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Congestion	Reduction	Through	Efficient	Empty	Container	
Movement	

ABSTRACT	
	
In	2015,	the	Ports	of	Los	Angeles	and	Long	Beach	moved	15.3	million	twenty-foot	Equivalent	
Units	(TEU).	There	is	a	significant	body	of	work	on	moving	loaded	containers	efficiently,	
however	there	has	been	little	research	on	the	movement	of	empty	containers.	Out	of	the	15.3	
million	TEUs,	about	30%	or	4.3	million	TEUs	were	empty	containers.	
	
Empty	container	movement	is	increasing	greatly	because	of	the	enormous	inconvenience	for	
companies	to	coordinate	with	each	other	to	exchange	empty	containers.	This	problem	is	known	
as	the	Empty	Container	Problem.	This	study	proposes	a	mathematical	model	that	solves	the	
empty	container	problem	using	double	and	single	container	trucks.	The	model	discretizes	time	
and	ensures	demand	is	met.	By	solving	the	empty	container	problem,	congestion	can	be	
reduced	since	fewer	truck	trips	would	be	needed	to	satisfy	demand.	Furthermore,	since	double	
container	trucks	can	deliver	two	containers	per	truck	trip,	the	quantity	of	trucks	needed	to	
satisfy	the	demand	is	decreased	even	more,	further	reducing	congestion.		
	
The	model	was	tested	using	data	from	the	Ports	of	Los	Angeles	and	Long	Beach.	The	results	are	
promising	and	show	that	the	number	of	miles	and	trucks	can	be	significantly	reduced	by	
increasing	the	number	of	street	exchanges,	and	further	reduced	by	using	double	container	
trucks.	This	report	shows	that	using	a	single	container	policy	instead	of	the	current	policy	would	
reduce	truck	miles	by	about	12%,	and	would	reduce	significant	truck	trips	to	and	from	the	port.	
The	double	container	policy	reduces	truck	miles	by	about	55%	compared	to	the	current	policy,	
which	is	a	noteworthy	reduction.	This	could	potentially	reduce	congestion	substantially,	
lessening	the	impact	of	container	freight	movement	on	the	environment.	
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1.	Introduction	

1.1	Background	

In	today’s	world,	there	is	a	significant	body	of	work	regarding	the	efficient	distribution	of	
loaded	containers	from	the	ports	to	consignees.	However,	to	fully	maximize	the	process	and	
better	address	environmental	concerns,	study	is	needed	on	allocating	empty	containers	created	
by	consignees.	This	is	an	essential	aspect	in	the	study	of	container	movement	since	it	balances	
out	the	load	flow	at	each	location.	Currently,	most	container	movement	at	the	Ports	of	Los	
Angeles	and	Long	Beach	follows	a	simple	movement,	going	from	the	port	to	importers,	and	
then	back	to	the	port	as	an	empty	container.	Subsequently,	some	of	these	empty	containers	go	
from	the	port	to	exporters	and	then	return	as	loaded	containers	to	the	port.	Finally,	both	empty	
and	full	containers	are	shipped	from	the	ports	to	Asia.	
	
This	creates	a	lot	of	unnecessary	traffic.	For	example,	in	2015	the	Ports	of	Los	Angeles	and	Long	
Beach	had	15.3	million	Twenty-foot	Equivalent	Units	(TEU).	About	30%	of	this	or	4.3	million	
TEUs	were	empty	containers.	This	is	a	significant	amount	of	unnecessary	empty	container	
movement.	
	
1.2	Motivation	

In	this	study,	we	propose	a	model	that	allows	empty	containers	to	go	directly	from	the	
importers	to	the	exporters	and	not	return	empty	back	to	the	port.	This	movement	is	usually	
called	a	“street	exchange”.	There	are	several	reasons	why	street	exchanges	are	uncommon	in	
today’s	container	movement	process.	However,	probably	the	most	prominent	reason	is	the	
coordination	required	between	different	companies	to	make	the	exchange	in	a	timely	fashion.	
	
The	problem	of	coordinating	the	container	movement	to	increase	the	number	of	street	
exchanges	has	been	studied	in	the	past	and	is	called	the	“Empty	Container	Reuse	Problem”.	
This	research	augments	earlier	work	by	proposing	the	use	of	double	container	trucks.	Double	
container	trucks	would	increase	the	number	of	street	exchanges	that	could	be	made	since	the	
possibilities	are	greater	with	two	container	trucks.	Currently,	double	truck	containers	are	used	
in	multiple	countries,	including	but	not	limited	to	Mexico,	Argentina,	Australia,	and	Canada.	In	
the	United	States,	double	container	trucks	are	allowed	on	some	roads,	but	not	all.	For	example,	
they	are	prohibited	from	operating	in	the	Ports	of	Long	Angeles	and	Long	Beach	since	
infrastructure	improvements	are	necessary	to	accommodate	double	container	trucks.	This	
report	presents	important	benefits	of	using	double	container	trucks	on	the	impact	on	the	
reduction	of	truck	routes	if	the	local	infrastructure	was	expanded	to	account	for	double	
container	trucks.	
	
We	study	the	Empty	Container	Reuse	Problem	with	the	added	feature	of	adding	double	
container	trucks.	Since	double	container	trucks	can	deliver	two	containers	in	a	single	trip,	we	
show	that	if	the	port	logistics	were	to	adopt	this	container	movement,	the	number	of	truck	trips	
and	truck	miles	would	decrease,	lessening	the	ecological	impact	due	to	container	movement.	
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We	also	show	that	empty	container	reuse	using	single	container	trucks	will	significantly	reduce	
both	the	number	of	truck	trips	and	the	number	of	truck	miles,	over	the	existing	routing	
strategy,	where	the	road	infrastructure	cannot	support	double	container	trucks.	
	
