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Wildfire is an unplanned fire that can happen at any time in a natural area with combustible

materials. Normally, there are two main reasons for the occurrence of a wildfire. One is due to

human activity and the other one is owing to natural phenomenon, such as lighting, volcanic

eruption, or even falling meteors. Although some naturally occurring wildfires may be beneficial

for the ecological balance, most of the wildfires are destructive. They can lead to air pollution

and may bring death and destruction. As the climate gets warmer and drier, the occurrence of

wildfire is more frequent. Consequently, the estimation and prediction of the spread of wildfire is

significant. Prescribed fires are the planned fires that burn under specified conditions to achieve

specific objectives. Compared to wildfires, prescribed fires are implemented and controlled
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in a safer way to balance ecosystems. Meanwhile, prescribed fire can also be used as a tool

to reduce fuel build-up and avoid the occurrence of wildfires. Hence, how to design a safe

and effective burn plan for the prescribed fire is a good topic for research. This dissertation

proposes multiple algorithms for estimation and prediction of wildfire spread, detection of the

wildfire perimeter, and safety evaluation of the prescribed fire. First, this dissertation shows how

to improve the prediction capability of a fire model by estimating the wind conditions. Two

errors, an uncertainty-weighted least-squares error and an uncertainty-weighted surface area

error, are established and computed between the predicted and measured fire perimeters, and an

optimization is applied to find the optimal wind conditions based on iterative refined gridding of

the wind conditions. To better characterize the wildfire for the estimation and prediction of the

fire spread, three approaches are introduced to detect the wildfire perimeter in different situations.

The first two approaches, quadriculation algorithm and iterative minimum distance algorithm,

are used to establish a closed polygon of the wildfire perimeter for a well-defined fire image, and

the third one, iterative trimming method, is based on the Delaunay triangulation and designed for

the situation when the pixels with high infrared values in a thermal infrared image of the wildfire

are disconnected or sparse. In addition to managing wildfire directly, the prescribed fire can be

utilized to reduce and prevent the wildfire. An algorithm of automatically labeling the safety

of a prescribed fire is proposed in this dissertation to avoid a labor-intensive process of manual

labeling. All the proposed algorithms are illustrated on real data of a wildfire or simulations

from modern fire simulation tools.
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Chapter 1

Introduction

1.1 Wildfire and Prescribed Fire

A wildfire is an unplanned and uncontrolled fire. Fire historically plays an important role

in the earth system [1]. Although wildfire can have a negative effect on the quality of the air

and drinking water, it is also a natural part in many fire-dependent ecosystems, such as forest

and grassland ecosystems. Wildfire can help an ecosystem to regenerate and create new habitats

for wildlife. However, with the increase of the temperature, wildfire becomes more and more

frequent and intense [2]. A long-time large-scale wildfire can even hinder the recovery of the

ecosystem. As a consequence, cutting-edge research of the wildfire science is necessary and can

be adopted by fire managers and scientists to understand how to take advantage of the beneficial

aspect of the wildfire and avoid the environmental harm from the wildfire. Currently, the research

portfolio of the fire science summarized by U.S Forest Service includes five main aspects: fire

behavior, fuels management, social fire science and risk management, smoke and air quality, and

the safe and effective fire response.

The dynamic of fire progression in a landscape with a specific spatial scale is studied

to explore the fire behavior. It is a fundamental physical fire science for the fire model and

is relied on to predict the fire spread. A mathematical model was introduced by Rothermel

to predict the progression of the wildfire [3]. At the beginning, the fire spread is modeled

empirically by some easily measured variables, such as fuels and weather conditions, and few
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physical mechanisms are included to improve the computation speed. Specifically, the process

of combustion and heat transfer of the wildfires are simplified and the interaction between the

wildfire and the surrounding atmosphere is not considered. As a result, the traditional wildfire

simulation tool cannot fully capture the process of the fire growth, and the prediction of the

wildfire spread from the traditional approach needs to be improved in many situations. To

this end, data assimilation techniques are applied to adjust the model prediction by using the

measurement of the wildfire [4–7]. Among these simulation tools for wildfire, FARSITE [8]

is widely used to simulate the propagation of wildfires spatially and temporally under burn

conditions that mainly consist of wind conditions, fuel moisture and landscape information.

With the development of fire methodologies, physical system is cautiously established and more

complete mechanism of the combustion, heat transfer and fluid dynamics are adopted in the

wildfire model [9–12]. In addition, the interaction between the fire and the weather conditions

surrounding the fire is also included. QUIC-Fire [13], a fast-running simulation tool, is designed

to simulate the progression of fuel consumption for a specific landscape in three dimensions.

During the simulation, the dynamic coupling between the fire and the surrounding atmosphere is

also approximated. QUIC-Fire has a resolution of one meter and can also model the interactions

between multiple fires.

Fuels management mainly consists of prescribed fire and mechanical cutting. Fuels man-

agement can result in many beneficial impacts including protecting high-value areas, restoring

ecological processes, avoiding hazardous wildfire and species invasion, and so forth. Little

scientific attention is paid to prescribed fire [14]. The importance of the prescribed fire is also

highlighted in [15]. Compared to an unplanned wildfire, prescribed fire is relatively low-severity

and can be designed to minimize the adverse effect of an uncontrollable fire. Instead of being

regarded as a risk, the prescribed fire can serve as a good tool to avoid catastrophic wildfire by

reducing the vegetative fuel and can be used for forest management by maintaining the system

resilience. Due to the fact that an urgent response is required for a wildfire, while a detailed

burn plan is afforded for a prescribed fire, the planning horizon is different for them. Therefore,
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studies of wildfire may not be appropriate for the prescribed fire, and more research should be

conducted to learn the behavior and influence of a prescribed fire.

The interconnection between fire and our community and society is intricate and worthy

of study. For a wildfire, complexity of fire management system, decision making, and health and

safety improvements are emphasized in the risk management. Many studies have proven that the

socioecological system (SES) approach is a good way to address this interdisciplinary issue, and

a review of the literature on the application of SES frameworks can be found for wildfire risk

management [16].

Wildfire is a major cause of air pollution and can be harmful to public health. Specifically,

the smoke produced by a wildfire or a prescribed fire lowers the air quality and can even lead to

violations of state and federal air quality standards. Moreover, firefighters are likely to be exposed

to dense smoke in the process of putting out a wildfire. In the research of smoke management,

emission characterization, emission inventory, and smoke impact are three key things. Many

tools have been developed to represent the essential processes of smoke transportation and predict

the effects of the smoke [17].

In addition to the exposure of the smoke, wildfire can also give rise to many other risks

threatening the safety of both community and firefighters. These risks should be first well

explored before the establishment of a safe and effective response to a wildfire. Figuring out

why a fire can rapidly grows and finding out possible firefighters entrapments and fatalities

are necessary to prevent the potential injury and death. Many researches have been done in

developing a safe and efficient response to a wildfire [18–21].

This dissertation is focused on improving the prediction accuracy of the fire spread and

evaluating the safety of a prescribed fire. No matter for a wildfire or a prescribed fire, safety is

the most important thing. How to manage a wildfire by accurately predicting and estimating the

progression of the fire and how to design a burn plan for a prescribed fire remain to be good

research topics. In addition to concentrating on the fundamental process of the fire spread, how

to apply the techniques in other fields, such as image segmentation methods, on the fire image to
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detect the wildfire perimeter is also meaningful for predicting the spread of a fire.

1.2 Motivations

As mentioned before, prediction of wildfire spread is important for the management of a

wildfire. Due to the fact that the processes of combustion and heat transfer are simplified and

the fire and atmosphere are not coupled, traditional fire models cannot capture the complete

progression of the wildfire. To solve this problem, data assimilation technique, such as ensemble

Kalman filter, is applied to improve the prediction accuracy. Measurement of the wildfire and the

simulation from the fire model are both taken into consideration to find an optimal estimation of

the wildfire spread. Although the prediction accuracy of the fire spread increases a lot, it can be

further enhanced by improving the accuracy of the measurement and simulation of the wildfire.

FARSITE [8] is widely used for the forward simulation of the wildfire as a function of

the landscape and weather information includes the wind speed, wind direction, fuel moisture

and terrain. Among them, wind speed and wind direction play an important role in the fire

spread [22]. However, the information of wind conditions can only be obtained from sparsely

placed weather stations and are often empirically estimated. In reality, the wind conditions

surrounding the wildfire are hardly estimated from an empirical formula due to the limited

number of weather stations and the coupled effects between the atmosphere and the wildfire. As

a result, significant and compounding errors can occur in the data of wind conditions, which will

lead to an unreliable result simulated by the fire model. Therefore, how to correctly estimate the

wind conditions becomes a crucial problem before any data assimilation technique is applied.

With the development of science in the field of wildfire, more and more advanced fire

simulation models have been established. QUIC-Fire [13] is a modern simulation tool designed

to simulate the progression of the fuel consumption. Although people can realize the burn area of

a fire from the plot of the fuel consumption, it is desirable to create a closed polygon for the fire

perimeter automatically. The closed polygon is a numerical representation of a fire perimeter and
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can be used for various computations. For example, the closed polygon of a wildfire perimeter is

an important component for the procedure of previously mentioned data assimilation. Despite

the fact that unordered vertices of the polygon can be detected by traditional edge detection

methods when the fire image is clear and complete, how to reorder those vertices to establish a

closed polygon is not trivial. Furthermore, since embers happen frequently during the spread of

a fire, multiple burn areas need to be detected and closed polygons should be created for each

burn area. In addition to vertices, a closed polygon can also be established by joining the internal

adjacent polygons. Hence, how to find all sub-polygons inside a fire perimeter and join them is

another way of creating a closed polygon for the fire perimeter.

As sensor technology advances in the recent years, more and more monitoring technique

can be used to measure the spread of a wildfire. For example, wildfires can be monitored by

characterizing ground temperature via MODIS data [23], satellite heat images [24] or thermal

infrared imaging (TIR) on aerial flight systems [25]. For TIR or heat images, temperature

information or strength of the infrared band are represented by image pixels. A wildfire perimeter

is then expected to be extracted from a TIR image of a wildfire. Currently, manual delineation

is still one of the main ways to obtain the wildfire perimeter. In the meantime, due to limited

resolution of the image and possibly partial activity of a wildfire, the burn area in a TIR image

can be disconnected or even sparse, and automatic characterization of wildfire perimeter is still

challenging. Although many traditional image segmentation methods are applied to a well-

established fire image (with clear and connected burn area) and decent results can be achieved,

they have not demonstrated their abilities to detect a wildfire perimeter from a TIR image with

disconnected or even sparse burn area. Machine learning or deep learning might also be a good

tool to learn the characteristic of a wildfire in the future. However, the arbitrary shape of a wildfire

and the fact that a large amount of training data is required by artificial intelligence techniques

are still great restrictions. Therefore, how to automatically detect the wildfire perimeter in a

limited number of TIR images with sparse data remains a challenge.

As introduced before, prescribed fire has many positive effects, such as balancing an
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ecosystem and avoiding severe wildfire. However, few research has been done for the prescribed

fire, and the difference between the wildfire and the prescribed fire leads to a result that the studies

of wildfire cannot be applied straightforwardly to a prescribed fire. As a result, exploration

in the field of the prescribed fire is a good research direction. Safety is certainly one of the

most important problems that needs to be explored since a good burn plan for a prescribed fire

must ensure that the planned prescribed fire achieves the goal of management in a safe manner.

QUIC-Fire is a fire simulation tool that is developed to provide dynamic fuel consumption as

a function of burn conditions including the wind conditions, fuel moisture, ignition patterns

and so forth. To determine the proper burn conditions, plenty of simulations are required to be

done, and fire domain experts need to decide (label) whether a simulated prescribed fire is safe

and the corresponding burn conditions are acceptable. Manual labeling is a labor-intensive and

time-consuming process, and people are more likely to make a mistake after long hours of work.

As a consequence, an algorithm of automatically labeling the safety of a simulated prescribed

fire is meaningful.

1.3 Problem Formulation

On the basis of the previously mentioned challenges in fire science, this dissertation is an

attempt to deal with the prediction accuracy of fire progressions, the detection of fire perimeters,

and the fire safety evaluation of prescribed fires. Specifically, this dissertation investigates the

following problems:

1. Improve the prediction accuracy of a wildfire spread by using the measurements of the

wildfire perimeters to estimate and correct the prevailing wind speed and wind direction

for the simulation. This problem is studied in Chapter 2.

2. Detect fire perimeters from well-established fire images and discontinuous fire images

with sparsely located high-value pixels. This problem is discussed in Chapters 3 and 4.
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3. Determine the safety of a simulated prescribed fire by evaluating the metrics of the slop-

over generated in each simulations. This problem is covered in Chapters 5 and 6.

1.4 Organization and Contributions

In Chapter 2, it is shown that the prediction accuracy of fire simulation tool FARSITE can

be improved by optimizing the inputs of wind speed and wind direction. The optimization of the

prevailing wind speed and wind direction can be achieved by comparing the simulated wildfire

perimeters from FARSITE and measured wildfire perimeters. Uncertainties are established

at each vertex of measured wildfire perimeters to model the noisy observation of the wildfire

perimeters. Two errors from two perspectives are proposed to describe the difference between the

simulated wildfire perimeters and measured wildfire perimeters. The first one is an uncertainty-

weighted least-squares error that measures the difference by considering the locations of the

vertices of the wildfire perimeter, and the second one is an uncertainty-weighted surface area

error that determines the difference by computing the surface area of the union minus the

intersection of the simulated and measured wildfire perimeters. For the uncertainty-weighted

least-squares error, the vertex number of the simulated wildfire perimeters and the measured

wildfire perimeters are matched via interpolation. For the uncertainty-weighted surface area error,

the relation between the surface area error and the uncertainties at each vertex of the wildfire

perimeters are set up. With these two errors, the optimization is done by an iteratively refined

grid search in wind speed and wind direction. The grid search method is robust to the occasional

erroneous results produced by FARSITE and can be executed in parallel in order to reduce the

computation time.

In Chapter 3, two algorithms, iterative minimum distance algorithm (IMDA) and quadric-

ulation algorithm (QA) are compared to quantitatively characterize the closed polygons of

wildfire perimeters. For IMDA, some classical image segmentation methods should be applied to

detect the unordered boundary points of the wildfire perimeter, and a threshold value should be

established to determine whether two vertices are adjacent or closely located. An initial closed
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polygon by connecting the closest points one by one in the set of boundary points is first created.

Then the created polygon is iteratively modified when the distance between two neighboring

points is larger than the established threshold value until the distance between every pair of

adjacent points is smaller than the threshold value. Multiple polygons should be created if one

cluster of unordered boundary points is far away from the others. From a different perspective,

QA creates the polygon in two steps. At first, QA recursively divides the raster image into

indivisible squares or rectangles, where all the pixels in an indivisible square or rectangle have

the same value. Then the adjacent squares or rectangles with same pixel value are merged, and

the closed polygon of the wildfire perimeter can be obtained by combining the closed polygon

of the adjacent squares or rectangles with the same pixel value that represents the burn area.

Both QA and IMDA are applied to the simulation data of the fuel consumption produced by

QUIC-Fire and the performances of the two algorithms are compared.

In Chapter 4, an iterative trimming method is introduced to create a closed polygon

of the wildfire perimeter for a thermal infrared (TIR) image with disconnected or even sparse

high-value pixels. For a TIR image, all the (active) pixels that represent the active wildfire are

picked out and Delaunay triangulation are applied based on these active pixels to connect the

disconnected burn area. Then a convex hull that covers the wildfire perimeter is established by

joining the adjacent triangles created by Delaunay triangulation. To obtain the closed polygon

of the wildfire perimeter that hides in the convex hull, two steps of iterative trimming, rough

trimming and fine trimming, are introduced to remove the redundant triangles that are created

by connecting the vertices of the wildfire perimeters or by active pixels caused by spot fires.

During the process of the rough trimming, the abnormally large triangles caused by the vertices

of the wildfire perimeters can be detected by the longest side of the triangle, and the active pixels

caused by the spot fires can be detected by the relative burn area around the active pixels in a

chosen domain. After the rough trimming, all the active pixels that represents the spot fires and

parts of the abnormally large triangles are deleted. Fine trimming is utilized to further trim the

closed polygon created based on the vertices determined in the rough trimming. During the
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process of the fine trimming, no more vertices are removed, and only the triangles connecting to

the vertices can be cut out so that no hole is created inside the closed polygon of the wildfire

perimeter. The redundant triangles connecting the vertices of the closed polygon are identified by

considering the combined effect of the longest side of triangle and the relative burn area around

the vertex. Larger relative burn area provides more detailed information of the wildfire, and

greater restriction is applied to the longest side of the corresponding triangle. On the contrary,

smaller relative burn area indicates a higher possibility of missing information related to the

wildfire. In this situation, more cautions are put into removing a triangle. The closed polygon

established by the iterative trimming method is compared to the results obtained by the classical

image segmentation methods, such as canny edge detector, graph-cut method, and level set

method.

In Chapter 5, an automatic labeling algorithm is proposed to label the safety of a simulated

prescribed fire. Inspired by the fire domain experts, three metrics including the number of the

slop-overs, the total surface area of the slop-overs, and the distance between each slop-over are

established to measure the safety of a simulated prescribed fire. To assist in the measurement,

multiple parameters, such as maximum allowable total surface area of the slop-overs, marginally

allowable total surface area of the slop-overs, maximum allowable distance between each slop-

over, marginally allowable distance between each slop-over, maximum allowable number of

the slop-overs and so forth are set up. To optimize these parameters, an objective function

is designed with the purpose of increasing the match number between the labels created by

automatic labeling algorithm and the manual labels created by fire domain experts, and genetic

algorithm is adopted for the optimization. 48 runs out of 900 simulations (ensembles) with two

sets of manual labels from two fire domain experts are used as the training data, and the other

852 runs out of 900 ensembles with one set of manual labels created together by the two fire

domain experts are used to validate the accuracy of the automatic labeling algorithm. In addition

to labeling the safety of a simulated prescribed fire automatically, automatic labeling algorithm

also has the ability to provide the explanation why a prescribed fire is considered to be unsafe or
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marginal.

In Chapter 6, another logic model is established to automatically create the fire safety

label of a prescribed fire. Compared to the previous automatic labeling algorithm proposed

in Chapter 5, the main development is the exploitation of the fire growth rate. Instead of the

sophisticated logic rule created in the previous algorithm, the new logic model is more general

and comprehensive by including the velocity of the fire growth. The fire growth at each time

step is filtered to remove the high-frequency noise term, and the maximum velocity is picked

out differently depending on whether the simulated prescribed fire escapes the predetermined

allowable boundary to capture the worst situation of the fire spread. The same 900 simulated

prescribed fires in Yosemite, CA region, are used for optimizing the parameters created in the

logic model and validating the performance of the new automatic labeling algorithm. A similar

accuracy of matching is achieved between the automatic labels and manual labels due to the

fact that wind speed and surface moisture can reflect the fire growth to some extent. To further

analyze the inconsistency of the manual labels, the minimum and maximum value of each metric

used for the logic model are computed for the manually labeled safe, marginal, and unsafe fire

on the basis of the 48 ensembles in the training data set and 852 ensembles in the validation data

set.
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Chapter 2

Estimation of Wildfire Wind Conditions
via Perimeter and Surface Area Optimiza-
tion

This chapter shows that the prediction capability of wildfire progression can be improved

by estimation of a single prevailing wind vector parametrized by a wind speed and a wind

direction to drive a wildfire simulation created by FARSITE. Estimations of these single wind

vectors are achieved in this work by a gradient-free optimization via a grid search that compares

wildfire model simulations with measured wildfire perimeters, where noisy observations are

modelled as uncertainties on the locations of the vertices of the measured wildfire perimeters.

