calcium signaling [29]. Although

immune response may not intuitively relate to neurobi-

ology, the gene sets associated with schizophrenia may be

bound into a larger schizophrenia network through neural

microRNA activity [38,42] or play plausible neurodeve-

lopmental roles [43,44]. Transcriptome comparisons of

schizophrenia patient and healthy control brain tissue

provide additional support as altered expression within

synaptic, immune GABAergic and oligodendrocyte path-

ways.

An on-going challenge in interpreting pathway findings

lies in the semantics of the pathway labels. Meaning is

dependent on a number of factors including how genes

are assigned to pathways, how boundaries among path-

ways are set, and the cells and tissues considered, among

others (general review [27�]; schizophrenia focused re-

view [45�]). Although there is surface level convergence

among the findings reported here, very few studies truly

replicate pathways defined by identical criteria or taken

from the same database (see Table 1). Improving the

precision, resolution, consistency and context of ‘path-

ways’ is a continued effort, although current findings are

uniting previously unconnected neurobiological themes.

Schizophrenia shares genetic loci with other phenotypes

Characterizing co-localized associations among GWAS of

disparate phenotypes (i.e. single loci identified in GWAS

of different traits) can improve the understanding of

disease pathogenesis, classification and risk-profiling

while suggesting uncharacterized biological mechanisms.

In addition to well-established overlaps with bipolar

disorder [4,5,6��,19,32,37,46,47,66], schizophrenia GWAS

have revealed numerous other relationships (Table 1).

Many loci identified by GWAS overlap with rare, de novo

and copy number variants implicated in autism and

intellectual disability, although the variant type (rare or
www.sciencedirect.com
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Table 1

Implicated biological and genomic modules.

Class Module Enrichment method Pathway

source

Inclusion

threshold

Cite

Genome

functions

Enriched Brain expressed genes Chip h2 partitioning p < 1 [7]

Multivariate model parameter p < 1 [32]

Proximal promoters

(across tissues)

Chip h2 partitioning p < 1 [13]

LD score h2 partitioning p < 1 [65]

Proximal promoters

(multiple adult and fetal

brain tissues)

Conditional QQ Plots; mean(Z2 � 1) p < 1 [22��]

Custom permutation-based test p < 5 � 10�8 [40]

5’ untranslated regions

(5’UTR)

Conditional QQ Plots; mean(Z2 � 1) p < 1 [22��]

LD score h2 partitioning p < 1 [65]

Chip h2 partitioning p < 1 [13]

Exons Conditional QQ Plots; mean(Z2 � 1) p < 1 [22��]

LD score h2 partitioning p < 1 [65]

Chip h2 partitioning p < 1 [13]

30 untranslated regions

(3’UTR)

Conditional QQ Plots; mean (Z2 � 1) p < 1 [22��]

LD score h2 partitioning p < 1 [65]

Chip h2 partitioning p < 1 [13]

eQTLs (brain) RPS p < 0.5 [36]

Pathway analysis p < 10�3 [37]

Multivariate model parameter p < 1 [32]

Enhancers (multiple brain

and fetal tissues)

Conditional QQ Plots; mean(Z2 � 1) p < 1 [23��]

Custom permutation-based test p < 5 � 10�8 [40]

LD score h2 partitioning p < 1 [65]

Fine-mapping GWAS p < 5 � 10�8 [6��]

Enhancers (immune cells) Fine-mapping GWAS p < 5 � 10�8 [6��]

Transcription factor

binding sites

Multivariate model parameter p < 1 [32]

MIR137 targets GWAS p < 5 � 10�8 [4]

GWAS p < 5 � 10�8 [5]

Pathway analysis p < 10�4 [4]

Pathway analysis p < 1 [5]

Pathway analysis p < 0.01 [38]

DNAse hypersensitive

Regions (DHS)

Chip h2 partitioning p < 1 [13]

Conserved DNA LD score h2 partitioning p < 1 [65]

Depleted Nonsynonymous variants Fine-mapping GWAS p < 5 � 10�8 [6��]

