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Abstract

Glioblastoma (GBM) is characterized by extensive cellular and genetic heterogeneity. Its initial 

presentation as primary disease (pGBM) has been subject to exhaustive molecular and cellular 

profiling. By contrast, our understanding of how GBM evolves to evade the selective pressure 

of therapy is starkly limited. The proteomic landscape of recurrent GBM (rGBM), which is 

refractory to most treatments used for pGBM, are poorly known. We therefore quantified 

the transcriptome and proteome of 134 patient-derived pGBM and rGBM samples, including 

40 matched pGBM-rGBM pairs. GBM subtypes transition from pGBM to rGBM towards a 

preferentially mesenchymal state at recurrence, consistent with the increasingly invasive nature 

of rGBM. We identified immune regulatory/suppressive genes as important drivers of rGBM and 

in particular 2–5-oligoadenylate synthase 2 (OAS2) as an essential gene in recurrent disease. 

Our data identifies a new class of therapeutic targets that emerge from the adaptive response of 

pGBM to therapy, emerging specifically in recurrent disease and may provide new therapeutic 

opportunities absent at pGBM diagnosis.

Keywords

Proteomics; Glioblastoma; Immunosuppression; OAS2.

Introduction

Glioblastoma (GBM) is the most commonly diagnosed primary malignant brain tumor 

in adults and constitutes ~60% of all neuroepithelial tumors [25]. Despite aggressive 

multimodal treatment with surgical resection followed by radiotherapy and chemotherapy, 

GBM remains incurable. Almost all patients experience relapse 7–9 months post-diagnosis 

and median survival has remained around 16 months for the past decade [40].

Cellular and molecular characterization of treatment-naïve primary GBM (pGBM) has 

revealed extensive inter- and intra-tumoral heterogeneity caused by multiple types of 

molecular dysregulation [19, 20, 30, 39]. Recent studies have suggested that GBM evolves 

significantly in response to therapy [26, 34]. For example, an evolutionary analysis of 21 

paired primary and locally-recurrent GBM specimens found that overall mutation burden 

was not elevated in rGBM, but additional driver mutations were frequently acquired [22]. 

New driver mutations were not only acquired in rGBM, but pGBM clones harbouring 

specific drivers were preferentially lost. For example, focal EGFR amplifications were 

detected in ~95% of pGBM but these either reverted or the underlying clone went extinct in 

27% of rGBM [22]. It is thus clear that GBM evolves significantly in response to therapy, 

making it refractory to first-line therapies, but the key signaling pathways mediating these 

changes remain unclear.
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To fill this gap in our understanding of rGBM, we characterize how GBMs evolved and 

adapted their signaling in response to conventional therapy with the longitudinal proteomic 

analysis of 134 tissue samples from patients with recurrent GBM. Using this resource, we 

identified new therapeutic targets specifically activated at GBM recurrence, many of which 

regulate processes related to maintenance of an immunosuppressive niche. These data imply 

that GBM treatment resistance may evolve not only due to escape of cancer stem cell 

populations, but also an altered tumor immune microenvironment (TIME) in response to 

selective pressures of therapy.

Material and Methods

Patient samples and clinical data

Human GBM patient samples and fetal brain samples (normal brain derived cell lines) 

were collected from the Hamilton Health Sciences (Juravinski Cancer Centre and Hamilton 

General Hospital) from consenting patients as approved by the Hamilton Health Sciences 

(HHS)/McMaster Health Sciences research ethics board (REB #07–366 and REB# 08–005) 

and at University Health Network (REB #19–6350). Electronic health record software 

including Citrix, Meditech and MOSAIQ databases were used to search the Hamilton Health 

Sciences records (2001–2016) to collect primary-recurrent GBM matched-pair formalin-

fixed paraffin-embedded (FFPE) samples and patient’s clinicopathological information.

Sample preparation for tissue microarray construction, proteomics and NanoString 
analysis

The hematoxylin and eosin (H&E)-stained slides associated with each FFPE block were 

used to mark the area of interest (tumor tissue and normal tissue adjacent to the tumor) 

by neuropathologist Dr. Cynthia Hawkins, University of Toronto. The marked FFPE blocks 

were then used for constructing tissue microarrays (TMA) and collecting tissue punches for 

proteomics and NanoString analysis. Briefly, three tissue cores from each donor block were 

acquired in circular spots form (1 mm in diameter) using a tissue microarray automated 

machine (3DHISTECH TMA Master, Quorum Technologies) and were placed in an empty 

paraffin block. In addition to sampling for constructing TMA blocks, 3 – 4 more tissue 

cores (1.5 mm in diameter) from each block were collected for proteomics and NanoString 

analysis. This allowed us to collect a total number of 143 samples: 45 pGBM-rGBM 

matched pairs, 20 normal tissue adjacent to the tumor (NAT), 9 unmatched pGBM and 22 

unmatched rGBM. All samples were used for constructing a TMA.

Proteomic profiling was performed on 134 of these 143 samples (17 NATs, 40 pGBM-

rGBM pairs (n= 84, three patients (GBM09, GBM18, GBM24) had two pGBM samples and 

one patient (GBM21) had two rGBM samples), 9 unmatched pGBMs and 24 unmatched 

rGBMs obtained from 22 patients). Moreover, 22 of the matched pGBM-rGBM pairs were 

used for NanoString analysis.

FFPE tissue sample preparation for mass spectrometry (MS) analysis

GBM FFPE tissue cores (1 mm) were deparaffinized twice using 500 μL of xylene (Sigma, 

Cat# 534056) with continuous end-to-end rotation for 5 minutes at room temperature. The 
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samples were centrifuged at 14,000-g for 5 minutes and the supernatant was discarded. The 

tissue cores were rehydrated using sequential stepwise gradient treatment with 100%, 90%, 

70% and 50% ethanol followed with water as the final step, with 5 minutes of end-to-end 

rotation for each step. The rehydrated tissue cores were lysed in 100 μL of 50% (v/v) 

2,2,2-Trifluoroethanol (Sigma, Cat# 96924) with 300 mM Tris (pH 8) and sonicated using 

5 cycles of pulse sonication 10 seconds each. The protein lysates were heated at 95°C 

for 2 hours for decrosslinking of the proteins. The fresh-frozen GBM tissue (1.5–2mg) 

samples were pulverized using Covaris cryoPREP Pulverizer and lysed in 500 μL of 50% 

(v/v) 2,2,2-Trifluoroethanol with 100 mM ammonium bicarbonate (pH 8). Two pmol of 

Suc2 (yeast invertase, Sigma, Cat# I4504) was added as digestion control in all samples. 

