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IMPROVING DIFFERENTIALLY PRIVATE MODELS WITH
ACTIVE LEARNING

Zhengli Zhao1,2, Nicolas Papernot2, Sameer Singh1, Neoklis Polyzotis2, and Augustus Odena2

1UC Irvine, 2Google Brain
zhengliz@uci.edu, augustusodena@google.com

ABSTRACT

Broad adoption of machine learning techniques has increased privacy concerns
for models trained on sensitive data such as medical records. Existing techniques
for training differentially private (DP) models give rigorous privacy guarantees,
but applying these techniques to neural networks can severely degrade model
performance. This performance reduction is an obstacle to deploying private
models in the real world. In this work, we improve the performance of DP models
by fine-tuning them through active learning on public data. We introduce two new
techniques — DIVERSEPUBLIC and NEARPRIVATE — for doing this fine-tuning
in a privacy-aware way. For the MNIST and SVHN datasets, these techniques
improve state-of-the-art accuracy for DP models while retaining privacy guarantees.

1 INTRODUCTION

Privacy concerns surfaced with the increased adoption of machine learning in domains like healthcare
(LeCun et al., 2015). One widely adopted framework for measuring privacy characteristics of
randomized algorithms, such as machine learning techniques, is differential privacy (Dwork et al.,
2006). Abadi et al. (2016) introduced an algorithm for differentially private stochastic gradient
descent (DP-SGD), which made it feasible to scale differential privacy guarantees to neural networks.
DP-SGD is now the de facto algorithm used for training neural networks with privacy guarantees.

There is, however, a crucial problem for models with a large number of parameters: it is difficult to
achieve both non-trivial privacy guarantees and good accuracy. The reasons for this are numerous and
involved, but the basic intuition is that DP-SGD involves clipping gradients and then adding noise to
those gradients. However, gradient clipping has an increasing relative effect as the number of model
parameters grows. This reduces the applicability of differential privacy to deep learning in practice,
where strong performance tends to require a large number of model parameters.1

In this work, we propose a method to mitigate this problem, making DP learning feasible for modern
image classifiers. The method is based on the observation that each DP-SGD update consumes
privacy budget in proportion to the quotient of the batch size and the training-set size. Thus, by
increasing the number of effective training examples, we can improve accuracy while maintaining the
same privacy guarantees. Since obtaining more private training samples will generally be nontrivial,
we focus on using ‘public’ data to augment the training set. This involves assuming that there will be
unlabeled2 public data that is sufficiently related to our private data to be useful, but we think this is
a reasonable assumption to make, for two reasons: First, it is an assumption made by most of the
semi-supervised learning literature (Oliver et al., 2018). Second, one of our techniques will explicitly
address the situation where the ‘sufficiently related’ clause partially breaks down.

In summary, our contributions are:

1For example, the best performing CIFAR-10 classifier from Zagoruyko & Komodakis (2016) has 32.5
million parameters, while the private baseline we describe in Section 4.1 has about 26 thousand.

2 If there is labeled public data, the situation is even better, but this is likely to be rare and is not the setting
we consider here.
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• We introduce an algorithm (DIVERSEPUBLIC ) to select diverse representative samples from
a public dataset to fine-tune a DP classifier.
• We then describe another algorithm (NEARPRIVATE ) that pays a privacy cost to reference

the private training data when querying the public dataset for representative samples.
• We establish new state-of-the-art results on the MNIST and SVHN datasets by fine-tuning

DP models using simple active learning techniques, and then improve upon those results
further using DIVERSEPUBLIC and NEARPRIVATE .
• We open source all of our experimental code.3

2 BACKGROUND

2.1 DIFFERENTIAL PRIVACY

We reason about privacy within the framework of differential privacy (Dwork et al., 2006). In this
paper, the random algorithm we analyze is the training algorithm, and guarantees are measured with
respect to the training data.

