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Global seasonal forecasts of marine 
heatwaves

Michael G. Jacox1,2,4 ✉, Michael A. Alexander2, Dillon Amaya2, Emily Becker3, 
Steven J. Bograd1,4, Stephanie Brodie1,4, Elliott L. Hazen1,4, Mercedes Pozo Buil1,4 & 
Desiree Tommasi4,5

Marine heatwaves (MHWs)—periods of exceptionally warm ocean temperature lasting 
weeks to years—are now widely recognized for their capacity to disrupt marine 
ecosystems1–3. The substantial ecological and socioeconomic impacts of these extreme 
events present significant challenges to marine resource managers4–7, who would 
benefit from forewarning of MHWs to facilitate proactive decision-making8–11. However, 
despite extensive research into the physical drivers of MHWs11,12, there has been no 
comprehensive global assessment of our ability to predict these events. Here we use a 
large multimodel ensemble of global climate forecasts13,14 to develop and assess MHW 
forecasts that cover the world’s oceans with lead times of up to a year. Using 30 years of 
retrospective forecasts, we show that the onset, intensity and duration of MHWs are 
often predictable, with skilful forecasts possible from 1 to 12 months in advance 
depending on region, season and the state of large-scale climate modes, such as the El 
Niño/Southern Oscillation. We discuss considerations for setting decision thresholds 
based on the probability that a MHW will occur, empowering stakeholders to take 
appropriate actions based on their risk profile. These results highlight the potential for 
operational MHW forecasts, analogous to forecasts of extreme weather phenomena, to 
promote climate resilience in global marine ecosystems.

Marine heatwaves (MHWs) affect marine ecosystems around the globe, 
with reported impacts including altered primary productivity, pro-
liferation of harmful algal blooms, displacement of ocean habitats, 
changes to distributions and populations of marine species, increased 
human–wildlife conflict and fishery disasters1,5,15–19. Reliable forecasts 
of these climate extremes would help marine stakeholders to mitigate 
negative impacts and seize opportunities, thereby improving resilience 
through anticipatory decision-making7. A key step in that direction is 
the development of MHW predictions, which can be achieved by using 
operational global climate forecasts. Seasonal (that is, 1–12-month 
lead time) sea surface temperature (SST) forecasts are routinely used 
to predict the state of large-scale climate modes, such as the El Niño/
Southern Oscillation (ENSO)20,21, and for targeted applications, such 
as the NOAA Coral Reef Watch coral bleaching outlook22. Here we use 
these climate forecast systems to develop global predictions of MHWs 
and evaluate their skill over the past three decades. In doing so, we 
highlight the feasibility of predicting MHWs and provide a foundation 
for a much-needed operational MHW forecast system.

MHW forecast skill
The MHW forecasts developed here show considerable skill on seasonal 
time scales (Fig. 1). Relative to random forecasts (Methods), the model 
MHW forecasts have significant skill nearly everywhere at shorter lead 
times (up to approximately 2 months), over large areas of the global 

ocean at lead times of 3–6 months and in some areas at even longer lead 
times (6–12 months). Forecast MHW probability is also related to MHW 
intensity, with low probabilities preceding non-MHW periods and higher 
probabilities preceding stronger MHWs (Extended Data Figs. 1 and 2). 
The degree of forecast skill is highly dependent on region, with the high-
est skill found in the tropics (particularly the eastern tropical Pacific) 
and portions of the extratropical Pacific (off the west coasts of North 
America and Patagonia, east of Australia). The most predictable regions 
are not necessarily those with the most intense MHWs; relatively poor 
MHW forecast skill occurs in much of the Southern Ocean and in Western 
Boundary Current regions, in which highly energetic and variable cur-
rents produce intense but relatively short-lived MHWs12,19. As forecast 
lead time increases, the global pattern of forecast skill is retained, but 
forecast skill degrades; at 10.5-month lead time significant skill is con-
fined primarily to the Eastern Tropical Pacific and portions of the Indian 
Ocean, Indo-Pacific region and high-latitude Eastern Pacific. Similarly, 
whereas the patterns in skill described above generally hold throughout 
the year, there is a seasonal modulation of our ability to predict MHWs 
for specific regions (Extended Data Fig. 3). For example, in some regions 
3.5-month lead forecasts are most skilful when initialized in boreal win-
ter (for example, Northeast Pacific, Indian Ocean), whereas for other 
regions forecasts tend to be more skilful when initialized in boreal spring 
(for example, tropical Atlantic) or summer (for example, Coral Triangle, 
Eastern Tropical Pacific). As the forecasts are built on monthly data, 
their skill reflects an ability to predict longer-lived warming events (as 
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opposed to those lasting just days or weeks), although see the Methods 
(section ‘Sensitivity to defining MHWs from daily versus monthly SST’) 
for an exploration of forecasts using daily data.

