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ABSTRACT

In the design of large electrical, mechanicsal, structural, etec.,
systems, the architect frequently faces a normalization problem: given
a system made by a large number of components, a procedure, generally
a numerical procedure, is available for the determination of the mini-
mum size required by each one of the components. The adoption of the
sizes obtained in this fashion would then represent the optimum design
solution in the sense of minimum cost if it were not for the well-known
fact that repetition of components in a system yields a reduction in
fabrication and assemblage costs. If the fractional reduction in cost
due to repetition is assumed to be known for each type of component,
the problem consists in determining the combination of sizes for which

the greatest reduction is achieved. This is a combinatorial problem of

vast arithmetic proportions unless a methodological approach is employed.

In the present research a method based in the theory of Dynamic Pro-

gremming has been developed using elements of Graph Theory and Optimiza-

tion. The model and its solution is presented using as an example of
application the problem of normalizing the structural sections of a
housing project. Application to other areas of building methodologies
is also discussed. A computer progrem and numerical illustrative re-
sults complete the presentation of the model. At present, a stochastic

version of the model is being developed.



Introduction

At the "dimensioning" stage of large electrical, mechanical,
structural, ete. systems, the architect frequently faces a number of
normalization problems. In fact, at this stage the system will be formed
by a large number of components whose dimensions have been determined by
procedures that in general fail to recognize the true complexity of the
system. For exemple, we possess very powerful methods to optimize the
structural elements of a building but these procedures do not in general
account for the interaction of the structural topology and the associated
cost of fabrication and assemblage, and much less do they account for the
interaction of the structure with other systems composing the entire
building. The same is true in considering a number of mechanical, elec-
trical, etc. systems. Clearly, the adoption of the optimum sizes obtained
with those methods will not in general lead to the optimum design solu-
tion of the entire system, because what is optimum with respect to one
function will be in general not optimum for two or more functions. This
is particularly true when we consider operative and manufacture costs in
addition to strajghtforward consideration of cost due to volume of
materials. It is in effect known that repetition of components in a
large system yields in general a reduction in fabrication and assenblage
costs. A meaningful step in the design process is therefore to normal-
ize the dimensions of the elements comprising a system in such a way as
to achieve a reduction in cost. The present paper is devoted to a
methodological treatment of this particular design stage. We shall con-
sider here the simplest version of this problem as an example of a
methodological approach that admits considerable generalization in the

realm of building methodology. Assuming that the fractional reduction
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in cost due to repetition of a number of elements is known, the problem
now consists in determining the combination of sizes for which the great-

est reduction in cost is achieved. This is a combinatorial problem of

vast arithmetic proportions unless a methodological approach is employed.

The dynamic programming algorithm of the allocation problem has been

previously pointed out as an efficient technique for the solution of
problems of this kind in the realm of structural design [1]. In this
peper we present a methodological approach for the formulation and the
solution of problems of the present type based in elements of Graph

Theory and Optimization. This approach has proved to be highly efficient

and easy to teach. This is demonstrated by the fact that it is the

main theme for an undergraduate interdepartmental course in methodologi-
cal aspects of design that is regularly taught by the authors to students
of architecture and engineering at the Berkeley Campus.

The model and its solution is presented using as an example of
application the problem of normelizing the structural sections of a
housing project. Application to other areas of building methodologies
are also discussed. A computer program and numerical illustrative re-
sults complete the presentation of the model. At present, a stochastic

version of the model is being developed.

The Model

A system containing n components (elements) of the same category
is to be designed to perform adequately under various conditions. The
definition of adequacy of performance depends on the type of system under
consideration. In a building, for example, the relevant components
might be all the beams of the same length in the structural freme. The

performance of the system would then be its response to various loading
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conditions and the adequacy of response might be composed of certain re-
quirements on stress and deflection velues, yielding of material, or
failure of members due to buckling or fatigue. It is assumed that
methods of analysis and design relevant to the conditions of adequacy
are available to determine the minimum allowable component sizes, i.e.,
to select a set of n components, each of which is Just sufficient to
satisfy all conditions of adequate performance. This set of components
represents a design for the system. In many systems of interest,
adequacy of performance is an increasing function of the amount of materi-
al used, in efficient system components. Thus, if there exists a finite,
discrete set of m available component sizes (and thus m different levels
of performance) from which to choose, the selected set of minimum allow-
able performance components for the system can be expressed as

n, components of size j, J=1,2,...,m (1)

J
with
n, = n, the total number of components in the system (2)

d
1

Y

and this design is the minimum weight design due to the relationship

between performence and amount of material.