Two optimizations are established to acquire the optimal wind speed and wind direction. To

formulate a perimeter optimization, an uncertainty-weighted least-squares error is computed

between the vertices of simulated and measured wildfire perimeters. The challenge in this

approach is to match the number of vertices on the simulated and measured wildfire perimeters

via interpolation of perimeter points and their uncertainties. For a surface area optimization,

an uncertainty-weighted surface area error is introduced to capture the surface of the union

minus the intersection of the predicted and measured wildfire perimeters. The challenge in this

approach is to formulate a surface area error, weighted by the uncertainties on the locations of

the vertices of the measured wildfire perimeter. The optimization in this chapter is based on

iterative refinement of a grid of the single wind vector and provides robustness to intermittent
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erroneous results produced by FARSITE, while allowing parallel execution of wildfire model

calculations. This chapter is an extension of the work in [26]. Results on single wind vector

estimation are illustrated on two historical wildfire events: the 2019 Maria Fire that burned south

of the community of Santa Paula in the area of Somis, CA, and the 2019 Cave Fire that started in

the Santa Ynez Mountains of Santa Barbara County.

2.1 Introduction

With the increased and inevitable occurrence of wildfires, more accurate and responsive

prediction of the wildfire propagation is important for resource allocation in fire fighting efforts.

The wildfire growth modeling software FARSITE is widely used by the U.S Forest Service

to simulate the propagation of wildfires [8], and is characterized by the ability to estimate the

wildfire propagation under heterogeneous conditions of terrain, fuels and weather. Crucial source

of information in the modeling of fire progression is a single wind vector characterized by

average wind speed and wind direction that determine the overall direction and rate of spread of

the wildfire. This chapter is an extension of the work in [26] by adding the ability to formulate

an uncertainty-weighted wildfire surface coverage error to estimate the single wind vector of

wind speed and wind direction, which is explained in Section 2.3.2. The numerical results are

summarized in Section 2.5.

The prediction of the growth of wildfires has received a considerable amount of attention

in the literature. Rothermel introduced the mathematical model for predicting fire spread [3],

and experiments have been conducted to analyse the influence of fuel and weather on the spread

of wildfires [22]. Further steps in the study of the wildfire behavior were achieved by adjusting

model prediction using real-time data via data assimilation techniques [4–6]. Data assimilation

by combining FARSITE and an ensemble Kalman filter has been done in earlier work [7, 27–29]

demonstrating an improvement in accuracy of wildfire prediction. The availability of unmanned

aerial vehicles to better monitor large-scale wildfire [30,31] has further enhanced the capabilities
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of data-driven wildfire modeling.

As mentioned in [22], among the numerous factors that can affect the spread of the

wildfire, wind speed and wind direction play the critical roles. Unfortunately, wind conditions are

available only from sparsely placed weather stations. Detailed studies are available on learning

the (non-linear) relationship between the properties of the fuel and the wildfire progression

[32–34], but often only limited information on wind speed and wind direction can be used. This

means that the quality of the prediction is extremely dependent on the quality of an empirical

estimate of the wind conditions obtained from geometrically spaced weather station. In reality,

information of the actual wind conditions at the boundary of the wildfire is unavailable due to

limited number of weather stations and the turbulent atmosphere caused by wildfire. As a result,

significant and compounding errors can occur in the prediction of the wildfire propagation. A

first step is to estimate the best initial wind conditions before any data assimilation procedure.

In this situation, the error caused by an erroneous measurement of the wind conditions can

be reduced, and the accuracy of the prediction by data assimilation techniques can be greatly

improved.

A gradient-free optimization via a grid search is used in this work to provide an estimate

of the single wind vector of wind speed and wind direction fed to FARSITE with the objective to

improve the prediction of wildfire progression. The gradient-free optimization via a iterative

grid search refines a grid of wind speed and wind direction to select the best single wind vector

based on a loss function that compares wildfire model simulations with noisy observations of

the wildfire perimeters. Since each grid point provides an independent wildfire simulation, the

computations can be executed in parallel and also provides robustness to possible erroneous

perimeter produced by FARSITE under certain single wind vector. To formulate the loss function,

it is first shown that noisy observations can be modelled as uncertainties on the locations of the

vertices of a measured wildfire perimeter. Secondly, it is shown that a uncertainty-weighted error

can be computed between the vertices of a simulated wildfire and a measured wildfire perimeter.

In this chapter, two different uncertainty-weighted errors are formulated for the estimation
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of the single wind vector: a perimeter and surface area based. For the perimeter optimization,

a skew compensated and uncertainty weighted least-squares error is computed between the

vertices of a simulated and measured wildfire perimeter. To be able to compute this perimeter

error, it is shown that a linear interpolation of the perimeter is used to guarantee that the skew

compensated weighted least-squares error can always be computed. Furthermore, compared

to an ordinary weighted least-squares error, the weighting in the skew compensated weighted

least-squares computation is adjusted to account for unevenly distributed polygons to allow an

evenly distributed weighting of the complete wildfire perimeter. The surface area optimization

captures the wildfire surface area error defined by the union minus the intersection of a simulated

and measured wildfire perimeter. By using the fact that the surface area of a closed polygon

can be calculated as the signed sum of triangular sub-polygons [35, 36], it is shown how to

compute an uncertainty-weighted surface area error. The weighting is again determined by

the uncertainties on the locations of the vertices of the measured wildfire perimeter and the

computational process of the weighted surface area error is simple and fast.

The chapter is organized as follows. Section 2.2 presents the model of the polygon data

along with the uncertainties on the vertices of a wildfire perimeter. Following the uncertainty

characterization, Section 2.3 presents the computations of the skew compensated uncertainty-

weighted least-squares error and the uncertainty-weighted surface area error. Section 2.4 outlines

the parallel gradient-free optimization via a grid search based on refining a grid of wind speed

and wind direction to estimate the best single wind vector. Section 2.5 shows the numerical

results for the estimation of the single wind vector for two use cases of wildfires in California:

the 2019 Maria Fire that burned south of the community of Santa Paula and the 2019 Cave Fire

that started in the Santa Ynez Mountains of Santa Barbara County. Conclusions are summarized

in Section 2.6.
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2.2 Wildfire Perimeter and Uncertainty

A wildfire may cover multiple disjoint burned areas. For simplicity of the analysis

presented in this chapter, the notion of wildfire progression is characterized by a wildfire

perimeter that is considered to be a single closed polygon. The analysis presented here can be

applied to each of the closed-polygons in case a wildfire does cover multiple disjoint burned

areas. The single closed polygon describing the wildfire perimeter is an ordered sequence of N

vertices and N piece-wise linear line segments. The vertices of the approximated polygon are

located by the Eastern and Northern coordinate pairs (e(k),n(k)), k = 1,2, . . . ,N.

2.2.1 Uncertainty Characterization

Measurements of the wildfire perimeters can be a combined data collection effort. The

resolutions and spacing of the measured vertices are determined by data from satellite imagery,

aerial surveillance or manually mapped observations. [37]. Therefore, it is important to consider

the two-dimensional (2D) uncertainty for each vertex of the closed polygon that describes

the measured wildfire perimeter. The general description of the 2D uncertainty on a vertex

(e(k),n(k)) is a rotated ellipse, where the semi-major axis a(k), semi-minor axis b(k), and

the rotation angle α(k) collectively reflect the variance in the horizontal direction and vertical

direction. Such detailed information may not be available and therefore the uncertainty on a

vertex (e(k),n(k)) is expressed by a circle around each vertex with a radius r(k), where the value

of r(k) is proportional to the uncertainty of the vertex on the polygon.

However, it is very likely that a measured perimeter comes with no additional uncertainty

characterization. In that case, the assumption is made that the uncertainty on each vertex is

proportional to the (smallest) distance to the neighboring vertex on the polygon. The reason for

that is the vertices are more likely to have large uncertainties for sporadic measurements with a
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large distance between the vertices. Formally this uncertainty is described by

r(k) = max(min(l(k), l(k−1)),rmin)

l(k) =
√
(e(k+1)− e(k))2 +(n(k+1)−n(k))2

(2.1)

for k = 1,2, . . . ,N, where r(k) is the assumed uncertainty, l(k) is the distance between neigh-

boring vertices (e(k+1),n(k+1)), (e(k),n(k)), and rmin is a user-defined minimum value of

uncertainty radius. The value of rmin is used to avoid the condition in which two adjacent

vertices are extremely close to each other, and can be determined by the accuracy of measuring

method used to acquire the polygon of the wildfire perimeter. An illustration of the uncertainty

assignment for a measured wildfire perimeter is given in Fig. 2.1.
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Figure 2.1. Assignment of uncertainty radii r(k) (red circles) on a measured wildfire perimeter
with vertices (e(k),n(k)) (blue stars) and the resulting closed polygon (blue lines).
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2.2.2 Perimeter Interpolation

With the spread of a wildfire, the corresponding closed polygon describing the measured

wildfire perimeter commonly becomes larger and the number Nm of vertices of the measured

closed polygon (em(km),nm(km)), km = 1,2, . . .Nm increases accordingly. Similarly, the number

of vertices Ns on a simulated wildfire perimeter (es(ks),ns(ks)), ks = 1,2, . . .Ns obtained with fire

modeling software such as FARSITE will also increase, but in general Nm ̸= Ns. The resolution

of the simulated vertices is determined by the fire modeling software FARSITE and typically

in the order of 30 meters. Next to difference in number of vertices, the ordering of the vertices

(em(km),nm(km)), km = 1,2, . . .Nm of the measured fire perimeter and (es(ks),ns(ks)), ks =

1,2, . . .Ns are not the same and a direct comparison between a pair of vertices (em(km),nm(km))

and (es(ks),ns(ks)) would lead to erroneous results.

A direct comparison of a measured vertex (em(km),nm(km)) and a simulated vertex

(es(ks),ns(ks)) is especially important if a (weighted) least-squares error based on vertices needs

to be formulated. To anticipate the notion of an uncertainty weighted least-squares error, it is

shown how perform a interpolation of the wildfire perimeter to create Nm = Ns and therefore

an equal number of Nm of vertices of the measured closed polygon and Ns of vertices of the

simulated closed polygon. The solution to this problem is to first interpolate one of the fire

perimeters to the same or higher number N = max(Nm,Ns) of vertices of the other fire perimeter.

Subsequently, when comparing pairs (em(km),nm(km)) and (es(ks),ns(ks)), the starting vertex at

km = 1 or ks = 1 of one of the fire perimeters will be re-ordered to obtain the smallest weighted

least-squares error between the polygons.

For simplicity of notation, k is used to represent both ks and km after the interpolation

because the simulated fire perimeter and the measured fire perimeter have the same number

of vertices. In this chapter, interpolation of the fire perimeter is done with standard 2D linear

interpolation, where interpolated vertices are introduced on the straight lines connecting the

original vertices of the closed polygon, and the procedure of linear interpolation is summarized
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in Algorithm 1.

Algorithm 1. Linear interpolation of wildfire polygon
Input: vertices of the original approximated polygon

Output: Newly constructed vertices of the interpolated polygon

1: Calculate the length of each side of the polygon.

2: Calculate the cumulative side length from the starting point.

3: Find locations with equally distributed length along the side of polygon from the starting

point.

4: Construct new polygon vertices

Similarly, uncertainties of the original vertices can also be interpolated with respect to

the cumulative side length from the starting point. Due to the fact that the interpolation is related

to the distance from the starting point, it is easy to verify that interpolation from different starting

points will lead to different results. This will be considered in the subsequent section when

the weighted least squares are calculated. Linear interpolation may lead to a tiny change of the

shape of the original wildfire polygon that is negligible compared to the huge burned area of the

wildfire polygon. Therefore, the change of the wildfire polygon caused by the linear interpolation

is not considered in this chapter.

2.3 Wildfire Error Quantification

2.3.1 Weighted Least-Squares Error

With an interpolated (and properly ordered) closed polygons of the simulated fire perime-

ter (es(k),ns(k)), and the measured fire perimeter (em(k),nm(k)) with an uncertainty r(k) on

each vertex k = 1,2, . . . ,N, a weighted least-squares error

1
N

N

∑
k=1

w(k)2
[(

es(k)− em(k)
)2

+
(
ns(k)−nm(k)

)2
]
, w(k) =

1
r(k)

(2.2)
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can be used to define the distance between the fire perimeters. The interpolated weighting

w(k) = 1/r(k) ensures measurements with a large uncertainty r(k) are weighted less in the

error characterization. However, even with uncertainty radii defined by (2.1) with a minimum

value rmin, the weighted least-squares error in (2.2) will be skewed and emphasizes parts of the

closed-loop polygon where vertices are closely clustered and have only small distances with

respect to each other, as also illustrated in Fig. 2.1. The reasons are clear:

• Small uncertainty radii r(k) due to (2.1) will result in a larger weighting w(k) = 1/r(k) on

the regions of the polygon where vertices are closely clustered.

• More vertices in areas of the polygon where vertices are clustered further accentuates the

weighting on these regions of the polygon.

To solve the problem of the skewed emphasis of the weighted least-squares error, the

weighting w(km) for each vertex of the original measured fire perimeter before the interpolation

is skew compensated via

w̃p(km) = w(km)wc(km)wu(km), w(km) =
1

r(km)
(2.3)

where wc(km) is a concentration weighting for each vertex used to account for clustering of

vertices on the closed polygon and the weighting wu(km) is the user-defined weighting for each

vertex, used to actually emphasize certain vertices on the closed polygon. The weighting wc(km)

is defined as

wc(km) =
1

m(km)
(2.4)

where m(km) is the number of successive vertices around the kmth vertex with a small adjacent

distance l(km) that is defined by the relative distance condition

l(km)

lmean
< 0.2, lmean =

1
Nm

Nm

∑
km=1

l(km)
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where l(km) was defined in (2.1). The weighting wu(km) is defined to be 0 for the barrier points,

defined as the vertices where the fire perimeter has not changed, and 1 for the other vertices.
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Figure 2.2. Weighting radii 1/w̃p(km) (red circles) for skew compensated least-squares com-
pensation on the vertices (blue stars) and barrier points (black line) of a closed polygon of a
measured fire perimeter.

An illustration of the skew compensation is show in Fig. 2.2. On account of the fact that

barrier points will not move with the spread of the wildfire, a zero value weighting is assigned

to each barrier point. Hence, the weighting radii of barrier points are infinitely large, and not

included in Fig. 2.2.

Finally, to also address the re-ordering of the vertices of the closed polygon, consider the

short-hand notation based on complex numbers

x(k) = es(k)+ j ·ns(k), k = 1,2, . . . ,N

y(k,q) = em(k)+ j ·nm(k), k = q,q+1, . . . ,N,1, . . . ,q−1
(2.5)

20



where x(k) ∈ C for k = 1,2, . . . ,N represents the 2D coordinates of vertices of a closed polygon

of a simulated fire perimeter starting at index k = 1 and y(k,q) ∈C represents the 2D coordinates

of vertices of a closed polygon of a measured (and possibly interpolated) fire perimeter, but

reordered to start at index q. The ability to adjust the starting point k = q of the closed polygon

now allows for the definition of the skew compensated weighted least-squares error

s1 = min
q

1
N

N

∑
k=1

w̃p(k)2 ∣∣y(k,q)− x(k)
∣∣2 (2.6)

where w̃p(k) is the interpolated w̃p(km) defined in (2.3). The starting point k = q is used to

remove the dependency of cyclical ordering of complex points describing the closed polygon.

2.3.2 Weighted Surface Area Error

Surface Area of a Closed Polygon

Consider a 2D polygon of a measured fire perimeter given by the N coordinates of the

2D vertices  e(k)

n(k)

 , k = 0,1,2, . . . ,N −1

ordered by the index k. For the following derivation in this section, k starts from 0 instead of 1,

and for an index k = N, it is obtained that

 e(N)

n(N)

=

 e(0)

n(0)

 (2.7)

formally making the 2D polygon a closed polygon. For such a closed polygon, the total surface

area S can be computed by taking a signed sum of the surface area of triangular sub-polygons as
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follows. Consider a triangular 2D sub-polygon that consists of 3 vertices

 0

0

 ,

 e(k)

n(k)

 and

 e(k+1)

n(k+1)

 , k = 0,1,2, . . . ,N −1 (2.8)

which will have a surface area that can be computed by

1
2

∣∣∣∣∣∣∣
 e(k)

n(k)

×

 e(k+1)

n(k+1)


∣∣∣∣∣∣∣ , k = 0,1,2, . . . ,N −1 (2.9)

where again the property of a closed polygon in (2.7) is used in case k = N − 1. In (2.9), the

symbol × denotes the cross product and | · | denotes the length of a (cross product) vector. For

the 2D vertices, the computation simplifies to

1
2

∣∣e(k)n(k+1)−n(k)e(k+1)
∣∣ , k = 0,1,2, . . . ,N −1

by writing out the cross product in terms of the (e(k),n(k)) and (e(k+1),n(k+1)) coordinates.

Let T (k) = e(k)n(k+1)−n(k)e(k+1). According to the shoelace formula, or surveyor’s area

formula [36], if the polygon is counterclockwise oriented, which means the direction from

(e(k),n(k)) to (e(k+ 1),n(k+ 1)) is counterclockwise, then T (k) is positive when the origin

point (0,0) is on the left side of the edge (facing towards (e(k+1),n(k+1)) from (e(k),n(k))).

Correspondingly, T (k) is negative when the origin point is on the right side of the edge. Therefore,

when the 2D closed polygon is oriented counterclockwise, the area of the polygon S can be

expressed by the signed sum of the surface area of triangular sub-polygons as follows:

S =
N−1

∑
k=0

1
2
(
e(k)n(k+1)−n(k)e(k+1)

)
. (2.10)
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Expectation and Variance

Now let the subsequent vertices at index k and k+1 not be given by a single 2D point,

but given by a normal probability distribution

 ē(k)

n̄(k)

∼ N


 e(k)

n(k)

 ,P(k)

 and

 ē(k+1)

n̄(k+1)

∼ N


 e(k+1)

n(k+1)

 ,P(k+1)


(2.11)

where P(k)> 0 and P(k+1)> 0 denote the covariance matrix of the vertices. The covariance

matrix is used to model the (joint) probability between the e(k)- and n(k)-coordinates of each

vertex. Assume that different vertices are independent with each other and ē(k) and n̄(k) are

uncorrelated (the uncertainty on a vertex is expressed by a circle around each vertex), then

P(k) =

 σ2
e (k) 0

0 σ2
n (k)

 P(k+1) =

 σ2
e (k+1) 0

0 σ2
n (k+1)

 (2.12)

where σe(k) and σn(k) are the standard deviations of ē(k) and n̄(k) respectively. Inspired by [38],

the expectation and the variance of ē(k)n̄(k+1)− n̄(k)ē(k+1) for each triangular sub-polygon

can be calculated based on T (k) as

E
[
ē(k)n̄(k+1)− n̄(k)ē(k+1)

]
= E

[
ē(k)

]
E
[
n̄(k+1)

]
−E

[
n̄(k)

]
E
[
ē(k+1)

]
= e(k)n(k+1)−n(k)e(k+1).