From an end-user perspective, it is useful to quantify not just the 
overall forecast skill for MHWs (that is, whether there will be an active 
MHW in any given month; Figs. 1 and 2a), but also our ability to predict 
different characteristics of MHWs. Specifically, we focus on forecasting 
aspects of MHW evolution including their onset (that is, the month when 
a MHW first arises) and duration (how long a MHW persists once initi-
ated). When averaged globally, forecast probabilities indicate elevated 
MHW likelihood (>10%) even 11.5 months before the observed start of 
MHWs (Fig. 2b). For shorter lead times (<3–4 months), forecast prob-
abilities on average exceed 15% (that is, 50% higher than the base rate 
of occurrence) and increase rapidly as lead time decreases (Fig. 2b). 
However, there are substantial regional differences in the predictabil-
ity of MHW onset. In regions with MHWs driven by rapid atmospheric 
or oceanic fluctuations, such as the Mediterranean Sea and western 
boundary currents like the Gulf Stream11, skilful forecast lead times are 
often limited to two months or less (Fig. 2b) and even intense MHWs are 
unpredictable at longer lead times (Extended Data Fig. 2). By contrast, 
for regions in which MHWs result from predictable ocean evolution, 
such as the Eastern Tropical Pacific21, highly elevated MHW probability 
(>20%, more than double the climatological probability) is forecast 
up to a year ahead of MHW onset. Regions influenced by atmospheric 
and oceanic teleconnections also show relatively high forecast skill; 
on average, the onset of MHWs in areas such as the Indo-Pacific region 
north of Australia, the California Current System and the northern Brazil 
Current are presaged by forecast MHW probabilities exceeding 20% 
approximately 3–6 months in advance (Fig. 2b and Extended Data Fig. 2).

MHW duration is highly variable across the world’s oceans, with 
the mean length of events ranging from approximately 1 to 7 months 
globally (based on monthly SST data). We find that MHW forecasts 

reproduce these spatial patterns well; over the ice-free regions of the 
ocean, there is a strong correlation between the mean durations of 
forecast and observed MHWs (Pearson correlation coefficient r = 0.83; 
Fig. 2c). However, not all regions show the same potential for accu-
rately predicting the durations of different MHWs at a specific loca-
tion. Temporal correlations between observed and predicted MHW 
duration tend to be highest in regions with the highest overall MHW 
forecast skill (Extended Data Fig. 4; compare with Fig. 1). Regions of 
higher skill also tend to have longer MHWs on average. Forecast skill 
(symmetrical extremal dependence index, SEDI) and mean MHW dura-
tion are strongly positively correlated (Pearson correlation coefficient 
r = 0.74), as regions with shorter duration MHWs tend to be less predict-
able (for example, Gulf Stream, Mediterranean Sea), whereas longer 
MHW duration is associated with greater predictability (for example, 
Eastern Pacific).

