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ABSTRACT

The authors consider quasi-stationary planetary waves that are excited by localized midlatitude orographic forcing
in a three-dimensional primitive-equation model. The waves propagate toward subtropical regions where the background
flow is weak and the waves are therefore likely to break. Potential vorticity fields on isentropic surfaces are used to
diagnose wave breaking. Nonlinear pseudomomentum conservation relations are used to quantify the absorption–
reflection behavior of the wave-breaking regions. Three different three-dimensional flow configurations are represented:
(i) a barotropic flow, (ii) a simple baroclinic flow, and (iii) a more realistic baroclinic flow. In order to allow the
propagation of large-scale waves to be studied over extended periods for the baroclinic flows, the authors apply a
mechanical damping at low levels to delay the onset of baroclinic instability.

For basic states (i) and (ii) the forcing excites a localized wave train that propagates into the subtropics and,
for large enough wave amplitude, gives rise to a reflected wave train propagating along a great circle route into
midlatitudes. It is argued that the reflection is analogous to the nonlinear reflection predicted by Rossby wave
critical layer theory. Both the directly forced wave train and the reflected wave train are quite barotropic in
character and decay due to the damping. However, the low-level damping does not inhibit the reflection. The
authors also consider the effect of thermal damping on the absorption–reflection behavior and find that, for
realistic wave amplitudes, reflection is not inhibited by thermal damping with a timescale as low as 5 days.

For the third basic state it is found that the small-amplitude response has the character of a longitudinally
propagating wave train that slowly decays with distance away from the forcing. The authors argue that part of
this decay is due to low-latitude absorption and show that at larger amplitudes the decay is inhibited by nonlinear
reflection.

The authors also compare for each basic state absorption–reflection behavior for isolated wave trains and for
waves forced in a single longitudinal wavenumber.

1. Introduction

Understanding the low-frequency longitudinal vari-
ations in the tropospheric circulation remains an im-
portant problem. Atmospheric teleconnection patterns
have been interpreted for some time as manifestations
of large-scale Rossby wave propagation (e.g., Wallace
and Gutzler 1981). While recent work (e.g., Branstator
1992) has suggested strong interaction between transient
eddies and low-frequency variations, it appears that
there is still much to be gained from simple models that
treat the low-frequency variations in isolation, for ex-
ample, based on simple models of Rossby wave prop-
agation (e.g., Branstator 1983; Ambrizzi and Hoskins
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1997 and references therein). However, it is clear that
models based purely on linear theory must be limited
in their usefulness. Observations of the potential vor-
ticity (PV) field (e.g., Hsu et al. 1990; Kiladis and
Weickman 1992) show the subtropical upper tropo-
sphere to be a region of strong Rossby wave breaking,
analogous to the ‘‘surf zone’’ in the midlatitude winter
stratosphere. Just as in the stratosphere, the tropospheric
flow is highly inhomogeneous, with wavelike parts of
the flow in close proximity to wave-breaking regions
where the flow is highly nonlinear. In order to determine
the significance of the simple Rossby wave propagation
models, and to improve them where necessary, it is
important to understand the interaction between the non-
linear regions and the rest of the flow.

One model problem in which this interaction is par-
ticularly clear is the nonlinear Rossby wave critical-
layer problem describing the behavior of small-ampli-
tude waves on a basic-state shear flow containing a crit-
ical line (a location where the phase speed of the waves
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matches the flow speed). Provided that dissipation is
sufficiently weak, wave breaking occurs in the neigh-
borhood of the critical line, called the critical layer, even
though the waves are small amplitude. The advantage
of the critical-layer theory is that it makes precise the
interaction between wave-breaking and wave-propaga-
tion regions, using the machinery of matched-asymp-
totic expansions, under the assumption that the wave-
breaking region—the critical layer—is thin. The inter-
action is naturally expressed in terms of whether the
critical layer absorbs or reflects the waves outside it.
The theory predicts that, when a wave source is switched
on, there is initially propagation of the waves toward
the location of the critical layer, which appears to act
as a wave absorber. As time goes on, the vorticity field
is rearranged advectively within the critical layer. This
changes the wave field outside with the effect that the
critical layer begins to act as a wave reflector. The re-
flection is manifested as a reduction in the net wave
propagation toward the critical layer. One might say that
the critical layer acts as a source of waves and that it
is the propagation of those waves away from the critical
layer that reduces the net propagation toward it. The
detailed time evolution of the absorption–reflection be-
havior may be predicted by numerical solution, or in
certain special cases by analytical solution, of the crit-
ical-layer equations (see Stewartson 1978; Warn and
Warn 1978; Killworth and McIntyre 1985, hereafter
KM; Haynes 1989 and references therein).

We might then pose the question, does the tropo-
spheric subtropical wave-breaking region absorb or re-
flect Rossby waves incident from midlatitudes? Cer-
tainly linear wave calculations suggest that the structure
of midlatitude Rossby waves depends quite sensitively
on this. One might hope to identify the signature of low-
latitude Rossby wave reflection in tropospheric tele-
connection patterns. It has been difficult to find any
robust signature of such reflection. For example, Plumb
(1985) calculated wave-activity fluxes from a climato-
logical dataset of 10 Northern Hemispheric winters
based on daily NMC (now the National Center for En-
vironmental Prediction) analysis from 1965 to 1975 and
found no evidence of poleward propagation out of the
subtropics (which might indicate reflection). However,
more recently there has been some positive evidence
for reflection, for example, in the results of Molteni et
al. (1990). Their Fig. 10 shows a composite map of the
Pacific–North American pattern that includes not only
a wave train extending from the equatorial Pacific, over
North America, and equatorward, but also a second
wave train emerging from the Caribbean and extending
over the North Atlantic and Eurasia. This second wave
train might be interpreted as arising from low-latitude
reflection of the first. Its amplitude is weak, but Molteni
et al. claim that it is statistically significant. Randel and
Williamson (1990) computed Plumb’s (1985) wave-ac-
tivity flux for stationary waves in DJF-mean European
Centre for Medium-Range Weather Forecasts (ECMWF)

analysis for 1980–86. According to their Fig. 18c there
is a poleward directed flux at about 1708W, perhaps
corresponding to reflection. Yang and Gutowski (1994)
used the same diagnostic on a 12-yr DJF-mean dataset
of NMC analysis from the years 1978–90. They detected
a weak but clearly defined poleward flux of wave ac-
tivity at longitudes that would be consistent with re-
flection from a low-latitude wave-breaking region (see
their Fig. 4a). As the authors note, the differences be-
tween their results and those of Plumb (1985) may be
the result of the many changes in the NMC analysis
scheme over the period 1965–90. Schubert and Park
(1991) computed Plumb’s flux from DJF ECMWF win-
ter data from 1981 to 1987. Their Fig. 9b indicates a
strong wave-activity flux from low to high latitudes in
the central Pacific region. This is apparently due to sig-
nificant reflection in the vicinity of the equatorward
flank of the east Asian jet.