1.3	Structure	of	Report	

The	rest	of	this	report	is	organized	as	follows.	In	Section	2,	a	literature	review	of	the	relevant	
problems	is	presented.	Section	3	formally	defines	and	describes	the	mathematical	model	used	
for	the	assignment	of	the	container	movement.	In	Section	4	some	heuristics	are	presented	to	
obtain	effective	feasible	solutions	to	the	model	since	it	is	computationally	prohibitive	to	obtain	
optimal	solutions	for	large	scale	problem	sizes.	In	Section	5	the	results	for	two	types	of	
experiments	are	shown,	one	using	data	from	the	Ports	of	Los	Angeles	and	Long	Beach,	and	the	
other	one	using	randomized	data	sets.	In	Section	6	a	heuristic	is	presented	for	the	construction	
of	a	truck	schedule	for	delivery	of	the	assignment	of	the	container	movements.	In	Section	7,	we	
discuss	the	implementation	and	applicability	of	our	work.	Finally,	in	Section	8	conclusions	are	
drawn.		
	
	
2.	Literature	Review	

There	has	been	some	prior	research	on	the	Empty	Container	Reuse	Problem	due	to	the	fact	
that	container	repositioning	has	become	increasingly	more	expensive	over	the	years.	
Historically,	the	problem	has	been	subdivided	into	two	sub-problems.	The	first	problem	focuses	
on	empty	container	reuse	in	inland	destinations.	The	second	sub-problem	focuses	on	the	
movement	of	containers	that	are	near	the	port	areas,	usually	no	more	than	20	miles	from	the	
port.	It	is	this	second	problem	that	is	the	focus	of	this	paper.	
	
One	of	the	earliest	models	for	this	problem	was	developed	by	Dejax	and	Crainic	in	1987.	They	
developed	several	deterministic,	stochastic,	and	hybrid	models	as	to	how	empty	containers	
should	be	repositioned.	They	proposed	successive	research	with	new	ideas	such	as	adding	a	
depot	center	and	integrating	empty	and	loaded	container	movements	at	an	industry	level.	
Bourbeau	et	al.	(2000)	developed	a	mixed	integer	model	and	used	a	parallel	branch	and	bound	
approach	to	optimize	the	location	of	the	depot	and	provide	a	flow	of	the	container	allocation	
problem.	
	
Bandeira	et	al	(2009)	developed	a	rolling	horizon	model	to	coordinate	different	customer	
demands	as	to	minimize	costs.	Their	model	is	solved	in	two	steps.	First	it	meets	all	demand	for	
that	time	period.	Then	it	adjusts	the	solution	to	allocate	containers	to	minimize	costs.		Erera	et	
al.	(2009)	built	a	robust	optimization	framework	for	container	allocation.	This	allowed	them	to	
find	an	approximate	optimal	solution	in	a	dynamic	world	where	future	demand	for	containers	
are	stochastic.		
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Braekers	et	al	(2013)	tackled	the	dynamic	empty	container	reuse	problem.	They	constructed	a	
network	flow	model	to	optimize	the	movement	from	importers,	exporters,	depots,	and	the	
port.	They	used	a	sequential	approach	and	an	integrated	approach	to	solve	the	model.	This	
yielded	a	sub-optimal	result,	but	decreased	the	complexity	of	the	model,	thus	reducing	the	
solving	time.	They	tested	their	solving	methods	using	a	small	example	that	they	created,	as	well	
as	other	examples	from	other	papers	for	comparison.			
	
Li	et	al	(2014)	studied	the	problem	at	a	more	global	view.	They	built	a	model	that	maximized	
profit	for	the	shipping	company.	Their	model	was	deterministic	and	operated	on	a	rolling	
horizon	basis.	They	then	tested	their	model	on	a	real	life	example	using	some	ports	from	the	
east	coast	of	China,	and	showed	that	not	only	is	their	approach	more	profitable	but	also	
provides	a	greener	solution.	
	
Probably	the	most	extensive	research	of	container	movement	in	the	Ports	of	Long	Beach	and	
Los	Angeles	was	done	by	the	Tioga	Group	(2002).	They	did	extensive	research	on	container	
movement	in	and	out	of	the	Port	of	Long	Beach.	After	compiling	extensive	data,	they	suggested	
a	concept	of	how	empty	container	reuse	could	be	increased	in	this	area.	Their	work	has	served	
as	a	foundation	to	various	other	empty	container	models	that	use	the	Port	of	Long	Beach	as	
their	research	scenario,	especially	when	using	their	data.	For	example,	Jula	et	al.	(2006)	built	a	
dynamic	model	that	used	the	Tioga	report	data	to	come	up	with	a	feasible	solution	of	how	to	
allocate	containers	on	a	daily	basis.	Taking	into	account	that	on	any	single	day	all	demand	is	
deterministic,	but	the	demand	for	the	next	day	is	stochastic.	They	use	dynamic	programming	to	
find	the	best	match	of	a	bipartite	transportation	network.	In	that	way,	they	meet	all	the	daily	
demand	and	try	to	optimize	the	containers	for	future	days	as	well.		
	
Dam	Le	(2003)	has	also	assessed	from	the	perspective	of	the	logistics	involved	to	make	
container	reuse	possible	in	Southern	California.	She	conducted	several	interviews	with	field	
experts	to	make	recommendations	on	where	depots	would	make	the	most	sense	according	to	
expected	demand	from	the	different	importers	and	exporters.		
	