For some classes of systems (e.g., structures such as airplanes
and spacecraft) weight is the predominant factor in determining the
ultimate total cost of constructing and using the system, and thus the
minimum-weight design is also effectively the minimum-cost design. How-
ever, in many other systems the fabrication costs are equal or even
dominant factors with the material and weight-penalty costs. Fabrica-
tion costs per component cen often be reduced through normalization of
components, i.e., the manufacture of many identical components, but the

material costs increase because some components in the system are then
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larger or heavier than necessary for adequate performance. The problem
is thus a smoothing problem of selecting the set of components that
minimizes the total cost by balancing these two competing effects.

If the m different component sizes are arranged in order of
decreasing size or weight, then we define

cJ = the cost of one component of size j, assuming

only one is fabricated (3=1,2,...,m) (3)

and

rJ(i) = overall fractionel cost reduction factor for
size J if i components of that size are fabrica-

ted together. (4)
Then the total cost of kJ components of size J is given by
a(kJ,J) =chJ[1 - rJ(kJ)] (5)

and the total cost of the system is
m
A= ek, (6)
J=1
An artificial stratification of the selection problem is possible be-
cause of the separeble form (6) of the total cost function.

The optimization problem of minimizing cost may then be viewed
as an m-stage sequential component selection process, with constraints
on the selection (decision) imposed by the requirements of adequate
system performance. These constraints are given by the previously de-
termined minimum-performence design (1), (2):

at least n, components of size 1 (the largest)

at least n, components of size 2 or larger

at least n3 components of size 3 or larger

. (7

at least n, components of size m or larger
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If the selection begins with the largest size component, these constraints

become
J 3
at stage (size) J, N, = < k,~.. S n (8)
vj W J"" 4' ] j
i=] i=1
where k, is the number of components chosen to be of size J.

J

The Methodology

In many types of discrete-state, multistage decision processes,
a map or graph is useful in illustrating the process and visualizing its
solution procedure. If the horizontal axis of the graph represents
successive component sizes and the vertical axis represents cumulative

number of components (Nj) chosen up to and including size (stage) 3,

then the graph of possible combinations of selected elements appears as
in Figure 1. A possible combination of selected elements (a sequence
of decisions or a policy) is represented by a path from point (0,0) to
point (n,m). All possible paths are bounded by two limiting system
designs:

1) the fully-normalized or uniform-component design (upper bound)

2) the minimum component performance of minimum-weight design
(lower bound).

In terms of coordinates on the graph, for example, the paths representing
these two designs can be written as

UNIFORM COMPONENT: (0,0) + (n,1) + (n,2) > ... » (n,m)

MINIMUM COMPONENT: (0,0) + (n,,1) = (ny+n,,2) + ... (n,m) (9)

Exhaustive enumeration of all allowable paths in the graph
(Figure 1) would be one way of computing the costs of different system
designs end finding, by direct search, the lowest resulting cost. How-
ever, the number of allowable paths is of the order of (g)m, which makes

direct enumeration computationally impossible for large systems.
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An approach to multistage analysis called dynamic programming
[2] is ideally suited for this class of problems because it exploits the
separable nature of the cost function (equation 6) to obtain an efficient
recursive solution procedure. The dynamic programming approach, which
renders much larger problems computationally solvable than does a

direct enumeration spproach, will be explained in the following section.

The Dynamic Programming Solution

Following the ideas of discrete dynamic programming [2], we define

f (Nj) = the minimum cost after selection of N, total
components from among J successive s1%es.

(10)
Then the Principle of Optimality of dynamic programming (page 15 of [2])
provides the key to obtaining the recursion relations needed to solve this

problem. From equation (6), equation (10) becomes

3 g
£ (N,) = minimum T N
3+ ! a(k, ,i) (1)
kl’k2’ .o kJ = i |

Proceeding formally with equation (11), we may separate the minimum

operation to obtain

i 3 1
f (N ) = min | minimum i EE“ a(kl,l)\x (12)
i k. ,k k, .\ ‘ !
’.'., »
.j! 1’72 J-1 «i=1 )
l_ 'I
Then (12) becomes, by separation of the summation terms,
[ ;d-1 )
f (N ) = n[ (kj,j) + minimum } N a(k i)t (13)
Ky | Kyskpoeeonky g (=1 }J
i-
From the definition (10) and equation (11), we finally obtain
f. (N = -

Kk J J"H

n
J L.