Introns Chip h2 partitioning p < 1 [13]

Functionally unannotated

intergenic variants

Conditional QQ Plots; mean(Z2 � 1) p < 1 [22��]

Chip h2 partitioning p < 1 [13]

Enhancers (bone, cartilage,

kidney and fibroblast)

Fine-mapping GWAS p < 5 � 10�8 [6��]

Enhancers (FANTOM5) LD score h2 partitioning p < 1 [65]

Insulators (CTCF silenced

DNA)

LD score h2 partitioning p < 1 [65]

Biological

systems

Enriched Calcium signaling GWAS Gene function p < 5 � 10�8 [4]

GWAS Gene function p < 5 � 10�8 [5]

GWAS Gene function p < 5 � 10�8 [37]

GWAS Gene function p < 5 � 10�8 [6��]

Pathway Analysis Gene Ontology (GO) p < 10�3 [37]

Pathway Analysis Gene Ontology (GO) p < 1 [29]

Calcium signaling

subprocess (calcium

channel subunits)

Pathway Analysis Custom module p < 1 [5]

Dopamine GWAS Gene function p < 5 � 10�8 [6��]

Glutamate GWAS Gene function p < 5 � 10�8 [6��]

Differential co-expression

network (Glutamate)

Pathway Expression Study p < 10�3 [23��]

Differential co-expression

network (GABA)

Pathway Expression Study p < 10�3 [23��]

Neuronal signaling Pathway Analysis GO/PANTHER/KEGG p < 1 [29]

Synaptic plasticity GWAS Gene function p < 5 � 10�8 [6��]

Synapse subprocess

(cell-adhesion)

Pathway Analysis Custom module p < 1 [5]

www.sciencedirect.com Current Opinion in Neurobiology 2016, 36:89–98
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Table 1 (Continued )

Class Module Enrichment method Pathway

source

Inclusion

threshold

Cite

Synapse subprocess

(trans-synaptic signaling)

Pathway Analysis Custom module p < 1 [5]

Synapse subprocess

(structural plasticity)

Pathway Analysis Custom module p < 1 [5]

Synapse subprocess

(excitability)

Pathway Analysis Custom module p < 1 [5]

Post-synaptic density Pathway Analysis Gene Ontology (GO) p < 1 [29]

Neuronal maturation GWAS Gene function p < 5 � 10�8 [4]

Differential co-expression

network (oligodendrocyte

function)

Pathway Analysis Expression Study p < 10�3 [23��]

Histone modification Pathway Analysis GO/PANTHER/KEGG p < 1 [29]

Immune response GWAS Gene function p < 5 � 10�8 [5]

GWAS Gene function p < 5 � 10�8 [6��]

Pathway analysis GO/PANTHER/KEGG p < 1 [29]

Shared

associations

Enriched Healthy with affected first

degree relative

RPS p < 0.2 [56]

Bipolar disorder GWAS p < 5 � 10�8 [4]

GWAS p < 5 � 10�8 [5]

GWAS p < 5 � 10�8 [6��]

Joint GWAS p < 5 � 10�8 [37]

Chip co-h2 p < 1 [46]

LD Score co-h2 p < 1 [66]

Conditional QQ plots p < 1 [19]

Multivariate model parameter p < 1 [32]

RPS p < 0.05 [47]

Schizoaffective disorder RPS p < 0.05 [47]

Experience of psychosis RPS p < 0.05 [47]

Autism GWAS p < 5 � 10�8 [5]

GWAS p < 5 � 10�8 [6��]

Joint GWAS p < 5 � 10�8 [37]

Multivariate model parameter p < 1 [32]

Chip co-h2 p < 1 [46]

Intellectual disability GWAS p < 5 � 10�8 [5]

GWAS p < 5 � 10�8 [6��]

Major depressive disorder Joint GWAS p < 5 � 10�8 [37]

Chip co-h2 p < 1 [46]

Multivariate model parameter p < 1 [32]

LD Score co-h2 p < 1 [66]

Anorexia LD Score co-h2 p < 1 [66]