The disulphide bonds were reduced using 5 mM dithiothreitol for 30 minutes at 60 °C, 

the reduced disulphide bridges were alkylated with 25 mM iodoacetamide for 30 minutes 

at room temperature in the dark. The samples were diluted 1:5 with 100 mM ammonium 

bicarbonate (pH 8.0) and 2 mM CaCl2 was added. The proteins were digested overnight 

with 2 μg of trypsin/Lys-C enzyme mix (Promega, Cat# V5072) at 37 °C. The reaction 

was quenched with addition of formic acid and the peptides were desalted by C18-based 

solid phase extraction, then lyophilized in a SpeedVac vacuum concentrator. The peptides 

were solubilized in mass spectrometer-grade 0.1% formic acid in water and the peptide 

concentration determined with NanoDrop Lite (at 280 nm) [29, 38].

MS sample processing and data analysis

Prior to data acquisition, synthetic iRT peptides (Biognosys, Cat#Ki-3002) were spiked 

into each sample at a ratio of 1:10. LC-MS/MS data was acquired using an Easy nLC 

1000 (Thermo) nano-flow liquid chromatography system with a 50 cm EasySpray ES803 

column (Thermo) coupled to a Orbitrap Fusion tandem mass spectrometer (Thermo). 

Peptides were separated by reverse phase chromatography using a 4-hour non-linear 

chromatographic gradient of 4–48% buffer B (0.1% FA in ACN) at a flow rate of 250 

nL/minute. Mass spectrometry data was acquired in positive-ion data-dependent mode. 

MS1 data was acquired at a resolution of 240,000 in the orbitrap with maximum injection 

time (maxIT) of 1000 ms and 40s dynamic exclusion, while MS2 data was acquired in 

the ion trap at ‘Normal’ scan rate, maxIT of 10 ms. HCD fragmentation was done at a 

normalized collision energy of 31%. The raw files were searched in MaxQuant [7] (version 

1.6.2.3) using a UniProt protein sequence database containing human protein sequences 

from Uniprot (complete human proteome; Released 2019–09) merged with, Suc2 (yeast) 

protein sequences from Uniprot, and iRT synthetic peptide sequences (Biognosis). Searches 

were performed with a maximum of two missed cleavages, and carbamidomethylation of 

cysteine as a fixed modification. The oxidation at methionine, acetylation (N-term), arginine 

and lysine methylation was set as variable modifications. The FDR for the target-decoy 

search was set to 1% for protein and peptide level. Intensity-based absolute quantification 

(iBAQ), label-free quantitation (LFQ), and match between runs (matching and alignment 

time windows set as 2 and 20 minutes, respectively) were enabled. The proteinGroups.txt 

file was used for subsequent analysis. Proteins matching decoy and contaminant sequences 

were removed, and proteins identified with two or more unique peptides were carried 

forward. LFQ intensities were used for protein quantitation [6]. For proteins with missing 

LFQ values, median-adjusted iBAQ values were used as replacement [48]. The missing data 
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was imputed using the normal distribution where the missing values were imputed from 

the lower half of the Gaussian distribution (width = 0.3, downshift = 1.8). Differentially 

expressed proteins among the GBM pairs were identified using paired sample Mann-

Whitney U-test with multiple test correction using FDR. Pathway enrichment analysis was 

performed using Gene Set Enrichment Analysis (GSEA) [28, 41]. Pre-rank mode was used 

to perform GSEA using hallmark gene set from molecular signature database (MSigDB) 

[23, 24, 41] with the following parameters, number of permutations = 1000, where FDR < 

0.25 was considered significant.

Proteomic subtype identification

Consensus clustering of the proteomics data was performed using the R package 

ConsensusClusterPlus v1.52.0 [47] using proteins (n = 1,595) detected in all matched 

primary and recurrence pairs (n = 84 samples; 40 pairs; three patients had two pGBM 

samples, and one patient had two rGBM samples) with protein clusters (k) varying from 2 to 

20. Hierarchical clustering was performed using Euclidean distance and Ward linkage, with 

80% gene resampling and 80% item resampling with 1,000 iterations. Clustering of samples 

and proteins was performed separately. The optimal cluster number (k = 5, for both sample 

and protein clustering) was chosen based on the delta area, which is the relative change in 

the area under the CDF curve comparing k and k-1.

Comparison to CPTAC proteomics

For the Clinical Proteomic Tumor Analysis Consortium GBM (CPTAC-GBM) data, 

the processed TMT protein abundance table and its associated clinical data were 

downloaded from the CPTAC data portal (https://cptac-data-portal.georgetown.edu/study-

summary/S057). The experimental procedure and quantification were described in the 

original report [45]. To eliminate samples that were potentially mislabelled or swapped, 

Pearson’s correlation was calculated between all samples and samples with a correlation 

above 90% were removed (n = 2). Proteins missing in more than 90% of the samples were 

excluded from the analysis. We performed a Student’s t-test for each protein comparing 

tumor and NAT. The Benjamini-Hochberg test was performed to correct for multiple-testing. 

Spearman’s correlation was calculated by comparing the log2 fold change between NAT 

and pGBM samples in CPTAC and the Hamilton Health Sciences (HHS). Venn diagrams 

of the overlapping proteins were created using the R package VennDiagram [4] (v1.6.20). 

Centroids were created in the HHS dataset using the median abundance per protein in each 

of the five proteomic subtypes. CPTAC proteomic profiles were correlated to each centroid 

and samples were classified based on the highest positive Spearman’s correlation.

Comparison of pGBM proteomics with TCGA RNA abundance

Level 3 TCGA RNA-Sequencing data was downloaded from the Genomic Data Commons 

Data Portal and only primary samples were retained. The median abundance per gene was 

used to calculate the Spearman’s correlation between TCGA RNA and pGBM and rGBM 

abundance separately.
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NanoString analysis

RNA was extracted from FFPE tissue cores using the Qiagen Allprep DNA/RNA FFPE 

kit per manufacturer’s protocol. 300 ng of total RNA of each sample were analyzed by 

NanoString gene expression assay using a custom codeset profiling four housekeeping 

genes and 30 classifier genes (one probe per gene) corresponding to the classical (CL), 

mesenchymal (MES), proneural (PN), and neural (NL) subtypes. Raw counts were 

background subtracted then normalized using the geometric mean of the samples analyzed 

using NanoString nSolver (nSolver Analysis Software: https://hdmzstaging.nanostring.com/

products/analysis-software/nsolver). After removal of outlier probe values, data from 44 

samples from 22 patients was classified using non-negative matrix factorization (NMF) into 

up to four groups. NMF was run with 200 iterations at ranks k = 2 to k = 7, approximating at 

each rank (1) metagenes representing the expression pattern of discriminatory genes, and (2) 

the weights of each metagene per sample. Rank k = 4 was the most parsimonious solution 

yielding clusters with a high cophenetic correlation coefficient, and separation of subtyping 

genes among metagenes. Metagene 2 includes both PN and NL classifier genes and was 

thereafter used to represent both groups. Metagene 3 corresponds to the CL subtype. The 

MES classifier genes were split between metagenes 1 and 4, potentially indicating two 

MES subtypes. Samples were assigned to subtypes via hard clustering using the maximum 

weights of each metagene. To account for the presence of multiple metagene contributions in 

each sample, weights were converted to percentages. Using these values, significant changes 

in subtype composition between paired primary-recurrence samples were identified using a 

paired t-test and corrected using the Benjamini-Hochberg procedure.