There have also been attempts to identify nonlinear
reflection in GCM data. Cook and Held (1992) did not
see any evidence of reflection in idealized low-resolu-
tion GCM simulations with a zonally symmetric climate
and a simple topographic forcing of large-scale waves.
Neither did Yang and Gutowski (1994) find evidence of
reflection in wave-activity fluxes computed from data
generated by two different GCMs, the NCAR and GFDL
models (although they had seen such evidence in the
fluxes computed from NMC data). All three GCMs con-
sidered in these two papers had a horizontal resolution
of only R15 and it might well be that this coarse res-
olution is the reason for the lack of reflection. The hy-
perdiffusion required for numerical stability at these low
resolutions may well be strong enough that the low-
latitude flow is more akin to acting as a dissipative
critical layer in the nonlinear wave-breaking region. In
that case, the nonlinear wave-breaking region would act
as a persistent wave absorber. We comment further on
this issue in section 7.

Certainly there is theoretical work, outside the small-
amplitude restriction of critical layer theory, that gives
useful insight into when reflection is to be expected.
Killworth and McIntyre (1985) used a nonlinear wave-
activity conservation relation to deduce that, under cer-
tain restrictions, wave-breaking regions would, if they
remained of finite width, act as reflectors in the time
average. One of the important limitations on the KM
result is that it applies only in a longitudinally averaged
sense. Observational studies (e.g., Wallace and Hsu
1983) have shown that tropospheric low-frequency dis-
turbances tend to be longitudinally localized wave trains
travelling along great circle routes, rather than being
‘‘monochromatic’’ waves with a well-defined longitu-
dinal wave number. As discussed by Brunet and Haynes
(1996, hereafter BH), the KM result puts only weak
contraints on the absorption–reflection behavior of such
wave trains.

Brunet and Haynes (1996) used numerical simula-
tions in a shallow-water model to gain further insight
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into this issue. They found clear evidence of low-latitude
reflection of a quasi-stationary Rossby wave train forced
by an isolated mountain. A previous investigation by
Waugh et al. (1994), using contour dynamics, also noted
evidence of low-latitude reflection of isolated wave
trains.

In order to determine the significance of the above
results for the real troposphere, it is natural to extend
these investigations to consider fully three-dimensional
flows. The results of such an investigation are reported
in this paper. Part of the analysis will be based on non-
linear wave-activity diagnostics. These are discussed in
section 2. The numerical model is briefly described in
section 3. The remainder of the paper describes results
from a sequence of numerical experiments, each with a
different basic-state flow, and discusses their signifi-
cance. In each case results for a localized wave forcing,
giving rise to a longitudinally localized wave train, and
for a monochromatic, wavenumber-3 forcing, are con-
trasted and the effects of radiative damping on the ab-
sorption–reflection behavior are assessed. First, in sec-
tion 4, the basic state is taken to be an idealized three-
dimensional barotropic flow. This is intended to give
the closest possible resemblance to the BH case, albeit
in a 3D model where the wave forcing is at the surface
and waves propagate in the vertical as well as in the
horizontal. Sections 5 and 6 consider, respectively, a
simple baroclinic flow that includes an upper-tropo-
spheric jet and a flow that is closer to the observed
wintertime longitudinal mean. The results are summa-
rized and discussed in section 7.

2. Diagnostics

The advantages of using wave-activity fluxes to di-
agnose wave behavior in numerical simulations and in
observations have been demonstrated, for example, by
Edmon et al. (1980) and Plumb (1985). For problems
in which wave amplitudes are not small, there is a par-
ticular advantage in using wave activities for which
there is a finite-amplitude conservation relation; that is,
there are, in conservative flows, no sources or sinks of
wave activity associated with finite-amplitude effects.
Wave activities that are conserved at finite amplitude
have been constructed in two ways. The first arises from
the generalized Lagrangian mean formalism of Andrews
and McIntyre (1978). The second exploits the energy–
Casimir or momentum–Casimir methods pioneered by
Arnol’d to prove stability theorems for Hamiltonian sys-
tems. Its usefulness for constructing wave-activity con-
servation relations was first shown by McIntyre and
Shepherd (1987). The second has the great practical
advantage over the first that the various wave quantities
may usually be expressed in terms of Eulerian variables,
without knowledge of particle displacements. Wave-ac-
tivity diagnostics of the second type have been applied
to a range of different flows. See, for example, Scinocca
and Peltier (1994) for application to two-dimensional

stratified flow over topography, BH for application to
Rossby wave propagation in shallow-water models, and
Magnusdottir and Haynes (1996) for application to non-
linear baroclinic life cycles.

In this paper we use wave-activity conservation re-
lations for the primitive equations1 first derived by
Haynes (1988). For completeness, we shall write down
the relevant expressions again here. Any calculation of
wave activity requires the division of flow quantities
into basic-state and disturbance parts. If the wave ac-
tivity is to be conserved at finite amplitude it is im-
portant that the basic state be a self-consistent solution
of the equations of motion and that it have some sym-
metry property. We shall use basic states that are in-
dependent of longitude; the resulting wave activity is
usually referred to as ‘‘angular pseudomomentum,’’ or
‘‘pseudomomentum’’ for short.

Let (·)0 denote a basic-state variable and (·)e denote
the deviation of that variable from the basic state, such
that (·) 5 (·)0 1 (·)e. The independent variables are the
usual spherical coordinates (l, f ), longitude and lati-
tude, in the horizontal, and potential temperature u in
the vertical; a is the radius of the earth. The form of
the conservation law for pseudomomentum may be writ-
ten as

(l)]A ]A 1 ]F
1 = · F 5 1

]t ]t a cosf ]l
(f ) (u)1 ](F cosf) ]F

1 1 5 S, (2.1)
a cosf ]f ]u

where the pseudomomentum density A is given by

A 5 2s u cosfe e

Pe

˜ ˜1 s (m (P 1 P, u) 2 m (P , u)) dP, (2.2)E 0 0 0 0

0

and the components of the flux F are given by

1
(l) 2 2F 5uA 2 s (u 2y ) cosf2t( p , p , u) cosf, (2.3a)0 e e e 02
(f)F 5yA 2s y u cosf, (2.3b)0 e e

(u) 21 21F 5g a p M . (2.3c)e el

Here S is given by a rather complicated expression, as
shown in Haynes (1988), the negative of the right-hand
side of Eq. (3.12a) therein. As stated before, S only in-
volves nonconservative terms. In the above, (u, y) are
horizontal components of the velocity, s 5 2g21 ]p/]u
is the mass per unit volume in isentropic coordinates,

2V sinf 1 ]y/a cosf ]l 2 ](u cosf)
P 5 s@[ ]a cosf ]f]

1 In the primitive equations the fluid is taken to be hydrostatic and
an ideal gas.
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is PV, and M 5 P u 1 gz is the Montgomery stream-
function, where z is geometric height, P 5 cp(p/ps)k

the Exner function, and ps is a reference pressure. The
function m0(·) is defined by

f

m (P (f, u)) 5 s (f̃, u)a cosf̃ df̃ (2.4)0 0 E 0

0

and is single valued when, for each u, PV is a monotonic
function of latitude. According to (2.4), m0 is the mass
in the infinitesmal isentropic layer surrounding u, mea-
sured from the equator to that latitude, f, where the
potential vorticity of the basic state has the value P0.
(Recall that the basic state is zonally symmetric.) For
ease of interpretation and for comparison with two-di-
mensional balanced flow, it is easiest to think of m0 as
being a measure of position in the latitudinal direction
based on the basic-state PV field on each isentropic
surface. Then the integral in (2.2) represents a measure
of the excursion of fluid particles in the disturbed flow
away from the basic state. The function t is defined by

pe kp̃
21t(p , p , u) 5 g P(p 1 p̃, u) dp̃. (2.5)e 0 E 0(p 1 p̃)00

Note that the sign convention is different from that of
Haynes (1988) so that under quasigeostrophic scaling
A agrees with the usual definition of Eliassen–Palm
wave activity.