In the patterns of MHW forecast skill described above, there is a clear 
imprint of large-scale climate variability. In particular, the dominant sig-
nal in global maps of forecast skill (Fig. 1) is the unmistakable signature of 
ENSO, which is consistent with ENSO effects on seasonal SST predictabil-
ity more generally23–25. Previous work has shown that ENSO is strongly 
tied to an increased or decreased frequency of MHW occurrence in 
many regions12 and, although changes in the frequency of MHWs do not 
necessarily translate to changes in forecast skill (Methods and Extended 
Data Fig. 5), there is an ENSO-related modulation of MHW forecast skill. 
When ENSO is active at the time that forecasts are initialized (that is, 
during an El Niño or La Niña event), MHW forecast skill is enhanced in 
many regions (Fig. 3). Thus, the ENSO state at forecast initialization 
can be used for a priori assessment of whether a forecast is more or less 
likely to be skilful. The most pronounced forecast skill increases occur in 
the Indian and Eastern Pacific Oceans, and the globally averaged MHW 
forecast skill is closely linked to ENSO. The highest global skill in our 
30-year record occurred during the extreme 1997–98 and 2015–16 El 
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Fig. 1 | Skill of global MHW forecasts. Maps indicate MHW forecast skill, as 
measured using the SEDI, for the 73-member ensemble of forecasts obtained 
from six global climate forecast systems for the period 1991–2020. SEDI scores 
range from −1 (no skill) to 1 (perfect skill). Scores above (below) zero, indicated 
by grey contours, indicate skill better (worse) than chance, and skill that is 

significantly better than random forecasts at the 95% confidence level is 
indicated by black contours. MHW forecasts were initialized every month, with 
lead times up to 11.5 months; a subset of lead times is shown here. a–d, 1.5 
months (a), 3.5 months (b), 6.5 months (c) and 10.5 months (d). Areas with 
permanent or seasonal sea ice coverage are masked in white.
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Niño events, and additional periods of elevated skill occurred during the 
1991–92 and 2009–10 El Niño events and the 1998–2000 and 2010–11 La 
Niña events. There is debate about how ENSO events will change under 
increased greenhouse gas forcing, with some studies suggesting they 
may become more frequent or extreme in the future26, whereas others 
point to limitations of global climate models in the tropics27 and argue 
that the ENSO amplitude is more likely to decrease28,29. In any case, these 
studies should be extended to explore the potential impacts of ENSO 
changes on the predictability of MHWs and other extreme phenomena.

MHW forecasts for ocean decision-making
Given the impacts of MHWs on ocean ecosystems, there is a need for 
operational MHW forecasts to help ocean users prepare for and adapt to 

these events. In particular, skilful forecasts of MHWs would provide an 
early warning to resource managers and ocean stakeholders who could 
act to mitigate potential ecosystem impacts or capitalize on new oppor-
tunities. MHW forecasts could also portend changes in the availability 
of target and bycatch species to recreational and commercial fisheries, 
giving both fishing fleets and managers forewarning so as to maximize 
sustainable practices11,30–32. For example, proactive fishery closures may 
reduce both economic losses and ecological risk during events such as 
the 2014–16 MHW that led to increased baleen whale entanglements 
in the California Current System5,33. In other cases, MHW forecasts 
could inform the allocation of increased resources to monitor sensitive 
sites34,35 or guide strategic planning to minimize aquaculture losses36. 
To support such proactive, climate-ready management approaches, 
forecast time scales must match those required for end-users to manage 
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Fig. 2 | Predicting the onset and persistence of MHWs. a, SEDI for 3.5-month 
lead forecasts (as in Fig. 1). Example locations are indicated by coloured circles 
and are referred to in the text as Mediterranean Sea (red), Indo-Pacific 
(blue-green), Eastern Equatorial Pacific (gold), California Current System 
(pink), Gulf Stream (green) and Brazil Current (blue). b, Forecast MHW 
probability leading up to the initial appearance of observed MHWs. For each 
1° × 1° grid cell, forecast probabilities for each lead time preceding the first 
month of observed MHWs are averaged across all events from 1991 to 2020. 
Coloured lines correspond to individual locations in a, whereas the grey line 
and shading indicate the global median and the 25th–75th, 10th–90th and 
0–100th percentiles. For reference, a horizontal dashed line at 10% marks the 

base rate of MHW occurrence; probabilities higher than 10% indicate that MHW 
forecasts correctly predict elevated MHW likelihood from 0.5 to 11.5 months in 
advance (for example, for 30% probability, forecasts are indicating that the 
likelihood of a MHW occurring has tripled). c, Comparison of observed and 
predicted mean MHW duration (that is, on average how long MHWs last once 
established at a given location). Each dot represents the mean duration of all 
events in a 1° × 1° grid cell, with coloured markers corresponding to locations in 
a. The strong correlation (r = 0.83) shows that the global spatial pattern of 
mean MHW duration is reproduced well by forecasts. For temporal correlations 
of observed and predicted MHW durations at individual locations, see 
Extended Data Fig. 4.
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climate risk and enact rapid adaptive responses37,38. Here the lead times 
of skilful MHW forecasts match the time scales of many marine resource 
management decisions8, showcasing the potential for an operational 
MHW forecast system to be a highly effective decision support tool.