(2.13)
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The variance of ē(k)n̄(k+1)− n̄(k)ē(k+1) is

Var
[
ē(k)n̄(k+1)− n̄(k)ē(k+1)

]
=E

[(
ē(k)n̄(k+1)− n̄(k)ē(k+1)−E

[
ē(k)n̄(k+1)− n̄(k)ē(k+1)

])2
]

=E
[
ē(k)2n̄(k+1)2

]
+E

[
n̄(k)2ē(k+1)2

]
+E

[
e(k)2n(k+1)2

]
+E

[
n(k)2e(k+1)2

]
−2E

[
ē(k)n̄(k+1)n̄(k)ē(k+1)

]
−2E

[
ē(k)n̄(k+1)e(k)n(k+1)

]
+2E

[
ē(k)n̄(k+1)n(k)e(k+1)

]
+2E

[
n̄(k)ē(k+1)e(k)n(k+1)

]
−2E

[
n̄(k)ē(k+1)n(k)e(k+1)

]
−2E

[
e(k)n(k+1)n(k)e(k+1)

]
=E

[
ē(k)2n̄(k+1)2

]
+E

[
n̄(k)2ē(k+1)2

]
− e(k)2n(k+1)2 −n(k)2e(k+1)2

=
(

e(k)2 +σ
2
e (k)

)(
n(k+1)2 +σ

2
n (k+1)

)
+
(

n(k)2 +σ
2
n (k)

)(
e(k+1)2 +σ

2
e (k+1)

)
−e(k)2n(k+1)2 −n(k)2e(k+1)2.

(2.14)

The expectation and variance of the surface area of the whole closed polygon can then be

calculated as

E(S) =
1
2

N−1

∑
k=0

(
e(k)n(k+1)−n(k)e(k+1)

)
(2.15)

Var(S) =
N−1

∑
k=0

[(
e(k)2 +σ

2
e (k)

)(
n(k+1)2 +σ

2
n (k+1)

)
+
(

n(k)2 +σ
2
n (k)

)(
e(k+1)2 +σ

2
e (k+1)

)
−e(k)2n(k+1)2 −n(k)2e(k+1)2

] (2.16)

For further simplifying the calculation [35], Equation (2.15) can be transformed as

follows. By defining e(N +1) = e(1) and n(N +1) = n(1), it can be observed that
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E(S) =
1
2

N−1

∑
i=0

[
e(k)n(k+1)−n(k)e(k+1)

]
=

1
2

N−1

∑
i=0

e(k)n(k+1)− 1
2

N−1

∑
i=0

e(k+1)n(k)

=
1
2

N

∑
i=1

e(k)n(k+1)− 1
2

N

∑
i=1

e(k)n(k−1)

=
1
2

N

∑
i=1

e(k)
(
n(k+1)−n(k−1)

)
(2.17)

For the third equality in (2.17), e(0)n(1) = e(N)n(N +1) is applied in the first sum and index

shifting is used in the second sum.

Weighted Surface Area Error

With the simulated fire perimeter (es(ks),ns(ks)), ks = 0,1, . . . ,Ns − 1, and the mea-

sured fire perimeter (em(km),nm(km)) with an uncertainty mentioned in Section 2.2.1 on each

vertex km = 0,1, . . . ,Nm − 1. A set of new closed polygons with vertices (ed(kd),nd(kd)),

kd = 0,1, . . . ,Md − 1 can be obtained by finding the union minus the intersection of the sim-

ulated fire polygon and the measured fire polygon. Assume that the number of the newly

created polygons is L, and the numbers of vertices included in each polygon are Md , with

d = 1,2, . . . ,L. The weighted surface area Sw
d of the closed polygon with vertices (ed(kd),nd(kd)),

kd = 0,1, . . . ,Md −1 can be expressed by

Sw
d =

E(Sd)
γ

Var(Sd)(1−γ)
(2.18)

where γ and 1− γ are the weightings added on the expected value and the variance of the surface

area respectively, and E(Sd) and Var(Sd) can be calculated by (2.17) and (2.16) respectively.

With the assumption that the uncertainty on a vertex is a circle around the vertex and there are
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only uncertainties on the measured fire perimeter, it can be achieved that

σe(kd) = σn(kd) =


0, if (ed(kd),nd(kd)) ̸= (em(km),nm(km)),

1/w̃s(km), if (ed(kd),nd(kd)) = (em(km),nm(km)),

w̃s(km) = w(km)wc(km)

(2.19)

where σe(kd), σn(kd) are the standard deviations defined in (2.12), and w(km), wc(km) are

established in (2.3) with no interpolation. Based on (2.18), the weighted error of the whole

surface area of the union minus the intersection of the simulated fire perimeter and the measured

fire perimeter can be defined as

s2 =
L

∑
d=1

Sw
d =

L

∑
d=1

E(Sd)
γ

Var(Sd)(1−γ)
. (2.20)

With the definition of w̃s(km) in (2.19), γ is recommended to be chosen as a value less than or

equal to 0.1. Smaller weighting is put on the variance to avoid the erroneous results. For example,

if the vertices with extremely large uncertainties are assigned to all the polygons created by the

union minus the intersection of the simulated fire polygon and measured fire polygon, then the

weighted surface area error is close to zero, and the corresponding simulated fire polygon will be

chosen as the optimal simulation that makes no sense. In this chapter, γ is picked as 0.1.

2.4 Wind Condition Estimation with FARSITE

2.4.1 Forward Simulations

In this study, FARSITE is used for the forward simulation of the simulated fire perimeter

x(k) as a function of the single wind vector u. FARSITE can be considered as a non-linear

mapping ρ(·) for fire progression, simplified to

x(k) = ρ(p(k),u,θ ,∆T ) (2.21)
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where the input p(k) ∈ CNp is a closed polygon of Np vertices representing the initial fire

perimeter. The simulated output x(k) ∈ CNx , defined earlier in (2.5), is the closed polygon of

k = 1,2, . . . ,Nx vertices representing a simulated fire perimeter obtained after a time step of ∆T .

The additional inputs u represents the single wind vector, and θ denotes a parameter representing

fuel content, fuel moisture and topography, all assumed to be constant over the time step of ∆T .

Unknown wind conditions influence the interpolated and re-ordered vertices of the

measured fire perimeter represented by the closed polygon y(k,q) defined in (2.5). The two-

dimensional single wind vector u in terms of wind speed and wind direction will also influence

the vertices of the simulated fire perimeter represented by the closed polygon x(k) and the

weighted surface area Sw
d in (2.18). Along with the definition of the weighting w̃p(km) in (2.3),

w̃s(km) in (2.19), and γ in (2.18), it is expected that a minimization of s1 in (2.6), and s2 in (2.20)

as a function of u will provide the best single wind vector to minimize the distance between

x(k) and y(k), and surface area of the subtraction between the union and the intersection of the

simulated fire polygon and the measured fire polygon, respectively.

2.4.2 Wind Speed and Wind Direction Optimization

The formal problem of finding an estimate of the single wind vector on the basis of a

wildfire measurement y(k) using skew compensated weighted least-squares error can be stated

as the optimization

min
u

s1(u), s1(u) = min
q

1
N

N

∑
k=1

w̃p(k)2|y(k,q)− x(k)|2

x(k) = ρ(p(k),u,θ ,∆T )

(2.22)

where w̃p(k) is the interpolated w̃p(km) defined in (2.3) and y(k,q) is defined in (2.5). Similarly,

with weighted surface area error, the formal problem can be stated as the optimization

min
u

s2(u), s2(u) =
L

∑
d=1

E(Sd)
γ

Var(Sd)(1−γ)
. (2.23)
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where γ is defined in (2.18), and E(Sd) and Var(Sd) are defined in (2.17) and (2.16). Due to

the non-linearity and non-convex mapping of ρ(·), a non-linear and iterative optimization is

required, typically using the sensitivity or the gradient.

For FARSITE that is responsible for the mapping in (2.21), the sensitivity or gradient

∂

∂uρ(p(k),u,θ ,∆T ) is unknown. Numerical evaluation of the gradient is computationally expen-

sive and moreover, FARSITE is known to produce occasional erroneous results at some single

wind vectors due to numerical problems in interpolation and reconstruction of the main fire

perimeter (as will be shown later). These reasons motivate the use of a gradient-free optimization

via a grid search and the 2 dimensional size of u motivates a simple 2D gridding procedure over

which s1(u) in (2.22) and s2(u) in (2.23) are evaluated. The 2D grid of u can be updated and

refined iteratively to improve the accuracy of the final optimized solution for u. The pseudo-code

for the iterative optimization of s1(u) and s2(u) are summarized in Algorithm 2. If the skew

compensated weighted least-squares error is chosen, let s(ui, j)=s1(ui, j); if the weighted surface

area error is chosen, let s(ui, j)=s2(ui, j).

Algorithm 2. Optimizing algorithm
Input: θ , p(k), y(km), ∆T , minimum wind condition perturbation λ and stopping criterion ε .

Output: Optimized u ∈ R2×1

1: Create n2 points of a symmetric 2D grid ui, j over a desired range i = 1,2, . . . ,n and j =

1,2, . . . ,n around an initial estimate u0 of the single wind vector.

2: Parallel simulation in FARSITE with p(k), ui, j, θ and ∆T to obtain xi, j(k) for each grid point.

3: Compute the n2 weighted error s(ui, j) over the grid i = 1,2, . . . ,n and j = 1,2, . . . ,n, or

4: Find the smallest value î, ĵ = mini, j s(ui, j) to select the optimized single wind vector uî, ĵ

5: Set u0 = uî, ĵ and stop when |s(u0+λ )− s(u0)| ≤ ε or go back to step 1 to refine grid around

u0.

The skew compensated weighted least-squares error and weighted surface area error are
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(a) Results by using skew compensated weighted
least-squares error

(b) Results by using weighted surface area error

Figure 2.3. Skew compensated weighted least-squares error s1(ui, j) and weighted surface area
error s2(ui, j) at one particular time stamp. The optimal single wind vector of s1(ui, j) and s2(ui, j)
are indicated with a red dot.

used to determine the difference between the simulated polygon and the measured polygon of

wildfire. Simulations can be performed in parallel to speed up the process of finding the optimal

initial single wind vector with the above mentioned algorithm.

2.5 Numerical Results

2.5.1 Maria Fire

The Maria Fire ignited in the evening hours of Thursday, October 31, 2019 and consumed

well over 4,000 acres (16 km2) within its first several hours of burning. The optimization of the

single wind vector is performed for this fire at four different time stamps where measurements

of the fire perimeter were available. The objective of the optimization is to improve the fire

simulations of the fire perimeters with FARSITE in comparison with the observations obtained

at four time stamps.

First we illustrate the results of the gradient-free optimization via a grid search summa-

rized in Algorithm 2 in Fig. 2.3. The numerical evaluation of the skew compensated weighted

least-squares error s1(ui, j) and weighted surface area error s2(ui, j) over a 2D grid ui, j with wind
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speed from 0 to 45 mph and wind direction from -180 degrees to 175 degrees in Fig. 2.3 clearly

shows the non-differential behavior of s1(u) and s2(u), motivating the use of a gradient-free

optimization via a grid search. Sporadic large values of s(ui, j) for certain single wind vector ui, j

are explained by erroneous results due to numerical problems in interpolation and reconstruction

of the main fire perimeter by FARSITE, as illustrated in Fig. 2.4. The simulation results show

very similar fire perimeters for two single wind vectors that are pretty close to an erroneous

result.
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Figure 2.4. Simulations of fire perimeter x(k) with same wind speed of 21 mph, and different
wind directions. Wind directions of 34, 35 and 36 deg are represented by red, green, cyan lines.
Initial fire perimeter p(k) (black).

Based on gradient-free optimization via a grid search summarized in Algorithm 2, the

optimization can correct wildfire simulations when the initial guesses of the single wind vectors

are not accurate. Correction of the wildfire simulations with two expressions of error for the

four different time stamps where measurements of the Maria Fire perimeter were available are

summarized in Fig. 2.5. For each time stamp, the simulated fire perimeter (green lines) based on
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an initial estimate u0 of the single wind vector obtained from a weather station can be improved

(yellow lines) by the optimization of the single wind vector via Algorithm 2. It can be observed

that the optimized single wind vectors provide simulations (yellow lines) that are closer to the

measurements (red lines).

2.5.2 Cave Fire

Although the accuracy of the simulation is improved by using the optimized single wind

vector, there are still some parts of the optimized simulation that are somewhat far from the

measurement. One reason may be the measurement accuracy, as the combination of aerial

surveillance and manually mapped observations is likely to introduce measurement errors. It

can also be observed that as the fire perimeter becomes large enough, using only one prevailing

wind direction is inadequate for the precise prediction of the wildfire propagation as wind flow is

shaped by topography and atmospheric interaction.

The measurement data available for the Cave Fire included here can better demonstrate

the two issues of measurement errors and the assumption of a single wind vector. The 2019

Cave Fire started on November 25 and burned a total of 3,126 acres before being contained on

December 19. As shown in Fig. 2.6(a), the top part of the first measurement (after the initial

ignition) can be assumed to be wrongly characterized when compared to the second measurement.

To be able to account for such errors on the measurement, the weighting w̃p(km) defined in

(2.3) on the vertices in the top part of the first measurement are adjusted to be zero for the skew

compensated weighted least-squares error. The effect of the weighting radii is illustrated in

the image on the left in Fig. 2.6(b)). Due to the fact that the measurements in the top part of

the first measurement are weighted with 0 for the skew compensated weighted least-squares

error, the corresponding weighting radii are approaching infinity that is not included in the figure.

However, the remaining points of the measurement are still allowed to be used for optimization

of the single wind vector at this time stamp. For the weighted surface area, on account of the

limitation that multiple uncertainties of the vertices will finally act only on one weighted surface
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(a) 7:37 p.m. (using s1(u))
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(b) 7:37 p.m. (using s2(u))
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(c) 7:58 p.m. (using s1(u))
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(d) 7:58 p.m. (using s2(u))
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(e) 8:31 p.m. (using s1(u))
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(f) 8:31 p.m. (using s2(u))
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(g) 8:56 p.m. (using s1(u))
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(h) 8:56 p.m. (using s2(u))

Figure 2.5. Comparison of measured and simulated fire perimeters for u0 and optimized u by
s1(u) and s2(u). Initial ignition (blue); Simulation with u0 (green); Simulation with u (yellow);
Measurement at next time step (red).

32



-2.147 -2.146 -2.145 -2.144 -2.143 -2.142 -2.141 -2.14 -2.139 -2.138

10
6

1.536

1.537

1.538

1.539

1.54

1.541

1.542

1.543
10

6

-2.147 -2.146 -2.145 -2.144 -2.143 -2.142 -2.141 -2.14 -2.139 -2.138

eastern [m] 10
6

1.536

1.537

1.538

1.539

1.54

1.541

1.542

1.543

n
o

rt
h

e
rn

 [
m

]

10
6

(a) Initial fire perimeter (blue); Measurements at the first time stamp (red) and the second time stamp
(cyan) after the initial ignition. Simulations with optimized single wind vector (yellow).
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(b) Weighting radii 1/w̃p(k) (red circles, left) and 1/w̃s(k) (red circles, right) on the vertices of the
measured Cave Fire at 03:48 a.m. (blue stars).

Figure 2.6. Simulation and measurements of the Cave Fire with measurement errors. Skew
compensated weighted least-squares error (left). Weighted surface area error (right).

area, the infinitely large weighting radii should not be used in case they makes weighted surface

area errors of all polygons in the union minus intersection of the simulated fire polygon and

predicted fire polygon zero. Therefore, the weighting radii of the top part of the measurement

are adjusted to be the same as the largest weighting radius in the other parts of the measurement

to reflect the large uncertainty in the top part.

When the Cave Fire grows to a large dimension, as illustrated in Fig. 2.7, it becomes

difficult to match the measured fire perimeter with a simulated fire perimeter via single prevailing

wind direction. The gradient-free optimization of Algorithm 2 does a better job covering the

east side of the fire, but the west side of the fire cannot be accurately covered with a single
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wind vector due to the topography and atmospheric wind shear effects acting on the fire. This

illustrated the limitations of optimizing only a single wind vector.
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(a) Results by using skew compensated weighted

least-squares error
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(b) Results by using weighted surface area error

Figure 2.7. Comparison of measurement and simulation of the Cave Fire with initial ignition at
05:15 a.m. (blue). Simulation with initial (green), and optimized (yellow) single wind vector.
Measurement (red).

2.6 Summary

This chapter shows how fire perimeter measurements can be used to improve the accuracy

of a wildfire perimeter simulation, by using the measurement to estimate and correct the prevailing

wind speed and wind direction for the simulation. The estimation is based on two carefully

defined uncertainty weighted errors. The first error characterization is a skew compensated

uncertainty weighted least-squares error that provides a direct comparison of the vertices of

a simulated and a measured (noisy) wildfire perimeter. The second error characterization is

formulated as an uncertainty weighted surface area based on difference between the union and

the intersection of the surface of a simulated and a measured (noisy) wildfire perimeter. The

uncertainty based weighting in the least-squares error can account for vertex accuracy and be

adjusted for a skewed weighting caused by unequally distributed vertices on the closed polygon

of the fire perimeter. In both cases, the (skew compensated) uncertainty radii are used to compute
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a uncertainty weighted error. A gradient-free optimization via a grid search that uses (refined)

grid of the two-dimensional single wind vector and exploits parallel computations with FARSITE

fire modeling has been done to compute the optimal single wind vector. Numerical results on

actual wildfire perimeter data obtained from two recent destructive fires in California confirm

the improvement of the accuracy of the wildfire perimeter simulations. The skew compensated

weighted least-squares error is adept at flexibility of applying complicated uncertainties on each

vertex, and weighted surface area error has an advantage in the simplification of the computational

complexity and reduction of computational time. Limitations of the proposed methods are due

to the optimization of a single wind vector – an assumption that may not hold when a wild fire

covers a large area with varying topographical features.
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Chapter 3

Characterizing Wildfire Perimeter Poly-
gons from QUIC-Fire

QUIC-Fire is a modern fire simulation tool that can simulate the progression of three-

dimensional fuel consumption over a landscape, modeling the interaction of a wildfire with

weather such as wind conditions around the wildfire. The resulting simulation gives a detailed

progression of the consumed three-dimensional fuel that can be eloquently mapped to an image

of a burn area in the landscape as the wildfire progresses over time. Although an image of

burned vegetation over a landscape gives detailed information of the activity and coverage area

of a wildfire, a numerical characterization of the boundary of the burn area can be used for a

variety of computations. The boundary of the burn area, also labeled as the wildfire perimeter,

can be parametrized with a closed polygon. The set of ordered vertices of the closed polygon

provide a compact numerical representation of the location of the wildfire and can be used

for computations related to fire coverage area and modern wildfire assimilation techniques to

improve the prediction of wildfire progression. Designing a robust algorithm to create a wildfire

perimeter in the form of a set of ordered vertices of a closed polygon around the image of

consumed vegetation in a landscape is not a trivial task. This chapter discusses the properties

of two such algorithms: the iterative minimum distance algorithm (IMDA) and quadriculation

algorithm (QA) to obtain a closed polygon for a wildfire perimeter. To illustrate the effectiveness,

these two algorithms are applied to multiple image (raster) data of a burn area in the landscape
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of a wildfire created by QUIC-Fire simulations. It is shown that both algorithms are robust in

computing wildfire perimeters, and computational time are less than one second for each image

created by QUIC-Fire. As such, this work contributes to the development of computational

methods to automate the process of characterizing the closed polygon of a wildfire perimeter

based on burn area images.

3.1 Introduction

Vegetation dispersed over a landscape is the main fuel component that drives many

wildfires. As a wildfire consumes this fuel under the influence of external wind and other weather

conditions, it creates a ‘burn area’ or ‘burn scar’ of consumed fuel in the landscape that can

cause significant damage, economic loss and environmental impacts. Clearly, understanding the

wildland fire behavior and reducing the effects of wildfires by either controlling vegetation via

prescribed burns or improving predicting the progression of a wildland fire are desirable.