Informally, an algorithm is said to be differentially private if its behavior is indistinguishable on pairs
of datasets that only differ by one point. That is, an observer cannot tell whether a particular point
was included in the model’s training set simply by observing the output of the training algorithm.
Formally, for a training algorithm A to be (ε, δ)-differentially private, we require that it satisfies the
following property for all pairs of datasets (d, d′) differing in exactly one data point and all possible
subsets S ⊂ Range(A):

Pr[A(d) ∈ S] ≤ eεPr[A(d′) ∈ S] + δ

where δ is a (small) probability for which we tolerate the property not to be satisfied. The parameter
ε measures the strength of the privacy guarantee: the smaller the value of ε is, the stronger the privacy
guarantee is.

This guarantee is such that the output of a differentially private algorithm can be post-processed at no
impact to the strength of the guarantee provided. In case privacy needs to be defined at a different
granularity than invidividual training points, the guarantee degrades by a factor which, naively, is the
number of points that are included in the granularity considered. See Dwork et al. (2014a) for further
information.

2.2 DIFFERENTIALLY PRIVATE STOCHASTIC GRADIENT DESCENT (DP-SGD)

Building on earlier work (Chaudhuri et al., 2011; Song et al., 2013), Abadi et al. (2016) introduce a
variant of stochastic gradient descent to train deep neural networks with differential privacy guarantees.
Two modifications are made to vanilla SGD. First, gradients are computed on a per-example basis
and clipped to have a maximum known `2 norm. This bounds the sensitivity of the training procedure
with respect to each individual training point. Second, noise calibrated to have a standard deviation
proportional to this sensitivity is added to the average gradient. This results in a training algorithm
known as differentially private SGD (DP-SGD). Unfortunately (as discussed in Section 1), DP-SGD
does not perform well for models with large parameter counts, which motivates the improvements
proposed in the next section.

3 IMPROVING DIFFERENTIALLY PRIVATE MODELS WITH ACTIVE LEARNING

This paper introduces the following high-level process to improve the performance of an existing
DP classifier: First, find a public insensitive dataset containing relevant samples. Second, carefully
select a subset of public samples that can improve the performance of the classifier. Third, fine-tune
the existing classifier on the selected samples with labels. We want to perform the selection and the
fine-tuning in a way which does not compromise the privacy guarantees of the existing classifier.

The first step can be done using domain knowledge about the classifier, e.g., utilizing relevant public
genomic datasets for a DP classifier of genomics data. We assume standard fine-tuning techniques

3We will release the repository in the next update.
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Algorithm 1 The DIVERSEPUBLIC Algorithm

Input: Mdp with privacy cost εdp, Dpublic, Nlabeled, k > Nlabeled, p, Ncluster, Neach
Output: M∗dp fine-tuned on selected public data with the same privacy cost εdp

Epublic ←Mdp(Dpublic)[−1] . Compute ‘embeddings’ of public data
P ← PCA(Epublic, p) . Perform PCA on embeddings and get first p PCs
Spublic ← P × SelectUncertain(Dpublic, k) . Project k most ‘uncertain’ public data onto PCs
ClusterCenters← K-Means(Spublic) . Cluster projected embeddings to get Ncluster clusters
Dlabeled ← ∅
for i = 1 to Ncluster do . Label Neach data points from each cluster
Dlabeled = Dlabeled ∪ TakeCenterPoints(ClusterCenters)

end for
M∗dp ← FineTune(Mdp,Dlabeled)

for the last step. Therefore, the problem boils down to efficiently selecting samples from the public
dataset while preserving privacy. We also assume a limit on the number of selected samples. This
limit is relevant when the samples are unlabeled, in which case it controls the cost of labeling (e.g.,
hiring human annotators to process the selected samples).

We introduce two active learning algorithms, DIVERSEPUBLIC and NEARPRIVATE , for sample-
selection. These algorithms make different assumptions about access to the private training data but
are otherwise drop-in replacements in the end-to-end process.