When utilizing probabilistic MHW forecasts, end-users will need to 
establish thresholds for the MHW probability at which decisions are 
triggered. The consequences of threshold choice are illustrated here 
for the Coral Triangle and the Galapagos Islands—two regions with coral 
reefs that are subject to bleaching or mortality during MHWs (Fig. 4). 
Enacting a lower threshold means that action is taken more often, which 
is a risk-averse approach that minimizes the rate of false negatives (fail-
ing to take action when a MHW occurs) but also leads to more false posi-
tives (taking action when a MHW does not occur). By contrast, higher 
thresholds limit action to more intense MHWs and a higher certainty 
of MHW occurrence (Fig. 4 and Extended Data Fig. 1) at the expense of 
an increased false negative rate. Individual users must balance the risk 
of inaction with the risk of unnecessary action—for example, trading 
off potentially adverse ecological impacts of unchanged ocean use 
during MHWs (false negatives) against economic consequences of 
excessive restrictions or excessive monitoring during non-MHWs (false 
positives). In this context, special consideration should be given to the 
handling of long-term SST trends in a forecast system, as the decision to 
retain or remove trends when defining MHWs will alter MHW frequency 
and consequently the statistics of forecast hits and misses (Methods 
and Extended Data Fig. 5).

Operational MHW forecasts
The analysis here provides a template for, and demonstrates the fea-
sibility of, an operational MHW forecast system to be used by ocean 

decision-makers. Because the MHW forecasts are built on the existing 
infrastructure of operational climate forecast systems, their transition 
from research to operations is relatively straightforward. In addition, 
the analyses performed here can be tailored to specific locations to 
provide site-specific decision support, including quantification of 
MHW forecast skill (Fig. 1, 2), its dependence on large-scale climate 
variability (Fig. 3) and appropriate decision thresholds (Fig. 4). In the 
future, our MHW forecasts could be expanded upon, with coupled cli-
mate forecasts from additional modelling centres and international col-
laborations (for example, from the Copernicus Climate Change Service; 
https://climate.copernicus.eu/seasonal-forecasts) as well as statistical 
forecasting methods such as linear inverse modelling25,39 or machine 
learning techniques. In addition, whereas the monthly resolution of sea-
sonal forecast output limits its application to the longer-lived MHWs (>1 
month) that tend to be more predictable, forecasts of short-lived events 
may be useful and viable especially at short (for example, subseasonal) 
lead times. Regionally tailored MHW predictions can also be generated, 
either with statistical methods or by downscaling global forecasts, and 
may provide enhanced skill for specific areas. However, we anticipate 
that they would supplement, rather than replace, global forecasts. 
Ensuring global coverage facilitates equitable access to information 
about ocean extremes that may disproportionately affect regions and 
communities that lack the resources to develop regionally tailored 
MHW forecast systems40. Likewise, a global operational MHW forecast 
system can facilitate scientific collaboration to address the impacts of 
these extreme events on marine social–ecological systems. Given the 
pressing need for the forewarning of MHWs, the skilful predictions 
described here represent a key advance towards improved climate 
adaptation and resilience for marine-dependent communities around 
the globe.
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tolerance. a, Observed MHW intensity (SST anomaly) shown as a function of 
MHW forecast probability threshold for 3.5-month lead forecasts in the Coral 
Triangle (orange) and Galapagos Islands (purple) regions. For a given 
threshold, SST anomalies are averaged over all times when the forecast 
probability was at or above that threshold. b, As in a, but for rates of false 
positives (solid lines) and false negatives (dashed lines). Note, a and b have the 
same x axis.
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Methods

MHW observation
MHWs were identified based on v.2.1 of NOAA’s Optimum Interpolation 
Sea Surface Temperature (OISST v.2.1)41,42. OISST v.2.1 was released in 
April 2020, and is identical to v.2.0 for data up until 2015 but includes 
significant quality improvements starting in 2016 (https://www.ncdc.
noaa.gov/oisst/optimum-interpolation-sea-surface-temperature-oisst-
v21). We obtained SST data at daily frequency and 0.25° horizontal 
resolution from NOAA’s Physical Sciences Laboratory (https://psl.noaa.
gov/data/gridded/data.noaa.oisst.v2.highres.html).