Cell culture

The cells used in this study were from patient-derived GBM cell lines. To isolate and 

propagate Brain Tumor Initiating Cells (BTICs), human brain tumor tissues were processed 

upon surgical resection according to the previously described protocol [36, 37, 44]. Briefly, 

tumor specimens were dissociated in enzymatic solution consisting of PBS (ThermoFisher, 

Cat#10010049) and 0.2 Wünsch unit/mL Liberase Blendzyme 3 (Millipore Sigma, 

Cat#5401119001) and incubated on a shaker at 37 °C for 15 minutes. The dissociated 

tissue was then filtered through a 70 μm cell strainer (Falcon, Cat#08–771-2) and collected 

by centrifugation at 1200 rpm for 5 minutes. Ammonium chloride solution (STEMCELL 

Technologies, Cat#07850) was used for lysing the red blood cells. BTICs were cultured 

in NeuroCult complete (NCC) media, a chemically defined serum-free neural stem cell 

medium (STEMCELL Technologies, Cat#05751), complemented with human recombinant 

epidermal growth factor (hrEGF) (20ng/mL: STEMCELL Technologies, Cat#78006), basic 

fibroblast growth factor (bFGF) (10ng/mL; STEMCELL Technologies Cat#78006), heparin 

(2 mg/mL 0.2% Heparin Sodium Salt in PBS; STEMCELL technologies, Cat#07980), 

antibiotic-antimycotic (1X; Wisent, Cat# 450–115-EL). GBM BTICs were plated on ultra-

low attachment plates (Corning, Cat#431110), cultured as neurospheres and propagated 

by minimally-culturing (< 20 passages) human GBM samples and plating them on 

polyornithine-laminin coated plates for adherent growth. After enough expansion, adherent 

cells were replated in low-binding plates and cultured as tumorspheres. These cells were 

maintained as spheres upon serial passaging in vitro and retained their self-renewal potential 

and were capable of in vivo tumor formation. Normal brain cells used in this paper included 
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Neural Stem Cells (NSCs) and Normal Human Astrocytes (NHAs). NSCs were isolated and 

propagated from fetal brain samples (approved by the Hamilton Health Sciences/McMaster 

Health Sciences) and NHAs were purchased from Lonza.

Cloning of OAS2 knockout lentivectors and generation of lentiviruses

Guide RNAs (gRNAs) targeting AAVS1 (5’-GGGGCCACTAGGGACAGGAT-3’) 

and OAS2 (A: 5’-TATGGCCACTCCCTGCACCA-3’, B: 5’-

AGGGCATACGGAGACAGCGA-3’, C: 5’-ACTGGCATTTGTCTTATCCA-3’) were 

obtained from TKOv3 [16] and cloned into a single-gRNA lentiCRISPRv2 construct 

(Addgene 52961). Sequences were verified using Sanger sequencing and each construct 

was packaged independently into lentivirus using second-generation packaging constructs. 

Briefly, 16 hours prior to transfection, HEK293T cells were seeded into tissue-culture 

treated T75 cm2 flasks at a density of 10 million cells per flask using high-glucose DMEM 

with 2 mM L-glutamine and 1 mM sodium pyruvate (ThermoFisher, Cat#: 11995065), 

supplemented with 1% non-essential amino acid solution (ThermoFisher, Cat#: 11140050) 

and 10% fetal bovine serum (Gibco, Cat#: 12483020). The following day, the HEK293T 

media was replaced with viral harvesting media which is HEK culture media that is 

supplemented with 10 mM HEPES (ThermoFisher, Cat#: 15630080) and 1 mM sodium 

butyrate (Sigma-Aldrich, Cat#: 303410). Next, 15 μg of transfer plasmid (lentiCRISPRv2, 

AAVS1, OAS2-Knockout (KO) 1/A, OAS2-KO2/B and OAS2-KO3/C), 7.2 μg of psPAX2 

(Addgene), and 4.8 μg of pMD2.G (Addgene) were mixed with polyethylenimin (PEI; 

Sigma-Aldrich, Cat#: 408719) at a 1:3 ratio (m:v) in 1.3 mL of Opti-MEM. After 

complexing for 15 minutes at room temperature, the PEI/DNA mixture was transferred 

to the HEK293T-containing flasks in dropwise fashion. Viral supernatants were collected 24 

and 48 hours after transfection and then concentrated using ultracentrifugation (25,000 RPM 

for 2 hours at 4 °C) before being snap frozen and stored at −80 °C.

Lentiviral transduction of GBM cells

One million tumor or normal cells (BT972, BT241, BT618 or BT935, or human astrocytes) 

were plated in cell-repellent dishes (Greiner Bio, Cat#662970) and infected with lentivirus 

containing single-gRNA lentiCRISPRv2 constructs targeting AAVS1 or OAS2 (three 

gRNAs). Twenty-four hours post-infection, virus-containing media was replaced with fresh 

NCC media containing puromycin (1–2 μg/mL) (ThermoFisher, Cat#A1113803) for 48–72 

hours.

Cell proliferation assay

Upon confirmation of OAS2 knockout by Western blotting analysis, OAS2 KO and AAVS1 

transduced cells were dissociated, and 1,000 single cells were plated in 180 μL NCC 

per well in pentaplicate in a 96-well plate (Greiner Bio, Cat#655970) and incubated for 

three days. 20 μLs of Presto Blue (ThermoFisher, Cat#A13262), a fluorescent cell viability 

(metabolism) indicator, was added to each well two hours prior to the readout time point. 