	
3.	Problem	Statement	and	Formulation	

3.1	Problem	Description	

We	assume	container	demand	at	each	location	is	given	and	deterministic	for	each	day.		Our	
model	focuses	on	satisfying	all	demand,	both	for	loaded	and	empty	containers,	at	all	the	
locations	throughout	the	day.	First,	time	is	discretized.	The	decision	variables	are	integer	
variables	that	correspond	to	the	number	of	containers	sent	from	location	i	to	location	j	at	each	
point	in	time.	There	are	three	main	types	of	variables.	A	truck	carrying	two	containers	is	divided	
into	two	variables.	The	first	variable	corresponds	to	the	container	that	the	truck	delivers	first.	
The	second	variable	corresponds	to	the	container	that	the	truck	delivers	second.	Lastly,	the	
third	variable	corresponds	to	a	truck	delivering	a	single	container.		
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Figures	1	and	2	show	the	current	and	proposed	single	container	flow	for	both	full	and	empty	
containers.	As	can	be	seen	in	the	figures,	the	network	locations	are	separated	into	four	groups:	
importers,	exporters,	depots,	and	the	port.	The	depots	are	currently	not	being	fully	utilized;	
however,	our	model	proposes	that	depots	need	to	be	added	to	make	street	exchanges	easier	to	
schedule.	Each	location	has	a	demand	for	either	loaded	or	empty	containers,	or	both.	Also,	
each	location	yields	empty	or	loaded	containers,	or	both.	For	example,	an	importer	requests	
loaded	containers	and	yields	empty	containers	that	can	be	used	to	satisfy	other	locations.	Not	
all	locations	can	satisfy	the	demand	for	other	locations.	For	example,	an	importer’s	demand	can	
only	be	satisfied	by	loaded	containers	coming	from	the	port;	however,	it	can	satisfy	empty	
container	demand	for	exporters	and	the	port.	Figure	3	shows	container	movement	for	the	
proposed	double	container	flow.	The	arrows	for	full	or	empty	containers	show	potential	flow	
for	both	single	containers	or	two	containers	of	the	same	type.	For	example,	in	Figure	3	a	
possible	two	container	route	involves	going	from	the	Port	to	an	exporter	to	deliver	an	empty	
container,	and	then	going	from	the	exporter	to	an	importer	to	deliver	a	full	container.	It	is	for	
this	reason	that	Figure	3	has	many	more	options	compared	to	the	possible	routes	in	Figure	2.	
However,	this	does	not	mean	that	an	exporter	can	supply	an	importer,	since	it	is	actually	the	
Port	that	supplies	containers.	For	this	reason,	Figure	2	also	shows	what	locations	can	supply	
other	locations.	

 
Figure	1.	Current	container	flow	

 
Figure	2.	Proposed	single	container	flow	
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Figure	3.	Proposed	double	container	flow	
	
	
As	stated	above	at	each	discretization	of	time,	the	model	allows	for	containers	to	be	moved	
from	one	location	to	another.	We	then	introduce	two	new	variables.	The	first	variable	records	
the	number	of	containers	received	at	each	location	at	each	point	in	time.	The	second	variable	
records	the	number	of	containers	provided	by	each	location	at	each	point	in	time.	It	is	these	
two	variables	that	allow	the	model	to	ensure	demand	is	met	at	each	time	period.		
	
The	model	also	assumes	trucks	are	not	a	limiting	resource	since	there	are	a	good	deal	of	trucks	
around	the	port	area	waiting	for	a	job.	Thus,	we	do	not	have	to	balance	the	number	of	trucks,	
and	we	assume	that	trucks	are	on	standby	waiting	for	a	job.		
	
3.2	Mathematical	Formulation	

We	next	present	the	mathematical	formulation	of	the	double	container	reuse	model.	The	
notation	for	the	formulation	is	as	follows:	
	
Parameters:	

𝐼 = 𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑚𝑝𝑜𝑟𝑡𝑒𝑟𝑠	
𝐸 = 𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑒𝑥𝑝𝑜𝑟𝑡𝑒𝑟𝑠	
𝐷 = 𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐷𝑒𝑝𝑜𝑡𝑠	
𝑇 = 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑖𝑚𝑒	𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠			
𝑙:,<,= = 𝑡𝑖𝑚𝑒	𝑖𝑡	𝑡𝑎𝑘𝑒𝑠	𝑡𝑜	𝑔𝑜	𝑓𝑟𝑜𝑚	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑖	𝑡𝑜	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑗	𝑙𝑒𝑎𝑣𝑖𝑛𝑔	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡	

𝑜:,<,= = 𝑡𝑖𝑚𝑒	𝑖𝑡	𝑡𝑎𝑘𝑒𝑠	𝑡𝑜	𝑔𝑜	𝑓𝑟𝑜𝑚	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑖	𝑡𝑜	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑗	𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡	

𝑟: = 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟	𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟	𝑡𝑖𝑚𝑒	𝑎𝑡	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑖	
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𝑝: = 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠	𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒	𝑎𝑡	𝑡ℎ𝑒	𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔	𝑜𝑓	𝑡ℎ𝑒	𝑑𝑎𝑦	𝑎𝑡	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑖	
𝑑:,= = 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠	𝑑𝑒𝑚𝑎𝑛𝑑𝑒𝑑	𝑎𝑡	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑖	𝑏𝑦	𝑡𝑖𝑚𝑒	𝑡	

𝑐: = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦	𝑜𝑓	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑖		
𝑒:,<,= = 𝐶𝑜𝑠𝑡	𝑜𝑓	𝑓𝑖𝑟𝑠𝑡	𝑙𝑒𝑔	𝑜𝑓	𝑎	𝑡𝑤𝑜	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟	𝑟𝑜𝑢𝑡𝑒	𝑔𝑜𝑖𝑛𝑔	𝑓𝑟𝑜𝑚	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑖	𝑡𝑜	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑗	

	𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡	
𝑓:,<,= = 𝐶𝑜𝑠𝑡	𝑜𝑓	𝑠𝑒𝑐𝑜𝑛𝑑	𝑙𝑒𝑔	𝑜𝑓	𝑎	𝑡𝑤𝑜	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟	𝑟𝑜𝑢𝑡𝑒	𝑔𝑜𝑖𝑛𝑔	𝑓𝑟𝑜𝑚	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑖	𝑡𝑜	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑗	

	𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡	
𝑔:,<,= = 𝐶𝑜𝑠𝑡	𝑜𝑓	𝑎	𝑜𝑛𝑒	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟	𝑟𝑜𝑢𝑡𝑒	𝑓𝑟𝑜𝑚	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑖	𝑡𝑜	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑗	𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡	
	
Sets:	

𝑆𝐼 = {1,… , 𝐼}	 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠	𝑜𝑓	𝑎𝑙𝑙	𝑖𝑚𝑝𝑜𝑟𝑡𝑒𝑟𝑠 	

𝑆𝐸 = {	𝐼 + 1,… , 𝐼 + 𝐸}	(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠	𝑜𝑓	𝑎𝑙𝑙	𝑒𝑥𝑝𝑜𝑟𝑡𝑒𝑟𝑠)	
𝑆𝐷 = {𝐼 + 𝐸 + 1,… , 𝐼 + 𝐸 + 𝐷}	(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠	𝑜𝑓	𝑎𝑙𝑙	𝑑𝑒𝑝𝑜𝑡𝑠)	
𝑆𝑃 = 	𝐼 + 𝐸 + 𝐷 + 1	 	(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑝𝑜𝑟𝑡)	
𝑆𝐴 = 𝑆𝐼 ∪ 𝑆𝐸 ∪ 𝑆𝐷 ∪ 𝑆𝑃 				(𝑎𝑙𝑙	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠)				
𝑆𝑇 = {1,… , 𝑇}	(𝑡𝑖𝑚𝑒𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑑𝑎𝑦)	
	
Decision	Variables:	

𝑥:,<,=
= 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑓𝑖𝑟𝑠𝑡	𝑙𝑒𝑔	𝑡𝑤𝑜	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟	𝑡𝑟𝑢𝑐𝑘𝑠	𝑔𝑜𝑖𝑛𝑔	𝑓𝑟𝑜𝑚	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑖	𝑡𝑜	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑗	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡	
𝑦:,<,= = 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑒𝑐𝑜𝑛𝑑	𝑙𝑒𝑔	𝑡𝑤𝑜	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟	𝑡𝑟𝑢𝑐𝑘𝑠	𝑔𝑜𝑖𝑛𝑔	𝑓𝑟𝑜𝑚	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑖	𝑡𝑜	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑗		

𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡	
𝑧:,<,= = 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑖𝑛𝑔𝑙𝑒	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟	𝑡𝑟𝑢𝑐𝑘𝑠	𝑔𝑜𝑖𝑛𝑔	𝑓𝑟𝑜𝑚	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑖	𝑡𝑜	𝑗	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡	

𝑚:,= = 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠	𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑	𝑏𝑦	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑖	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡	

𝑛:,= = 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠	𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑	𝑡𝑜	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑖	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡	

𝑎:,= = 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠	𝑡ℎ𝑎𝑡	ℎ𝑎𝑣𝑒	𝑏𝑒𝑒𝑛	𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑	𝑏𝑦	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑖	𝑏𝑦	𝑡𝑖𝑚𝑒	𝑡	

𝑏:,= = 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠	𝑡ℎ𝑎𝑡	ℎ𝑎𝑣𝑒	𝑏𝑒𝑒𝑛	𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑	𝑡𝑜	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑖	𝑏𝑦	𝑡𝑖𝑚𝑒	𝑡		
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Objective:	

𝑚𝑖𝑛 (𝑒:,<,= ∗ 𝑥:,<,= + 𝑓:,<,= ∗ 𝑦:,<,= + 𝑔:,<,= ∗ 𝑧:,<,=)
<ЄST:ЄST=ЄSU

	

s.t.	
	
Containers	provided	at	time	t:	

2 𝑥:,<,=
<ЄSW∪SX∪SY

+ 𝑧:,<,=
<ЄSW∪SX∪SY

= 𝑚:,=					∀𝑖 ∈ 𝑆𝐼					∀𝑡 ∈ 𝑆𝑇			 𝐼𝑚𝑝𝑜𝑟𝑡𝑒𝑟𝑠 																																																																		(1)	

2 𝑥:,<,=
<∈SY

+ 𝑧:,<,=
<∈SY

= 𝑚:,=																															∀𝑖 ∈ 𝑆𝐸					∀𝑡 ∈ 𝑆𝑇			 𝐸𝑥𝑝𝑜𝑟𝑡𝑒𝑟𝑠 																																																																	(2)	

2 𝑥:,<,=
<∈SW∪SX∪SY

+ 𝑧:,<,=
<∈SW∪SX∪SY

= 𝑚:,=					∀𝑖 ∈ 𝑆𝐷					∀𝑡 ∈ 𝑆𝑇			 𝐷𝑒𝑝𝑜𝑡𝑠 																																																																							(3)	

2 𝑥:,<,=
<ЄS]∪SW∪SX

+ 𝑧:,<,=
<ЄS]∪SW∪SX

= 𝑚:,=							∀𝑖 ∈ 𝑆𝑃					∀𝑡 ∈ 𝑆𝑇			 𝑃𝑜𝑟𝑡 																																																																													(4)	

	
Containers	received	at	time	t:	

𝑥:,<,=_`a,b,c
:∈SY

+ 𝑦:,<,=_`a,b,c
:∈S]∪SW∪SX

+ 𝑧:,<,=_`a,b,c
:∈SY

= 𝑛<,=																													∀𝑗 ∈ 𝑆𝐼				∀𝑡 ∈ 𝑆𝑇			 𝐼𝑚𝑝𝑜𝑟𝑡𝑒𝑟𝑠 													(5)	