The bulk of our analysis was performed using monthly SST data 
for both observations and forecasts, but see the section ‘Sensitivity 
to defining MHWs from daily versus monthly SST’ for a discussion of 
the implications and practicality of using daily instead of monthly 
output. Daily 0.25° OISST data were averaged to monthly temporal 
resolution and 1° spatial resolution for consistency with the forecasts 
being evaluated (see the next section). MHWs were identified based 
on methods proposed in a previous study43 and adapted for monthly 
data as described in ref. 19. First, SST anomalies at each grid cell were 
computed by subtracting the 1991–2020 monthly climatology. MHW 
thresholds specific to each month of the year were then calculated as 
the 90th percentile of observed SST anomalies in a 3-month window 
(for example, for January MHWs, the 90th percentile of all December 
to February SST anomalies). SST anomalies were then converted to 
binary time series (MHW or no MHW) depending on whether they were 
above or below their respective thresholds.

Global climate forecasts
Underlying the MHW forecasts described in this study are seasonal SST 
forecasts obtained from six global climate models contributing to the 
North American Multimodel Ensemble13,14. For each of the six models, 
an ensemble of forecasts is initialized each month, with the number of 
ensemble members and the forecast lead time varying between models 
(Extended Data Table 1). In addition to real time forecasts, a multidec-
adal set of reforecasts has been performed for each model. Reforecasts, 
also sometimes referred to as retrospective forecasts or hindcasts, are 
forecasts simulated for past periods using only information available 
at the time of forecast initialization (that is, ignoring information that 
has subsequently become available). The long historical suite of (re)
forecasts is necessary to rigorously evaluate the skill and biases of 
the forecast systems. Here we obtained monthly averaged SST fore-
cast output for 1991–2020, which is a period that is available from all 
six models, from the IRI/LDEO climate data library (https://iridl.ldeo.
columbia.edu/SOURCES/.Models/.NMME/). Output from all models is 
served on a common grid with 1° resolution in longitude and latitude.

MHW forecasts
To develop MHW forecasts based on the SST forecasts described above, 
a series of steps were performed for each model. First, the reforecast 
and forecast periods were concatenated to produce a single set of fore-
casts for analysis. For models that have more ensemble members in the 
real time forecasts than in the retrospective forecasts (Extended Data 
Table 1), we kept the same number of ensemble members as the retro-
spective forecasts to maintain consistency throughout the analysis 
period. Next, the model mean forecasts were calculated by averaging 
together the individual ensemble members of each model. The model 
mean forecasts were used to calculate model-specific monthly forecast 
climatologies for each initialization month and lead time, as is custom-
ary in climate forecast skill evaluation44,45, and forecast anomalies were 
calculated for each individual ensemble member by subtracting the 
model mean climatology. Next, seasonally varying MHW thresholds 
for each model, lead time and initialization month were calculated 
with the same methodology described above for SST observations. 
Forecasts with SST anomalies at or above their respective thresholds 

were classified as MHWs, resulting in an ensemble of forecasts for binary 
outcomes (MHW or no MHW). The above steps were repeated for each 
of the six models, resulting in a multimodel ensemble of 73 members 
that was used to generate probabilistic monthly MHW forecasts. As 
forecasts are initialized at the beginning of the month, and we report 
monthly averages, lead times range from 0.5 months (for example, 
forecasts of January MHWs, initialized at the beginning of January) to 
11.5 months (for example, forecasts of December MHWs, initialized at 
the beginning of January).