FLUOstar Omega Fluorescence 556 Microplate reader (BMG LABTECH) was used to 

measure the fluorescence signal at excitation and emission wavelengths of 544 nm and 590 

nm, respectively. Readings were analyzed using Omega analysis software (version: 5.11).
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Secondary sphere formation assay

After confirming OAS2 knockout by western blotting, tumorspheres were dissociated using 

enzymatic digestion solution containing 10 μL Liberase Blendzyme3 (0.2 Wunsch unit/mL) 

plus 10 μL of DNase in 1 mL PBS for 5 minutes at 37°C. Single cell GBM BTICs were 

plated at 200 cells per well in 200 μL of NCC media in a 96-well plate (Greiner Bio, 

Cat#655970). Cultures were left untouched at 37°C, 5% CO2. The number of secondary 

spheres per well was counted every day from day three to seven and used to estimate the 

mean number of spheres per 2,000 cells.

In Vitro Limiting dilution assay

GBM BTICs (BT972) were seeded in a 96-well plate at different cell density (0, 5, 10, 20, 

40, or 80 cells) per well with 24 replicates for each concentration. After two weeks, the 

number of tumor-spheres formed in each well was recorded and data were further analyzed 

using the software available at http://bioinf.wehi.edu.au/software/elda/.

Immunohistochemistry (IHC)

OAS2, CD3 and CD163 IHC was performed on TMA consisting of patient’s GBM 

samples on the Leica Bond RX (Leica Biosystems). IBA1 IHC was performed on Patient 

Derived Xenograft (PDX) brain tissues coming from BT972 GBM AAVS1 and OAS2 KO 

engrafted mice. Antigen retrieval was performed in Epitope Retrieval Buffer (ER2) (Leica, 

Cat#AR9640-Leica) for 20 minutes at 100°C. Antibodies were diluted in Powervision 

IHC Super Blocker (Leica, Cat#PV6122) and stained for 15 minutes as follows: rabbit 

monoclonal CD3 1:150 (abcam, Cat#ab16669), rabbit monoclonal CD163 1:1000 (abcam, 

Cat#182422) and mouse monoclonal OAS2 1:800 (Origene, Cat#CF802824). IBA1 antibody 

(abcam, Cat#ab178846) was diluted in TBS buffer with 1% BSA (1:300) and stained 

overnight at 4°C. For the mouse antibodies, a post primary antibody contained in the 

detection kit was applied before a polymer/HRP reagent. For rabbit antibodies, only the 

polymer reagent was applied. Both the post primary and polymer reagents were incubated 

for 8 minutes each. Slides were treated to a peroxidase block, developed with DAB and 

counterstained with hematoxylin all contained in the Leica Bond Polymer Refine Detection 

Kit (Leica, Cat#DS9800). Slides were then coverslipped with Permount. The digitization 

of the immunohistochemically stained TMA histology slides was performed using the 

Olympus® VS120 Slide Scanner. The cellular data was acquired through the HALO® 

Image Analysis Platform by Indica Labs. The quantitative tissue analysis was performed 

using HALO® Multiplex IHC module in combination with HALO® TMA module. This 

technology allowed us to detect and quantify the total number of OAS2+, CD3+ and 

CD163+ cells present in each tissue core of the TMA as well as the percentage of those cells 

that contain sufficient chromogenic IHC stain to be considered positive for the protein of 

interest.

Western blotting

Total protein was isolated from GBM BTICs and brain normal cells (Neural Stem 

Cells and Normal Human Astrocytes) with 1X RIPA buffer. Denatured proteins resolved 

on a 4–15% Mini-PROTEAN® TGX Stain-Free™ precast polyacrylamide gel, 1.5 mm, 
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10-well (Bio-Rad Cat#4568084) using 10x Tris/Glycine/SDS running buffer (Bio-Rad, 

Cat#1610732). Thereafter, resolved proteins were transferred onto polyvinylidene difluoride 

(PVDF) membranes, and membranes blocked in ODYSSEY buffer (LI-COR, Cat# 927–

60001) diluted in TBS (1:1) for 30 minutes at room temperature. Following blocking, the 

membranes were incubated with primary antibodies (1:300 Mouse anti human monoclonal 

OAS2, [Origene, Cat#CF802824]) or GAPDH (1:2000 Mouse anti human monoclonal 

antibody, [abcam, Cat#ab8245]) as a loading control at 4°C overnight. Following primary 

antibody overnight incubation, membranes were thoroughly washed in 1X TBS-T for 3 × 

5 minutes before subsequent incubation with HRP-conjugated secondary antibody (Goat 

Anti-Mouse IgG (H + L)-HRP Conjugate [Bio-Rad, Cat#1706516]) for one hour at room 

temperature. Band visualization was performed using Clarity™ Western ECL Substrate, 

(Bio-Rad, Cat#1705060). Data acquisition and protein detection was done using Chemidoc. 

Immunoblots were quantified and normalized to the loading control using ImageJ (1.52K) 

software.

Quantitative polymerase chain reaction (qPCR)

Total RNA was isolated from cells (BT972) using the Norgen RNA extraction kit and 

reverse transcribed into cDNA with the qScript cDNA SuperMix (Quanta Biosciences) 

and the C1000 Thermo Cycler (Bio-Rad). Real time PCR (qPCR) was performed in the 

Cfx96 (Bio-Rad) system with SYBR Green (Bio-Rad). Expression values were normalized 

to GAPDH. Gene specific primers included:

RNase L forward (5’-AAGAAGCACTTGGGTTTGGTGCAG-3’),

RNase L reverse (5’-TCCGCCTCGCTGTCATAACAAGAT-3’),

RIG-1 forward (5’-AGTGAGCATGCACGAATGAA-3’),

RIG-1 reverse (5’-GGGATCCCTGGAAACACTTT-3’),

TGFB1 forward (5’-GTACCTGAACCCGTGTTGCT-3’),

TGFB1 reverse (5’-GTATCGCCAGGAATTGTTGC-3’),

IL4 forward (5’-ACAGCAGTTCCACAGGCACAAG-3’),

IL4 reverse (5’-CGTACTCTGGTTGGCTTCCTTCAC-3’),

GAPDH forward (5’-AAGGTGAAGGTCGGAGTCAAC-3’), and

GAPDH reverse (5’-GGGGTCATTGATGGCAACAATA-3’).

In vivo experiments: intracranial injections, histological analysis for tumor size 
measurement and survival studies

All animal studies were conducted according to McMaster University Animal Research 

Ethics Board approved protocols. Intracranial transplantation of GBM BTICs was performed 

as previously described [35]. 100,000 BT972 AAVS1 or 100,000 BT972 OAS2 KO cells 

were injected into the right frontal lobes of 6− to 8-week old immunocompromised 

NSG mice. Briefly, mice were anaesthetized using Isoflurane gas (5% induction, 2.5% 

maintenance). A 1.5 cm vertical midline incision was made on top of the skull using a 
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15-blade scalpel and a small burr hole was then generated 2–3 mm anterior to the coronal 

suture, 3 mm lateral to midline by a drill held perpendicular to the skull. Tumor cells which 

were suspended in 10 μL PBS, were injected into the frontal lobe using a Hamilton syringe 

(Hamilton, Cat#7635–01) while it was inserted through the burr hole to a 5 mm depth. 