𝑥:,<,=_`a,b,c
:∈S]∪SX∪SY

+ 𝑦:,<,=_`a,b,c
:∈S]∪SW∪SX

+ 𝑧:,<,=_`a,b,c
:∈S]∪SX∪SY

= 𝑛<,=				∀𝑗 ∈ 𝑆𝐸				∀𝑡 ∈ 𝑆𝑇	 𝐸𝑥𝑝𝑜𝑟𝑡𝑒𝑟𝑠 															(6)	

𝑥:,<,=_`a,b,c
:∈S]∪SX∪SY

+ 𝑦:,<,=_`a,b,c
:∈S]∪SW∪SX

+ 𝑧:,<,=_`a,b,c
:∈S]∪SX∪SY

= 𝑛<,=					∀𝑗 ∈ 𝑆𝐷				∀∈ 𝑆𝑇			 𝐷𝑒𝑝𝑜𝑡𝑠 																					(7)	

𝑥:,<,=_`a,b,c
:∈S]∪SW∪SX

+ 𝑦:,<,=_`a,b,c
:∈ST

+ 𝑧:,<,=_`a,b,c
:∈S]∪SW∪SX

= 𝑛<,=																	∀𝑗 ∈ 𝑆𝑃				∀𝑡 ∈ 𝑆𝑇			 𝑃𝑜𝑟𝑡 																							(8)			

	
Demand	and	Feasibility	constraints:	

𝑎:,= = 𝑚:,h

=

hij

																																∀𝑖 ∈ 𝑆𝐴								∀𝑡 ∈ 𝑆𝑇				 𝑁𝑢𝑚𝑏𝑒𝑟	𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑	𝑎𝑡	𝑖	𝑏𝑦	𝑡𝑖𝑚𝑒	𝑡 																																												(9)	

𝑏:,= = 𝑛:,h

=

hij

																																	∀𝑖 ∈ 𝑆𝐴								∀𝑡 ∈ 𝑆𝑇				 𝑁𝑢𝑚𝑏𝑒𝑟	𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑	𝑎𝑡	𝑖	𝑏𝑦	𝑡𝑖𝑚𝑒	𝑡 																																												(10)	

𝑏:,=_ma + 𝑝: − 𝑎:,= ≥ 0																		∀𝑖 ∈ 𝑆𝐴								∀𝑡 ∈ 𝑆𝑇			 𝑁𝑢𝑚𝑏𝑒𝑟	𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑	𝑐𝑎𝑛𝑛𝑜𝑡	𝑏𝑒	𝑚𝑜𝑟𝑒	𝑡ℎ𝑎𝑛	𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 										(11)	



	

		
3	

𝑏:,= ≥ 𝑑:,=																																									∀𝑖 ∈ 𝑆𝐴								∀𝑡 ∈ 𝑆𝑇				 𝐷𝑒𝑚𝑎𝑛𝑑	𝑎𝑡	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑖	𝑚𝑢𝑠𝑡	𝑏𝑒	𝑚𝑒𝑡	𝑏𝑦	𝑡𝑖𝑚𝑒	𝑡 																			(12)	

𝑏:,= + 𝑝: − 𝑎:,= ≤ 𝑐:																							∀𝑖 ∈ 𝑆𝐴								∀𝑡 ∈ 𝑆𝑇			 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦	𝑎𝑡	𝑖	𝑐𝑎𝑛𝑛𝑜𝑡	𝑏𝑒	𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑 																																									(13)	

𝑥:,<,=
:∈ST

= 𝑦<,q,=rsa,b,c
q∈ST

									∀𝑗 ∈ 𝑆𝐴								∀𝑡 ∈ 𝑆𝑇		 𝑇𝑤𝑜	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟	𝑡𝑟𝑢𝑐𝑘𝑠	𝑚𝑢𝑠𝑡	𝑝𝑟𝑜𝑣𝑖𝑑𝑒	𝑡𝑤𝑜	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 						(14)	

	

𝑥:,<,=	, 𝑦:,<,=	, 𝑧:,<,= 	≥ 0												∀𝑖 ∈ 𝑆𝐴				∀𝑗 ∈ 𝑆𝐴			∀∈ 𝑆𝑇						 𝑁𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 																																													(15) 

𝑥:,<,=	, 𝑦:,<,=	, 𝑧:,<,= 	 ∈ ℤ												∀𝑖 ∈ 𝑆𝐴				∀𝑗 ∈ 𝑆𝐴			∀∈ 𝑆𝑇						 𝐼𝑛𝑡𝑒𝑔𝑒𝑟	𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 																																																														(16)		

 



	

		
1	

The	objective	of	the	model	is	to	minimize	the	transportation	costs	needed	to	meet	all	the	
demand.	There	is	a	cost	associated	with	each	possible	single	truck	trip	which	depends	on	the	
locations	for	pickup	and	drop-off	of	the	container,	as	well	as	the	time	of	day.	We	have	separate	
transportation	costs	for	the	first	container	on	a	double	container	trip,	and	the	second	container	
on	a	double	container	trip.	We	divided	this	cost	into	two	because	depending	on	the	destination	
of	the	second	container	the	price	to	hire	a	double	container	truck	can	vary.	For	example,	if	both	
containers	are	going	to	the	same	location,	the	price	is	most	likely	going	to	be	less	than	if	the	
containers	are	going	to	different	locations.		
	