Sensitivity to defining MHWs from daily versus monthly SST
In general, the time scale of predictable events increases with forecast 
lead time, such that one might look at daily output from weather-scale 
forecasts (for example, 1–2 weeks lead time) whereas monthly output 
is more appropriate for seasonal forecasts (up to a year). However, 
although the most impactful MHWs are overwhelmingly longer-lived 
events (>1 month)46, there is also interest in more ephemeral warm 
extremes (lasting days to weeks) that may be missed in monthly aver-
aged SST. To illustrate the influence of using daily rather than monthly 
SST forecasts for MHW prediction, we compare forecasts of MHWs iden-
tified based on daily and monthly output from CCSM4 for the locations 
highlighted in Fig. 2. For these locations, we obtained daily output of 
forecast SST for the entire 1991–2020 period from the CCSM4 model. 
We then repeated the analysis of observed and forecast MHWs using 
daily data with the definition described previously43, which requires 
MHW thresholds to be exceeded for at least five days. Skill metrics for 
MHW forecasts generated from daily SST output were calculated using 
the same methods as those applied to monthly SST forecasts (see ‘MHW 
forecast evaluation’ below).

Relative to MHW forecasts defined from monthly data, forecasts at 
daily resolution show shorter mean MHW durations and often slightly 
lower skill, but no change in the reported patterns in MHW forecast skill 
(Extended Data Figs. 6 and 7). The consistency between the monthly 
and daily forecast skill is not surprising given that MHWs defined with 
daily data are still strongly driven by low frequency variability. However, 
it is important to note that even though seasonal forecasts can predict 
the enhanced or reduced likelihood of MHWs on daily time scales, 
this does not mean that one can predict the details of a specific short 
(for example, five-day) warming event months in advance. Rather, the 
skill in MHW forecasts provided at daily resolution is still reflective of 
predictable longer-lived SST anomalies, and forecast skill tends to be 
lower for shorter-lived events (Extended Data Fig. 6).

We also note that daily output is often not publicly available for sea-
sonal forecasts (for example, NMME output is provided as monthly 
averages). Fortunately, we were able to get daily output from the CCSM4 
model to conduct the comparison shown here, but at least in the near 
term a global MHW forecast system will necessarily be based on monthly 
output. The same may not be true for subseasonal forecasts (for exam-
ple, 45 days or less), for which daily MHW forecasts would be more 
appropriate and daily model output would more likely be available.

Accounting for warming trends
Owing to long-term warming trends in the world’s oceans, the rate of 
MHW occurrence increases over time if fixed thresholds are used to 
identify them. This effect is prominent even over the relatively short 
30-year period examined here, with MHW occurrence increasing 
two- to threefold if the warming trend is not accounted for (Extended 
Data Fig. 5). There has been debate in the literature about whether (or 
when) it is appropriate to retain or remove warming trends in MHW 
research3,19,47. Here we present results in the main text for MHWs calcu-
lated from detrended SST anomalies, but all analyses have been con-
ducted using both methods. For the detrended analysis, we removed 
linear trends over the 1991–2020 period from the observed SST anoma-
lies and the lead-time-dependent forecast SST anomalies at each grid 
cell. In the context of MHW forecasts, warming trends may be removed 

https://www.ncdc.noaa.gov/oisst/optimum-interpolation-sea-surface-temperature-oisst-v21
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or included depending on the user and the application, but it is impor-
tant to understand the implications of how trends are handled. Some 
forecast skill metrics are sensitive to the rate of events, so if trends are 
retained (and MHW frequency increases over time), those skill metrics 
will also show trends that are unrelated to the actual capabilities of the 
model48,49 (Extended Data Fig. 5). In the following section we expand on 
this point in the context of specific forecast skill metrics.

MHW forecast evaluation
Our MHW forecast assessment follows common methods for evaluat-
ing climate and weather forecast skill, particularly for extreme events, 
which present challenges because of their relatively rare occurrence. 
For forecast verification, we first classify each ensemble member at 
each time step according to its position in the 2 × 2 contingency table: 
true positives (MHW is forecast and occurs), true negatives (no MHW 
is forecast and MHW does not occur), false positives (MHW is forecast 
but does not occur) and false negatives (no MHW is forecast but MHW 
occurs). From the contingency table we calculate two skill metrics, the 
forecast accuracy and the SEDI, described below. We also calculate the 
Brier skill score, which is derived from the MHW forecast probability 
(that is, the average of the binary forecasts from all ensemble members 
for a given forecast). Below, each of these metrics is described further. All 
three skill metrics show similar spatial patterns (Extended Data Fig. 8).