The incision was closed using interrupted stitches and sutures (Ethicon, Cat#J493G) and 

were sealed with a tissue adhesive (3M Vetabond, Cat#70200742529). The tumor formation 

and progression were tracked by MRI imaging. All mice were sacrificed at endpoint, 

brains were collected, formalin-fixed, and paraffin-embedded for H&E staining to assess 

the tumor burden. Images were captured using an Aperio Slide Scanner and analyzed using 

ImageScope v11.1.2.760 (Aperio) and imageJ (1.52K) software. The number of days of 

survival were also recorded for survival analysis.

scRNA sequencing analyses

Data Source.—Single cell RNA seq data from Neftel et al. (2019) [30] from (GEO; 

accession number GSE131928); and Ochocka et al. (2021) [31] from GEO (accession 

number GSE136001).

Data preprocessing.—scRNA-seq data sets were normalized, scaled, dimensionally-

reduced and visualized on a UMAP using the Seurat (v 4.0.5) workflow implemented in 

scPipeline [27]. In brief, count matrices were loaded into a Seurat object and normalized 

using NormalizeData (…, normalization.method = ‘LogNormalize’, scale.factor = 10000). 

Variable features were identified using FindVariableFeatures (…, selection.method = ‘mvp’, 

mean.cutoff = c(0.1,8), dispersion.cutoff = c(1,Inf)) and then data were scaled using 

ScaleData(). Principal component analysis and UMAP embedding was performed using 

RunPCA() and RunUMAP(…, dims = 1:30), respectively. Metadata and cell type markers 

from original publications were used to annotate cell types.

GBM subtype classification.—To assign GBM subtypes to scRNA-seq data from Neftel 

et al. (2019), the AddModuleScore () function in Seurat was used to compute gene signature 

scores for each gene panel, and for each tumor cell, the signature with the highest score 

was taken as the subtype. The Neftel subtypes included MES1 (mesenchymal type 1), MES2 
(mesenchymal type 2), NPC1 (neural projenitor type 1), NPC2 (neural progenitor type 2), 

OPC (oligodendrocyte progenitor cells), and AC (astrocyte-like).

Transcriptome analysis.—To visualize the expression of OAS2 in public scRNAseq 

data, cell-level expression was projected onto a UMAP using the FeaturePlot() function 

(Seurat) [14]. The mean normalized expression and expression fraction for each cell 

type was computed and visualized using barplots and dotplots overlaid on a common 

axis [expression.Plot(…), scMiko R package, v0.1.0]. Cell types were arranged based on 

hierarchical clustering performed on normalized expression and expression fraction values. 

Cell-type specific differences in OAS2 expression between primary and recurrent samples 

were then determined using student’s t-test.
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In vitro and in vivo statistical analyses

All experiments were performed in duplicates or triplicates. Applicable data were analyzed 

and represented using GraphPad Prism 6 software or within the R statistical environment 

(v3.6.0). Data are presented as means ± S.E.M. Unpaired Student’s t-tests were used for 

statistical analysis of two groups and one-way ANNOVA analysis of variance with Tukey/

Newman–Keuls test was used for statistical analysis of more than two groups with a p-value 

< 0.05 deemed as statistically significant. Visualization in R was performed using the BPG 

package [33] (v6.0.2) and ggplot2 (3.2.1) [46] .

Data availability

All mass spectrometry raw data has been deposited to the Mass Spectrometry Interactive 

Virtual Environment (MassIVE) with the following MassiVE ID: MSV000087947 and FTP 

link: ftp://massive.ucsd.edu/MSV000087947/. NanoString data is available on GEO with 

accession ID: GSE177549.

Results

Primary and recurrent GBM have distinct transcriptomic and protein landscapes

To identify potential neoplastic drivers generated throughout the course of therapy, we 

interrogated a cohort of 143 samples with either proteomics (n=134) or NanoString 

transcriptomics (n=44) using FFPE punches. In addition, three cores from each block were 

used to construct a tissue microarray (TMA). Detailed clinico-pathological information was 

collected for each patient (Fig. 1a; Table 1; Supplementary Table 1).

Proteomic profiling was performed on 134 of these 143 samples (17 NAT, 40 pGBM-rGBM 

pairs (n= 84, three patients (GBM09, GBM18, GBM24) had two pGBM samples and one 

patient (GBM21) had two rGBM samples), 9 unmatched pGBMs and 24 unmatched rGBMs 

obtained from 22 patients using a previously established mass spectrometry workflow [38] 

(Fig. 1a). To evaluate our proteomics workflow 11 iRT peptides were added to each sample 

as method controls and elution profiles of these peptides showed consistent chromatographic 

performance (Supplementary Figure 1a). In order to ensure consistent performance of the 

instrument, HeLa cell lysate controls were run after every ten biological samples, and 

these were highly reproducible (R2 = 0.937; Supplementary Figure 1b–c). Furthermore, as 

an additional quality control, one biological sample from the cohort was run after every 

twenty samples (injection replicate, n = 5) and these technical replicates also showed high 

correlation (R2 = 0.938) (Supplementary Figure 1c–d). Using label free quantification, 6,977 

distinct protein groups were detected, of which 2,515 were detected in at least 95% of 

samples (Fig. 1b, Supplementary Table 2). The well-known GBM markers IDH1, EGFR 

and PTPN11 were detected in all samples (Fig. 1b). The pGBM proteome (n = 51) was 

positively correlated to the pGBM transcriptome characterized by TCGA [2] (n = 166; 

Spearman’s ρ = 0.58, P < 2.2 × 10−16; Supplementary Figure 2a). There was a similarly high 

correlation between the mean rGBM protein abundance and mean pGBM RNA abundance 

(ρ = 0.56, P < 2.2 × 10−16; Supplementary Figure 2b).
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To identify the proteomic subtypes of GBM across disease states, we performed consensus 

clustering on the 40 matched pGBM-rGBM pairs (n = 84) using the 1,595 proteins detected 

in all matched pairs. We identified five sample subtypes (S1 through S5) and five protein 

subtypes (P1 through P5) (Fig. 2a, Supplementary Figures 2c–f). Sample subtypes differed 

by age at diagnosis (P = 0.02; one-way ANOVA), with the median age in S5 (63.6 

years) being older and S1 or S2 being the youngest (54.9 years). Sample subtypes were 

independent of sex (P = 0.21), treatment group (P = 0.153; Pearson’s Χ2 test, Supplementary 

Figure 2g) and disease state (pGBM vs. rGBM; P = 0.66; Pearson’s Χ2 test, Supplementary 

Figure 2h). If rGBM and pGBM proteomic profiles were alike, we would expect matched 

pGBM-rGBM tumors to be classified in the same sample subtype, but this did not occur. 