3.1 PROBLEM STATEMENT AND BASELINE METHODS

We are given a differentially private modelMdp trained and tested on private sensitive data Dtrain
and Dtest respectively. The privacy cost of trainingMdp on Dtrain is εdp (we omit δ for brevity in
this paper, but it composes similarly). And we have an extra set of public insensitive unlabeled data
Dpublic which can be utilized to further improveMdp. Given the number of extra data Nlabeled that we
are allowed to request labels for, and the total privacy budget εlimit of the improved modelM∗dp, we
want to efficiently pick Dlabeled ⊂ Dpublic where |Dlabeled| = Nlabeled, using which we can fine-tune
Mdp toM∗dp of better performance on Dtest. The simplest baseline method we will use is to choose
Nlabeled ‘random’ samples out of Dpublic for fine-tuning. The other baseline that we use is Uncertain
Sampling (Settles, 2009), according to either the ‘entropy’ of the logits or the ‘difference’ between
the two largest logits. These are widely used active learning methods and serve as strong baselines.

3.2 THE DIVERSEPUBLIC METHOD

The baseline methods may select many redundant examples to label. To efficiently select diverse
representative samples, we propose the DIVERSEPUBLIC method, adapted from clustering based
active learning methods (Nguyen & Smeulders, 2004). Given a DP modelMdp of cost εdp, we obtain
the ‘embeddings’ (the activations before the logits) Epublic of all Dpublic, and perform PCA on Epublic
as is done in Raghu et al. (2017). Then we select a number (more than Nlabeled) of uncertain points
(according to, e.g., the logit entropy of the private model) from Dpublic, project their embeddings
onto the top few principal components, and cluster those projections into groups. Finally, we pick
a number of samples from each representative group up to Nlabeled in total and fine-tune the DP
model with these Dlabeled. Though this procedure accessesMdp, it adds nothing to εdp, since there
is no private data referenced and the output of DP models can be post-processed at no additional
privacy cost. It can be applied even to models for which we cannot access the original training data.4
Algorithm 1 presents more details of the DIVERSEPUBLIC method.

3.3 THE NEARPRIVATE METHOD

The DIVERSEPUBLIC method works well under the assumption that Dpublic has the same distribution
as Dtrain. However, this may not be a reasonable assumption in general (Oliver et al., 2018). For
instance, there may be a subset of Dpublic about which our pre-trained model has high uncertainty but

4e.g., models published to a repository like TensorFlow Hub: https://www.tensorflow.org/hub
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Algorithm 2 The NEARPRIVATE Algorithm

Input: Mdp with privacy cost εdp, Dpublic, Nlabeled, k > Nlabeled, p,Dtrain, εdpPCA and εsupport
Output: M∗dp fine-tuned on selected public data with privacy cost εdp + εdpPCA + εsupport

Etrain ←Mdp(Dtrain)[−1] . Compute ‘embeddings’ of private data
P ← DP-PCA(Etrain, εdpPCA, p) . Perform DP-PCA on embeddings and get first p PCs
Strain ← P × SelectUncertain(Dtrain, k) . Project k most ‘uncertain’ private data onto PCs
Spublic ← P × SelectUncertain(Dpublic, k) . Project k most ‘uncertain’ public data onto PCs
NeighborCounts← ∅
for a ∈ Strain do . In PC-space, assign each private point to exactly one public point

Increment(NeighborCounts,NearestNeighbor(a, Spublic))
end for
for b ∈ Spublic do . Compute support with Laplacian noise for each public data point