For small Rossby number flows it can be shown that
the second term in the expression for pseudomomentum
density (2.2) dominates the first term. This second term
expresses the wave activity arising from PV rearrange-
ment in the flow and is comparable to KM’s expression
for pseudomomentum density in the case of two-di-
mensional vortex dynamics. The KM bound on the time-
integrated wave-activity flux into the wave-breaking re-
gion depends on bounding the wave activity by a func-
tion involving the disturbance PV and hence particle
displacements. The presence of the first term in (2.2)
means that this is not possible for the primitive equa-
tions, although for flows that are close to being balanced
the expectation is that a bound is likely to hold in prac-
tice. This was indeed confirmed by BH for the shallow-
water case.

As is well known (e.g., Plumb 1985), and apparent
from (2.1), there is substantial indeterminacy in the def-
inition of the pseudomomentum density and flux. For
example, we can add a nondivergent part to F and (2.1)
would still be satisfied. Similarly, we could add parts
to both A and F, provided that either the time derivative
of the part added to A equals the divergence of the part
added to F or the difference between them involves
nonconservative terms only that can be absorbed on the
right-hand side. Of course, anything added to the re-
lation must be quadratic in the small-amplitude limit.

Since the components of the flux in (2.3a)–(2.3c) in-
volve unaveraged quadratic functions of wave variables,
they will in general be phase dependent. Plumb (1985)

derived a locally valid quasigeostrophic wave-activity
relation valid for small-amplitude waves on a zonally
symmetric basic state and demonstrated that, for sta-
tionary waves, the phase dependence of the flux could
be removed by adding a correction allowed by the in-
determinacy mentioned above. The flows considered
here are not quasigeostrophic, but it turns out to be
extremely beneficial to apply the same sort of correction
as Plumb (1985) to the three-dimensional pseudomo-
mentum flux. Brunet and Haynes (1996) exploited the
same method for the two-dimensional case. The method
can be extended to the case of waves with nonzero phase
speed (Esler 1997), but here we shall concentrate on
quasi-stationary waves excited by stationary forcing.

In the three-dimensional case the ‘‘Plumb-corrected’’
flux takes the form

] ]
(l) (l)F̂ 5 F 1 C 1 C , (2.6a)1 2a ]f ]u

]
(f ) (f )F̂ 5 F 2 C , (2.6b)1a cosf ]l

]
(u) (u)F̂ 5 F 2 C , (2.6c)2a cosf ]l

where

1
21(C , C ) 5 (2u c s cosf, g p M cosf) (2.7)1 2 e e 0 e e2

and c is the streamfunction for the nondivergent part
of the horizontal flow.

Later in the paper we show explictly that this cor-
rection is indeed effective at removing the phase-de-
pendent structure in the flux pattern.

3. Model, forcing, and basic-state flows

The numerical model used in the simulations is the
University of Reading, primitive-equation, sigma-co-
ordinate model developed by Hoskins and Simmons
(1975). It was run at T42 horizontal resolution and with
15 sigma levels in the vertical; at sigma 5 0.967, 0.887,
0.784, 0.674, 0.569, 0.477, 0.400, 0.338, 0.287, 0.241,
0.197, 0.152, 0.106, 0.060, and 0.018. The correspond-
ing level mean temperatures are 283.2, 279.1, 273.3,
266.1, 258.1, 249.8, 241.5, 234.0, 227.2, 220.5, 213.0,
204.3, 195.3, 199.7, and 208.5 K.

The model has ¹6 hyperdiffusion added to the vor-
ticity, divergence, and temperature tendency equations
with a decay rate of 10 day21 for the smallest resolved
horizontal scales. The zonally symmetric flow was de-
fined by choosing a height–latitude profile for the zonal
velocity and using this as an initial condition. The lat-
itudinally varying part of the initial temperature fields
was chosen to be in gradient wind balance with the
initial wind fields. The resulting basic states remained
statically stable.

Longitudinal asymmetries were forced in the flow by
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FIG. 1. (a) Basic state I, zonal wind (in m s21; contour interval is
5 m s21), and potential temperature (in K; 300 K has been subtracted;
contour interval is 5 K). Negative contours are dashed. The zonal
wind increases away from the poles, reaching a maximum of 34 m
s21 at about 328, thereafter it decreases rapidly toward the equator.
(b) Same as (a) except for basic state II. (c) Same as (a) except for
basic state III.

placing a Gaussian-shaped mountain at 458N and 1808E,
with a half-radius of 1066 km. This is the shape of the
forcing originally used by Grose and Hoskins (1979).
Additionally, we considered wave-3 forcing, imposing
periodicity in the longitudinal direction while keeping
the mountain Gaussian in latitude. The height of the
mountain was smoothly increased from zero to its
steady-state value over the first 4 days of each simu-
lation. A nondimensional forcing amplitude d is defined
by d 5 h/h0, where h is the maximum height of the
mountain and h0 5 840 m. The effectiveness of the
forcing also depends, for instance, on the low-level wind
speed at the location of the mountain. However, for each
set of experiments involving a particular basic-state
flow, the nondimensional height is a useful measure of
the forcing.

Three different basic-state wind profiles were used.

For the first set of experiments, reported in section 4,
the latitudinal wind profile at all levels is that of Held
(1985). This wind profile, shown in Fig. 1a, is a simple
representation of upper-tropospheric flow. It is sym-
metric about the equator, with a jet of maximum velocity
34 m s21 centered at about 328 and is easterly only
equatorward of about 78. The second profile (shown in
Fig. 1b), for which results are reported in section 5, was
generated simply by multiplying the first by sech2(sigma
2 0.175). This was designed to introduce the extra re-
alism of vertical shear in as simple a way as possible.
However, this second profile has some important dif-
ferences from observed tropospheric wind profiles. In
particular, the resulting basic state has a static stability
profile that implies that the tropopause is of approxi-
mately the same height at all latitudes.

The third velocity profile (shown in Fig. 1c), for
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which results are reported in section 6, is closer to the
observed wintertime mean flow. It is closely related to
the profile that was used in Magnusdottir and Haynes
(1996), as the initial state for the life cycle experiment
termed LC1. That profile has been used in a number of
other studies of baroclinic life cycles. Here we moderate
the LC1 profile to avoid the problems associated with
the fact that the latitudinal PV gradient on isentropic
surfaces changes signs. Additionally, we extend this
profile to both hemispheres by imposing symmetry
about the equator. Together with our choice of vertical
profile for global mean temperature (which is given
above), this wind profile gives a realistic looking tro-
popause.