Of the many skill metrics proposed for forecasts of extreme events, 
SEDI49 has several desirable qualities50, including (1) it is non-degenerate, 
meaning that it does not trend towards a meaningless limit (for exam-
ple, zero or infinity) as event rarity increases, (2) it is base-rate independ-
ent, meaning that it is not influenced by changes in the frequency of 
events, and (3) it is equitable, meaning its expected value is the same 
(zero) for random forecasts, regardless of what method is used to gen-
erate the random forecasts51. SEDI is calculated as

F H F H
F H F H

SEDI =
log − log − loglog(1 − ) + log(1 − )
log + log + loglog(1 − ) + log(1 − )

,

where H is the hit rate (ratio of true positives to total observed events) 
and F is the false alarm rate (ratio of false positives to total observed 
non-events). The maximum SEDI score is one and scores above (below) 
zero indicate forecasts better (worse) than random chance.

For completeness, we also calculate two additional forecast skill 
metrics: the Brier skill score (BSS) and forecast accuracy. The Brier score 
is an estimate of the mean square error of the probabilistic forecast:

∑N
f oBrS =

1
( − )

i

N

i i
=1

2

where N is the total number of forecasts being evaluated, fi is the 
forecast probability computed from all ensemble members (that is, 
the fraction of forecasts predicting a MHW) for forecast i and oi is the 
observed probability, which is either zero (no MHW) or one (MHW). 
The Brier skill score normalizes the Brier score relative to the skill of a 
reference forecast (BrSref):

BSS = 1 – BrS/BrS .ref

Here the reference forecast is simply the climatological rate of MHW 
occurrence (that is, always predicting a 10% chance of a MHW occur-
ring). The BSS ranges from one (perfect skill) to negative infinity (no 
skill); as for SEDI, scores above (below) zero indicate forecasts better 
(worse) than random chance.

Forecast accuracy is included as a common and easily understand-
able skill metric; it is simply the fraction of forecasts that are correct:

Nforecast accuracy = (true positives + true negatives)/ .

For events that occur on average 10% of the time, the forecast accu-
racy for random forecasts is 0.82. Thus, MHW forecast accuracy above 
(below) 0.82 indicates skill better (worse) than random chance.

Significance of forecast skill metrics is quantified using a Monte Carlo 
simulation with block bootstrapping. Specifically, for a given grid cell we 
(1) calculate the MHW decorrelation time scale, 𝜏 (that is, the lag at which 
autocorrelation drops below 1/e), and then (2) randomly sample (with 
replacement) blocks of length 𝜏 from the observed MHW time series and 
concatenate them to create a forecast of length 360 months (the same 
as the model forecast verification period). This process is repeated to 
create 1,000 random forecasts, and forecast skill is calculated for each 
one. The 95% confidence intervals are then calculated from the skill val-
ues of the random forecasts, with significance defined as forecast skill 
exceeding the 97.5th percentile of the random forecast skill distribution.

When calculating time series of forecast skill (Fig. 3b and Extended 
Data Fig. 5), skill metrics are calculated over all grid cells at each time, 
rather than over all times at each grid cell. For example, the forecast 
accuracy for a given month in Extended Data Fig. 5b is the fraction 
of the ice-free global ocean for which the MHW state that month was 
correctly predicted. Temporal patterns in skill are similar between dif-
ferent metrics (Extended Data Fig. 5), with the exception that there is 
a base rate dependence in the forecast accuracy and in the individual 
components of the contingency table (true/false positives/negatives). 
That dependency is apparent during the strongest El Niño events (when 
SEDI and BSS increase but forecast accuracy declines), and also in the 
influence of long-term warming (Extended Data Fig. 5). If SST data are 
not detrended and consequently the rate of MHWs increases, then 
forecast accuracy declines, true and false positives increase, and true 
and false negatives decrease. These trends simply reflect changes in the 
frequency of events, whereas the performance of the forecast system 
(for example, as measured by SEDI) does not show a long-term trend 
(Extended Data Fig. 5). Thus, whether long-term temperature trends 
are removed or retained during MHW identification and forecasting, 
one must understand the implications for skill assessment.