Improving the prediction of wildfire progression has been an active area of research

[4, 5, 39]. Data assimilation by combining wildfire modeling and ensemble Kalman filter is

applied in [7, 28, 29], while several studies on the influence of wind condition and fuel have been

conducted [22,26,40]. Many fire behavior models have been developed to improve the prediction

of the wildfire progression [3, 8, 9, 13, 41], and the focus on controlling wildfires by prescribed

burns is driven by QUIC-Fire [13]. QUIC-Fire can serve as a modern fire simulation tool to

simulate the progression of three-dimensional (3D) fuel consumption over a landscape, while

also approximating the dynamic interaction of a fire with weather including wind conditions in

the atmosphere around the fire. QUIC-Fire can also takes into account the interactions between

multiple fires and can compute fire progression at the resolution of one meter.

A wildfire perimeter, defined as a closed polygon around the burn area of a wildfire

or prescribed burn, is an important numerical characterization of the impact of the fire and

can be used for a variety of computations. Most wildfire perimeters are obtained from 2D
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images [42–44], while the consumed 3D fuel created by QUIC-Fire simulation is mapped to a

2D image of a burn area in the landscape as the wildfire progresses over time. So even for the

output of QUIC-Fire, it is desirable to create an algorithm to compute the closed polygon of the

wildfire perimeter.

Designing a robust algorithm to create a wildfire perimeter in the form of a set of ordered

vertices of a closed polygon around the image of consumed vegetation in a landscape is not a

trivial task. Edge detection methods have been applied to wildfire images [45, 46], but only find

a set of unordered boundary points that is not suitable to produce a closed polygon. In addition, a

wildfire perimeter may include one main closed polygon and multiple additional closed polygons

due to sporadic fire spread caused by embers and no assumption can be made on the shapes of the

polygons. Due to this complexity of multiple wildfire perimeters, traditional pattern recognition

algorithms [47, 48] are not directly applicable.

This chapter discusses the properties of two algorithms: the iterative minimum distance

algorithm (IMDA) and quadriculation algorithm (QA) to create a closed polygon of a wildfire

perimeter. The IMDA is based on continually connecting two closest points in the set of

unordered boundary points determined by conventional image edge detection. A threshold value

is set up to assist in determining whether two points in a cluster are closely located. If one

cluster is far away from other clusters, then it is regarded as a new isolated polygon representing

a separate fire perimeter due to embers. From a completely different point of view, the QA

creates a polygon by recursively dividing the raster image into indivisible rectangles, where all

the internal pixels of the rectangles have the same color, and then merging adjacent rectangles

that have the same color. In general, QA avoids the process of ordering the unordered boundary

points, but takes a longer time when merging the different polygons.
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3.2 QUIC-Fire Output Data

As mentioned in the introduction, the focus of this chapter is to discuss the properties of

the iterative minimum distance algorithm (IMDA) and quadriculation algorithm (QA) to obtain

closed polygons of wildfire perimeters based on images of consumed vegetation in a landscape.

This section summarizes the QUIC-Fire output data used for the evaluation of the IMDA and QA.

The QUIC-Fire output data consist of images of the fuel densities over a landscape at ground

level (below 10m) at different time stamps (100s, 300s, 500s, 700s, 900s, 1100s) as a prescribed

burn or wildfire progresses. The images of the QUIC-Fire output data are given in Figure 3.1.
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Figure 3.1. Fuel densities at different time stamps after the wildfire begins.

From Figure 3.1, it can be observed that as time increases, the dark blue area with

near zero fuel density becomes larger, which means the fuels are consumed and the wildfire

is spreading. The burn area of the wildfire at different time stamps can then be detected by
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comparing the difference of the corresponding fuel densities and the fuel density before the

wildfire starts, leading to the black/white images given in Figure 3.2.

(a) 100s (b) 300s (c) 500s

(d) 700s (e) 900s (f) 1100s

Figure 3.2. Burn area data at different time stamps after the wildfire begins. The white area is
the burn area, and the black area is the unburned area. The scales of the six plots are selected
differently for a better view.

3.3 Polygon algorithms for wildfire perimeters

3.3.1 Image data

The burn area at six different time stamps are illustrated in Figure 3.2. The white area

represents the burn area with y = 1, and the black area represents the unburned area with y = 0,

where

yi, j = f ([i, j],b) =


0, if b = 0

1, if b > 0
(3.1)

In (3.1), [i, j] is a vector providing the position information of the target pixel in the image, and b

is the absolute difference value between the fuel densities at the current time stamp and before
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the wildfire starts. The variable y is used to describe the area (burn area or unburned area) the

pixel (at [i, j]) belongs to.

Figure 3.3. Modified output of the QUIC-Fire with extra rectangular burn area. The white area
represents the burn area, and the black area represents the unburned area.

To better cover all possible situations of wildfire and illustrate the performances of IMDA

and QA, one of the burn area outputs of Figure 3.2 has been increased in complexity by adding

a separate (rectangular) burn area, and removing part of the original burn area, as indicated in

Figure 3.3. The additional burn area is added to verify if both the IMDA and QA can recognize

multiple wildfire perimeters within the data of Figure 3.3.

3.3.2 Quadriculation algorithm

The first method of finding an ordered set of vertices of a closed polygon around a burn

area is the quadriculation algorithm (QA). Inspired by fire simulation tool FARSITE [8], the QA

solves the problem in two main steps of division and union. Due to the fact that the minimum unit

of a rasterized burn area image is a pixel, QA quadriculates the target image into four squares or

rectangles recursively until all pixels in one square or rectangle have same value y. The process

is illustrated on a simple example in Figure 3.4(a). It can be observed that after the first division,
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(a) Recursive division. (b) Union.

Figure 3.4. Division and union in QA. The dashed red and green lines represents the first and
second division respectively. The red solid line represents the polygon. The white and black area
are with y = 1 and y = 0 respectively.

only the pixels in the right-top square of the image have the same value (y = 0). Therefore,

another quadriculation is needed. The second division should be applied on left-top, left-bottom,

right-bottom squares because pixels have different values y = 1 and y = 0 in these three squares,

and no division should be applied on the right-top square.

After the recursive division, the adjacent squares or rectangles with same value y should

be joined, and the perimeter of the polygon in Figure 3.4(a) can be obtained in Figure 3.4(b).

With the precision of one meter for QUIC-Fire, the size of each cell is one meter times one meter.

Therefore, the polygon obtained by QA can be accurate enough to describe the wildfire perimeter.

The process of QA is summarized in Algorithm 3.

Algorithm 3. QA
Input: Fire image

Output: Polygons representing wildfire perimeters

1: Recursively quadriculate the image into four squares or rectangles until all pixels in one

square or rectangle have same value y.

2: Join the adjacent squares or rectangles until the pixels in adjacent squares or rectangles have

different value y.
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The QA is known to take quite some computation time due to two main steps of division

and union that scales up as the image size increases. It would be beneficial to have an algorithm

that can also handle large images with multiple burn areas. The proposed algorithm is presented

in the next section.

3.3.3 Iterative minimum distance algorithm (IMDA)

Preparatory work

The IMDA solves the problem of finding an ordered set of vertices of a closed polygon

around a burn area by selecting and ordering the set of unordered boundary points. First,

a standard image edge detection algorithm is applied to Figure 3.3 to acquire the boundary

points. The boundary points are detected by comparing the value yi, j of the target pixel with its

surroundings. An abrupt change in the y value of the pixel expressed by

|yi−1, j − yi, j| ̸= 0 and yi−1, j = 1,

or |yi, j − yi, j−1| ̸= 0 and yi, j−1 = 1,

or |yi+1, j − yi, j| ̸= 0 and yi+1, j = 1,

or |yi, j − yi, j+1| ̸= 0 and yi, j+1 = 1,

and the pixel at i, j can be regarded as a boundary point. Due to the fact that the precision of the

QUIC-Fire data can be as small as one meter, the edge detection achieves a resolution of one

meter.

Naive minimum distance

To motivate the IMDA, first consider the simplest method for the rearrangement of the

unordered vertices or boundary points: choosing an arbitrary starting point and find the closest

point to the previous selected point. In this native minimum distance (NMD) check, an important

requirement is to avoid a self-intersection of the polygon.
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With the set of the unordered boundary points B, the starting point b1 is first selected

arbitrarily. Then, remove b1 from the set B, and find a new point bv (v > 1) with the minimum

distance to b1 in B. If the distance between the last two selected points bv−1 and bv, where v ≥ 3,

is larger than the distance from bv−1 to b1, bv−1 is connected to b1 directly to produce a closed

polygon. To ensure there is no problem of self-intersection, the NMD checks whether the line

segment bv−1bv intersects with any previous created line segments. If there exists an intersection,

the point bv−1 is deleted and connect bv−2bv. This process iterates until no intersection exists.

During the process of finding bv, two or more points can be found with same distance to

the previous selected point (multi-choice situation). To solve this problem, each choice will be

stored and the corresponding closed polygon is recorded. The polygon with the largest number of

vertices is picked as an optimal choice because more vertices means more detailed information.

If there are multiple polygons with same number of vertices, more constraints such as the area of

the polygon, can be added to select the optimal polygon.

The main problem for the NMD check is that for each multi-choice situation, two or more

complete polygons that are generated also need to be stored for comparison purpose. Storing

and comparing polygons may be an computationally expensive process, especially when the

numbers of boundary points and multi-choice situations increase. This problem is illustrated in a

simple case of Figure 3.5. It can be observed that the red polygon better describes the burn area

than the cyan dashed polygon, and the only difference between these two polygons is located

inside the green dashed rectangle in the figure.

Next to storing and comparing multiple polygons, the NMD check cannot deal with the

case when a wildfire has multiple disjoint burn areas to create multiple wildfire perimeters. These

problems lead to a modification of the NMD check and result in the actual IMDA.

Computation of ordered vertices of the closed polygon

In the computation of ordered vertices of the closed polygon in IMDA, one initial main

polygon is first obtained by arbitrarily choosing a point in the multi-choice situation. All left
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Figure 3.5. Two possible polygons after removing self-intersections (red line and cyan dashed
line). The green dashed rectangle shows the two-choice difference.

points are used to modify the initial main polygon or create a new isolated polygon. It is still

assumed that all the unordered boundary points can be used only once, but with one more

constraint: the largest distance between two adjacent boundary points should be smaller than

d =
√

2 due to point-to-point pixel distances. Following this distance observation, there are two

main steps in IMDA: the first step is to obtain an initial main polygon, and the second step is to

modify the obtained polygon and decide whether there is an extra isolated polygon. The logic of

each step is described as follows.

For the first step, an arbitrary starting point b1 is selected from the set B of the unordered

boundary points to be the first point of the set P that is used to restore the ordered vertices of the

polygon of a wildfire perimeter. The point with the minimum distance to the previously selected

point in P is chosen from B and added to P one by one. If there are multiple points with the same

minimum distance to the previously selected point, the first point in order is selected. During the
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selection, if no other points in set B have the distance smaller than d with respect to the last point

in P, the distance from the last point in P to the starting point b1 is checked. If the distance is

smaller than d, a closed polygon is created. On the contrary, if the distance is larger than d, it

means the current trajectory is not correct. Therefore, the last point in P needs to be deleted and

moved to a different set Bc so that this point can be reused again and ordered correctly. Repeat

deleting the last point in P and move it to set Bc until a point with a distance smaller than d to the

updated last point of P can be found in B, or the updated last point of P has the distance smaller

than d to the starting point b1. The first step is finished by creating an initial closed polygon.

With all the points moved from Bc to B, and clearing the set Bc, the second step is initiated

by finding the nearest point in B to any vertex in P, if the distance is larger than d, it means no

improvement can be achieved by the initial main polygon, and an isolated polygon exists. Hence,

the first step should be repeated for the updated B to create a new initial polygon. If there exists

a point in B with a distance to the nearest vertex in P smaller than d, it means the initial closed

polygon can be updated. Based on closest vertex in P as the first point of the trajectory Pc, the

nearest point from set B to the last point in Pc is found. If the distance from the newly detected

point in B to the last point in Pc is smaller than d, then add the newly detected point to the set

Pc. If no more points in B has the distance smaller than d to the last point of Pc, find the closest

point in P to the last point in Pc. If the distance from the closest point in P to the last point in Pc

is smaller than d, add the detected closest point in P to the set Pc. If the distance is larger than d,

delete the last point in Pc, and add it to Bc until the distance from the closest point in P to the last

point in Pc is smaller than d. Then add the detected closest point in P to the set Pc.

One important thing to note here is that the first point and the last point in Pc should

be different from each other. Based on the first point and the last point of Pc, add Pc to the

initial created polygon. If the previously created polygon has other vertex between the first point

and the last point of Pc, which means connecting Pc to P will lead to the deletion of previously

selected vertices. Then, whether connecting Pc to P depends on whether connecting Pc will

increase the area of the polygon. If connecting Pc to P can increase the area of the polygon, Pc is
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connected to P and replace the corresponding part selected in the first step. Otherwise, keep P as

it is. Iterate this process until there is no point left in B and Bc. The logic process of the IMDA is

summarized in Algorithm 4.

Algorithm 4. IMDA
Input: Unordered boundary points B and threshold value d.
Output: Polygons representing wildfire perimeters

1: Pick the arbitrary starting point b1 in B, and delete b1 in B.
2: Find a closed polygon P based on finding the point with the minimum distance that is smaller

than d to the previously selected point.
3: Find a trajectory Pc when the distance from any point in B to P is smaller than d.
4: If adding Pc to P will not result in the deletion of the previously selected point in P, add Pc

to P.
5: If adding Pc to P will result in the deletion of the previously selected point in P, Pc is added

to P when it increases the area of the polygon.
6: Iterate steps 3-5 until no points in B have distance smaller than d to P.
7: Repeat the above steps if there are multiple polygons.

3.4 Numerical Results

IMDA and QA are applied to the modified burn area data of Figure 3.3 to verify the

detection of multiple fire perimeters. The resulting closed polygons created by IMDA and QA are

shown in Figure 3.6. It is clear that both IMDA and QA produce the two distinct fire perimeters,

but it can also be observed that IMDA provides slightly tighter polygons around the burn area as

the polygons are not restricted to horizontal and vertical lines as in QA.

To further compare the performance of IMDA and QA, the algorithms are applied to the

burn area data of at the six different time stamps of Figure 3.2. The visual results are summarized

in Figure 3.7 with the same conclusion: both IMDA and QA produce correct results, but IMDA

provides slightly tighter polygons. The more telling observations come from Table 3.1, where it

can be seen that the computation time of IMDA scaled favorably compared to QA as the image

size and the burn area of the wildfire perimeter increases. As reference for the computation time,

all calculations were performed on an Intel Core i7-7500U CPU with 16 GB RAM.
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Modified Fire_perimeter_100sec

(a) IMDA

Modified Fire_perimeter_100sec

(b) QA

Figure 3.6. polygons of the wildfire perimeter (red lines). Burn area (white), unburned area
(black), detected boundary points (yellow circles).

Table 3.1. Computation time of IMDA and QA

100s 300s 500s 700s 900s 1100s

IMDA 0.019s 0.019s 0.021s 0.020s 0.023s 0.024s

QA 0.041s 0.132s 0.185s 0.205s 0.362s 0.352s
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Fire_perimeter_100sec

(a) 100s

Fire_perimeter_300sec

(b) 300s

Fire_perimeter_500sec

(c) 500s

Fire_perimeter_700sec

(d) 700s

Fire_perimeter_900sec

(e) 900s

Fire_perimeter_1100sec

(f) 1100s

Fire_perimeter_100sec

(g) 100s

Fire_perimeter_300sec

(h) 300s

Fire_perimeter_500sec

(i) 500s

Fire_perimeter_700sec

(j) 700s

Fire_perimeter_900sec

(k) 900s

Fire_perimeter_1100sec

(l) 1100s

Figure 3.7. Polygons of the wildfire perimeter (red lines). Burn area (white), unburned area
(black) and detected boundary points (yellow circles).
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3.5 Summary

This chapter compares two algorithms, iterative minimum distance algorithm (IMDA)

and quadriculation algorithm (QA), to obtain the closed polygons that parametrize wildfire

perimeters. The IMDA is based on continually connecting two closest points in the set of

unordered boundary points determined by conventional image edge detection. A threshold value

is set up to assist in determining whether two points are closely located. From a completely

different point of view, the QA creates a polygon by recursively dividing the raster image into

indivisible rectangles, where all the internal pixels of the rectangles have the same color. Then,

the QA merges adjacent rectangles that have the same color. Using simulation data produced by

QUIC-Fire that consist of raster images of consumed vegetation in a landscape, the performance

of IMDA and QA is compared. Although the logic of IMDA is more complicated, IMDA

produces slightly tighter polygons around the burn area compared to QA, as the polygons are not

restricted to horizontal and vertical lines in the image resolution. Moreover, the computation

time of IMDA scaled favorably compared to QA as the image size and the burn area of the

wildfire perimeter increase.
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Chapter 4

Wildfire Perimeter Detection via Iterative
Trimming Method

The perimeter of a wildfire is essential for prediction of the spread of a wildfire. Real-time

information on an active wildfire can be obtained with Thermal InfraRed (TIR) data collected

via aerial surveys or satellite imaging, but often lack the actual numerical parametrization of the

wildfire perimeter. As such, additional image processing is needed to formulate closed polygons

that provide the numerical parametrization of wildfire perimeters. Although a traditional image

segmentation method (ISM) that relies on image gradient or image continuity can be used to

process a TIR image, these methods may fail to accurately represent a perimeter or boundary

of an object when pixels representing high infrared values are sparse and not connected. An

ISM processed TIR image with sparse high infrared pixels often results in multiple disconnected

sub-objects rather than a complete object. This chapter solves the problem of detecting wildfire

perimeters from TIR images in three distinct image processing steps. First, Delaunay triangu-

lation is used to connect the sparse and disconnected high-value infrared pixels. Subsequently,

a closed (convex) polygon is created by joining adjacent triangles. The final step consists of

an iterative trimming method that removes redundant triangles to find the closed (non-convex)

polygon that parametrizes the wildfire perimeter. The method is illustrated on a typical satellite

TIR image of a wildfire, and the result is compared to those obtained by traditional ISMs. The

illustration shows that the three image processing steps summarized in this chapter yield an
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accurate result for representation of the wildfire perimeter.

4.1 Introduction

As unprecedented wildfire activity has occurred in recent years, the reliable prediction of

the spread of an active wildfire has proven to be challenging task. Ensemble Kalman filtering

[49] is often used as the data assimilation technique for wildfire spread prediction [5]. Many

applications have combined a data-driven fire model such as FARSITE [8] with ensemble Kalman

filtering to improve the prediction accuracy [7, 28, 29]. Such data assimilation techniques do rely

on the availability of (past) fire perimeter measurements to predict (future) wildfire perimeters

for characterizing wildfire progression.

For the moment, manual delineation is still frequently used to obtain the wildfire perimeter.

Due to the significant advances in sensor technology for wildfire monitoring, new real-time

data sources such as Thermal InfraRed (TIR) imaging can be used for a data-driven approach

to predict wildfire progression. For example, wildfires can be monitored via MODIS data

[23], satellite heat images [24] or thermal infrared imaging (TIR) on aerial flight systems [25]

that characterize ground temperature. In case of TIR or heat images, image pixels represent

temperature information or strength of the infrared band. In particular for an RGB image, the R

value is chosen as the data for the image pixels.