Nsupport(b)← NeighborCounts(b) + LaplaceNoise(1/εsupport)
end for
Dlabeled ← TakeArgmaxPoints(Nsupport) . Label Nlabeled data points of the highest Nsupport
M∗dp ← FineTune(Mdp,Dlabeled)

which cannot improve performance if sampled. This may be because that subset contains corrupted
data or it may be due simply to distribution shift. In order to mitigate this issue, we propose to
check query points against our private data and decline to label query points that are too far from
any training points (in projected-embedding-space). But doing this check while preserving privacy
guarantees is nontrivial, since it involves processing the private training data itself in addition to
Mdp. Given a DP model of cost εdp, we obtain the embeddings Etrain of all Dtrain, and perform
differentially private PCA (DP-PCA) (Dwork et al., 2014b) on Etrain at a privacy cost of εdpPCA. We
select a number of uncertain points from both Dtrain and Dpublic. Then in the space of low dimensional
DP-PCA projections, we assign each uncertain private example to exactly one uncertain public
example according to Euclidean distance. This yields, for each uncertain public example, a count
Nsupport of ‘nearby’ uncertain private examples. Finally, we choose Nlabeled points with the largest
values ofNsupport+LaplaceNoise(1/εsupport) from the uncertain public data. This sampling procedure
is differentially private with cost εsupport due to the Laplace mechanism (Dwork et al., 2014a). The
total privacy cost of NEARPRIVATE is composed of the budgets expended to perform each of the
three operations that depend on the private data: εdp + εdpPCA + εsupport. More details in Algorithm 2.

4 EXPERIMENTS

We conduct experiments on the MNIST (LeCun et al., 1998) and SVHN (Netzer et al., 2011) data
sets. These may be seen as ‘toy’ data sets in the object recognition literature, but they are still
challenging for DP object recognizers. In fact, at the time of this writing, there are no published
examples of a differentially private SVHN classifier with both reasonable accuracy and non-trivial
privacy guarantees. The baseline we establish in Section 4.2 is thus a substantial contribution by
itself. For both datasets, we use the same model architecture as in the Tensorflow Privacy tutorials5.
We obtainMdp by training onDtrain via DP-SGD (Abadi et al., 2016). Unless otherwise specified, we
always aggregate results over 5 runs with different random seeds and use error bars to represent the
standard deviation. We use the implementation of DP-SGD made available through the TensorFlow
Privacy library (McMahan et al., 2018) with δ = 10−5.

4.1 EXPERIMENTS ON MNIST

We conduct our first set of experiments on the MNIST (LeCun et al., 1998) dataset. We use the
Q-MNIST (Yadav & Bottou, 2019) dataset as our source of public data. In particular, we use the
50,000 examples from the Q-MNIST dataset that are reconstructions of the lost MNIST testing digits.
We perform a hyperparameter optimization and find a baseline model with higher accuracy (97.3%
at εdp = 3.0, and 97.5% at εdp = 3.2) than what is reported as the current state-of-the-art in the
Tensorflow Privacy tutorial’s README file (96.6% at εdp = 3.0).

5Tutorials for TensorFlow Privacy are found at: https://github.com/tensorflow/privacy
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(a) DIVERSEPUBLIC vs baselines (b) NEARPRIVATE vs DIVERSEPUBLIC

Figure 1: MNIST experiments. All plots show test-set-accuracy vs. the number of extra points
labeled. Left: Comparison of our DIVERSEPUBLIC technique with the active learning baselines
described above. All models are fine-tuned starting from the same baseline (‘checkpoint 1’: test
accuracy 97.5% and εdp = 3.2). Active learning improves the performance of the DP-model
to as much as 98.8% in the best case with no increase in privacy cost. Right: Comparison of our
NEARPRIVATE technique with the DIVERSEPUBLIC technique. Since we spent εdpPCA+εsupport = 1.0
on the NEARPRIVATE technique, we fine-tune the NEARPRIVATE model from ‘checkpoint 0’ with
privacy cost εdp = 2.2. Thus, both lines have the same privacy cost (εlimit = 3.2), regardless of the
number of extra points used.