Subtype concordance was only 22.5%, with 9/40 pGBM and rGBM pairs classified into the 

same subtype (P = 9.0 × 10–4; proportion test; Fig. 2b). Interestingly, of the three patients 

with more than one pGBM sample, two were classified into different subtypes. These 

results may reflect widespread rewiring of signaling pathways during response to therapy or 

heterogeneity across the tissue. pGBM tumors assigned in the S2 subtype preferentially 

reclassified to the S1 subtype at recurrence (83%; 5/6). However, presence of normal 

brain constituents or regional sampling bias as contributors to subtype switching cannot 

be excluded.

Pathway enrichment analysis showed that each protein subtype (P1 - P5) was enriched 

in different biological pathways, as shown in Fig. 2a. To investigate the phenomenon of 

subtype transition in matched pGBM and rGBM at the transcriptome level, we defined RNA 

subtypes for 22 paired pGBM and rGBM samples using NanoString data (Supplementary 

Figure 2i, Supplementary Table 3). The transcriptome and proteome were well-correlated 

in the 44 matched samples (median Spearman’s ρ = 0.41; Supplementary Figure 2j). As 

in the proteome, the majority of rGBM samples transitioned to different transcriptional 

subtypes than their pGBM counterparts (13/22 paired samples; Fig. 2c). Transcriptomic 

and proteomic subtypes were associated with one another (P = 0.03; Pearson’s Χ2 

test). For example, 10/14 tumors with the proneural/neural transcriptomic signature were 

classified into the proteomic sample subtype S3, while tumors with the mesenchymal 

transcriptomic subtype were preferentially classified into the S1, S2 and S4 proteomic 

subtypes (Supplementary Figure 2k).

To validate the proteomics subtypes, we created a centroid-based single-sample subtype-

classifier. This classifier was used to subtype a set of 99 publicly available pGBM proteomes 

(CPTAC) [45]. (Supplementary Figure 2l). While the methods used to quantify proteins 

differed between the two studies (TMT vs. LFQ), there was a high overlap in the proteins 

observed (HHS = 91.5%, 6,384/6,977; CPTAC = 58.2%, 6,384/10,970; Supplementary 

Figure 2m). S1 and S3 were present in similar proportions between the two datasets, while a 

higher proportion of samples were classified as S2 in the current dataset (HHS) and a higher 

proportion of samples were classified as S4 and S5 in the CPTAC dataset (Supplementary 

Figure 2n; P = 1.27 × 10–3; Pearson’s Χ2 test). Although these two proteomics datasets were 

created using different technologies (TMT vs. LC-MS/MS) the same proteomic patterns are 

reproducibly detected.
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Adjacent normal tissue has a distinct proteome from pGBM

Normal adjacent tissue (NAT) is commonly used as a control in many cancer studies, 

however, on a molecular level they may not be entirely normal. Nevertheless, NAT presents 

an intermediate state between healthy and tumor state. In our study we used NAT as a 

normal control compared to pGBM and rGBM. Hierarchical clustering of NAT, pGBM 

and rGBM samples using proteins detected in all samples showed clear separation of NAT 

from the tumor samples (Supplementary Fig. 3a). Comparison of the proteomics profile 

between NAT (n = 17) and pGBM (n = 50) samples identified 2,902 proteins significantly 

differentially abundant (Q < 0.1, |log2FC| > 1; Supplementary Fig. 3b, Supplementary 

Table 4). Gene set enrichment analysis revealed that neuron activity related pathways 

were upregulated in NAT, whereas mRNA processing, DNA repair and immune related 

pathways were enriched in pGBM (Supplementary Figure 3c, Supplementary Table 4). A 

similar analysis comparing normal brain tissue and pGBM samples in the CPTAC cohort, 

which included proteomics from 10 normal samples from the reference GTEx dataset [45] 

showed similar effect sizes in the overlapping detected proteins (ρ = 0.79, P < 2.2 × 10−16; 

Supplementary Figure 3d).

Proteomic profiling of pGBM and rGBM matched samples reveal rGBM is associated with 
immunosuppression

Next, we asked what signaling pathways were changed during the evolutionary response of 

pGBMs to the selective pressure of treatment. We performed differential abundance analysis 

with 40 pGBM-rGBM matched pairs and identified 165 proteins that differed significantly 

(Q < 0.1, |log2FC| > 1, Mann-Whitney U-test; Fig. 3a, Supplementary Table 4). The rGBM 

proteome was enriched in proteins associated with interferon alpha and gamma (broad 

inflammatory response), epithelial to mesenchymal transition, TNF-a signaling, fatty acid 

metabolism, hypoxia and oxidative phosphorylation pathways (Fig. 3b, Supplementary Table 

5).

To identify the top potentially targetable proteins enriched in rGBM, we prioritized 

these 165 candidates based on three measures: the magnitude of differential abundance 

between primary and recurrent GBMs while requiring the protein to be highly upregulated 

at the recurrence, low abundance in brain normal tissue (NAT) and a known role in 

immunosuppression. Following target validation using immunohistochemical analysis on 

TMA as well as several functional assays, 2–5-oligoadenylate synthetase 2 (OAS2) was 

identified as the top candidate (Supplementary Figure 4a). OAS2 plays a crucial role in 

regulating immunosuppression and has been previously implicated in solid cancers including 

oral and breast cancer [8, 18]. In addition, Periostin (POSTN), previously described in the 

literature [52] as a tumor associated macrophage (TAM) marker of rGBM, was also enriched 

in the rGBM cohort, further validating the observation of upregulated immune-related 

proteins in rGBMs.

To further confirm the upregulation of OAS2 in rGBM, we performed whole cell proteomic 

analysis on an independent cohort of fresh frozen pGBM (n= 8) and rGBM (n= 6) samples. 

This validation analysis showed enrichment of OAS2 in the rGBM samples (Supplementary 
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Figure 4b) compared to the pGBM samples in both the datasets, further corroborating our 

results.