Many contributions can be found that provided automated extraction of wildfire perime-

ters by applying classic edge detection algorithm, such as global intensity thresholding algorithm,

Sobel gradient operator, and Canny edge detector [45, 50]. Among them, Canny method has

the ability to outperform the others [45]. Such edge detection methods might be good tools to

automatically delineate the wildfire perimeter, and the application of other edge detection meth-

ods, such as graph-cut method and level set method, are beneficial for the detection of wildfire

perimeter. However, due to limited resolution of the image, discontinuity of the two-dimensional

image data, and possibly partial activity of a wildfire along its boundary, identification of the
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most recent fire perimeter remains a challenge. Furthermore, different image pixels may be

independent and subjected to noise or temporary fire inactivity. As a result, the burn area in the

wildfire image can be disconnected or even sparse.

Although combining Machine Learning (ML) methodologies with real-time image data

has been recognized to advance in wildfire science and management [51], there is an important

restriction that a huge amount of training sets are required by ML techniques to learn the

characteristics of the heat map of the burn area. Although computer vision is applied more

and more on wildfire detection and measurement [52], few contributions can been found that

provide a closed polygon for the parametrization of the wildfire perimeter on the basis of TIR or

heat images. In [45], unsupervised edge detectors were applied to obtain the wildfire perimeter

automatically, but performance in case of sparse TIR data had not been demonstrated.

The main contribution of the chapter is to provided a novel TIR image processing

technique to characterize a closed polygon for the wildfire perimeter. To solve the problem

of discontinuity of a heat image, the basic concept of Delaunay triangulation is used to obtain

a convex polygon of a burn area. Similar ideas are explored in [23] where the so-called α-

shape algorithm is used to determine the wildfire perimeter using information on hot spots.

Unfortunately, the α-algorithm can only adjust the detected wildfire perimeter globally by

changing the value of α , and is barely able to distinguish spot fires from the main burn area in an

TIR image. To solve this problem, the novelty of the TIR image processing lies in the iterative

trimming of triangular objects created by the Delaunay triangulation to obtain a closer match of

the wildfire perimeter.

Both rough trimming and fine trimming are included in the iterative trimming method.

For the rough trimming, after obtaining the convex polygon covering all pixels of the burn area

by applying the Delaunay triangulation, two threshold values are created for this step. One is

related to the longest side of the triangle created by Delaunay triangulation, and the other one is

related to the relative burn area surrounding a vertex in a chosen domain. Based on these two

threshold values, the iterative trimming method will first delete the redundant abnormally large
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triangle created by the vertex of the polygon, and then delete the isolated pixels of burn area

caused by spot fire. As a result, a new convex polygon can be obtained relying on the remaining

pixels of the burn area, and this process will be repeated iteratively until all the pixels of spot

fires are removed. When the rough trimming is finished, another two threshold values related to

the longest side of triangles connected to the vertex of the polygon and the relative burn area

surrounding a vertex are created for the fine trimming. The wildfire perimeter can be finally

obtained by tuning the threshold values. The performance of the iterative trimming method

is illustrated by comparing the wildfire perimeter created by the iterative trimming method to

those created by some classical edge detection methods, such as Canny edge detection, graph-cut

method, and level set method.

4.2 Thermal Infrared Image of a Wildfire

One typical discontinuous RGB TIR image of wildfire is presented in Figure 4.1, and the

corresponding R-value TIR image is presented in Figure 4.2. It can be observed from Figure 4.1

and Figure 4.2 that the bright area alternates with the dark area. Although the different bright

areas are close, they are not connected. Delaunay triangulation is applied in this chapter to link

up those bright areas.

To prepare for the Delaunay triangulation, the active pixels and inactive pixels are defined

as

yi, j = f ([i, j],b) =


0, if b < bt ,

1, if b ≥ bt ,

(4.1)

where i, j describe the location of the pixel, b is the R-value of the TIR image, and bt is the

threshold value to distinguish between active pixel and inactive pixel. yi, j = 1 means the pixel at

i, j is identified as an active pixel. It is part of burn area and can be used to detect the wildfire

perimeter; yi, j = 0 means the pixel at i, j is considered to be an inactive pixel. It represents either

inactive wildfire or unburned area and should not be used for the detection of wildfire perimeter.
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Figure 4.1. Example of an RGB TIR image, courtesy of DigitalGlobe WorldView-3 satellite
data of the Happy Camp Complex fire. The size of the image is 850×550 pixels.

In this chapter, bt is chosen to be 50. The reason is that the pixels with the R-value smaller than

50 belong to nearly completely dark area as shown in Figure 4.2.

4.3 Delaunay Triangulation and Iterative Trimming

4.3.1 Delaunay Triangulation

In 1934, Boris Delaunay introduces the Delaunay triangulation [53] that is well known for

maximizing the minimum of all the angles of the resulting triangles. The Delaunay triangulation

has been used in many applications due to the property of providing connectivity information for

a given set of points [54]. This property is also adopted in this chapter to solve the problem of

missing connection between the burn area.

By applying the Delaunay triangulation on the active pixels determined from Figure 4.2

in Section 4.2, the connecting triangles (red) can be established as shown in Figure 4.3(a).

The union set of all the resulting triangles created by Delaunay triangulation is a convex hull
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Figure 4.2. R-value of TIR image depicted in Figure 4.1.

depicted in Figure 4.3(b). It can be observed that the convex hull contains many redundant

(sliver) triangles that hide the shape of the wildfire perimeter. These redundant large triangles are

mostly caused by the vertices of the polygon characterizing the wildfire perimeter. Delaunay

Triangulation connects these vertices as it did for the internal disconnected burn area. In addition,

some active pixels are caused by spot fires and should also be removed to discover the main

perimeter of the main wildfire. Therefore, it is important to distinguish the triangles outside

the main wildfire perimeter from those inside the wildfire perimeter. To this end, an iterative

trimming method is set up to trim the convex hull and reveal the wildfire perimeter.

4.3.2 Iterative Trimming Method

To cut out the redundant triangles established by Delaunay triangulation and the active

pixels caused by spot fires, two iterative trimming steps are used: rough trimming and fine

trimming. In the process of rough trimming, the abnormally large triangles and the pixels of spot

fire will be removed iteratively. After that, the remaining polygon is further trimmed in the fine
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(a) Delaunay triangulation on active pixels of Fig-
ure 4.2.

(b) Polygon (red) by the union set of the triangles

Figure 4.3. Delaunay triangulation and convex hull.

trimming process. Details on both trimming processes are as follows.

Rough Trimming

As mentioned, the goal of rough trimming is to remove the abnormally large triangles

created by Delaunay triangulation and some small groups of active pixels caused by spot fire to

obtain a coarse shape of the main fire. The abnormally large triangles are selected by using the

histogram of the longest side of all triangles. If the longest side of a triangle appears just once in

a bin of the histogram and larger than the upper boundary of the last bin with count larger than

two, then the triangle is categorized into the abnormally large triangle. The detailed procedure to

recognize the abnormally large triangle is summarized in Algorithm 5.

Algorithm 5. Identifying abnormally large triangle
Input: Longest side of each triangle, s
Output: Abnormally large triangle

1: Construct a histogram about the longest side of each triangles, h=histogram(s).
2: Find the index of the last triangle with count larger than one,

k=find(h.count > 1, ‘last’).
3: Abnormally large triangles are identified as the triangles with longest side larger than

lr = k×h.binwidth.

Figure 4.4 shows the histogram calculated on the basis of the triangles depicted earlier in

Figure 4.3(a). From the histogram in Figure 4.4, it can be observed that most of the triangles have
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a longest side smaller than 50, and abnormally large triangles can be recognized by choosing the

last few triangles with one count in the histogram.

Figure 4.4. Histogram of the longest side of the triangles in Figure 4.3(a). The unit of the side
length is (one) pixel length.

Due to the fact that spot fire is outside the main body of the wildfire, it is only necessary

to check whether the vertices of the currently established polygon belong to the main fire or

a spot fire. Spot fires are defined as a tiny connected burn area that is isolated from the main

fire. Therefore, the active pixels of spot fires can be distinguished by the relative surface area

within a chosen domain. The chosen domain can be a square patch of the TIR image centered by

the vertex of the current polygon, and the relative surface area can be calculated by the ratio of

the number of the connected active pixels containing the vertex of the current polygon and the

number of pixels inside the whole square patch. The approach to select the active pixels of spot

fires is summarized in Algorithm 6.
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Algorithm 6. Identifying active pixels of spot fire
Input: Vertices of currently established polygon, n; size of square image patch, m×m; threshold
value, du.
Output: Active pixels of spot fires.

1: For each vertex, calculate the summation, pq, q = 1,2, . . . ,n, of the number of all connected
active pixels starting from the vertex inside the m×m square patch.

2: Compute the ratio pq
m×m , for q = 1,2, . . . ,n

3: If pq
m×m ≤ du, all the connected active pixels with respect to the qth vertex of the polygon are

regarded as part of the active pixels of spot fires.

As a consequence of removing the active pixels of spot fires, the set of points for Delaunay

triangulation are affected. Hence, an iterative process of Delaunay triangulation, removing the

abnormally large triangles, and removing the active pixels of spot fires is operated until all the

active pixels of spot fires are eliminated. During the iteration, the number n of the vertices

of the polygon will also change accordingly. After the rough trimming, a coarse shape of the

main wildfire can be acquired, and the fine trimming will further remove the redundant triangles

produced by Delaunay triangulation.

Fine Trimming

Instead of just removing the abnormally large triangles coarsely as done in rough trim-

ming, fine trimming is more rigorous. With the goal of obtaining the perimeter of the main

wildfire, the fine trimming is focused on the triangles connected with the vertices of the cur-

rent polygon to avoid making the polygon disconnected. The redundant triangles can also be

determined by the histogram of the longest side, or specific requirement on the wildfire perimeter.

Furthermore, considering the fact that the TIR image is sparse, the density of the active

pixels around a vertex should also be taken into account. Heavier trimming can be done on the

triangles connected to a vertex having a denser neighboring active pixels, and those triangles

connected to a vertex that has a relatively sparse neighboring active pixels should be discarded

more carefully. As a result, two threshold values are established for the fine trimming. The first

one is the threshold value l f , set for the longest side of the triangles that should be removed,
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and the second one is the threshold value dl , set for the density of the neighboring active pixels

around a vertex. The value of dl is chosen so that the triangles connected to a vertex with a

sparse neighboring active pixels will be protected from being removed even when the longest

sides of the triangles are longer than l f .

The density of the active pixels around a vertex can be measured similarly by the relative

surface area pq
m×m used in the Algorithm 6, where pq is the number of all the connected pixels

starting from the qth vertex of the current polygon, and m×m is the size of the chosen square

patch. All the triangles with a longest side larger than l f and connected with a vertex that meet

the requirement pq
m×m > dl will be removed in the fine trimming. During the process of trimming,

new vertex will appear as the triangles are eliminated. Therefore, the trimming process should

be operated iteratively until the number of the vertices of the polygon stays the same.

One of the main differences between the rough trimming and the fine trimming is that no

active pixels are removed in the fine trimming. For this reason, the value of dl can be less than

the value of du. In other words, new vertex with pq
m×m ≤ du may appear during the fine trimming,

and dl can be chosen as dl <
pq

m×m ≤ du to trim the triangles connected to this newly created

vertex. The complete procedure of the iterative trimming method including the step of Delaunay

triangulation is summarized in Algorithm 7.

Algorithm 7. Iterative trimming method
Input: TIR image of wildfire.
Output: Wildfire perimeter.

1: Determine the set of active pixels.
2: Find the locations of the active pixels, and apply the Delaunay triangulation on the active

pixels.
3: Remove the abnormally large triangles and the active pixels caused by spot fires summarized

in Algorithm 5 and Algorithm 6 respectively.
4: If the number of active pixels changes, go back to step 2.
5: Remove the triangle connected to the qth vertex with pq

m×m > dl , if the longest side of this
triangle is larger than l f .

6: If the number of vertices of the polygon changes in step 5, repeat step 5.

The performance of the iterative trimming method based on the TIR data given earlier

60



in Figure 4.1 is illustrated in the next section. In addition, the established polygon of the main

wildfire perimeter obtained by the iterative trimming method on the basis of the Delaunay

triangulation is compared to those obtained by the Canny edge detector, the graph-cut method,

and the level set method.

4.4 Results and Discussion

4.4.1 Iterative Trimming Method

Considering the distribution of active pixels in Figure 4.2, the computed longest side of

the triangles in Figure 4.3(a) and the resulting histogram depicted in Figure 4.4, the values of

l f ,m,du,dl are chosen as 50,11,0.16,0.08 respectively. The polygons obtained after the rough

trimming and the fine trimming are shown in Figure 4.5(a) and Figure 4.5(b). It is worthwhile

to note that, although the high-value infrared pixels are sparse and disconnected, the iterative

trimming method can obtain a closed polygon of the wildfire automatically. It can also be noticed

that some isolated active pixels outside the red polygon are regarded as the spot fires, and are

not used to establish the polygon of the main wildfire. The computation time is around one

second. As reference for the computation time, all calculations were performed on an Intel Core

i7-7500U CPU with 16 GB RAM.

(a) Polygon (red) obtained by rough trimming. (b) Polygon (red) obtained by fine trimming.

Figure 4.5. Results of iterative trimming method.
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4.4.2 Canny Edge Detector

The Canny edge detector is developed by John F. Canny in 1986 [55]. Although Canny

edge detection is a traditional edge detection method, it has been widely applied and improved in

more recent researches [56–58]. It was also utilized in the study of wildfire monitoring [45] and

was shown to be one of the most effective unsupervised detection algorithms. Three performance

criteria: good detection, good localization, and unique response to a single edge, form the basis

of Canny edge detector.

A Canny edge detection has five steps including smoothing the image by Gaussian filter,

calculating the gradient of the image, deleting spurious response to true edges, using double

threshold to find out prospective edge, and tracking edge by preserving strong edges and weak

edges that are connected to strong edges. The image processing toolbox of MATLAB provides

the standard edge detection algorithm, and Canny edge detector can be applied by calling the

function edge(I,’canny’,threshold,sigma), where I is the image, threshold is used to

ignore the unnecessary edges, and sigma decides the standard deviation of the Gaussian filter.

It is clear from the procedure of Canny edge detector that the image gradient is the basis

for this edge detection method. For the TIR image given earlier in Figure 4.2, the Canny edge

detector is more likely to work on detecting the boundaries of all isolated clusters of pixels

instead of the main wildfire. To blur the image to a greater extent so that the effect of the isolation

is reduced, a larger standard deviation of the Gaussian filter can be applied.

The results of Canny edge detection with default value for the threshold and two

different standard deviations of the Gaussian filter are shown in Figure 4.6. Although increasing

the standard deviation of Gaussian filter leads to a slightly better result, the Canny edge detector

is still not able to detect the main boundary of the main wildfire.
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(a) sigma= 1. (b) sigma= 5.

Figure 4.6. Boundaries (red) of the wildfire generated by Canny edge detector.

4.4.3 Graph-Cut Method

The graph-cut method is a widely used method in the field of computer vision and details

can, for example, be found in [59–61]. Here a short summary of the graph-cut method is given.

An image is first transformed to a graph consisting of nodes and edges, where edges are used

to connect every two neighbor nodes, and nodes are composed of two terminal nodes, source

node and sink node, and all pixels. Each edge is assigned with a weight or cost, and the goal

of the graph-cut method is to find a minimum cut of the graph by using the max-flow min-cut

theorem [62]. With the minimum cut, the image is divided into a foreground and a background.

The graph-cut method has a good ability to produce an optimal solution to the image

segmentation of a binary problem, which is similar to distinguishing between the burn area

and unburned area in a TIR image of a wildfire. Therefore, the graph-cut method is applied

on Figure 4.2 to obtain the boundary of the wildfire via the image segmenter application in

MATLAB. The seeds required by graph-cut method are highlighted as Figure 4.7(a), and the

result of the graph-cut method is shown in Figure 4.7(b).

It can be observed that graph-cut method only works well on identifying part of the

wildfire boundary near the provided seeds. Although a good wildfire perimeter can be created by

graph-cut method when more detailed and complicated seeds are provided, too much human

interaction is required and the work involved is almost the same as a manual delineation, limiting
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(a) Seeds for foreground (green) and background
(red).

(b) Boundaries (red) generated by graph-cut meth-
ods.

Figure 4.7. Results of graph-cut method.

the application in automatic wildfire perimeter detection.

4.4.4 Level Set Method

The level set method is an impressive tool for image segmentation by exploiting the

information of regions and boundaries of the object [63]. It applies level sets for numerical

analysis of surfaces, and the application of level sets makes it beneficial to track the change of

the topology, such as the development of a hole. In addition, the level set method provides an

implicit description of the object without the need of parameterizing the object. Due to the fact

that a level set method has a good ability to separate two regions, it might be a solution to the

binary problem of detecting the burn area from the unburned area.

Unfortunately, for a disconnected TIR image of a wildfire as depicted in Figure 4.2, it is

infeasible to decide whether a hole exists, or what the size of the hole is. Moreover, continuous

image gradient and intensity of the pixels are important components of level set method to

determine the speed of the evolving and the shape described by each level set. Another potential

problem of the level set method is that the final result is dependent on the choice of the initial

contour, but the shape of the wildfire can be arbitrary. Hence, an algorithm of automatically

generating an initial zero-level contour is required, or a fire expert needs to provide an initial

contour for each image of a wildfire to apply the level set method.
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To test the performance of the level set method on Figure 4.2, the level set method

introduced by [64] is adopted. By choosing the parameters α = 2, λ = 5, µ = 0.01, the result

can be achieved after 200 iterations as Figure 4.8(b), with the initial contour established as

Figure 4.8(a). It can be observed that the boundary captured by level set method passes through

the disconnected part of the burn area of the TIR image. The reason for that is level set method

also relies on the image gradient or pixel intensity to calculate the level sets, and there is a huge

change in the image gradient between the disconnected areas.

(a) Initial zero level contour. (b) Final zero level contour

Figure 4.8. Results of level set method.

4.5 Summary

This chapter introduces an iterative trimming method (ITM) based on Delaunay triangu-

lation with a goal to establish a closed polygon of the main wildfire perimeter automatically for a

TIR image of wildfire. Although the burn area caused by spot fire is deleted in the ITM, they can

be captured respectively by treating each burn area of a spot fire as a main wildfire perimeter. The

performance of the iterative trimming method is validated by providing a study that compares the

result of the ITM with those of the various edge detection methods based on a satellite generated

TIR image. The comparison study shows that the various edge detection methods fail to provide

a single closed polygon that parametrizes the main wildfire perimeter. Often, disconnected burn
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areas will be detected separately. The proposed ITM shows good performance with a single

closed polygon for the wildfire perimeter. For further studies, more information of the wildfire

can be used in the iterative trimming method. For example, the wind direction and wind speed

can be used to predict the location of the spot fire, and a priori knowledge of the spot fire can be

included in the iterative trimming method to better capture and remove the active pixels caused

by spot fires.
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Chapter 5

Ensemble Based Learning for Automated
Safety Labeling of Prescribed Fires

Prescribed fires are controlled burns of vegetation that follow a burn plan to reduce fuel

build-up and mitigate unanticipated wildfire impacts. To understand the risks associated to

a prescribed burn, modern fire simulation tools can be used to simulate the progression of a

prescribed fire as a function of burn conditions that include ignition patterns, wind conditions,

fuel moisture and terrain information. Although fire simulation tools help characterize fire

behavior, the unknown non-linear interactions between burn conditions requires the need to run

multiple fire simulations (ensembles) to formulate an allowable range on burn conditions for a

burn plan. Processing the ensembles is often a labor intensive process run by user-domain experts

that interpret the simulation results and carefully label the safety of the prescribed fire. The

contribution of this chapter is an algorithm of ensemble based learning that automates the safety

labeling of ensembles created by a modern fire simulation tool. The automated safety labeling

in this algorithm is done by first extracting important prescribed fire performance metrics from

the ensembles and learn the allowable range of these metrics from a subset of manually labeled

ensembles via a gradient free optimization. Subsequently, remaining ensembles can be labeled

automatically based on the learned threshold values. The process of learning and automatic

safety labeling is illustrated on 900 ensembles created by QUIC-Fire of a prescribed fire in

the Yosemite, CA region. The results show a performance of over 80% matching of learned
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automated safety labels in comparison to manually generated safety labels created by fire domain

experts.