As	stated	before,	the	model	has	three	main	integer	types	of	variables.	The	x	variables	
correspond	to	a	double	container	truck	going	from	location	i	to	location	j	starting	at	time	t	to	
drop	off	its	first	container	at	j.	The	y	variables	correspond	to	a	double	container	truck	(now	with	
only	one	container)	travelling	from	location	i	to	location	j	starting	at	time	t	to	drop	off	its	
second	container.	Finally,	the	z	variables	represent	a	single	container	truck	trip	from	location	i	
to	location	j	starting	at	time	t.	Note	that	i	and	j	cannot	be	the	same	for	any	x	or	z	variable	since	
it	does	not	make	sense	that	a	location	can	provide	itself	with	containers;	however	y	variables	
can	have	i	and	j	be	the	same	since	that	means	the	second	container	is	being	dropped	off	at	the	
same	location	as	the	first	container.	The	rest	of	the	variables	only	serve	to	record	the	total	
number	of	received	and	delivered	containers	at	each	location	for	each	time	period,	and	are	
determined	by	specific	summations	of	the	main	three	variables.	
	
Constraints	(1)-(4)	sum	all	the	containers	provided	by	a	specific	location	at	a	specific	point	in	
time.	It	then	does	this	for	all	locations	at	all	points	in	time	and	equals	them	to	the	m	variables	
which	represent	all	the	containers	provided	by	location	i	at	time	t.	Single	container	truck	trips	
only	add	one	container	since	there	is	only	one	container	involved.	However,	double	container	
truck	trips	count	double	since	there	are	two	containers	involved.	For	example,	constraint	(1)	
sums	up	all	the	containers	provided	by	the	importers.	That	is,	importers	can	only	provide	empty	
containers.	Therefore,	the	destination	for	the	empty	containers	are	exporters,	depot,	and	the	
port.	This	does	not	include	other	importers	since	they	have	no	demand	for	empty	containers.		
	
Constraints	(5)-(8)	sum	all	the	containers	received	by	a	specific	location	at	a	specific	point	in	
time.	It	then	does	this	for	all	locations	at	all	points	in	time	and	equals	them	to	the	n	variables	
which	represent	all	the	containers	received	by	location	i	at	time	t.	Since	each	variable	
represents	the	drop-off	of	a	single	container,	all	variables	only	add	one	in	this	sum.	For	
example,	constraint	(5)	sums	all	the	containers	received	by	the	importers,	which	can	only	
receive	loaded	containers.	Therefore	all	single	and	double	truck	trips	can	only	originate	from	
the	port.	However,	the	y	variables	do	not	need	to	necessarily	originate	from	the	port.	There	are	
several	ways	in	which	the	second	leg	of	a	double	container	truck	trip	can	come	from	either	
importers,	exporters	or	depots.	In	fact,	the	second	leg	of	a	trip	cannot	originate	from	the	port	
because	logistically	it	would	make	no	sense	to	have	a	trip	go	from	a	non-port	location	to	the	
port,	and	then	return	to	a	non-port	location.	
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The	next	set	of	constraints	deal	with	meeting	the	demand,	and	ensuring	the	feasibility	of	the	
solution.	Constraint	(9)	aggregates	all	the	provided	containers	that	a	location	has	provided	by	
time	t.	It	then	does	this	for	all	time	periods	and	all	locations.	Constraint	(10)	does	the	same	but	
aggregates	all	the	containers	that	a	location	has	received	by	time	t.		
	
Constraint	(11)	is	a	feasibility	constraint	that	deals	with	the	fact	that	the	number	of	containers	
received	minus	the	number	of	containers	provided,	plus	the	number	of	containers	at	the	start	
of	the	day	cannot	be	a	negative	number.	Notice	that	the	a	variables	are	all	containers	provided	
until	time	t,	while	the	b	variables	are	all	the	containers	received	by	time	t.	They	have	to	be	
offset	by	time	ri	which	is	the	turnover	time	at	location	i.	The	idea	is	that	when	a	container	
arrives	at	a	location	there	is	a	certain	time	that	is	needed	to	either	unload	or	load	the	container.	
Constraint	(12)	ensures	demand	is	met.	
	
Constraint	(13)	deals	with	the	fact	that	a	location	only	has	a	certain	amount	of	space	or	
capacity.	This	constraint	makes	sure	that	at	every	point	in	time	the	amount	of	containers	that	
are	in	a	location	does	not	exceed	this	capacity.	Finally,	constraint	(14)	makes	sure	that	a	double	
container	truck	delivers	two	containers.	The	x	variables	represent	a	truck	going	from	location	i	
to	location	j	at	time	t.	After	some	delay,	given	by	the	parameter	l.	This	truck	must	go	to	another	
location	(this	can	be	the	same	location)	to	deliver	the	second	container.	This	is	represented	by	
the	y	variable.	This	constraint	says	that	all	the	x	variables	that	arrive	at	a	certain	location	by	
time	t	must	have	a	corresponding	y	variable	associated	with	them.		
	