ADHD Joint GWAS p < 5 � 10�8 [37]

Multivariate model parameter p < 1 [32]

RPS p < 0.05 [49]

Multiple sclerosis Conditional QQ plots p < 1 [21]

Cardiovascular disease risk

factors

Conditional QQ plots p < 1 [19]

Creativity RPS p < 1 [57��]

Neurocognitive performance RPS p < 0.5 [52]

Age related cognitive change RPS p < 0.5 [53]

Sensory motor gating RPS p < 0.5 [54]

WM related fMRI signal RPS p < 0.05 [55]

There have been many recent reports of genome, pathway and phenotype modules enriched for schizophrenia GWAS association signal. A method

of ‘GWAS’ means there were genome-wide significant ( p < 5 � 10�8) associations in the module. ‘Custom module’ compiled from [63,64]. ‘Gene

Function’ pathway source denotes inclusion due to the function of single genes within loci implicated by GWAS significance. GO, Gene Ontology

(http://geneontology.org/); PANTHER (http://pantherdb.org/); KEGG (http://www.genome.jp/kegg/).
common SNP, copy-number variant, among others) may

determine the particular outcome [5,6��,48�]. Chip co-

heritability estimates show genetic relationships between

schizophrenia and major depressive disorder [66,46], au-

tism [46] and anorexia [66]. Cross disorders GWAS and

enrichment tests suggest a link with ADHD [32,37,49].
Current Opinion in Neurobiology 2016, 36:89–98 
Andreassen et al. showed co-localization of schizophrenia

associations with multiple sclerosis [21] and cardiovascu-

lar disease risk factors [18��]. These studies are consistent

with genetic factors mediating epidemiological comorbid-

ities, although the causal relationships have not been

resolved.
www.sciencedirect.com
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Interpreting co-localized GWAS associations can have

challenges of ambiguity much like pathway studies. Be-

cause any SNP represents (‘tags’) through LD a genomic

region containing many potentially causal SNPs, the

observation of associations at the same SNP in multiple

GWAS does not necessarily imply the same underlying

causal variant or even that causal variants are within the

same gene. For this reason, it is difficult to infer the level

at which pleiotropy, or shared genetic signal, is occurring –
causal variant, causal gene or correlated locus – from

GWAS statistics (review on GWAS pleiotropy [50]). As

such, different methods assessing co-localization among

GWAS may produce inconsistencies depending on their

assumptions for pleiotropy. Chip co-heritability

approaches [14,66] require consistent direction of effects

among GWAS, while enrichment methods such as

[18��,19,21] do not. Although some argue directional

consistency is a stronger test of pleiotropy [66], it is not

straightforward to link causal effects to GWAS test statis-

tics across studies [51]. Further, consistent overlap among

loci of disparate traits, regardless of direction, may point

to interesting, uncharacterized biological mechanisms

such as regulatory hubs. Further analytic and functional

characterization of co-localized associations is crucial.

Using the GWAS summary statistics made available by

the PGC (http://www.med.unc.edu/pgc/downloads), an-

other approach to testing overlap has been to use RPS to

test trait associations with for schizophrenia polygenic risk

(review [15�]). Notably, variability in phenotypes related

to cognitive ability [52,53], sensory motor gating [54],

working memory related fMRI signal [55], psychotic

experience [47], schizoaffective disorder [47] and affect-

ed relatives [56] are associated with schizophrenia RPS. A

recent study found and interesting association between

schizophrenia RPS and increased creativity in healthy

individuals [57��]. These studies confirm the relatively

mild risk for schizophrenia induced by any one, or even

collection of common risk SNPs, but highlight their

involvement with normal variability in other traits. Con-

tinuing to investigate the co-localization of genetic effects

will provide clues as to how biological networks are

connected, informing both our understanding of healthy

neurobiological processes as well as those perturbed in

schizophrenia.