5.1 Introduction

As the extent of landscapes burned by wildfires continuously grow, it is important to take

advantage of prescribed fires to manage the risk of uncontrollable wildfires. A prescribed fire is

a controlled burn of vegetation and ignited intentionally to meet fuel and vegetation management

objectives, such as reducing hazardous fuels, sustaining the natural landscapes, and avoiding

extreme wildfires. Compared to a wildfire that is unplanned, prescribed fire can be controlled by

reducing the risk of a fire escape.

There are many positive effects of a prescribed fire on soil, vegetation, or even some

cultural artifacts, and periodic fire plays an important role in the balance of many ecosystems [65–

69]. Therefore, prescribed fire can be used as a tool to manage the forest area in various

ecological aspects, such as preventing invasive vegetation and facilitating the recovery of specific

species [15]. However, people are averse to the risk of a prescribed fire due to the lack of

scientific knowledge about the benefit of a prescribed fire in an ecosystem management [70].

Environmental or burn conditions that include the landscape, terrain, fuel moisture, wind

speed, wind direction and ignition pattern are important factors for the progression of the fire.

Extensive modeling efforts have been documented that help with the prediction of the fire

spread as a function of the burn conditions [22, 40, 71–74]. With the advance of the science and

technology, various software tools have been developed to numerically simulate the progression

of a prescribed fire. QUIC-Fire [13] is a three-dimensional fire simulation tool that provides

dynamic fuel consumption over time.

Although the progression of the consumed fuel can be simulated by QUIC-Fire, the trade-

off between controlled fuel consumption and the safety of the prescribed burn must be taken into

account when deciding on the allowable burn conditions. In practice, the unknown non-linear
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interactions between burn conditions requires the need to run multiple QUIC-Fire simulations

(ensembles). The ensembles can be labeled as safe, marginal and unsafe by fire domain experts

manually to formulate an allowable range on burn conditions. The manual labeling process is

labor intensive and time consuming, and a fast and accurate automatic labeling algorithm that

incorporates and learns the expertise of a fire domain expert is desirable.

The contribution of this chapter is an algorithm of ensemble based learning that automates

the safety labeling of ensembles created by a modern fire simulation tool. The automated safety

labeling in this algorithm is done by first extracting important prescribed fire performance metrics

from the ensembles based on a desired burn boundary within a burn plan. Any fire escapes outside

the desired burn boundary is characterized as a slop-over and performance metrics identify the

size, spacing and the number of slop-overs. Subsequently, manually labeled ensembles are

used to learn the allowable range of the slop-over metrics to distinguish between safe, marginal

and unsafe fire conditions. With some integer-valued metrics, the learning is formulated via an

gradient-free optimization based on a genetic algorithm [75] that has the capability to deal with

integer-valued functions.

The optimized (learned) allowable range of the slop-over metrics and the environmental

conditions such as wind speed and fuel moisture are configured as parameters in the automatic

labeling. The numerical values of these parameters are used in the automatic labeling algorithm.

The optimization ensures an optimized prediction accuracy of the automatic safety labeling of the

ensembles. In order to authenticate the performance of the automatic labeling, the use cases of

900 ensembles of a prescribed fire in the Yosemite, CA area are utilized. Learning and matching

100% of the manually assigned safety labels of a subset with 48 out of the 900 ensembles, the

automatic labeling is used to provide safety labels for the remaining ensembles. With a success

rate above 80%, the proposed automatic labeling algorithm works efficiently and accurately, and

can be used as a tool to design the burn plan of the prescribed fire.
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5.2 QUIC-Fire Output Data

With the information of the surface moisture, fuel type, wind conditions, and ignition

pattern, QUIC-Fire [13] can simulate the spread of the prescribed fire. The typical output

produced by QUIC-Fire at each simulation step is the fuel consumption as depicted in Figure 5.1.
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Figure 5.1. Output (fuel consumption) of QUIC-Fire. Desired boundary (green) and allowable
boundary (red). Burn area (fuel consumed) with y = 1 (yellow) and unburned area (fuel not
consumed) with y = 0 (dark blue).

Similar to [76], the burn area is represented by the yellow area with y = 1, and the

unburned area is represented by dark blue area with y = 0. The value of each pixel can be

expressed as

yi, j = f ([i, j],b) =


0, if b < 0.001

1, if b ≥ 0.001
(5.1)

where [i, j] describes the position of the target pixel in the image, b is the absolute difference

value between the fuel densities before the prescribed fire starts and after the prescribed fire ends,

and y is the value of pixel at [i, j] and used to distinguish between the burn area and unburned
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area.

In Figure 5.1, the provided desired boundary is drawn by a green line, which defines the

area inside the desired boundary that is expected to burn, and the allowable boundary is drawn

by red line, which separates buffer area and non-allowable burn area where fire is definitely

considered to be unsafe. The allowable boundary is determined by the size of the fuel domain

used for the simulation in QUIC-Fire. Without loss of generality, whether a fire escapes outside

the allowable boundary can be distinguished by checking whether there is a pixel with y = 1

outside the closed polygon representing the allowable boundary. On account of the fact that

the shape of the fire is arbitrary, deciding the fire safety by only depending on predetermined

boundaries is not enough.

The yellow area outside the desired boundary in Figure 5.1 is regarded as the slop-over,

and the number of the disconnected yellow area outside the desired boundary is regarded as the

number of slop-overs. Hence, the simulation shown as Figure 5.1 includes three slop-overs. With

the definitions of desired boundary and allowable boundary, slop-over plays an important role in

evaluating the safety of the prescribed fire. If the slop-over has the potential to spread outside

the allowable boundary, and is hard to control, the corresponding prescribed fire can be unsafe.

For identification of the fire safety for each simulation (ensemble), three levels are used: safe,

marginal and unsafe.

5.3 Feature Definitions

Following the summary of the nomenclature given in Table 5.1, a short explanation is

given for the inputs and parameters used in the automatic labeling of ensembles. After collecting

the manual labels provided by fire domain experts, the number of the slop-over ks, the total area

of the slop-over As, and the distance between each slop-over ls, can be used to evaluate the safety

of the prescribed fire. The total area of the slop-over directly reflects the result of a simulated

prescribed fire. Hence, it is an important factor in measuring the fire safety. Limited by the
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Table 5.1. Nomenclature of inputs and parameters for automatic labeling

Inputs:
As total area of slop-overs
ks number of slop-overs
ls distance between each slop-over

ws wind speed
ss surface moisture

Parameters:
Amax maximum allowed total area of slop-overs
Amar marginally allowed total area of slop-overs
kmax maximum allowed number of slop-overs

α expansion coefficient
β expansion coefficient

lmax maximum allowed distance between each slop-over
lmar marginally allowed distance between each slop-over

wt threshold value of wind speed
st threshold value of surface moisture

kt1 the first threshold value of number of slop-over
kt2 the second threshold value of number of slop-over

number of firefighters, large number of slop-over or large distance between slop-overs can both

result in an uncontrollable prescribed fire.

To quantitatively measure these three terms, some parameters are created in the automatic

labeling algorithm. Amax and Amar represent the maximum and marginally allowable total area of

slop-over, kmax denotes the maximum allowable number of slop-over, and lmax and lmar indicate

the maximum and marginally allowable distance between each slop-over. In addition to simply

exploiting the information of slop-over, the complex environmental conditions are also taken

into consideration.

For additional flexibility, the parameters α and β are utilized as the constant amplification

coefficients to enlarge the potential risk of the slop-over. As a prescribed fire can be more

dangerous when the wind speed is higher, the surface moisture is lower, and the number of the

slop-over is larger, four threshold values are created to better distinguish the effect of the total

area of slop-over and the distance between each slop-over in different situations. The parameters

kt1 and kt2 are established as the number of the slop-over when the risk level of prescribed fire
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varies significantly, while st and wt are the threshold values for the surface moisture and wind

speed respectively. If wind speed is larger than wt , or surface moisture is smaller than st , more

caution is required to decide the risk level of the prescribed fire. With these parameters, an

automatic safety labeling algorithm can be formulated.

5.4 Automatic Labeling Algorithm

5.4.1 Postprocessing of QUIC-Fire Output

To calculate the previously mentioned As, ks and ls for each ensemble of prescribed burn,

the slop-overs should be characterized by removing the burn area inside the desired boundary as

shown in Figure 5.2. Following the definition of y in (5.1), all slop-overs have y = 1 as shown in

Figure 5.2(a).

To further distinguish the slop-overs, different non-zero values for y are assigned to

different slop-overs. For the numerical implementation, label function in the package of scikit-

image [77] in Python is a good tool to achieve this goal. It first detects the slop-overs according to

the connectivity, and then assigns different values of y to different slop-overs. From Figure 5.2(b)

it can be observed that three slop-overs are plotted by different colors, where yellow, magenta,

and cyan correspond to y = 1, y = 2, and y = 3 respectively.

Afterwards, the number of the slop-over can be determined by the number of different

non-zero values of y, and the area of each slop-over can be calculated by summing up the

number of pixels with corresponding y. Finally, the distances between the centers of the smallest

vertically oriented rectangles that separately contain each slop-over serves as the distances

between each slop-over.

5.4.2 Process of Automatic Labeling

Since a distance between slop-overs exists only when there are more than one slop-over,

the number and the total area of the slop-over are more important and are utilized first for labeling
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(a) Plot of slop-overs with same y.
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(b) Plot of slop-overs with different y.

Figure 5.2. Extracted slop-overs.

the fire safety. Due to the limited resource of the fire fighting, it is impossible to control the

slop-overs of one prescribed fire simultaneously if multiple slop-overs are far away from each

other. Therefore, the distance between slop-overs should also be measured.

Additionally, wind speed and surface moisture around the prescribed fire also affect the

fire spread. Even a small slop-over can grow out of control in a short time when the wind speed is

large and the surface moisture is low. To account for these situations, two expansion coefficients

α and β are applied on the total area of the slop-overs to reflect the emphasis on the effect of the

extreme environment. For each ensemble, with computed metrics As, ks and ls, and provided

data of ws and ss, the automatic process can be described as follows.

At first, the prescribed fire ensemble is assumed to be safe. Any prescribed fire ensemble

with the total area As > Amax, or number of slop-overs ks > kmax is labeled to be unsafe. When the

wind speed ws > wt , the surface moisture ss < st , and the number of the slop-over kt1 < ks ≤ kmax,

the prescribed fire is more likely to be unsafe. For that purpose, αAs is compared to Amax. If

αAs > Amax, the prescribed fire ensemble is regarded as an unsafe fire.

To evaluate the safety of a prescribed fire ensemble by the distance between slop-overs, a

prescribed fire ensemble with the number of the slop-over kt2 < ks ≤ kmax, and the maximum

distance between each slop-over max(ls) > lmax is classified as unsafe. If a prescribed fire is

not unsafe, then it will be checked whether it is marginal. The process of judging whether a
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prescribed fire is marginal is similar, and another expansion coefficient β is set up to put more

cautions in the judgement when the environment is more suitable for the spread of the prescribed

fire. The automatic labeling algorithm is summarized in Algorithm 8.

Algorithm 8. Automatic Labeling Algorithm
Inputs: As, ks, ls, ws, ss
Parameters: Amax, Amar, kmax, α , β , lmax, lmar, wt , st , kt1 , kt2
Output: Label of the simulated prescribed fire

1: Assume the prescribed fire is safe at the beginning.
2: if the prescribed fire move outside the allowable boundary then
3: the prescribed fire is unsafe
4: else if As > Amax then
5: the prescribed fire is unsafe
6: else if ks > kmax then
7: the prescribed fire is unsafe
8: else if kt1 < ks ≤ kmax and ws > wt and ss < st and αAs > Amax then
9: the prescribed fire is unsafe

10: else if kt2 < ks ≤ kmax and max(ls)> lmax then
11: the prescribed fire is unsafe
12: else if As > Amar then
13: the prescribed fire is marginal
14: else if kt1 < ks ≤ kmax and ws > wt and ss < st and βAs > Amar then
15: the prescribed fire is marginal
16: else if kt2 < ks ≤ kmax and max(ls)> lmar then
17: the prescribed fire is marginal
18: end if

5.5 Optimization

It is clear that the accuracy of the automatic labeling is dependent on the numerical values

of the parameters listed in Table 5.1. The numerical values of the parameters can be optimized by

using safety labels created by fire domain experts. The formal problem of learning the numerical
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parameters on the basis of manually labeled fire safety data can be stated as the optimization

min
u

N

∑
i=1

di
ui

qi
− c(u),

subject to: pi ≤ ui ≤ qi for i = 1,2, . . . ,N

Amar ≤ Amax, lmar ≤ lmax, kt1,kt2 ≤ kmax

c(u),Amar,Amax,kt1,kt2 ,kmax,wt ∈ Z

(5.2)

where u = [α,β ,Amar,Amax,kmax,kt1,kt2 , lmar, lmax,st ,wt ], N is the number of parameter, and di

is the weighting coefficient with ∑
N
i=1 di = 1. ui represents the ith parameter in u, and pi and qi

are the lower bound and upper bound of the ith parameter respectively. The value of pi and qi

can be obtained from the burn plan that includes the information of the fuel domain, the wind

conditions and the surface moisture for the simulated prescribed fire.

In (5.2), c(u) denotes the number of safety match between the automatic labels created

by Algorithm 8 and the manual labels created by a fire domain expert, where u represents the

parameters. With ui ≤ qi from Equation 5.2 and ∑
N
i=1 di = 1, it can be verified that

N

∑
i=1

di
ui

qi
≤

N

∑
i=1

di = 1 (5.3)

since c(u) is the number of matches between the automatic labeling and manual labeling, any

change in c(u) when u varies is greater than or equal to one.

With (5.3), an inequality can be derived for the change in c(u), denoted by ∆c(u), when

varying u. The value of ∆c(u) is bounded by

N

∑
i=1

di
ui

qi
≤ 1 ≤ ∆c(u) (5.4)

and therefore the optimization will first focus on increasing the number of matches between the

automatic labels and manual labels, and then decrease the numerical value of the parameters.

As a result, the parameters obtained by the optimization will achieve the goal of gaining the

76



maximum match number with the necessary minimum values of the parameters, representing the

allowable range on the slop-over metrics.

Because c(u) is an integer-valued function, and there is no analytic expression of c(u), a

gradient-free optimization method that can also deal with the integer-valued function should be

applied. The genetic algorithm is an explicit and effective solution to this problem. The genetic

algorithm will repeatedly modify the population of individual solution. Three steps are included

in the genetic algorithm. At first, a random initial population is created. Then, a sequence of

new populations are created iteratively based on the previous populations by scoring the fitness

of each member of the population, selecting pairs of the members relied on the fitness, and

generating the new population by applying crossover and mutation. The last step is to stop the

algorithm when the change in value of the fitness function for the best member is less than a

tolerance value, or after a predetermined maximum number of iteration. The procedure of the

genetic algorithm is summarized in Algorithm 9.

Algorithm 9. Genetic Algorithm
Input: Population size m, maximum number of iterations tmax, and stopping criterion ε

Output: Global optimal solution, uopt

1: Create the initial m members u j( j = 1,2, . . . ,m) of population, and let t = 0.
2: Scoring the fitness value of each member, and find the member with best fitness value f (t).
3: select pairs of members from previous population based on fitness value.
4: Apply crossover and mutation to generate the new population.
5: t = t +1.
6: Stop when t = tmax or f (t)− f (t −1)< ε ; Otherwise, go back to step 2 to repeatedly modify

the population.

5.6 Numerical results

5.6.1 Ensemble Based Learning

For illustration of the ensemble based learning for automated safety labeling, two fire

domain experts work together to manually label the fire safety of 900 ensembles of a prescribed

fire in the Yosemite, CA region. QUIC-Fire simulations for the 900 ensembles are created by
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varying ignition patterns, wind speed, wind direction and fuel moisture for each of the ensembles.

To ensure the validity of the manual labels used for learning, 48 out of the 900 ensembles

are labeled by two fire domain experts separately and carefully. Some typical cases in these 48

ensembles with same manual labels are shown as Figure 5.3. In Figures 5.3(a), 5.3(b), 5.3(c) and

5.3(d), the total area of the slop-overs are small enough and there is a certain distance between

the slop-overs and the allowable boundary. Hence, they are labeled as safe prescribed fires. It can

be noticed that the sizes of the slop-overs in Figures 5.3(e) and 5.3(f) are relatively large, and the

top parts of the slop-overs are fairly close to the allowable boundary. Therefore, the safeties of

these two prescribed fire are labeled to be marginal. For Figure 5.3(g), the prescribed fire crosses

the allowable boundary, and for Figure 5.3(h), the total area of the slop-overs is larger than Amax

despite that the fire does not escape outside the allowable boundary. As a result, both of them are

considered to be unsafe. At last, the slop-overs in Figure 5.3(i) are large and cross the allowable

boundary. Therefore, these slop-overs obviously constitute unsafe prescribed fire conditions.

The ensemble based learning only uses the 48 out of the 900 ensembles, whereas the

remaining 852 labels will be labeled automatically based on the optimized parameter values of

Table 5.1 obtained by the learning. For cross validation of the accuracy of learning and labeling,

both the 48 ensembles used for learning and the 852 ensembles not used for learning but used

for labeling only are compared.

From this cross validation, a 100% accuracy has been achieved for both sets (48 ensem-

bles) of the manual labels created by two fire domain experts respectively. As expected, the

optimized parameters for each fire domain expert are slightly different, as each fire domain

expert will interpret and label the ensembles slightly differently. As such, the rules used by the

two fire domain experts are not completely the same, but either of them can be captured by the

learning algorithm. The parameters, u1 and u2, optimized by the two sets of manual labels are

summarized in Table 5.2.

By inspecting the numerical values of the parameters in Table 5.2, it can be observed that

fire domain expert, from whom u1 is learned, is more cautious than the fire domain expert, from
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(d) safe
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(e) marginal
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Figure 5.3. Typical cases in the training data set.

whom u2 is learned, because u1 has smaller values for Amar and Amax. Furthermore, α in u1 is

larger than one, and β in u1 is close to one. This means u1 is more focused on identifying unsafe

prescribed fire conditions. In addition, u1 takes advantage of the distance between each slop-over

to judge the risk level of the prescribed fire. In comparison, u2 has a higher tolerance for the

threat of a prescribed fire, and u2 has higher probability to assess the risk level of prescribed fire

as marginal instead of unsafe with α close to one and β larger than one. Since both lmar and lmax

in u2 are close to zero, it can be assumed that the distance between each slop-over is not utilized,

which is also supported by kt2 = kmax.
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Table 5.2. Parameters, u1 and u2, optimized by the two sets of 48 manual labels respectively.

Amar Amax α β wt st lmar lmax kt1 kt2 kmax
u1 8280 10655 1.31 1.01 0 0.20 133.31 263.72 1 2 3
u2 9723 17719 1.04 1.37 3 0.35 1.06 1.96 0 3 3

5.6.2 Automated Safety Labeling

Due to the large workload for a single fire domain expert to label the remaining 852

ensembles, the 852 manual labels are created together by the two fire domain experts, effectively

mixing their fire safety labeling expertise in the remaining data set of ensembles. To cross

validate the performance of the automatic labeling, manual labels of the 852 ensembles, not used

for learning, are compared to the labels created by Algorithm 8 with the parameters values u1

and u2 listed in Table 5.2 separately.