3.3	Model	Properties	

Although	the	worst-case	complexity	of	the	model	is	not	known,	in	this	section	we	focus	on	
pointing	out	some	interesting	observations	of	the	model.	Our	first	observation	is	that	the	Linear	
Program	(LP)	relaxation	of	the	model	gives	an	integer	solution	when	(1)	𝑑:,< 	and	𝑐: 	are	both	
even	numbers	for	all	i	and	t,	and	(2)	the	costs	for	single	container	trips	(𝑔:,<,=)	and	double	
container	trips	(𝑒:,<,= + 𝑓<,q,=)	are	unique	for	all	i,	j,	and	k.	Although	we	were	unable	to	prove	this	
mathematically,	this	held	true	under	all	our	experimental	settings.	The	model	is	similar	to	
solving	t	basic	transportation	models,	with	the	added	feature	being	that	double	container	
trucks	are	possible.	Now,	it	is	well	known	that	the	classic	transportation	model	yields	integer	
solutions	when	demand	is	integer.	This	happens	because	at	every	stage	a	variable	(which	
represents	a	movement	of	demand	from	one	location	to	another)	is	chosen	with	the	smallest	
cost,	and	the	value	of	this	variable	is	increased	as	much	as	possible.	New	variables	are	chosen	
until	all	the	demand	is	met.			Because	our	model	assimilates	the	transportation	problem	we	
conjecture	that	it	has	similar	properties.	At	every	stage	the	model	needs	to	satisfy	a	certain	
demand.	The	model	then	finds	the	variable	with	the	least	cost	and	sends	as	many	containers	as	
possible	until	no	more	containers	can	be	sent,	or	the	demand	is	already	satisfied.	Next,	
constraint	(14)	means	that	there	needs	to	be	a	balance	between	variables	𝑥:,<,=	and	variables	
𝑦:,<,=	(the	two	parts	of	a	two	container	truck	trip).	The	model	identifies	the	route	with	the	least	
cost	and	sends	as	many	containers	as	possible.	However,	if	demand	is	odd	this	means	that	in	
order	for	the	variables	𝑥:,<,=	and	the	variables	𝑦:,<,=	to	sum	to	an	odd	number,	they	will	have	to	
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be	half	numbers.	If	demand	is	even,	then	constraint	(14)	is	not	a	problem	and	the	model	is	
conjectured	to	yield	only	integer	solutions.	The	second	part	of	the	observation	requires	that	the	
costs	be	unique	because	if	the	costs	are	equal	the	model	might	divide	the	flow	between	the	
different	routes,	and	this	division	does	not	necessarily	have	to	be	integer.	
	
If	the	demand	(𝑑:,=)	or	capacity	(𝑐:)	is	odd	for	any	combination	of	i	and	t,	then	the	LP	relaxation	
is	likely	to	return	either	an	integer	or	half	integer	solution.	As	discussed	before,	this	is	due	to	
constraint	(14),	and	therefore	the	half	integer	solutions	will	always	come	in	pairs.	This	means	
that	for	every	half	integer	𝑥:,<,=	there	is	another	half	integer	𝑦:,<,=.	The	sum	of	the	variables	has	
to	be	an	integer,	since	demand	is	an	integer.	For	this	reason,	a	search	can	be	done	to	pair	
variables	going	to	the	same	location	that	are	not	integer	and	rounding	them	down,	then	adding	
a	single	container	truck	to	that	location.	By	doing	this,	an	integer	solution	can	be	recovered,	
although	this	solution	is	not	guaranteed	to	be	optimal.		
	
Another	observation	is	that	if	the	cost	for	a	single	truck	container	is	strictly	greater	than	double	
the	cost	for	the	double	truck	container	for	every	segment,	then	the	model	will	return	a	solution	
that	uses	only	double	container	trucks.	On	the	other	hand,	if	the	cost	is	strictly	less,	then	the	
model	will	return	a	solution	that	uses	only	single	container	trucks.	If	for	some	segments	the	
cost	for	single	containers	is	less	than	half	of	the	double	containers,	but	in	other	segments	it	is	
the	other	way	around,	then	the	model	might	return	a	solution	that	gives	a	combination	of	
single	and	double	containers.	Also,	this	solution	is	not	guaranteed	to	be	integer,	but	it	will	be	
half	integer.		
	
	
4.	Heuristics	

Under	general	conditions	solving	the	model	as	a	LP	will	not	yield	a	feasible	solution,	since	the	
optimal	solution	may	yield	fractional	values	for	the	decision	variables.	In	order	to	get	a	feasible	
solution	two	heuristics	are	introduced.	These	heuristics	use	the	result	given	by	the	Linear	
Relaxation	Program	and	yield	an	approximate	solution	to	the	problem.	
	
4.1	Single	Truck	Heuristic	

The	first	heuristic	is	what	we	would	call	the	Single	Truck	Heuristic	(STH).	This	is	a	very	simple	
heuristic	that	takes	advantage	of	the	half	integer	solution	that	is	found	when	solving	the	linear	
program	relaxation	of	the	model.	As	previously	discussed,	the	model	only	uses	double	
container	trucks	if	they	are	cheaper	than	the	single	container	trucks.	This	heuristic	takes	any	
double	container	truck	trip	(i.e.	the	𝑥:,<,=	and	the	corresponding	𝑦<,<,=)	and	rounds	both	of	them	
down.	It	then	adds	a	single	container	truck	trip	from	location	i	to	location	j,	were	i	and	j	
correspond	to	the	variable	𝑥:,<,=	that	was	rounded	down.	This	then	yields	a	feasible	solution.	It	
is	worth	noting	that	this	heuristic	is	a	greedy	algorithm	and	that	its	running	time	is	Θ(N),	where	
N	is	the	number	of	truck	trips	yielded	by	the	LP	relaxation.	
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4.2	Integer	Programming	Heuristic	

For	the	second	heuristic	we	first	solve	the	model	using	the	LP	relaxation.	We	then	round	all	
fractional	solutions	down	to	the	nearest	integer.	These	variables	are	then	fixed,	reducing	the	
total	demand	that	must	be	meet.	We	then	solve	the	model	using	Integer	Programming	
techniques,	and	because	the	problem	size	is	significantly	smaller,	this	can	be	done	in	a	
reasonable	amount	of	time.	This	then	yields	a	feasible	solution	to	the	problem.	We	will	refer	to	
this	heuristic	as	the	Integer	Programming	Heuristic	(IPH).	
	