To further characterize OAS2 across a broader cohort of GBM patients, we assessed 

its abundance through immunohistochemical analysis in pGBM-rGBM intact tissues. We 

observed a significant upregulation in OAS2 expression on tumor-intact tissues, particularly 

in endothelial cells and foamy macrophages, as assessed by immunohistochemical analysis 

on 45 pGBM-rGBM matched pairs, nine unmatched pGBM and 24 rGBM unmatched 

tissues (Fig. 3c and Supplementary Figure 4c), as well as in an independent cohort of 

20 pGBM-rGBM matched pairs (Fig. 3d). Moreover, there was a significant increase in 

OAS2 protein abundance in rGBM compared to pGBM in purely enriched patient-derived 

BTICs while no to very low levels were observed in normal brain cells (NSCs and NHAs) 

(Fig. 4a). The role of OAS2 in GBM pathogenesis has not yet been investigated, although 

we have demonstrated its expression both within rGBM cells (specifically BTICs) and in 

cells comprising the rGBM tumor immune microenvironment. Therefore, our next step was 

focused on further validating the role of OAS2 in rGBM tumorigenesis.

OAS2 is an essential driver of treatment-resistant cell populations in rGBM

To specifically investigate the effect of OAS2 on GBM BTIC stem-like properties including 

self-renewal and proliferative capacity, secondary sphere formation, limiting dilution assay 

and proliferation assays were performed. Upon knocking out (KO) OAS2 in OAS2-high 

rGBM lines, we observed a marked reduction in clonogenicity, and proliferative capacity 

of OAS2 KO cells (constructs A, B and C) compared to OAS2 control cells (AAVS1) 

as measured by secondary sphere formation as well as limiting dilution assay and 

proliferation assays, respectively (Fig. 4b, Supplementary Figure 4d and 4e). This indicated 

that OAS2 has the ability to drive stem-like properties in GBM BTICs which in turn 

fuels cancer progression. Moreover, we showed that depletion of OAS2 only affects the 

cell proliferation in rGBM and has no effect on normal human astrocytes and pGBM 

suggesting that OAS2 is an essential driver for rGBM. (Supplementary Figure 4f). To 

further validate the role of OAS2 in GBM progression, the effect of OAS2 depletion on 

tumor progression was investigated. For this purpose, an OAS2 high expressing rGBM 

line, BT972, was tested at the in vivo level. In detail, BT972 OAS2 KO and BT972 

OAS2 control cells (AAVS1) were intracranially engrafted into the right frontal region 

of the mouse brain and tumor growth was tracked using weekly MRI imaging until 

mice reached endpoint (Fig. 4c and Supplementary Figure 4g). Mice engrafted with 

OAS2 KO BT972 had significant reduction in tumor burden as shown by histological 

analysis and MRI imaging (Fig. 4c) as well as an increased survival advantage (Fig. 

4d) when compared to their control counterparts (engrafted mice with BT972 AAVS1). 

This provides another layer of confirmation for the key role of OAS2 in rGBM tumor 

progression. Moreover, using published scRNA-seq data from GBM patients and syngeneic 

murine models (GL261 glioma) [27, 30, 31] we demonstrate that OAS2 is preferentially 

expressed in infiltrating myeloid cells (macrophages/monocytes) (Supplementary Figure 

5a and 5b), which promote an immunosuppressive environment in GBM [10]. Relative 

to GBM-associated immune infiltrates, OAS2 expression in GBM tumor cells was low 

but detectable. Within the malignant populations observed in the Neftel cohorts [30], 
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the highest OAS2 expression was consistently observed in MES1 (mesenchymal type 1) 

and AC (astrocyte)-like GBM subtypes indicating OAS2 expression is associated with the 

GBM subtypes which have shown the worst prognosis (Supplementary Figure 5a and 5b). 

Together, these scRNA-seq analyses demonstrated the OAS2 expression is associated with 

immunosuppression and poor prognosis [12, 32]. In addition, through immunohistochemical 

analysis of IBA1 on PDX tissues derived from BT972 GBM AAVS1 and OAS2 KO 

engrafted mice, we indicated significantly higher level of TAMs infiltration in the brain 

tissues of BT972 GBM AAVS1 cells compared to OAS2 KO engrafted mouse brain. As 

TAMs are major immunosuppressive cells in GBM [12, 13] this data reveals the key role 

of OAS2 in the recruitment of TAMs to the tumor tissue and consequently generating an 

immunosuppressive microenvironment (Fig. 4e). This was further confirmed by assessing 

the effect of OAS2 on immunosuppressive cytokines including TGFβ and IL4. We observed 

that OAS2 disruption largely decreases TGFβ and IL4 gene expression suggesting that 

OAS2 depletion in GBM cells impairs the tumor supportive cytokines. Together, these 

data revealed that OAS2 enhances TAMs infiltration in GBM and regulates the release of 

protumorigenic cytokines such as TGFβ and IL4, suggesting that OAS2 plays an essential 

role for suppressing TIME in GBM (Supplementary Figure 6a). We also observed that 

disruption of OAS2 affects the OAS2 downstream signaling pathway by significantly 

decreasing RNase L and RIG-1 gene expression suggesting that OAS2 signaling pathway 

is involved in recurrent GBM [9] (Supplementary Figure 6b). Moreover, we indicated that 

TAMs with M2-like phenotype were more abundant at recurrence, as supported by CD3 and 

CD163 immunohistochemistry on TMAs (Supplementary Figure 6c) confirming significant 

amount of immunosuppression at the recurrent stage of the disease.

DISCUSSION

The field of GBM research currently lacks a quantitative, comparative analysis of the 

proteomes of primary and recurrent GBMs [3, 38]. To date, the vast majority of molecular 

datasets of patient GBMs comprise primary tumors. Recently, large consortia have 

significantly advanced the field of proteogenomics, including in brain malignancies [43, 49, 

53], but focused almost exclusively on primary treatment-naïve disease. Surprisingly, while 

the GBM genome and transcriptome have been well elucidated in primary tumors, the GBM 

proteome and its relation to up-stream genomic alterations are poorly documented. Previous 

studies have shown that tumor cells are exposed to IFNγ [17, 42] produced by the TME, 

and that tumor associated-macrophages (TAMs) might be the source of IFNγ production, 

leading to immune evasion [11]. We identified numerous proteins related to IFNγ signalling 

that were increased in abundance in rGBM relative to pGBM, including OAS1, OAS2, 

MX1 and IFIT1. OAS2 is a member of the template-independent nucleotidyltransferase 

protein family and is an interferon (IFN)-induced antiviral enzyme involved in the antiviral 

innate immune response [5]. OAS2 has been reported as a prognostic biomarker in breast 

cancer [51] and causes immunosuppression in oral cancers by down regulating CD3-ζ 
chain expression through induction of caspase-3 activation. The upregulation of OAS2 in 

rGBM was further confirmed in an independent cohort of fresh frozen GBM samples. 