Figure 1a shows results of our DIVERSEPUBLIC method compared with baselines. Starting from a
checkpoint of test accuracy 97.5% (εdp = 3.2), our method can reach 98.8% accuracy with 7,000
extra labels. The DIVERSEPUBLIC method yields higher test accuracy than other active learning
baselines in the low-query regime, and performs comparably in the high-query regime.

In Figure 1b, we compare NEARPRIVATE against DIVERSEPUBLIC . Since NEARPRIVATE adds extra
privacy cost, we have to take special care when comparing it to DIVERSEPUBLIC . Therefore, we fine-
tune from a starting checkpoint at test accuracy 97.0% with lower privacy cost (εdp = 2.2) and make
sure its total privacy cost (εlimit = 3.2) in the end is the same as the cost for the DIVERSEPUBLIC
model. For this reason, NEARPRIVATE takes some number of labeled data points to ‘catch up’
to DIVERSEPUBLIC for the same DP cost — in this case 2,000. When Nlabeled is large enough,
NEARPRIVATE outperforms all other methods. This shows that accessing the original training data in
a privacy-aware way can substantially improve performance.

4.2 EXPERIMENTS ON SVHN

We conduct another set of experiments on the SVHN (Netzer et al., 2011) data. We use the set of
‘531,131 additional, somewhat less difficult samples’ as our source of public data. Since a baseline
model trained with DP-SGD on the SVHN training set performs quite poorly, we have opted to first
pre-train the model on rotated images of Dpublic predicting only rotations as in Gidaris et al. (2018).

Broadly speaking, the results presented in Figure 2 are similar to MNIST results, but three differences
stand out. First, the improvement given by active learning over the baseline private model is larger.
Second, the improvement given by DIVERSEPUBLIC over the basic active learning techniques is also
larger. Third, NEARPRIVATE actually underperforms DIVERSEPUBLIC in this case. We hypothesize
that the first and second results are due to there being more ‘headroom’ in SVHN accuracy than for
MNIST, and that the third result stems from the reported lower difficulty of the extra SVHN data. In
the next section, we examine this phenomenon further.

4.3 EXPERIMENTS WITH DATASET POLLUTION

We were intrigued by the under-performance of NEARPRIVATE relative to DIVERSEPUBLIC on
SVHN. We wondered whether it was due to the fact that SVHN and its extra data violate the

5



(a) DIVERSEPUBLIC vs baselines (b) NEARPRIVATE vs DIVERSEPUBLIC

Figure 2: SVHN experiments. Left: Comparison of our DIVERSEPUBLIC technique with the active
learning baselines. All models are fine-tuned starting from the same baseline (‘checkpoint 1’: test ac-
curacy 75.0% and εdp = 6.0). Active learning improves the performance of the DP-model to as much
as 85% in the best case with no increase in privacy cost. Recall also that the 75.0% number is itself a
baseline established in this paper. Right: Comparison of NEARPRIVATE with DIVERSEPUBLIC .
The setup here is analogous to the one in the MNIST experiment, but DIVERSEPUBLIC performs
better in this case. Since we spent εdpPCA + εsupport = 1.0 on NEARPRIVATE , we fine-tune from
‘checkpoint 0’ with test accuracy 73.5% and εdp = 5.0.

assumption built into NEARPRIVATE – namely that we need to query the private data to ‘throw
out’ unhelpful public data. Indeed, the SVHN website describes the extra set as ‘somewhat less
difficult’ than the training data. To test this hypothesis, we designed a new experiment to check
if NEARPRIVATE can actually select more helpful samples given a mixture of relevant data and
irrelevant data as ‘pollution’. We train the DP baseline with 30,000 of the SVHN training images, and
treat a combination of another 40,000 SVHN training images and 10,000 CIFAR-10 (Krizhevsky et al.,
2009) training images as the extra public dataset. These CIFAR-10 examples act as the unhelpful
public data that we would hope NEARPRIVATE could learn to discard. As shown in Figure 3, all
baselines perform worse than before with polluted public data. DIVERSEPUBLIC does somewhat
better than random selection, but not much, achieving a peak performance improvement of around 1%.
On the other hand, the difference between NEARPRIVATE and DIVERSEPUBLIC is more substantial,
at over 2% accuracy in some cases. This is especially interesting considering that DIVERSEPUBLIC
actually performed better in the results of Section 4.2. Broadly speaking, the results support our
claim that NEARPRIVATE helps more relative to DIVERSEPUBLIC when there is ‘unhelpful’ data in
the public dataset. This is good to know, since having some unhelpful public data and some helpful
public data seems like a more realistic problem setting than the one in which all public data is useful.