For simulations in which the basic-state flow had non-
zero vertical shear, it was necessary to inhibit the growth
of baroclinic disturbances; otherwise, over 20 days or
so, such disturbances grow to swamp the forced plan-
etary response. Frictional drag represented by linear
Rayleigh friction was therefore introduced into the low-
est levels of the model. A drag coefficient of 5 day21

at the surface, decreasing in the vertical (linearly with
sigma) to zero at sigma 5 0.7, was sufficient to inhibit
baroclinic growth for the duration of the simulations.
The drag coefficient at the surface is of the same order
of magnitude as the value 3 day21 suggested by Valdes
and Hoskins (1988) to mimic a realistic Ekman layer.
Held and Suarez (1994) suggest a value of 1 day21 at
the surface, decreasing linearly to zero at sigma 5 0.7,
as a standard value for intercomparison of general cir-
culation models, but we found that this value was not
sufficient to inhibit baroclinic instability.

4. Basic state I: Barotropic flow

First we wish to establish what aspects of previous
results carry over to the three-dimensional case, without
bringing the complicating effects of vertical shear into
the problem. The basic-state wind is therefore taken to
be, at all heights, exactly that used by BH in the shallow-
water study. This basic state is depicted in Fig. 1a.

a. Isolated forcing in midlatitudes

We first consider the case when the only damping is
the ¹6 hyperdiffusion. We then consider the case that
additionally has some low-level mechanical damping in
order to get an indication of its effect. This aids inter-
pretation of results to be described in later sections for
simulations where damping is essential to inhibit the
growth of baroclinic disturbances.

Figure 2 shows results for the case of small-amplitude
isolated forcing, when the topographic forcing has a
nondimensional amplitude of 0.1. Figure 2a shows the
meridional wind on sigma 5 0.287, 18 days into the
simulation. Two different wave trains downstream of
the topography are clearly visible, one directed eastward
and toward low latitudes and another one directed east-

ward and poleward. We are particularly interested in the
wave train directed toward low latitudes and terminat-
ing, and apparently being absorbed, where the back-
ground flow becomes weak. This field looks much the
same 8 days earlier in the simulation, implying that at
10 days something close to a steady state has been
achieved. We interpret this behavior as low-latitude crit-
ical-layer absorption, consistent with the hypothesis
that, for this amplitude of forcing, the small-scale dis-
sipation in the critical layer, associated with the model
hyperdiffusion, is sufficient to dominate nonlinearity.

Figure 2b shows the wave-activity density on the 340
K surface at the same time and for the same forcing.
The wave-activity density is a quadratic measure of
wave amplitude. Considerable wave activity has accu-
mulated in the region of small background winds where
the wave train is incident. The corresponding wave-
activity flux while applying the Plumb correction [as
expressed in (2.6a)–(2.6b)] is shown in Fig. 2c. Most
of the flux is directed into the aforementioned region.
Again, both fields look much the same both earlier and
later in the simulation, indicating that a steady state has
been reached where the small-scale dissipation balances
the convergence of flux into the region.

To see the effects of applying the Plumb correction
to the wave-activity flux, Fig. 2d shows the pseudo-
momentum flux without this correction [as expressed in
(2.3a)–(2.3b)]. Unlike Fig. 2c, this flux shows consid-
erable structure on the scale of the phase of the waves.
It is hard to discern the propagation of the waves from
the uncorrected flux. The corrected flux in Fig. 2c gives,
on the other hand, a clear view of the wave propagation.

If the forcing is increased to an amplitude of 0.5 the
low-latitude response is entirely different. Figure 3a
shows PV on the 340 K surface at day 18. There is a
primary wave-breaking region where the original wave
train was incident on the region of small background
winds. Additionally, a secondary region of considerable
PV rearrangement is evident at low latitudes close to 08
longitude or the Greenwich meridian. (The Greenwich
meridian, which is indicated by ‘‘GM’’ in all the figures,
runs vertically from the center of the plots to their base.)
The corresponding wave-activity density and flux are
shown in Figs. 3b and 3c, respectively. The wave-ac-
tivity density reveals a characteristic double maximum
structure in each of the two wave-breaking regions cor-
responding to the concentration of the PV gradient at
the northern and southern edges of such regions. The
primary region has much more wave activity than the
secondary. We argue that the accumulation of wave-
activity in the primary region has saturated and the sec-
ondary wave-breaking region arises from breaking of
the wave train that was reflected from the primary re-
gion. Note that no such secondary wave-breaking region
was seen in the previous case of small-amplitude forc-
ing. It cannot therefore be explained, for example, by
the presence of a second wave train occuring as part of
the small-amplitude response. When comparing the
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FIG. 2. (a) Meridional wind (in m s21) on sigma 5 0.287 for the case of initial barotropic wind field and weak forcing (forcing amplitude
0.1) at day 18. The forcing is located at 458N, 1808W. The plot is hemispheric. The latitudes depicted are 08, 308, and 608. The meridian
running through the center of the figure is 08 longitude, or the Greenwich meridian, in the lower half and 1808, or the dateline, in the upper
half of the figure. The contour interval is 0.25 m s21. (b) Pseudomomentum density on the 340 K surface at the same time and for the same
initial field and amplitude of forcing. The contour interval is 2.0 3 1024. (c) Pseudomomentum flux for the same case and time on the 340
K surface. (d) Pseudomomentum flux for the same case except now it is without the correction for the phase-dependent part of the flux.

wave-activity density in the two cases or Figs. 3b and
2b, note that the contour interval of the large-amplitude
case is greater than the small-amplitude case by the
square of the proportionality of the forcing amplitudes.

The reflected wave train emerges from the primary
wave-breaking region around 1208W, propagates pole-
ward, and is then refracted back toward low latitudes.
It again encounters low background winds and therefore
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FIG. 3. (a) Potential vorticity on the 340 K surface for the strong-amplitude forcing (0.5) in barotropic initial flow at day 18. Contour
interval is 0.1. (b) Pseudomomentum density for the same case on the same surface. Contour interval is 5.0 3 1023. (c) Pseudomomentum
flux for the same case on the same surface. For clarity the longest arrows have been removed. Note the flux curving northward out of low
latitudes at around 708W and then curving back equatorward at around 408–508W. (d) Difference in meridional wind (normalized by the
forcing) between a strong forcing case (amplitude 0.5) and the weak forcing case (amplitude 0.1). On the sigma 5 0.287 surface. The initial
wind field is barotropic. The contour interval is 1 m s21.

breaks just east of 08 longitude. The wave-activity flux
depicted in Fig. 3c certainly appears to be consistent
with this description, although at first glance it is dom-
inated by the large fluxes, presumably advective, in the
wave-breaking region itself. There is a strong flux into

the first wave-breaking region with a return flux evident
at longitudes around 808W, curving back equatorward
at around 508W, and upon reaching low latitudes this
flux has largely disappeared.