Data availability
NOAA High Resolution OISST v.2.1 data41,42 were obtained from the 
NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, at their website (https://
www.esrl.noaa.gov/psd/). Global climate forecasts from the NMME13,14 
were obtained from the IRI/LDEO climate data library (https://iridl.
ldeo.columbia.edu/SOURCES/.Models/.NMME/). The MHW forecasts 
described here can be accessed at the NOAA PSL MHWs page (https://
psl.noaa.gov/marine-heatwaves/).

Code availability
All analyses were performed using MATLAB. Codes can be accessed at 
https://github.com/mjacox/MHW_Forecasts.
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Extended Data Fig. 1 | Forecast MHW probability varies with MHW 
intensity. Maps show the mean 3.5-month lead forecast MHW probability 
associated with periods of a, no observed MHW (<90th percentile of SST 
anomalies) and observed MHWs that are b, “weak” (90th–95th percentile of SST 

anomalies) or c, “strong”(>95th percentile). Forecast probabilities higher 
(lower) than 10% indicate an elevated (reduced) likelihood of MHW occurrence. 
A positive relationship between MHW forecast probability and observed MHW 
strength is indicative of forecast skill.



Extended Data Fig. 2 | Observed and predicted MHWs for sample locations. 
a, Mean observed MHW intensity (the average SST anomaly during MHWs), 
with markers corresponding to locations in Fig. 2. b–g, Time series of 

3.5-month lead forecast MHW probability (blue bars) and observed SST 
anomalies (black, with MHWs indicated in red). Panel letters correspond to 
locations shown in a.
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Extended Data Fig. 3 | MHW forecast skill as a function of season. Maps show 3.5-month lead forecast skill, as measured by the SEDI, for forecasts initialized in 
each season: a, December-February, b, March-May, c, June-August, d, September-November.



Extended Data Fig. 4 | Comparison of observed and predicted MHW duration. Maps show the correlation (Pearson correlation coefficient) between observed 
and predicted MHW duration at each location.
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Extended Data Fig. 5 | Temperature trends can influence MHW frequency 
and forecast skill metrics. a, Time series show the global frequency of MHW 
occurrence (percentage of the ice-free global ocean in a MHW state at each 
monthly time step) calculated from SST anomalies with linear 1991–2020 
trends removed (solid lines) and with trends retained (dashed lines).  
b, Time series of 3.5-month lead forecast skill metrics (Symmetrical Extremal 

Dependence Index, SEDI; Brier Skill Score, BSS; and Forecast Accuracy, FA). 
Skill metrics are calculated using globally aggregated forecasts each month 
(for example, forecast accuracy for a given month is the fraction of the ice-free 
global ocean for which the MHW state that month was corrected predicted).  
c, As in b, but for individual components of the 2x2 contingency table.



Extended Data Fig. 6 | MHW forecast skill as a function of MHW duration for 
forecasts based on daily and monthly SST data. For locations in a (which are 
the same as those in Fig. 2 and Extended Data Fig. 2), 3.5-month lead MHW 

forecast skill (SEDI) is shown as a function of mean MHW duration calculated 
from b, daily and c, monthly CCSM4 output.
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Extended Data Fig. 7 | Comparison of lead time dependent MHW forecast 
skill for forecasts based on daily and monthly SST data. a–f, For locations in 
Extended Data Fig. 6, forecast skill (SEDI) is shown as a function of lead time 

calculated from daily (lines) and monthly (circles) CCSM4 output. Daily skill is 
smoothed with a 30-day running mean for plotting.



Extended Data Fig. 8 | Comparison of MHW forecast skill metrics. Maps 
show a, SEDI, b, Brier Skill Score (BSS), and c, forecast accuracy (FA) for 
3.5-month lead MHW forecasts. Perfect forecasts would yield a score of one for 

all three metrics, while the skill expected from random forecasts is 0 for SEDI 
and BSS, and 0.82 for FA (indicated by gray contours).



Article
Extended Data Table 1 | Summary of NMME Forecasts
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