5 ABLATION ANALYSES

In order to better understand how the performance of DIVERSEPUBLIC and NEARPRIVATE is affected
by various hyper-parameters, we conduct several ablation studies.

5.1 HOW DO CLUSTERING HYPER-PARAMETERS AFFECT ACCURACY?

For DIVERSEPUBLIC , there are two parameters that affect the number of extra data points labeled for
fine-tuning: the number of clusters we form (Ncluster) and the number of points we label per cluster
(Neach). We write Nlabeled = Ncluster ×Neach. To study the relative effects of these, we conduct the
experiment depicted in Figure 4a. In this experiment, we fine-tune the same DP MNIST model (test
accuracy 97% at εdp = 2.2) with varying values ofNcluster andNeach. We varyNcluster from 100 to 500,
which is depicted on the x-axis. We vary Neach from 5 to 20, with each value depicted as a different
line. The general trend is one of diminishing returns on extra labeled data, as would be predicted by
Hestness et al. (2017). We do not notice a strong correspondence between final test accuracy at a
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(a) DIVERSEPUBLIC vs baselines (b) NEARPRIVATE vs DIVERSEPUBLIC

Figure 3: SVHN experiments with dataset pollution. In this experiment, we train the DP baseline
with 30,000 of the SVHN training images. The extra public dataset is a combination of 40,000
SVHN training images and 10,000 CIFAR-10 training images. Left: DIVERSEPUBLIC compared
against other active learning baseline techniques as in Figure 2a. In this case, the active learning
techniques do not outperform random selection by very much. Uncertainty by itself is not a sufficient
predictor of whether extra data will be helpful here, since the baseline model is also uncertain about
the CIFAR-10 images. Right: NEARPRIVATE compared against DIVERSEPUBLIC , but started
from different checkpoints (‘checkpoint 0’ with εdp = 5.0, ‘checkpoint 1’ with εdp = 6.0) to keep
the privacy cost constant as in Figure 2b. In this case, NEARPRIVATE substantially outperforms
DIVERSEPUBLIC by selecting less of the CIFAR-10 images.

(a) DIVERSEPUBLIC with different Ncluster and Neach. (b) Visualization of chosen public data points.

Figure 4: DIVERSEPUBLIC analysis. Left: We apply DIVERSEPUBLIC to the same DP checkpoint
(dashed horizontal line), varying the number of clusters (horizontal axis) and the number of chosen
points from each cluster (lines with error bars). Right: For Ncluster = 100, Neach = 20, we visualize
the most central example from each cluster. Since NEARPRIVATE does not have explicit clustering,
we use DIVERSEPUBLIC for this visualization. Green borders mean that the initial checkpoint (dashed
horizontal line) predicted correctly; while red bordered examples (originally predicted incorrectly)
have dots on the left showing predictions and dots on the right showing true labels.

fixed number of extra labels and the values of Ncluster and Neach. This is encouraging, as it suggests
that practitioners can use our techniques without worrying too much about these hyper-parameters.

To address the question of which extra data points are being chosen for labeling, we create Figure 4b
showing the most central example from each cluster, computed using Ncluster = 100, Neach = 20.
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(a) Fixed extra privacy cost with
εdpPCA = 0.5, εsupport = 0.5.

(b) The initial training privacy cost
εdp for different checkpoints.