The reflected wave train may be seen in the difference
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FIG. 4. Same as Fig. 3a except in this case mechanical damping is
included. The damping is strongest at the surface ((0.2 day)21) and
goes to zero at sigma 5 0.7.

FIG. 5. The difference in meridional wind (normalized by the forc-
ing) between a strong forcing case (amplitude 0.5) and the weak
forcing case (amplitude 0.1) on day 18. On the sigma 5 0.287 surface.
The initial wind field is barotropic. Low-level mechanical damping
is included. The contour interval is 1 m s21.

field of meridional velocity between the present case of
forcing amplitude 5 0.5 and the small-amplitude case
of forcing amplitude 5 0.1 (where each field has been
normalized by the amplitude of the forcing before taking
the difference). Figure 3d shows this difference field on
the upper-tropospheric sigma level of 0.287 on day 18.
The reflected wave train shows up clearly, stretching
between the two wave-breaking regions, from the upper
left quadrant to the lower left quadrant of the figure.
Again, the fact that this wave train shows up only as a
difference between linear and nonlinear responses
makes it difficult to explain it as any ‘‘split wave train’’
linear response.

If low-level mechanical damping is included, the sec-
ondary wave-breaking region no longer appears. Figure
4 shows PV at 340 K on the same day of a simulation
with the same amplitude forcing as that shown in Fig.
3a, but with low-level damping included. The damping
rate is 5 day21 at sigma 5 1, decreasing linearly to zero
at sigma 5 0.7. For all experiments from here on, this
low-level mechanical damping is always included.

There is still wave breaking in low latitudes around
1208W, but the secondary wave-breaking region is no
longer visible. (Even reducing the contour interval five
times does not reveal the secondary region.) The fields
of wave-activity density and wave-activity flux for this
same case show a corresponding structure. Even though
the second region of wave breaking is no longer iden-
tifiable, there is still evidence for a reflected wave train
as we shall now show.

Figure 5 shows the difference field of meridional ve-
locity normalized by the amplitude of the forcing be-
tween the strong forcing case (0.5) and a case of weak

forcing (0.1). A wave train stretching from low latitudes
and around 1208W curving poleward and then equator-
ward again is evident in this figure. Since this wave
train is manifested in the difference field it may be re-
garded as arising from nonlinearities in the flow. Since
it is far from the forcing region itself, it is unlikely that
it is associated with nonlinearities arising from flow
around the mountain. A further piece of evidence that
what is seen is indeed reflection out of the wave-break-
ing region is given in Fig. 6, which shows the equa-
torward component of the normalized wave-activity flux
through 308N, zonally averaged and summed over 15
equally spaced levels ranging from 310 to 380 K, as a
function of time (in days). Results are shown from three
experiments with different forcing amplitudes of 0.1
(small amplitude), 0.3 (intermediate amplitude), and 0.5
(strong amplitude). In each case the flux values are nor-
malized by the square of the forcing amplitude. Notice
that the small-amplitude run only shows a slight reduc-
tion in the average equatorward flux in time. The in-
termediate-amplitude run shows more reduction in flux
and the large-amplitude run shows the greatest overall
reduction, with the reduction occurring earlier in the
simulation. Similar results are shown by BH for the
single-layer case (their Figs. 5 and 6). This result is
consistent with predictions of nonlinear critical-layer
theory, which are that the larger the amplitude of the
forcing, the shorter the time necessary to reach a re-
flecting state. For the small-amplitude case there is the
possibility that there will never be a substantial reduc-
tion in the flux and that a quasi steady state is achieved,
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FIG. 6. Barotropic initial winds; mechanical damping is applied at
low levels. The zonally averaged and vertically integrated (from 310
to 380 K) normalized equatorward pseudomomentum flux through
308N as a function of time. Full line represents the small-amplitude
case with a forcing amplitude of 0.1, dashed line has a forcing am-
plitude of 0.3, and dash-dotted line has a forcing amplitude 0.5.

FIG. 7. Barotropic basic state; mechanical damping is applied at
low levels. Time evolution of the ratio of the integrated equatorward
normalized pseudomomentum flux (for forcing amplitudes 0.3 and
0.5) and the integrated normalized flux for the small-amplitude forc-
ing (0.1), with and without thermal damping. The following cases
are plotted: without thermal damping (full curves), with a thermal
damping timescale of 20 days (dashed curves), with a thermal damp-
ing timescale of 10 days (dashed-dotted), and with a thermal damping
timescale of 5 days (dotted).with low-latitude dissipation of wave activity (primarily

due to the model hyperdiffusion) balancing the flux into
low latitudes.

b. Effects of thermal damping

In addition to the low-level mechanical damping, we
included Newtonian cooling in these experiments to ac-
count for radiative damping. Three timescales of New-
tonian cooling were considered: 5, 10, and 20 days. The
effect of this damping was to reduce amplitudes of the
various features in the response (the more so the stronger
the damping), but the general pattern remained the same.

Figure 7 highlights the differences of the evolution
with and without thermal damping by showing the time
evolution of the ratio between the normalized wave-
activity flux for each of the larger forcing amplitudes
and the normalized wave-activity flux for the small forc-
ing amplitude. A decrease in the ratio implies some
reflection (relative to the small-amplitude case). Thus
Fig. 6 implies that for the case with no thermal damping,
this ratio will decrease from an initial value of one, and
that for the largest forcing amplitude (0.5) the decrease
will be more rapid than for the intermediate forcing
amplitude (0.3). Results are shown in Fig. 7 for thermal
damping on timescales of 5, 10, and 20 days, as well
as for no thermal damping. It is clear that for both forc-
ing amplitudes the effect of thermal damping is to inhibit
reflection, with greater inhibition as the strength of the
damping is increased. However, in none of the cases
shown is the damping substantially inhibited. This is
not unexpected from critical-layer theory, which pre-
dicts that substantial reflection will occur when the crit-
ical layer turnover time is less than the damping time

(e.g., Haynes and McIntyre 1987). Here the turnover
time appears, from PV fields, to be less than 5 days.
Note that a thermal damping time of 5 days implies a
damping time for PV that is somewhat larger, particu-
larly if the associated dynamical structure is deep, as is
the case here (e.g., Haynes and Ward 1993).

c. Longitudinally periodic forcing

It is of some interest to consider the effects of a forc-
ing that is periodic in longitude since the KM bound
should be more relevant in that case (at least for flows
that are close to being balanced). We therefore consider
forcing that has a wave-3 structure in longitude, but the
same latitudinal profile. Figure 8 shows the equatorward
component of the normalized wave-activity flux zonally
averaged and summed over 15 equally spaced levels
ranging from 310 to 380 K, as a function of time, again
for a case where mechanical damping is applied at low
levels. The forcing amplitudes were the same as before,
that is, 0.1, 0.3, and 0.5. No thermal damping was in-
cluded. Comparing this figure to Fig. 6 we see that in
this case of periodic forcing, where the wave-breaking
region fills the whole domain in the longitudinal direc-
tion, the reduction in flux is more pronounced. By the
end of the simulation for the strong-amplitude forcing
case the integrated flux is less than 30% of its maximum
value. This is consistent with the single-layer results of
BH, who found an even stronger reduction in flux, which
again is consistent with the fact that here we include
low-level mechanical damping. This certainly reinforces
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FIG. 8. Same as Fig. 6, except in this case the forcing has a
wave-3 structure in longitude.

the general validity of the KM bound, even for primi-
tive-equation simulations, which of course are far dif-
ferent from the two-dimensional vortex dynamics con-
ditions for which the KM result holds.