The match accuracy between the manual labels and the automatic labels created using

u1 is 76.76%; the match accuracy between the manual labels and the automatic labels created

using u2 is 76.88%; the match accuracy between the manual labels and the automatic labels

created using either u1 or u2 is 80.52%. As a consequence, more than 80% manual labels can be

captured by the automatic labeling using either u1 or u2.

5.6.3 Re-evaluation of Manual Labeling

To investigate the inconsistency between manual and automatic labeling, 12 ensembles

(Figure 5.4) are chosen as canonical cases from the 852 ensembles, in which the manual labels

are different from the automatic labels created using either u1 or u2. Without loss of generality

and with the purpose of reducing the workload, only one fire expert, by whose manual labels u1

was optimized, relabeled these 12 ensembles and 10 revised manual labels were the same as the

automatic labels created by Algorithm 8 with u1.

In Figures 5.4(a) and 5.4(b), the total area of the slop-overs is small enough. Therefore,

both of them should be regarded as safe prescribed fires. In addition, Figure 5.4(b) is similar

to Figure 5.3(c), which further confirms that the fire shown in Figure 5.4(b) is safe. For
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Figures 5.4(c) and 5.4(d), since the slop-overs are larger and hard to control, they should be

unsafe. For Figures 5.4(e) to 5.4(i), the prescribed fires cross the allowable boundary in different

locations and are unsafe. It is worthwhile to note that the re-evaluation helped to further improve

the number of match between manually and automatically created labels by correcting the

previous manually applied safety labels.

Since there is no ensemble with four or more slop-overs included in the 48 ensembles used

for learning and more slop-overs will lead to more dangerous fire conditions, kmax is optimized

as 3, and all the prescribed fires with four or more slop-overs will be considered as unsafe fires

in the automatic labeling. For Figures 5.4(j) and 5.4(k), both of them have four slop-overs and

the difference between them is that all four slop-overs in Figure 5.4(j) stay together while one

slop-over is far away from the other three slop-overs in Figure 5.4(k), which further increase the

difficulty in controlling the prescribed fire. Hence, the prescribed fires shown by Figure 5.4(j)

and Figure 5.4(k) are considered to be marginal and unsafe respectively by the fire expert.

5.6.4 Further Improvements

To further improve the automatic labeling, a user-defined marginally allowed number of

slop-overs kmar and a user-defined maximum allowed number of slop-overs kmax can be imported

into Algorithm 8. Expanding the training data to include more scenarios can also improve the

performance of automatic labeling at the price of having to provide more manually labeled

ensembles.

To make sure the user-defined kmar and kmax will not change during the optimization

process, two more linear equality constraints on kmar and kmax can be added to (5.2). At last, for

Figure 5.4(l), even the fire domain expert cannot give an exact answer based on the current data.

It means more information, like topography, vegetation, and contingency resources, is needed.

In summary, the automatic labeling, Algorithm 8, has a good ability to create the label for

the safety of the prescribed fire. Since the label is created by measuring the number of slop-overs,

the total area of the slop-over, and the distance between each slop-over, the automatic labeling
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can not only create the label but also give a feedback about which rule is used to create the label

so that people can get access to the interpretation of the automatic labeling.

5.7 Summary

This chapter introduces an automatic labeling algorithm to establish the safety label for

each ensemble of a simulated prescribed fire. The automatic labeling is based on prescribed fire

safety metrics that include the number of slop-overs, the total surface area of slop-overs, and the

distance between slop-overs. In addition to the safety label, the automatic labeling algorithm

can provide an explanation why a prescribed fire is considered to be safe, marginal, or unsafe.

Necessary parameters are optimized in the automatic labeling algorithm via a genetic algorithm

to assist in determining the label of each ensemble of the simulated prescribed fire. A numerical

validation based on 900 ensembles with manually generated safety labels of a prescribed fire in

the Yosemite, CA area showed a 100% match of safety labels for the training data (48 out of 900

ensembles) and a larger than 80% match on the cross validation of safety labels not used in the

training data (852 out of 900 ensembles).
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Figure 5.4. Canonical mismatch cases. PML stands for previous manual label, AL stands for
automatic label by applying u1, and RML stands for revised manual label.
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Chapter 6

A Logic Model for Automatically Evaluat-
ing Safety of Prescribed Fire

Prescribed fire is more and more accepted as a tool to avoid the extremely hazardous

wildfire and balance the fire-dependent ecosystem. Although many researches have been done in

the field of wildfire, they might not be applied directly in prescribed fire due to the difference

between the uncontrolled wildfire and the planned prescribed fire. Therefore, a comprehensive

burn plan to conduct a safe prescribed fire becomes more and more significant. Many fire

simulation tools have been developed to simulate the progression of fire with a given wind speed,

wind direction, surface moisture and so forth, and an allowable range of these burn conditions

such as wind conditions and surface moisture used for the burn plan can be learned from a great

amount of simulations (ensembles). Currently, fire domain experts need to take a lot of time and

energy to determine the safety of a simulated prescribed fire and to further identify the allowable

burn conditions. To reduce the workload of the fire domain experts and improve the efficiency,

a logic model is proposed in this chapter to automatically label the safety of a prescribed fire

based on the burn area of the prescribed fire simulated by a modern fire simulation tool and

the computed and filtered velocity of the fire spread. In other words, in addition to the static

information provided by the simulation of the prescribed fire at the last time step, the proposed

logic model also takes advantage of the dynamic information of the fire growth rate. Multiple

parameters are created in the logic model to evaluate the metrics of fire behavior, and these
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parameters are optimized by using a subset of the labels manually created by fire domain experts.

Afterwards, the logic model with the optimized parameters are used to automatically create the

labels for a different subset of simulated prescribed fires, and the automatically created labels are

compared to the manually created labels to validate the performance of the logic model. The

process of the optimization and the validation are illustrated on 900 simulated prescribed fires in

the Yosemite, CA region, created by QUIC-Fire.

6.1 Introduction

Prescribed fire has many beneficial effects on soil, water and vegetation, and is gradually

accepted as an effective tool for reducing the hazardous fuels and restoring the ecosystems [15,70].

Various studies related to the effect of the prescribed fire on soil properties are analyzed in [69].

The analysis shows that different burn plans of prescribed fire should be designed specifically

for different soil characteristics and vegetation types to achieve the goal of forest management.

Compared to wildfire, prescribed fire is a low-intensity fire with less adverse effects on water

resource by consuming less organic material, exposing less mineral soil, and causing less

mortality of vegetation [78]. Furthermore, long-term suppression of fire leads to difficult

regeneration of some woodlands and disappearance of fire-dependent ecosystems. Due to the

fact that wildfire is out of control and can result in severe forest damage, prescribed fire is a good

tool to sustain and restore the ecosystem [79].

In addition, fuel accumulates by reason of long-term wildfire suppression, and more

severe wildfire can happen because of the fuel accumulation [80]. Therefore, instead of sup-

pressing the wildfire all the time, periodic prescribed fire is a better way to avoid uncontrollable

and destructive wildfire. The main difference between the wildfire and the prescribed fire is the

fire intensity. Many benefits can be brought by a controlled prescribed fire with proper intensity

while the escaped prescribed fire can become a severe wildfire and cause great damages. As a

consequence, it is important to design a comprehensive burn plan to conduct a safe prescribed
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fire that can achieve the objective of management. Many researches have been done to study

the effect of the prescribed fire on the reduction or suppression of the potential wildfire [81–83].

However, most of them are relied on the empirical or simplified fire model.

With the advancement of computing power, more and more models have been developed

to simulate the progression of fire. A mathematical model is introduced by Rothermel [3].

Subsequently, many empirical or semi-empirical models, BEHAVE [84, 85], FARSITE [8], and

Prometheus [86], with a simplified physical process are created. These models use the weather

information collected from the weather stations, and take no account of the interaction between

the fire and the atmosphere. Fire simulation models are combined with computational fluid

dynamics model to capture the fire-atmosphere interactions [9, 11, 87]. In the meantime, most

of these models are designed for the wildfire, and wildfire researches might not be proper for

the prescribed fire [14]. Considering the difference between the wildfire and the prescribed

fire [88], QUIC-Fire is established to predict the progression of the prescribed fire by modeling

the response to both ignition patterns and the weather conditions at an appropriate temporal and

spatial scale.

Although QUIC-Fire can simulate the spread of the prescribed fire with given burn

conditions such as wind conditions, surface moisture, and ignition patterns as a function of time,

it cannot be applied directly to provide a burn plan for a prescribed fire due to the complicated

non-linear fire progression. Therefore, a large amount of simulations (ensembles) with various

burn conditions should be conducted to learn the allowable range of the burn conditions for a

particular prescribed fire in a specific area. To label the safety of the simulated prescribed fire

and determine the allowable burn conditions, fire domain experts need to view the final burn area

of the prescribed fire in each ensemble. This is a tedious process with a heavy workload. To

solve this problem, a logic model is proposed in this chapter to automatically labeling the safety

of the simulated prescribed fire. Besides the static information of prescribed fire obtained at the

final simulation step, the fire growth rate that is calculated based on the images of fuel densities

generated by QUIC-Fire at each time step within the simulation is also adopted in the automatic
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labeling algorithm. Despite that the wind speed and surface moisture can partly reflect the fire

growth, the direct application of fire growth rate can make the logic model more general and

concise.

For a prescribed fire, a desired burn boundary should be decided in the burn plan for the

management objective. Any fire outside the desired burn boundary is denoted as slop-over, and

is considered to be the risk of potential wildfire. Multiple metrics including the size, distribution,

number and growth rate of the slop-over are extracted from each simulation for the evaluation of

fire behavior. Related threshold values are established as the parameters for the logic model to

classify these metrics and distinguish the safe, marginal, and unsafe simulated prescribed fire.

900 ensembles of the prescribed fire in the Yosemite, CA region are used for the establishment

and validation of the logic model. Due to the fact that the gradient is inaccessible to the logic

model, the threshold values in the logic model are optimized via a gradient-free optimization by

48 out of 900 ensembles of prescribed fire with verified manual labels. Afterwards, the logic

model is applied to automatically create the labels for the remaining 852 ensembles, and the

automatically created labels are compared to the corresponding manually created labels. The

results of comparison show that there is 100% match between the automatic labels and the

manual labels for the 48 ensembles that are used to optimize the threshold values, and around

80% match for the remaining 852 ensembles. Hence, the proposed logic model is accurate and

effective, and can be employed to make the burn plan for the prescribed fire.

6.2 QUIC-Fire Output and Data Processing

The simulated prescribed fire in the Yosemite is ignited at 0s, and the total simulation

time is 2100s. The outputs of the QUIC-Fire are generated at 84 time steps with the interval

between adjacent time steps being 25s. Two examples of the ensembles are shown in Figure 6.1

and Figure 6.2. Without loss of generality, 9 out of 84 outputs are presented. The yellow area is

the burn area, the green line is the desired boundary, and the red line is the allowable boundary. A
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fire is regarded to escape if any part of the fire crosses the allowable boundary. For Figure 6.1 and

Figure 6.2, if a fire (yellow area) finally abuts against the allowable boundary (red rectangle), the

fire is regarded to escape. As a result, the first example (Figure 6.1) is a fire that burns within the

allowable boundary, and the second one (Figure 6.2) is a fire that escapes outside the allowable

boundary.
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Figure 6.1. A fire that burns within the allowable boundary. The yellow area represents the burn
area, the green line represents the desired boundary, and the red line represents the allowable
boundary.

Any fire outside the desired boundary (green line) is a slop-over, and the size, number,

distribution, growth rate of the slop-over determine the hazard level of a prescribed fire.
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Figure 6.2. A fire that burns outside the allowable boundary. The yellow area represents the burn
area, the green line represents the desired boundary, and the red line represents the allowable
boundary.

6.2.1 Total Surface Area of Slop-over (As)

The size of the slop-over is measured by the total surface area of the slop-over created

at the last time step. From Figure 6.1(i) and Figure 6.2(i), it can be observed that the second

ensemble (Figure 6.2(i)) is more dangerous in terms of the size of the slop-over. The total surface

area is quantitatively calculated by summing the number of pixels of the burn area outside the

desired boundary.
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6.2.2 Number of Slop-over (ks)

The number of slop-over is also computed based on the simulation at the last time step.

Any isolated burn area outside the desired boundary can be regarded as a single slop-over. Due

to the fact that all the pixels of the burn area outside the desired boundary are connected for both

Figure 6.1(i) and Figure 6.2(i), the number of slop-over is 1 for both cases.

6.2.3 Maximum Distance Between Slop-overs (ls)

The distance between slop-overs is calculated by the distance between the center of the

smallest rectangle with horizontal and vertical sides that can contain one complete slop-over.

The distance between slop-overs is zero if there is only one slop-over. The maximum value of

the distance between slop-overs is chosen as the representative value for the distance between

slop-overs to display the worst case if there are more than two slop-overs. Similarly, the distance

between slop-overs is obtained from the simulation at the last time step.

6.2.4 Maximum Filtered Growth Rate of Slop-over (vs)

Compared to all other three metrics, the growth rate of the slop-overs is calculated as a

function of the time step. In other words, the outputs of the QUIC-Fire at all 84 time steps are

required to obtain the growth rate of the slop-over. The growth rate of the slop-over at each time

step can be quantified as the difference value between the total surface area of the slop-over at the

current time step and the total surface area of the slop-over at the preceding time step. The growth

rate of the slop-overs for the two ensembles shown by Figure 6.1 and Figure 6.2 are illustrated by

Figure 6.3 and Figure 6.4 respectively. The blue line is the originally computed growth rate. To

remove the high frequency components and smooth the growth rate, a second-order Butterworth

filter with normalized cutoff frequency 0.1 is applied. The filtered growth rate is represented by

the red line. Similar to the distance between slop-overs, the maximum value of the filtered growth

rate should be extracted to capture the worst situation of a prescribed fire. From Figure 6.3, it

can be observed that the growth rate increases at the beginning while decreases before 30th time
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step. This phenomenon is due to the effect of the ignition. As shown in Figure 6.1(a), the yellow

area inside the desired boundary (green line) is mostly caused by the ignition. The path of the

ignition is too close to the desired boundary so that the ignition accelerates the production and

the expansion of the slop-over. As a result, for the prescribed fire that burns within the allowable

boundary (red line), the maximum value of the filtered growth rate is picked out after the 30th

time step to avoid the effect of the ignition. For Figure 6.3, the maximum filtered growth rate is

achieved at the last time step.
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Figure 6.3. Growth rate of the slop-overs in the ensemble shown by Figure 6.1. The blue line is
the original growth rate. The red line is the filtered growth rate.

By contrast, for the prescribed fire that escapes outside the allowable boundary (Fig-

ure 6.2), it can be observed that the prescribed fire approaches the allowable boundary (red line)

in a short time, and almost no change occurring from Figure 6.2(g) to Figure 6.2(i) leads to a

small growth rate at the end in Figure 6.4. For these reasons, the effect of the acceleration caused

by the ignition is neglected, and the maximum value of the filtered growth rate is sought out from
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all time steps. For Figure 6.4, the maximum filtered growth rate is achieved at the 14th time step.
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Figure 6.4. Growth rate of the slop-overs in the ensemble shown by Figure 6.2. The blue line is
the original growth rate. The red line is the filtered growth rate.

These four metrics, the total surface area of the slop-over (As), the number of the slop-

over (ks), the maximum distance between slop-overs (ls), and the maximum filtered growth rate

(vs), are utilized as the input to the logic model. With different combinations of the four metrics,

the fire safety of each ensemble can be decided to be safe, marginal, or unsafe. The parameters

required by the logic model to evaluate the four metrics will be introduced in the following

section.

6.3 Parameters Definitions

The simulated prescribed fire has the potential ability to escape if one or more metrics is

huge. To measure the four metrics, the maximum and marginally allowable values are established

for them respectively. If one metric is larger than the corresponding maximum allowable value,
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the simulated prescribed fire is likely to be unsafe. To make a further judgement, threshold value

α is created to evaluate the combined influence of the remaining three metrics. The simulated

prescribed fire is identified as an unsafe fire if the risk level in regard to the remaining three

metrics is also high enough compared to α . Similarly, a simulated prescribed fire is labeled to be

marginal if one metric is larger than its marginal allowable value, and the other three metrics

have a great combined influence in comparison to β . For reference, the inputs of the logic model

and the maximum and marginally allowable values that are used as the parameters of the logic

model are summarized in Table 6.1.

Table 6.1. Nomenclature of inputs and parameters for automatic labeling

Inputs
As total surface area of slop-over
ks number of slop-over
ls representative value of distance between slop-overs
vs representative value of filtered growth rate of slop-over

Parameters:
Amax maximum allowed total surface area of slop-overs
Amar marginally allowed total surface area of slop-over
kmax maximum allowed number of slop-over
kmar marginally allowed number of slop-over
lmax maximum allowed distance between slop-over
lmar marginally allowed distance between slop-overs
vmax maximum allowed growth rate of slop-over
vmar marginally allowed growth rate of slop-over

α threshold value
β threshold value

6.4 Logic Model of Automatic Labeling Algorithm

As mentioned before, the prescribed fire has the capability of escaping if one metric is

large, and the remaining three metrics should also be checked in order to finally determine the
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safety of the prescribed fire. With the assumptions as

m = [As,ks, ls,vs] ,

x = [Amax,kmax, lmax,vmax] ,

r = [Amar,kmar, lmar,vmar] ,

(6.1)

the mathematical expressions of the logic rule for each metric can be established as

f j =


1, if m j

x j
> 1 and ∑

n={1,2,3,4}\{ j}

mn
xn

> α

0, otherwise

, (6.2)

g j =


1, if m j

r j
> 1 and

4
∑

n={1,2,3,4}\{ j}

mn
rn

> β

0, otherwise

. (6.3)

where j = 1,2,3,4 corresponding to each metric respectively. The logic rule means that if

the ratio of one metric to its maximum or marginally allowed value is larger than 1, and the

summation of the ratios of the remaining three metrics to their maximum or marginally allowed

values is larger than the threshold value α or β , the prescribed fire is considered to be unsafe or

marginal.

For the logic model of the automatic labeling algorithm, the label of each simulated

prescribed fire is assumed to be safe at the beginning. Then, a simulated prescribed fire is

regarded to be unsafe if it escapes outside the allowable boundary. For a simulated prescribed

fire that burns within the allowable boundary, if f j = 1 for any j, the prescribed fire is labeled to

be unsafe. At last, if a prescribed fire is not unsafe, and g j = 1 for any j, the prescribed fire is

identified to be marginal. The logic model of the automatic labeling algorithm is summarized in

the Algorithm 10.
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Algorithm 10. Automatic Labeling Algorithm
Inputs: As, ks, ls, vs
Parameters: Amar, Amax, kmar, kmax, lmar, lmax, vmar, vmax, α , β

Output: Label of the prescribed fire
1: Assume that the prescribed fire is safe.
2: if the prescribed fire escapes outside the allowable boundary then
3: the prescribed fire is unsafe

4: else if
4
∑
j=1

f j > 0, where f j is from (6.2) then

5: the prescribed fire is unsafe

6: else if
4
∑
j=1

g j > 0, where g j is from (6.3) then

7: the prescribed fire is marginal
8: end if

6.5 Optimization

The performance of the automatic labeling algorithm introduced in Algorithm 10 is

principally relied on the value of the parameters summarized in Table 6.1. For different prescribed

fire, some typical ensembles with manual labels that are carefully created by fire domain experts

can be exploited to optimize the value of the parameters. The formal problem of determining the

numerical value of the parameters based on the manually created labels of the fire safety can be

stated as the optimization

min
u

10

∑
i=1

di
ui

qi
− c(u),

subject to: pi ≤ ui ≤ qi, for i = 1,2, . . . ,10

ui ≤ ui+1, for i = 1,3,5,7

c(u),Amar,Amax,kmar,kmax ∈ Z

(6.4)

where u = [Amar,Amax,kmar,kmax, lmar, lmax,vmar,vmax,α,β ], with ui represents the ith parameter

in u. di, pi, and qi are the weighting coefficient, lower bound, and upper bound of ui respectively.