Leveraging enrichment to prioritize schizophrenia loci

A subset of multivariate models have been applied to

schizophrenia GWAS to nominate novel candidate loci

[18��,19,20�,21,34]. These methods rely on an Empirical

Bayes [58] philosophy well suited to the statistical prop-

erties of polygenic phenotypes [20�,58]. The distribution

of test statistics from a GWAS is modeled as a mixture of

two distributions, a ‘null’ and ‘non-null,’ with subtle

variations proposed [36,59]. Statistical theory predicates

a known shape for the distribution of test statistics under

null. ‘Statistical significance’ is estimated for each SNP as
www.sciencedirect.com 
the probability that its test statistic, given the magnitude,

was drawn from the null distribution. This significance

quantity (the local false discovery rate [58]) is a function

of the excess of extreme in the observed mixture distri-

bution relative to that expected under null alone. If the

distribution of test statistics varies as a function of cate-

gory (i.e. genome annotations) these features can be

incorporated into the significance estimation [20�,33,34].

One instantiation of this, the conditional FDR

[18��,19,21,60], prioritizes SNPs based on statistical rela-

tionships across traits. When SNP associations for a sec-

ond trait systemically co-localize with those of a primary

trait of interest, suggestive association with the second

trait can be used to prioritize suggestive associations with

the primary trait. This method was applied to schizophre-

nia GWAS results paired with bipolar disorder [19],

cardiovascular risk factors [18��] and multiple sclerosis

[21] to nominate 74, 25, and 39 novel loci. Andreassen

et al. [20�] used the covariate-modulated local false dis-

covery rate [33], which incorporated the set of genome-

annotations, to prioritize 86 candidates. Wang et al. [34]

used a covariate-modulated mixture model (CM3) to

select 693 independent loci from the most recent PGC

schizophrenia GWAS that predicted by the model to

replicate at �80%, although an independent test set is

not yet available. Given its emergence as a ‘pathway

disease,’ statistical methods that take advantage of the

clustering of effects within modules may effectively

identify the next wave of statistical associations for

schizophrenia.

Conclusion
Neurobiological inferences from GWAS of schizophrenia

are maturing, in large part due to a conceptual focus on

polygenic architecture. Formerly a few biologically dis-

parate associations were stretched into cloudy, uncharted

territory. Presently, it is becoming possible to aggregate

and assimilate extensive polygenic signals into an ever

more connected network of neurobiological relevance.

Schizophrenia is clearly a ‘pathway disorder’ [3] and the

polygenic component is beginning to coalesce into co-

herent neurobiological modules. Genetic evidence for

traditional, therapeutics-based theories of schizophrenia,

including glutamatergic, GABAergic and dompaminergic

signaling disruptions, are emerging, as is support for

disturbances to brain development, calcium signaling

and synaptic functioning. Provocative transcriptional,

histological, and neuroscientific studies have begun to

demonstrate important connections between these sys-

tems and immune pathways [43,44], adding plausibility to

the GWAS findings. The relative paucity of large effect

and de novo nonsynonymous variants, coupled with ex-

tensive enrichment for gene regulatory elements among

schizophrenia loci suggest that it may be a specific and

perhaps subtle state shift in this emerging network that

leads to schizophrenia. An interesting hypothesis along
Current Opinion in Neurobiology 2016, 36:89–98
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these lines is that more ‘severe’ genetic insults to the

same neurobiological network may result in more ‘severe’

phenotypes such as autism or intellectual disability [48�].
Schizophrenia risk variants may need to be considered

within this important network context for added in-

terpretability [45�]. The polygenic overlap between

schizophrenia and a range of human traits and diseases

could implicate pathways across traditional categories,

questioning current disease nosology. Further, emerging

evolutionary considerations [61,62] suggest we may need

to consider variants within a human-specific network

background to identify relevant schizophrenia neurobio-

logical perturbations, which may call for novel neurosci-

entific approaches. The emerging evidence from

schizophrenia GWAS emphasizes a need for further re-

finement and development of analytic approaches, con-

tinued mapping of gene regulatory elements within

relevant cells, integration of diverse data into pathways

and careful thought about how best to functionally char-

acterize the neurobiology associated with genetic risk for

schizophrenia in animal and cell models.
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