5. Basic state II: Simple baroclinic flow

We now consider the effect of including vertical shear
in the basic flow. The velocity profile of the barotropic
case described in section 4 was multiplied by the func-
tion sech2(sigma 2 0.175), putting the jet maximum at
sigma 5 0.175 in the vertical. This basic state is de-
picted in Fig. 1b. Note that since now the low-level
wind speed is different from the previous, barotropic
case, forcing amplitudes are not directly comparable.

a. Isolated forcing in midlatitudes

When a small-amplitude forcing is applied, the re-
sponse is similar to the case considered in section 4
(Fig. 2). The equatorward wave train terminates at low
latitudes around 1208W and a steady state appears to be
set up relatively early in the simulation. The wave train
is quite barotropic in character (e.g., as revealed by
meridional wind at different levels). The fields of PV,
wave-activity density, and wave-activity flux are all sim-
ilar to the linear forcing barotropic case and are not
shown here.

Figures 9a and 9b show the fields of PV and wave-
activity density on day 16 for a case where the forcing
amplitude has been increased ninefold (to 0.9) to give
a nonlinear response. Wave breaking has taken place at
low latitudes and there has been considerable buildup
of wave activity in the wave-breaking region. Figure 9c
shows the day 16 difference in wave-activity flux (nor-
malized by the forcing amplitude squared) between the
strong amplitude case of 0.9 and the weak-amplitude

case of 0.1. Clearly there is a net flux out of the wave-
breaking region and into midlatitudes.

We also considered other diagnostic fields and other
forcing amplitudes. Figure 10 shows the difference in
meridional wind (normalized by the forcing amplitude)
between two different nonlinear amplitudes, those of
0.9 and 0.6, and the linear case of amplitude 0.1. The
0.9–0.1 meridional wind difference field on day 14 is
shown in Fig. 10a. It looks almost the same as Fig. 10b
showing the 0.6–0.1 meridional wind difference field 5
days later, or on day 19. Both fields display a wave train
from the low-latitude wave-breaking region that curves
eastward and first poleward and then back toward low
latitudes. The time lag between the two cases is entirely
consistent with the time delay that is predicted by crit-
ical-layer theory for the critical layer to become reflect-
ing if the forcing amplitude is reduced by a third.

In Fig. 11 the vertically integrated, zonally averaged
equatorward wave-activity flux through 308N is de-
picted for four different forcing amplitudes ranging from
the linear case of 0.1 to the strongest case of 0.9, with
intermediate values of 0.3 and 0.6. In each case the flux
is normalized by the forcing amplitude squared. As be-
fore, the reduction in flux occurs the earliest and is the
most pronounced for the strongest amplitude forcing,
with clear evidence of reduction in flux for the other
nonlinear case of amplitude 0.6. Even the case with
amplitude of 0.3 shows some reduction in flux at longer
times.

b. Effects of thermal damping

As in section 4, Newtonian cooling was added, with
a timescale ranging from 5 to 20 days, and, as was found
there for the barotropic case, the response was damped
without changing the general characteristics of the fields
in any substantial way. The effects of thermal damping
on the absorption–reflection behavior are displayed in
Fig. 12 as in Fig. 7, by the ratios of normalized wave
activity fluxes. Again, as in the barotropic case, it may
be seen that the nonlinear reflection is inhibited by the
thermal damping. Comparison of Figs. 7 and 12 suggest
that the inhibition may be slightly stronger in the bar-
oclinic case, perhaps because the effects of thermal
damping are stronger because the structures in the wave-
breaking region are tilted due to the vertical shear in
the background flow. (This possibility was suggested to
us by Isaac Held.)

c. Longitudinally periodic forcing

With a forcing that is periodic in longitude, the wave-
breaking region is of finite longitudinal extent, and the
KM bound on how much wave activity can be absorbed
is more applicable. Figure 13 shows the zonally aver-
aged and vertically integrated normalized equatorward
wave-activity flux through 358N as a function of time
for a forcing that has a wave-3 structure in longitude.
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FIG. 9. Strong forcing (amplitude 0.9) for the idealized baroclinic
initial flow field, 16 days into the simulation. All fields are shown
on the 340 K surface. (a) PV. (b) Pseudomomentum density. (c)
Difference in wave-activity flux (normalized by the forcing squared)
between the strong forcing case of 0.9 and a weak forcing case of
0.1.

Figure 13 should be compared to Fig. 11, showing the
corresponding plot for the isolated forcing cases. For
each of the forcing amplitudes leading to nonlinear be-
havior, the reduction in flux is more pronounced for the
wave-3 forcing.

6. Basic state III: More realistic baroclinic flow

Here we leave the Held (1985) horizontal wind profile
used by BH and consider a basic state that is closer to

the observed wintertime mean flow. This basic state is
depicted in Fig. 1c. The jet maximum of 41 m s21 is
located at 200 hPa and 458 latitude. Symmetry is im-
posed across the equator. The zero wind line slopes in
the vertical, from approximately 178 in the upper tro-
posphere to about 378 at the surface. The tropopause of
this basic state slopes upward from high latitudes to the
equator. The field of PV on isentropic surfaces in the
upper troposphere is much steeper in this case, having
very strong gradients in midlatitudes. There is a slight
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FIG. 10. Initial flow field has an idealized baroclinic jet. Both fields are depicted on sigma 5 0.287. (a) Difference in meridional wind
(normalized by the forcing) on day 14 between a strong forcing case (amplitude 0.9) and the weak forcing case (amplitude 0.1). The contour
interval is 1 m s21. (b) The meridional wind difference field is between a less strong amplitude forcing (amplitude 0.6) and the weak forcing
case (amplitude 0.1) on day 19. Same contour interval as in (a).

FIG. 12. Same as Fig. 7 except here the idealized baroclinic basic
state is depicted and results are only shown for the cases without
thermal damping (full curves) and with thermal damping of timescale
10 days (dashed curves). The three forcing amplitudes are 0.9, 0.6,
and 0.3.

Fig. 11. Same as Fig. 6 except this is for the idealized baroclinic
initial state and the four forcing amplitudes are 0.1 (full line), 0.3
(dotted), 0.6 (dashed), and 0.9 (full line).

reversal of PV gradient at high latitudes. This makes
results in terms of wave-activity diagnostics unreliable
at high latitudes (see Magnusdottir and Haynes 1996
for a detailed discussion of this issue). Since the aim
here is to examine wave propagation and breaking at
mid- to lower latitudes, we did not attempt any further
manipulation of this state.

a. Isolated forcing in midlatitudes

Unlike the previous two cases, here the wave activity
tends to be more localized in the vertical at the latitude
of wave breaking, attaining maximum values at the 340–
345 K level. In this basic state there is also more con-
finement of wave activity to midlatitudes. This may in
part be due to the very small (or even slightly negative)
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FIG. 13. Same as Fig. 11 except for wave-3 (in longitude) forcing;
the equatorward flux is through 358N.