The summation of the weighting coefficient is equal to 1 (∑N
i=1 di = 1), and the value of pi and qi

can be estimated based on the size of the fuel domain and the required management objectives.
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c(u) represents the agreement between the labels automatically created by Algorithm 10 and the

labels manually created by a fire domain expert.

Considering that the qi is the upper bound of ui, and the summation of all weighting

coefficients is equal to 1, it can be obtained that ∑
10
i=1 di

ui
qi

is less than 1 and any change in the

match number c(u) has a greater influence on the optimization. As a result, increasing the

goodness of fit between the automatic labels and the manual labels has higher priority than

seeking the minimum numerical value of each parameter.

On account of the fact that integer-valued parameters and functions are important com-

ponents of the logic model, and the gradient of the logic model is inaccessible, a gradient-free

optimization is in demand. Among all the gradient-free optimization, genetic algorithm [75] has

a good ability to deal with the integer-valued variable. In the meantime, it is convenient to add

the essential linear constraints shown in (6.4) during the optimization by using genetic algorithm.

Therefore, genetic algorithm is adopted to optimize the numerical values of the parameters.

6.6 Numerical Results

6.6.1 Parameter Optimization

An ensemble of 900 simulated prescribed fires in Yosemite with different burn conditions

including the ignition pattern, wind conditions, and the surface moisture is created by QUIC-Fire.

The 900 ensembles are divided into two groups as training data set and validation data set.

The training data set and validation data set are used for optimizing parameters established in

Algorithm 10, and validating the performance of Algorithm 10 in real situation respectively. All

these 900 simulated prescribed fires are manually labeled, and 48 out of the 900 ensembles are

double checked to ensure the validity of the manual labels. Under this circumstance, those 48

ensembles with validated manual labels are used to optimize the parameters of automatic labeling

algorithm, and the automatic labels created by Algorithm 10 with optimized numerical value of

the parameters are compared to the manually created labels for the remaining 852 ensembles to
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evaluate the performance of the automatic labeling.

For i = 1,2, . . . ,10, pi and qi in (6.4) are chosen as shown in Table 6.2. Due to the fact

that the prescribed fire can be dangerous only when there is at least one slop-over and only finite

number of integer values is available for the number of slop-over, p3 and p4 are chosen as 1 for

the marginally allowed number of slop-over kmar and maximum allowed number of slop-over

kmax to increase the computational efficiency. Moreover, 5 is chosen for the upper bound of α

and β to slightly extend the limitation since all the parameters are minimized in the optimization

and lower value than the real one might be obtained numerically.

Table 6.2. The lower bound pi and upper bound qi of the parameter ui.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
0 0 1 1 0 0 0 0 0 0
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

147000 147000 5 5 1000 1000 1000 1000 5 5

With the selected lower bound and upper bound, the optimal values of the parameters

obtained by using the genetic algorithm based on the 48 verified manual labels is summarized in

Table 6.3 .

Table 6.3. Parameters (u) optimized by the 48 verified manual labels.

Amar Amax kmar kmax lmar lmax vmar vmax α β

u 15598 17385 1 2 256.87 323.01 116.91 178.02 1.70 2.39

Algorithm 10 with the parameters summarized in Table 6.3 is applied on all 900 simulated

prescribed fires in the Yosemite to automatically create the label for each ensemble.

6.6.2 Accuracy of Labeling Matching

100% accuracy has been achieved for the matching between the automatic labels and

verified manual labels for the 48 ensembles in the training data set. Hence, the automatic labeling

algorithm is capable of automatically creating the labels for the simulated prescribed fires. For

the remaining 852 ensembles that are not included in the training data set, another fire domain
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expert assists in manually labeling the safety of the prescribed fire to share the workload of

manual labeling. The accuracy of the matching between the automatic labels and the manual

labels for the 852 ensembles with manual labels created by two fire domain experts is 76.29%.

6.6.3 Evaluation of Manual Labeling

Different fire domain experts have different criteria to evaluate the fire safety, and

inconsistent manual labels can be created after long hours of work. Due to the fact that the

manual labels of the 48 ensembles in the training data set is double checked and more reliable,

the manual labels of the remaining 852 ensembles in the validation data set is analyzed. The

minimum value and the maximum value of the four metrics are computed for the manually

labeled safe, marginal and unsafe prescribed fire based on the 48 ensembles with verified

manual labels and the 852 ensembles with mixed manual labels, and the results are illustrated in

Figure 6.5.

From Figure 6.5(a), it can be observed that the maximum value of As of an ensemble

from the validation data set (852 ensembles) that is manually labeled as a safe fire is extremely

large. Furthermore, the maximum value of As of another manually labeled unsafe fire from the

validation data set is 0. These are contrary to the reality since the size of the slop-over for a

safe fire should be small, and an unsafe fire should have at least one slop-over and the ability

to escape. Additionally, the range between the minimum value and the maximum value for the

852 ensembles in the validation data set is much larger than the range for the 48 ensembles in

the training data set. It means the training data set is not representative enough, or the manual

labels of the validation data set should be reviewed. To figure out the cause of the mismatch

between the automatic labels and the manual labels, the fire domain expert who provides the

manual labels for the training data set re-labels 12 canonical cases out of the 852 ensembles

with mismatched automatic labels and manual labels. 9 of the 12 revised manual labels are the

same as the automatic labels, while 3 of the 12 revised manual labels are still different from the

automatic labels. Therefore, manual labels can be inconsistent, and automatic labeling algorithm
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Figure 6.5. Minimum and maximum value of the four metrics for the manually labeled safe,
marginal, and unsafe prescribed fire. Minimum and maximum value for 48 ensembles (red and
green), and for 852 ensembles (blue and cyan).
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can be applied to correct the manual labels to some extent. In the meantime, more ensembles

with verified manual labels should be added to the training data set to improve the optimization

of the parameters utilized in the automatic labeling algorithm.

6.6.4 Further Improvements

Although four metrics can all be used for measuring the fire safety, the importance of the

four metrics are different. For example, the distance between slop-over is always 0 and provides

no information if there is only one slop-over. Hence, weightings can be put on each ratio in (6.2)

and (6.3) to label the fire safety more precisely. In addition, more suggestions can be requested

from the fire domain experts about the potential value of each parameter in Algorithm 10 to

better determine the upper bound and lower bound of each parameter.

6.7 Summary

This chapter proposes a logic model to automatically label the safety of a prescribed

fire by evaluating the metrics of the total surface area of the slop-over, the number of the slop-

over, the maximum distance between each slop-over, and the maximum filtered velocity of the

fire growth. In addition to the static information, the dynamic information of fire growth rate

is adopted to establish a more general and comprehensive logic rule. The parameters of the

automatic labeling algorithm are optimized by using the genetic algorithm, and 900 simulated

prescribed fires in the Yosemite, CA region, with manually created fire safety labels are used

for the optimization and validation. 48 of 900 ensembles with verified manual labels are used

as the training data and 100% accurate match has been achieved between the automatic labels

and manual labels, the remaining 852 of 900 ensembles are used to validate the performance of

the logic model, and the match is around 80%. The manual labels of the 852 ensembles used

for validation are analyzed, and inconsistency is found. 9 out of 12 revised manual labels of the

ensembles from the 852 ensembles are the same as the automatic labels. Therefore, the automatic

labeling can be exploited to correct the inconsistent manual labels to some extent. Besides the
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labels of the fire safety, the logic model of the automatic labeling algorithm can also provide the

explanation for the result of labeling based on the fact that which rule in the model is violated.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This dissertation proposes multiple algorithms to tackle the specific problems in the

estimation of wildfire propagation and the safety evaluation of prescribed fires. At first, wind

conditions are optimized by comparing the simulated wildfire perimeters and the measured

wildfire perimeters using two errors, weighted least-squares error and weighted surface area error.

Grid search method is adopted for the optimization, and the optimized wind conditions greatly

improve the performance of the wildfire simulations by FARSITE. Then, the iterative minimum

distance algorithm is created to automatically generate the closed polygons of wildfire perimeters

by ordering the unordered boundary points obtained using image segmentation methods. The

ordering of the boundary points is implemented by finding the closest boundary points one

by one, and iteration is utilized when there are multiple closest boundary points. Afterwards,

iterative trimming method is designed to detect the wildfire perimeter for the thermal infrared

image of wildfire with sparse pixels that have high infrared value. Compared to the classical

image segmentation methods that can hardly recognize the wildfire perimeter for the TIR image

with disconnected burn areas owing to the fact that they are highly relied on the image gradient

or image continuity, the iterative trimming method performs well in creating the closed polygon

for the main wildfire perimeters. For the prescribed fire, two logic models are introduced to

automatically labeling the fire safety of a simulated prescribed fire, multiple metrics including
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the total surface area of slop-overs, number of slop-overs, and distances between slop-overs are

computed to measure the fire risk level. One logic model takes advantage of the wind speed

and surface moisture to partially reflect the information of fire growth, while the other one

exploits the fire growth rate directly. Both of them can create automatic labels for each simulated

prescribed fire. One logic model using the wind speed and surface moisture is carefully designed

for various conditions, and the other logic model including the fire growth rate is more general

and neater. All these algorithms are illustrated on real data of a wildfire or simulations from fire

models.

7.2 Recommendations for Future Work

This dissertation proposes several algorithms to improve the prediction accuracy of

the fire progression and detect the fire perimeter. Following these two directions, two more

interesting problems need to be solved. The first one is how to describe the fire perimeter with

fewer vertices so that the computational effort in data assimilation method can be further reduced,

and the second one is how to characterize the uncertainty on each vertex after the closed polygon

of fire perimeter is established by the iterative trimming method.

7.2.1 Reduced Vertex Complexity Fire Perimeter

As shown in Figure 2.1, many vertices are closely clustered leading to a problem of the

skewed emphasis of the weighted least-squares error. To solve this problem, a reduced vertex

complexity closed polygon of the fire perimeter can be a good solution. In addition, vertex

complexity reduction can also result in the reduction of computational time in comparing the

simulated wildfire perimeter and the measured wildfire perimeter by using the weighted least-

squares error. There are three potential directions for obtaining the reduced vertex complexity

closed polygon. The first one is to use the Visvalingam–Whyatt algorithm, the second one is

to apply a downsampling on the filtered vertices of the closed polygon, and the last one is to

find out a simplified piecewise line segments representation of the original fire perimeter. All
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three approaches are applied on a simulated wildfire perimeter of Maria fire with 413 vertices

(Figure 7.1).
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Figure 7.1. One simulated wildfire perimeter of Maria fire. Blue circles represent the 413
vertices of the fire perimeter.

Visvalingam–Whyatt Algorithm

Visvalingam–Whyatt algorithm [89] is an algorithm to represent a curve composed of

line segments by a similar curve with fewer vertices. Each vertex of the original curve is assigned

a weighting, and these weightings are utilized to remove the less important vertices. With given

vertex (xi,yi), the weighting of each vertex is calculated as the area of the triangle formed by

this vertex and the two adjacent neighboring vertices (xi−1,yi−1) and (xi+1,yi+1) by using the

formula:

Ai =
1
2
|xi−1yi + xiyi+1 + xi+1yi−1 − xi−1yi+1 − xiyi−1 − xi+1yi| .

The vertex with the smallest area Ai is removed until the desired number of vertices is reached.

One problem of this algorithm is that it will remove all the closely clustered vertices if the desired

number of vertices is extremely small because closely clustered vertices normally have relatively

smaller Ai. This problem can be solved by removing the vertices iteratively. For the simulated

wildfire perimeter with 413 vertices, if the desired number of vertices is chosen to be 50, the

104



result of Visvalingam–Whyatt algorithm without iteration is shown as Figure 7.2.
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Figure 7.2. Result of Visvalingam–Whyatt algorithm without iteration. Blue circles represent
the original 413 vertices of the fire perimeter. Red dashed line represents the reduced vertex
complexity fire perimeter.

From Figure 7.2, it can be observed that all the closely clustered vertices in the top

right part are removed, so the result of Visvalingam–Whyatt algorithm without iteration is not

acceptable. In comparison, if Visvalingam–Whyatt algorithm is used to remove 60 vertices in

every iteration, the result is presented as Figure 7.3.
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Figure 7.3. Result of iterative Visvalingam–Whyatt algorithm. Blue circles represent the original
413 vertices of the fire perimeter. Red dashed line represents the reduced vertex complexity fire
perimeter.

For the iterative Visvalingam–Whyatt algorithm, the reduced vertex complexity closed

polygon is decent, but how to optimally choose the number of vertices to be removed in each

iteration needs to be figured out.

Filtering and Downsampling Algorithm

Another good direction for obtaining the reduced vertex complexity closed polygon of a

fire perimeter is by using the filtering and downsampling method. The first step is to filter the

original vertices based on a two-dimensional filtering on x and y coordinates, and the second step

is to downsample the filtered vertices. For the filtering step, a low-pass forward and backward

filter can be applied, and the results of the filtered x and y coordinates of the vertices in Figure 7.1

are shown in Figure 7.4.

With the filtered coordinates, the filtered fire perimeter can be plotted as Figure 7.5. It

can be observed that high-frequency terms are removed, or wiggling parts of the original fire

perimeter are smoothed.

Then, based on the filtered vertices, a downsampling can be applied by keeping the first
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(a) Filtered x coordinates of vertices.
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(b) Filtered y coordinates of vertices.

Figure 7.4. Filtered coordinates of vertices in Figure 7.1. Blue lines represent the original
coordinates and red lines represent the filtered coordinates.

sample and every eighth sample after the first one to establish a reduced vertex complexity fire

perimeter, and the result is shown in Figure 7.6. It can be observed that the red dashed line

almost coincides with the black stars.

After the downsampling, only 52 vertices are needed to approximately represent the

original fire perimeter consisting of 413 vertices. Compared to the iterative Visvalingam–Whyatt

algorithm, filtering and downsampling algorithm is more robust because the filtering will also

smooth the distance between adjacent vertices automatically, and the problem of the closely

clustered points is solved automatically. The drawback of the filtering and downsampling method

is that the number of remaining vertices is hard to be determined directly since the number of the

removed vertices are decided by the combined effect of the original number of vertices and the

sample rate of downsampling. In addition to applying a position invariant filtering, a position

varying filtering can also be utilized based on the importance of each vertex.

Piecewise Line Segments Algorithm

At last, the least-squares error method can be employed to produce a piecewise line

segments representation of the fire perimeter. Three main steps are included in this algorithm.

The first step is to keep adding the vertex in sequence and check whether the least-squares error
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Figure 7.5. Result of filtering. Blue circles represent the original vertices and black stars
represent the filtered vertices.

of the created line segment based on the added vertices is larger than a user-defined threshold

value. If the error is smaller than the threshold value, then add a new vertex in order. Otherwise,

if the error is larger than the threshold value, remove the last added vertex and create the line

segments based on the previously added vertices, and then create a new line segment based

on the following vertices. After finishing creating the line segments by using all the original

vertices, the second step is to combine the adjacent line segments with an extremely close slope.

If the slopes of two adjacent line segments are close, then all the vertices used for these two

line segments are reused to create a single line segment by using the least-squares error. Finally,

connecting the established line segments one by one and calculate the intersection points to

describe the closed polygon of the fire perimeter. The result of the line segments representation

of Figure 7.1 is shown in Figure 7.7. It can be observed that line segments representation can also

capture the main characteristic of the original fire perimeter. The accuracy of the line segments

representation can be adjusted by tuning the two threshold values defined for the least-squares

error and the tolerance of the slope difference between two adjacent line segments. Still, for the

line segment representation, the number of the remaining vertices is decided by the number of

line segments and is hardly determined directly by people.
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Figure 7.6. Result of downsampling. Blue circles represent the original vertices, red stars
represent the downsampled vertices, and red dashed line represents the fire perimeter consisting
of downsampled vertices.

Comparison

To evaluate the performance of each method, the results of these three algorithms are

compared. The vertex number and the surface area of each reduced vertex complexity fire

perimeter are summarized in Table 7.1, and the area of the union of the original fire perimeter and

the reduced vertex complexity fire perimeter minus the intersection of the original fire perimeter

and the reduced vertex complexity fire perimeter is also calculated for each method.

Table 7.1. Comparison of three reduced vertex complexity fire perimeters.

Vertex Number Surface Area
Area of Union minus

Intersection
Original Fire

Perimeter
413 4509593 0

Visvalingam–Whyatt
Algorithm

50 4470309 103028

Filtering and
Downsampling

Algorithm
52 4434604 138906

Piecewise Line
Segments Algorithm

51 4500998 54519
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Figure 7.7. Piecewise line segments representation of fire perimeter. Blue circles represent the
original vertices and red dashed line represents the piecewise line segments representation of fire
perimeter.

7.2.2 Uncertainties on Vertices of Wildfire Perimeter Detected by
Iterative Trimming Method

As we introduced before, iterative trimming method can be used to detect the wildfire

perimeter for the fire image with sparsely located high-value pixels. In addition to the wildfire

perimeter, to describe a two-dimensional uncertainty, a circle can be established for each vertex

of the wildfire perimeter based on the average relative burn area surrounding the vertex and

the distance from the vertex to the closest neighboring vertices. The average relative burn

area can be calculated by the number of the active pixels inside the intersection of the chosen

domain around a vertex and the wildfire perimeter divided by the total number of the pixels

inside the intersection. Then a high average relative burn area means a small uncertainty on

the corresponding vertex because more active pixels provide more information of the burning

and vice versa. For the highest average relative burn area, the uncertainty radius is chosen to

be 1, and the other uncertainty radius is computed as the value of the highest average relative

burn area divided by the corresponding average relative burn area. In the meantime, the closest

distance between the vertex and its neighboring vertex can also be exploited to measure the

110



uncertainty. A small closest distance means a small uncertainty on the vertex since vertices are

more likely to have large uncertainties if they are sporadically located. With these two values, the

uncertainty on each vertex is finally decided by the smaller of the uncertainty radius computed by

the average relative burn area and the closest distance from the vertex to its neighboring vertex.

The established two dimensional uncertainties on vertices of the wildfire perimeter are illustrated

in Figure 7.8. It can be observed that the vertex with a small average relative burn area and a

large distance to its neighboring vertex have a relatively larger uncertainty radius.

Figure 7.8. Uncertainties on vertices of the wildfire perimeter. White area is the burn area,
black area is the unburned area, red line is the wildfire perimeter, and green circles represent the
uncertainties on vertices of the wildfire perimeter.

To better visualize the uncertainty regions, an linear interpolation of the uncertainty along

the edge of the fire perimeter is carried out based on the discrete uncertainty circles on each

vertex. The visualization of the uncertainty regions of the wildfire perimeter is indicated in

Figure 7.9.
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Figure 7.9. Visualization of uncertainty regions (in between the green lines) of the wildfire
perimeter. Green circles represent the uncertainties on vertices of the wildfire perimeter.
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