Further, we showed with in vivo and in vitro CRISPR knockouts that OAS2 is essential 

for GBM progression through an as-yet unknown mechanism. However, we acknowledge 
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the shortcomings of the use of immunocompromised models to further evaluate the 

immunomodulatory role of OAS2 in the tumor microenvironment.

Consistent with this broad proteomic change in IFNγ signalling, our data revealed 

a dominant immunosuppressive phenotype for rGBM, with elevated Siglec-1 (CD169) 

abundance occurring during tumor evolution under therapeutic pressure. CD169 is a 

sialic acid receptor expressed on a specific type of macrophages. In triple-negative breast 

cancer CD169+ macrophages support tumor growth and metastasis by causing immune 

escape, negatively affecting CD8+ T cell accumulation in tumors and causing the JAK2/

STAT3 signaling pathway to be activated upon exposure to tumor cells [18]. TAMs with 

M2-like phenotype were more abundant at recurrence, as supported by CD3 and CD163 

immunohistochemistry on TMAs. Moreover, OAS2 expression was positively correlated 

with higher levels of TAM infiltration into tumor tissue as well as increased gene expression 

of immunosuppressive cytokines including TGFβ and IL4. These data provide another 

layer of confirmation for the crucial role of macrophages in GBM progression and 

immunosuppression which is associated with poor patient prognosis [50]. This finding is 

aligned with recent studies reporting the significant role of macrophages in inducing GBM 

immunosuppression, seen predominantly in GBMs of the mesenchymal subtype as the most 

aggressive subtype for GBM [15, 21]. This was also further confirmed by published scRNA-

seq data on glioblastoma patient samples as well as syngeneic glioma mouse model which 

also revealed the high level of expression of OAS2 on myeloid cells as immunosuppressive 

cell population in GBM as well as tumor cells with mesenchymal and classical subtypes 

resulting in therapy resistance and as a result which results in patient’s poor survival [1, 27, 

30, 31].

This work describes the first proteomic landscape analysis of matched pGBM-rGBM, which 

could promote the development of new, selective targeted therapies and immunotherapies. 

This proteomic characterization of rGBM could begin to instruct novel and rational 

combinatorial poly-therapeutic approaches to provide more effective and personalized 

treatments for therapy-resistant rGBM. However, to further understand the role of OAS2 in 

GBM progression, related signaling pathways and mechanistic studies need to be explored 

in the future. This study provides clear rationale for increased research and clinical profiling 

of rGBM, including by non-invasive assays measuring circulating tumor DNA, RNA and 

protein.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: pGBM and rGBM have distinct genomic and protein landscapes.
a, Schematic representation of sample collection and preparation, MS proteomics, target 

identification and functional analysis workflow. b, Distribution of protein quantitation 

measured as median intensity by the number of samples they are detected in. Bar plot 

on top represents the total counts of proteins quantified by the number of samples they are 

present in. Missing values were omitted when calculating the median.
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Fig. 2: Proteomic subtypes of GBM across disease states
a, Proteomic subtypes were identified in 40 matched pGBM-rGBM pairs. Clinical covariates 

indicating tumour classification, age at treatment (years), transcriptomic subtype, sex and 

pathway enrichment for proteomic subtypes are shown. b, pGBM and rGBM samples from 

the same patient classify as different proteomic (n = 40; replicate pGBM or rGBM samples 

were removed for simplicity) and c, transcriptomic subtypes (n = 22).
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Fig. 3: Differential expression analysis between pGBM-rGBM matched pairs introduces OAS2, 
an essential gene for rGBM with significant upregulation at the recurrent stage.
a, Volcano plot depicting differential abundance analysis between pGBM and rGBM in 

matched sample pairs. Proteins significantly enriched in rGBM patients are indicated in red, 

while proteins enriched in pGBM are indicated in blue (Q value < 0.1; log2 fold change > 

1). b, Gene set enrichment analysis (GSEA) showing the top significantly enriched pathways 

in pGBM vs. rGBM. The dot plot shows the normalized enrichment scores (NES) with 

the background color gradient representing the Q values. c, Immunohistochemical analysis 

of OAS2 on TMA consisting of both matched and unmatched pGBM-rGBM samples 

indicated a significantly higher level of OAS2 at the recurrent stage. (The representative 

image shows pGBM (PM35)-rGBM (RM35) matched samples) (Scale bar: 200 um, P value: 

*** 0.0002, **** < 0.0001). d, Overexpression of OAS2 in rGBM was confirmed by 

immunohistochemical analysis on a TMA construct consisting of an independent cohort of 

20 pGBM-rGBM matched samples.
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Fig. 4: OAS2, an essential gene for rGBM, has significant upregulation at the recurrent stage.
a, Western blotting analysis on the protein lysate of GBM BTIC (pGBM-rGBM matched 

and unmatched samples) confirmed a two-fold increase in OAS2 expression. b, BT972, an 

OAS2 high expressing recurrent GBM BTIC line, was used for functional analysis. OAS2 

was knocked out using CRISPR knockout gene editing. Following confirmation of gene 

knockout (construct A, B and C) by western blotting, the effect of OAS2 on self-renewal 

and proliferation capacity of OAS2 KO BT972 vs OAS2 WT BT972 (BT972 AAVS1) 

were measured using secondary sphere formation assay and PrestoBlue proliferation assay, 

respectively (P value: *** p < 0.001, **** p < 0.0001) (One way ANOVA). c-d, OAS2 

KO BT972 and BT972 control (BT972 AAVS1) (100,000) were intracranially implanted 

into the right frontal lobe of NSG mice (n=6). The tumor size was tracked weekly using 

MRI imaging. e, IHC analysis of IBA1 on GBM xenografts from OAS2 KO or WT GBM 

Tatari et al. Page 24

Acta Neuropathol. Author manuscript; available in PMC 2023 May 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cell engrafted mice revealed higher levels of IBA1 expression in OAS2 WT vs OAS2 KO 

engrafted brains. Scale bars represent 100 μm.
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Table 1:

Patient demographics indicating clinico-pathological features of the cohort

Cohort Primary Recurrent Matched

Sex

Male
Female

4
5

16
6

31
9

Age at Treatment

Mean
Median

61.0
61.4

56.5
55.8

58.1
56.5

Time to recurrence (Months)

Mean
Median

10.8
9.5

8.3
8.1

9.2
8.4

Time to death (Months)

Mean
Median

23
19.2

14.2
14.1

14.9
14.6

Total (Patients) 9 22 40
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