FIG. 14. Basic state III, the more realistic baroclinic state. Mercator projection of the Northern Hemisphere. (a)
The meridional wind on sigma 5 0.1968 for the case of weak forcing of amplitude 0.1, 26 days into the simulation.
The contour interval is 0.1 m s21. (b) Same as (a) except for the strong-amplitude case of 0.9. The contour interval
is 0.9 m s21. (c) The difference between the normalized meridional velocity on day 26 for the 0.9 amplitude case
[depicted in (b)] and the 0.1 amplitude case [depicted in (a)]. The contour interval is 0.5 m s21.

basic-state PV gradient at high latitudes, blocking pole-
ward propagation, and it may partly be due to the
strength of the midlatitude westerlies and the very
strong PV gradient in midlatitudes.

First, let us consider results for a small-amplitude
case, with nondimensional amplitude of 0.1. Figure 14a
shows the upper-level meridional wind, 26 days into the
simulation. (Steady state is already reached by day 10.)
In both previous basic states, two wave trains were ex-
cited by the topography, a poleward propagating one as
well as an equatorward propagating one, terminating at
low latitudes. Now, only one wave train gets excited.
This wave train propagates more or less zonally, de-
caying slowly with distance away from the forcing. This
is consistent with the linear study by Branstator (1983)
where similar behavior was found. One mechanism
leading to the decay of the wave train is the surface
friction. However, this cannot be the only relevant mech-
anism, since one would expect it to act with equal effect
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FIG. 15. Basic state III. (a) Same as Fig. 14c except for the 0.6 amplitude case. (b) Same as Fig. 14c except 6 days
earlier, on day 20.

at larger amplitude and, as will be shown below, the
decay is amplitude dependent. The second mechanism
is low-latitude absorption. The basic state in this case
appears to confine wave activity to midlatitudes, but the
confinement is apparently not perfect and some wave
activity is leaking out to be absorbed at low latitudes.

When the forcing amplitude is increased ninefold to
0.9, the wave train reaches farther before decaying, as
illustrated in Fig. 14b, which shows the meridional wind
on the same vertical level as before and on day 26.
Notice that both the contour interval and the forcing in
Fig. 14b are nine times what their values are in Fig.
14a. The low-level friction cannot be acting any dif-
ferently in this case (with larger-amplitude forcing) from
the previous case. The difference between the two cases
must be the result of differences in the nonlinear ab-
sorption–reflection behavior at low latitudes. In the larg-
er-amplitude case the low-latitude region acts to reflect
some of the (mostly) zonally propagating wave train.

Figure 14c shows the difference in meridional veloc-
ity between the large-amplitude case shown in Fig. 14b
and the small-amplitude case in Fig. 14a, after nor-
malizing each one with the amplitude of the forcing.
The difference field clearly shows a wave train stretch-
ing from low latitudes and about 1208W, and this wave
train is quite similar to reflected wave trains seen in the
earlier, more idealized simulations.

When the forcing amplitude is decreased slightly to
0.6, which still leads to nonlinear behavior, the nonlinear
behavior takes longer to get established. Figure 15a
shows the day 26 normalized difference field of merid-
ional velocity for this case and the linear case of forcing

amplitude 0.1. This figure should be compared to Fig.
14c, showing the same field and at the same time, but
for forcing amplitude 0.9. The wave train does not reach
as far in Fig. 15a as in Fig. 14c. If instead of Fig. 14c,
we look at the same field generated from the same sim-
ulation of forcing amplitude 0.9, 6 days earlier, or on
day 20 shown in Fig. 15b, the wave train looks almost
the same as in Fig. 15a, for forcing amplitude 0.6 on
day 26.

Other forcing amplitudes were also considered and
they support the conclusion that given enough forcing,
planetary waves will be reflected out of the low-latitude
wave-breaking region. The greater the forcing, the ear-
lier the wave-breaking region reaches a reflecting state.
Figure 16 shows the zonally averaged and vertically
integrated equatorward wave-activity flux through 358N
as a function of time for five different values of forcing.
Forcing amplitudes 0.3 and 0.1 show linear behavior
with no evidence of the reduction in flux that is asso-
ciated with nonlinear reflection. Forcing amplitudes 0.6,
0.9, and 1.2 all show the reduction in flux and the time
delay when the forcing is reduced that is consistent with
previous results.

b. Effects of thermal damping

Two values of thermal damping were considered, with
20- and 10-day timescales. Results are shown in Fig.
17, which corresponds to Figs. 7 and 12, in that ratios
of normalized fluxes in large-amplitude cases to nor-
malized flux in a reference small-amplitude case are
shown. In this case the amplitudes are 0.6, 0.9, and 1.2,
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FIG. 16. Same as Fig. 6 except this is for the more realistic bar-
oclinic initial state (basic state III); the five forcing amplitudes are
0.1 (full curve), 0.3 (dashed), 0.6 (dotted), 0.9 (dashed-dotted), and
1.2 (full curve)

FIG. 17. Same as Fig. 7 except for basic state III. For cases without
thermal damping (full curves) and cases with damping timescale of
20 days (dashed curves), and damping timescale of 10 days (dashed-
dotted). The amplitudes of forcing plotted here are 0.6, 0.9, and 1.2.

FIG. 18. Same as Fig. 16 except for wave-3 (in longitude) forcing,
for the four forcing amplitudes 0.1, 0.3, 0.6, and 0.9.

and the reference small amplitude is 0.1. Results for no
thermal damping are also shown for comparison pur-
poses. Again, it is clear that increasing the strength of
the thermal damping tends to inhibit reflection. Com-
paring with Fig. 12, which shows results only for no
thermal damping and 10-day thermal damping, it ap-
pears that the inhibition of the reflection by the damping
is greater in the case considered here. Note that at am-
plitude 0.6, for example, there is almost complete in-
hibition of the reflection with 10-day thermal damping.
With amplitude 0.9 and 10-day thermal damping there
is substantial inhibition of reflection, in the sense that
the reduction in latitudinal flux from its maximum value
is only about 60% of that in the case with no damping.

This stronger effect of damping may, consistent with
the argument in section 5b, be due to smaller vertical
scales, and hence relatively stronger effects of thermal
damping, in the wave-breaking region. This might be
expected from the fact that vertical shears in that region
are larger for this basic state than they were for that
studied in section 5. Nonetheless, it is important to note
that even with 10-day damping there is still strong re-
flection with amplitude 1.2, and the disturbance ampli-
tudes resulting in this case do not seem out of line with
those observed in the real atmosphere.

c. Longitudinally periodic forcing

When the flow is forced with topography that has a
wave-3 shape in longitude, rather than isolated topog-
raphy, the response is stronger for a given forcing am-
plitude. Moreover, the wave-breaking region fills a
greater range of longitudes, thus allowing more com-
plete reflection. This is evident in Fig. 18, which is the
equivalent of Fig. 16 for the isolated forcing case, de-
picting the total equatorward flux through 358N as a

function of time. Not only does the reflection occur
earlier in the simulation for the same forcing amplitude,
it is also more complete, oscillating around an equilib-
rium value of close to zero for forcing amplitude of 0.9.