Upon substitution of (5) and consideration of the constraints (7),
(14) can finally be written as a set of functional recurrence relations

. (N,) = minimun

T
k c, 1 -1 (k)b + K, )
3 o<k<L|[ S N A JlJJ_] (15)

(3=2,3,...,m)

where .
J-1 [ J N (
L, =N, = *7n » 4 ¥ 'n, <N, <n ] 16)
J J 4:_—1 o i \ j: -: 1 i1 - J - I
and
fl(N ) = Nyey [1 -~ l(Nl)] (initial condition) (17)

The equations (15), (16), and (17) are then solved successively for each
value of J, and at each value of J for each possible value of Nd, up to
the end-point im(n), which is then the minimum cost of the total system.

The selected optimal policy (optimal sequence) of component sizes is then

determined by a trace-back through the sets of values kg(NJ) which sat-
isfied the minima in equation (15) at each stage j and each level Nj'
In the following section, a FORTRAN subroutine computer program is devel-

oped to perform the dynamic programming solution (15)-(1T7).

The Computer Program

The digital computer solution of the above general component
selection problem may be accomplished by a FORTRAN subroutine. Define
the following FORTRAN variables:

Data variables -~

NBT

number of components in the total system (n)

NT

number of different component sizes available (m)



Data arrays (dimensions) -

COSTF(NT) = cost of one component of each size, if only one is
fabricated (cJ)

CRED(NET) = overall cost reduction factors for multiple-
component fabrication (r{il)

NBMIN(NT) = number of components of each type in the minimum

weight design (nJ)

Computation and storage arrays (dimensions) -

F(NBT,2) = current stage (col. 2) and previous stage (col. 1)
minimum cost values (fj[NJ])
IPOL(NBT,NT) = selection policy values (kj[NJ])

Result or solution array (dimension) -

NBOPT(NT) = number of components of each size selected to min-
imize the total cost of the structure

The minimum cost of the system is located in F(NBT,1) at the end of
execution of the subroutine. A complete FORTRAN listing of subroutine
MCESDP (for minimum cost element selection by dynamic programming)

appears in Figure 2.

A Sample Problem

Consider a three-story, multi-bay building frame containing 15
beams of the same length dimension. The structure is to be constructed
from pre-cast, pre-stressed concrete members. Some method of hand cal-
culations or a computer analysis, e.g. SAP (Structural Analysis Program)
has been used to determine the minimum-weight design. This design, con-
sisting of five different beam cross-section sizes, is given in Table 1.
Costs for each size of each member, assuming only one member of that size
is being fabricated, are also given in Table 1. The information supplied
by the concrete beam manufacturers concerning the cost reduction factors

for multiple~beam fabrication is given in Table 2.
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The solution of this problem is straightforward. Subroutine
MCESDP, coupled with a main program for Input/Output, finds the minimum-
cost design in .Ol4 seconds of CDC-6400 central processor time (Table 3).

The output of the main program includes Tables 1, 2, and 3.
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fully-normalized or
‘/uniform-COmponent design\\\

(n,m)

erformance

27

2

component sizes (in decreasing order)
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shaded portion of graph violates adequate-performance)

(

DIRECTED GRAPH OF POSSIBLE COMPONENT SELECTION COMBI-

NATIONS IN THE DYNAMIC PROGRAMMING APPROACH
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DYNAMIC PROGRAMMING SELECTION OF 15 STRUCTURAL

ELEMENTS FROM AMONG 5 TYPES, FOR MINIMUM COST.

Teble 1. Element Type Data

Element Cost for Number of Elements
Type One Element in Min. Wt. Design

110.50
90.00
88.50
65.00
50.00

T EW N
N O W

Table 2. Cost Reduction Factors

Number of Similar Overall Cost
Elements Used Reduction Factor
1 .
2 .0T0
3 .110
Y .1k0
5 140
6 .1ko
T .1ko
8 .1ko
9 .1k0
10 .1L0
11 140
12 .1k0
13 140
1k 140
15 .1ko

Teble 3. Minimum Cost Selection Table

Element Type Number of Elements Cost (In Dollars)
1 3 295.03
2 h 309.60
3 5 380.55
L 1 65.00
5 2 93.00
Totsl elements = 15 Total cost = 1143.18 dollars

Selection took .0l1l4 seconds of CDC-6L00 Central Processor time.
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