(c) Fixed total privacy cost with
εlimit = 5.0, εdpPCA = 0.3.

Figure 5: NEARPRIVATE analysis. We apply NEARPRIVATE to DP checkpoints (horizontal axis) of
different privacy cost εdp. The black line with triangle represents those starting checkpoints. Middle:
The initial training privacy cost εdp of DP checkpoints at different epochs of a single training run.
Left: We fix the extra privacy cost εdpPCA + εsupport = 1.0, but vary the number of labeled public
points for each line. We achieve large improvements from 1,000 to 4,000 labeled public points. With
even larger Nlabeled, the improvements are not significant and it may be better to start fine-tuning from
a DP checkpoint of lower privacy cost. Right: With εdpPCA set to 0.3, we fix the total privacy cost
εlimit = 5.0 and vary εsupport. For Nlabeled = 1000, fine-tuning from the checkpoint at Epoch 60 is the
best given a total privacy budget of 5.0.

The chosen examples are quite diverse, with a similar number of representatives from each class and
variations in the thickness and shear of the digits. We can also inspect examples labeled incorrectly
by the original checkpoint, such as the digit in Row 8, Col 1, which is a 7 that looks a lot like a ‘2’.

5.2 HOW DOES THE STARTING CHECKPOINT AFFECT RESULTS?

Recall that NEARPRIVATE accrues extra privacy cost by accessing the histogram of neighbor counts.
This means that achieving a given accuracy under a constraint on the total privacy cost requires choos-
ing how to allocate privacy between NEARPRIVATE and the initial DP-SGD procedure. Making this
choice correctly requires a sense of how much benefit can be achieved from applying NEARPRIVATE
to different starting checkpoints. Toward that end, we conduct (Figure 5) an ablation experiment
on MNIST where we run NEARPRIVATE on many different checkpoints from the same training
run. Figure 5a shows the test accuracies resulting from fine-tuning checkpoints at different epochs
(represented on the x-axis) with fixed extra privacy cost of 1.0. Figure 5b shows the corresponding
εdp for each checkpoint. Figure 5c varies other parameters given a fixed total privacy budget of 5.0.

In Figure 5a, the black line with triangle markers shows the initial test accuracies of the checkpoints.
The other lines show results with different values of Nlabeled from 1,000 to 10,000 respectively. With
Nlabeled = 1000, improvements are marginal for later checkpoints. In fact, the improvement from
usingNlabeled = 1000 at checkpoint 80 is not enough to compensate for the additional 1.0 privacy cost
spent by NEARPRIVATE , because you could have had the same increase in accuracy by training the
original model for 20 more epochs, which costs less than that. On the other hand, the improvements
from using Nlabeled = 4000 or higher are significant and cannot be mimicked by training for longer.

Given a total privacy budget εlimit, how should we decide among εdp, εdpPCA, and εsupport? Empirically,
we observe that εdpPCA can be set to a small value (e.g., 0.3) without substantially affecting the results.
Allocating between εdp and εsupport is addressed in Figure 5c, which varies those parameters with εlimit
fixed to 5.0. When the budget for gathering Dlabeled is low, say Nlabeled is around 1000, it is preferable
to pick a later DP checkpoint, consuming a higher εdp and lower εsupport. On the other hand, when
allowed to label more instances from the public data, we should use an earlier DP checkpoint (with a
lower εdp) and choose better public samples with respect to the private data.

6 CONCLUSION

In addition to creating new baselines for DP image classifiers by fine-tuning on public data, we
introduce two algorithms – DIVERSEPUBLIC and NEARPRIVATE – to perform fine-tuning in a privacy-
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aware way. We conduct experiments showing that these algorithms bring DP object recognition
closer to practicality, improving on the aforementioned benchmarks. We hope that this work will
encourage further research into techniques for making differential privacy more useful in practice,
and we hope that the techniques we propose here will be helpful to existing practitioners.
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