7. Concluding remarks

We have shown in three-dimensional numerical sim-
ulations of increasing complexity that quasi-stationary
wave trains propagating to low-latitude regions of low
background wind speed may indeed be reflected back
to midlatitudes, provided that the forcing is large
enough. The results of this study therefore leave open
the possibility that reflection of tropospheric wave trains
from low latitudes may occur in the real atmosphere.
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FIG. 19. (a) Same as Fig. 16 except only for three amplitudes of
forcing, 0.5 (dotted), 0.75 (dashed-dotted), and 1.0 (dashed), but for
three horizontal resolutions: T42, T31, and T21. (b) Same as Fig. 16
except only for the three largest forcing amplitudes or those of 1.2,
0.9, and 0.6 (all solid). The dashed curves represent the same am-
plitude forcing, but now the T42 experiments are run with the same
dissipation as is required for numerical stability in T21 runs.

Evidence from observational data for reflection of
tropospheric wave trains from low latitudes is still some-
what equivocal. However, as noted in the introduction,
recent studies such as those of Molteni et al (1990),
Randel and Williamson (1990), Yang and Gutowski
(1994), and Schubert and Park (1991) do give some
indications of reflection. It would be interesting to an-
alyze their results more carefully to focus on this issue
and to try to understand why reflection was not seen in
earlier work such as that of Plumb (1985).

The fact that planetary wave reflection has not been
detected in GCM simulations may be due to inadequate
resolution. The GCM studies cited in the introduction
all had horizontal resolution of R15. Brunet and Haynes
(1996) found in their single-layer simulations, in a sim-
ilar regime of wave amplitudes, that while reflection
was observed at T31 horizontal resolution, it was not
observed at T21 (which is arguably slightly finer res-
olution than R15 in the subtropics). To examine this
issue in more detail, we ran experiments at lower res-
olution and therefore necessarily with greater diffusion
of the smallest resolved horizontal scales. For basic state
III, discussed in section 6, we made runs at T21 and
T31 as well as at T42, for which results were presented
before. Throughout this paper, for experiments at T42
horizontal resolution, we use ¹6 diffusion of the smallest
horizontal scales with a decay rate of 10 day21. For T31
horizontal resolution, we use ¹6 diffusion with a decay
rate of smallest horizontal scales of 5 day21. For T21
horizontal resolution, we use ¹6 diffusion with a decay
rate of smallest horizontal scales of 4 day21.

Some relevant results are presented in Fig. 19a, which
shows the time evolution of the integrated and suitably
normalized, equatorward wave-activity flux through
358N, for three different amplitudes of forcing and for
the three resolutions: T42, T31, and T21. The dotted
curves represent the smallest forcing amplitude of 0.5.
In this case there is a clear reduction in flux for the T42
run, but the T31 run does not show a clear sign of
reflection. As the amplitude is increased to 0.75 (dashed-
dotted curves), the run at T31 also shows evidence of
reflection; however, the T21 run does not show any
reduction in flux in time. In fact, even in the most strong-
ly forced case of amplitude 1.0 (dashed curves), the T21
run does not show the reduction in flux indicative of
nonlinear reflection. We conclude that at the horizontal
resolution of T21, the diffusion that is required for nu-
merical stability makes the low-latitude region act more
like a persistent wave absorber than a wave reflector.

To ensure that the behavior that we have just de-
scribed is indeed the result of increased dissipation at
the lower resolution, and not a result of the change in
resolution itself, we ran a few experiments at T42 hor-
izontal resolution but with dissipation corresponding to
the dissipation needed for numerical stability at T21. In
these modified T42 experiments, each wavenumber was
damped as if these were experiments run at T21. Some
pertinent results are shown in Fig. 19b, which shows

the time evolution of the integrated equatorward wave-
activity flux. Three of the curves in the figure were
previously shown in Fig. 16 but are repeated here for
comparison. These are the standard T42 experiments
that were discussed in section 6a. The three dashed
curves show corresponding results obtained when run-
ning at T42 but with dissipation corresponding to T21.
Note that for the cases with dissipation corresponding
to T21 there is no evidence of reflection.

The work reported in this paper is a natural extension
of that based on single-layer models reported by BH
and Waugh et al. (1994). It seems worthwhile to con-
tinue this line of investigation to consider the effect on
low-latitude reflection of further dynamical ingredients
that have been omitted so far, but which are present in
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the real atmosphere. A first ingredient, which would
probably be the simplest to investigate, is longitudinal
asymmetries, in particular longitudinally localized re-
gions of westerlies, in the Tropics. Webster and Holton
(1982) suggested that such westerlies, which are ob-
served in the eastern Pacific and Atlantic, might act as
‘‘ducts’’ allowing cross-equatorial wave propagation.
Hoskins and Ambrizzi (1993) suggest, on the basis of
a linear study, that any cross-equatorial propagation is
likely to be weak. In the context of the nonlinear results
that we have reported in this paper, we note that cross-
equatorial propagation might be inhibited if the west-
erlies were only weak (as is observed) and therefore
wave-breaking occurred in these regions as a result of
finite wave amplitudes. Nonlinear reflection might well
occur in such cases, although there might also be non-
linear radiation into the opposite hemisphere if there
were neighboring westerlies there. Another such ingre-
dient is the Hadley circulation. Not only will the me-
ridional component of the velocity tend to oppose the
propagation of stationary Rossby waves to low latitudes
(Watterson and Schneider 1987), but the Hadley cir-
culation may act to maintain the low-latitude gradients
of PV, thus violating one of the key assumptions re-
quired for the KM bound and hence inhibiting reflection.
Nonconservative effects associated with the Hadley cell
may also inhibit reflection by acting directly to dissipate
wave activity at low latitudes. Some of the effects of
the Hadley circulation have been considered by Held
and Phillips (1990), who studied the interactions of a
stationary Rossby wave with a zonally symmetric Had-
ley circulation in a single-layer model. It will potentially
be of great interest to expand on their work, both in
generalizing some of the assumptions made and in tak-
ing advantage of the finite-amplitude, wave-activity di-
agnostics in analyzing numerical results. This will be a
priority for future studies.

A final important ingredient is the effect of synoptic-
scale eddies. As noted in the introduction, there has been
much interest in the interaction between synoptic-scale
eddies and the larger-scale waves that are the focus of
study in this paper. Such interaction may be important
for the low-latitude absorption–reflection. The sort of
numerical experiments reported by Cook and Held
(1992), where topographic forcing is applied to excite
large-scale waves in a GCM that otherwise has no im-
posed longitudinal asymmetries, might be one approach
to investigating this issue.
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