	
5.	Experimental	Analysis	

In	this	section,	we	first	run	the	model	using	data	from	the	Ports	of	Los	Angeles	and	Long	Beach.	
We	first	test	the	model	under	specific	parameters	such	that	the	linear	program	yields	a	feasible	
solution.	The	purpose	for	the	first	set	of	experiments	is	to	show	the	degree	of	effectiveness	of	
empty	container	reuse	both	with	single	and	double	container	trucks,	by	reducing	the	number	of	
trucks	and	truck	miles	needed	to	fulfill	demand.	The	second	set	of	experiments	test	the	
effectiveness	of	the	heuristics	(STH	and	IPH)	on	randomly	generated	problems	where	the	LP	
relaxation	may	not	necessarily	yield	a	feasible	solution.		
	
5.1	Ports	of	Los	Angeles	and	Long	Beach	

The	model	was	first	tested	on	data	from	the	Ports	of	Los	Angeles	and	Long	Beach.	We	used	real	
data	for	container	demand	in	the	Southern	California	area	of	containers	going	from/to	the	Port	
of	Long	Beach	and	Terminal	Island.	We	focused	on	the	locations	that	are	near	the	Port	area	(no	
more	than	15	miles),	since	these	are	the	locations	where	street	exchanges	are	most	likely	to	
occur.	The	data	was	aggregated	according	to	container	demand	over	small	regions.	We	use	the	
centroid	of	the	region	to	represent	the	location	for	the	aggregated	demand	of	that	region.	This	
resulted	in	a	total	daily	demand	of	200	containers	by	the	importers	from	the	Port	to	the	
locations.	Meanwhile,	the	amount	of	containers	demanded	by	the	exporters	to	the	Port	in	this	
area	is	about	90	containers	daily.		We	then	use	a	representative	location	to	account	for	all	the	
demand	for	that	region.	In	total,	we	use	eleven	locations	with	five	importer	locations,	three	
exporter	locations,	and	two	depots.	Table	1	shows	the	location	number	in	the	model	either	as	
an	importer,	an	exporter,	a	depot,	or	the	Port.	Table	2	shows	the	distances	between	the	
different	locations.	Figure	3	is	a	map	of	the	Port	and	the	surrounding	area	showing	the	
positioning	of	the	representative	locations.	
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Table	1.	Location	types	

Location	
Number	

Location	
Name	

1	 Importer	1	
2	 Importer	2	
3	 Importer	3	
4	 Importer	4	
5	 Importer	5	
6	 Exporter	1	
7	 Exporter	2	
8	 Exporter	3	
9	 Depot	1	

10	 Depot	2	
11	 Port	

	
Table	2.	Distance	between	locations	in	miles	

 
 
 
	
	
	
	

 
 
 
 
 

Locations	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	
1	 0	 8.2	 1.8	 6	 4	 2	 2.5	 3.9	 3.2	 6.1	 2.3	
2	 8.2	 0	 6.7	 5.9	 5	 8	 5.1	 6.1	 4.8	 5	 13	
3	 1.8	 6.7	 0	 5.6	 3.6	 2.4	 0.7	 3.5	 1.7	 5.7	 5.3	
4	 6	 5.9	 5.6	 0	 3.1	 6.9	 6.6	 3	 5.6	 3.1	 10	
5	 4	 5	 3.6	 3.1	 0	 3.9	 3.4	 1.4	 3.6	 3.2	 8.5	
6	 2	 8	 2.4	 6.9	 3.9	 0	 3.1	 2.7	 3.3	 7.2	 5	
7	 2.5	 5.1	 0.7	 6.6	 3.4	 3.1	 0	 4.1	 1	 6.7	 7	
8	 3.9	 6.1	 3.5	 3	 1.4	 2.7	 4.1	 0	 3.8	 3.3	 7.3	
9	 3.2	 4.8	 1.7	 5.6	 3.6	 3.3	 1	 3.8	 0	 5.7	 6.2	

10	 6.1	 5	 5.7	 3.1	 3.2	 7.2	 6.7	 3.3	 5.7	 0	 10.5	
11	 2.3	 13	 5.3	 10	 8.5	 5	 7	 7.3	 6.2	 10.5	 0	
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Figure	4.	Position	of	the	locations	
	
For	these	set	of	experiments	we	assume	a	12-hour	day	in	which	each	of	the	five	importer	
locations	has	a	demand	of	40	by	time	9,	and	each	exporter	has	a	demand	of	30	by	time	9.	We	
also	assume	that	all	200	containers	are	ready	for	transport	at	the	Port	at	the	beginning	of	the	
day,	and	need	to	return	to	the	Port	(either	empty	or	full)	by	the	end	of	the	day.	We	also	assume	
that	each	importer	or	exporter	location	has	a	capacity	of	10	containers.	Meanwhile	each	depot	
has	a	capacity	of	26	containers.	Table	3	shows	the	summary	of	the	parameters	used	for	these	
set	of	experiments.	It	is	worth	noting	that	because	of	these	specific	set	of	parameters	the	LP	
relaxation	will	yield	an	integer	solution,	because	of	the	properties	previously	discussed.	
	
Table	3.	Summary	of	the	parameters	of	the	model	

Parameter	name	
Parameter	
value	

#	of	importers	(I)	 5	
#	of	exporters	(E)	 3	
#	of	depots	(D)	 2	
Loading	and	unloading	of	
containers	 1	hour	
Truck	turnover	time	at	
port	 2	hours	
Daily	time	horizon	 12	hours	
Time	discretization	size	 1	hour	
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The	model	was	built	in	Julia	and	solved	using	the	Gurobi	solver.	It	is	worth	noting	that	double	
container	trucks	are	currently	not	allowed	to	enter	the	Ports	of	Los	Angeles	and	Long	Beach.	
There	are	also	not	allowed	on	some	roads	which	means	that	not	all	double	container	truck	trips	
would	be	possible.	Thus,	the	following	experiments	help	to	measure	what	would	be	the	gain	if	
double	container	trucks	would	be	allowed	in	the	future.	However,	the	experiments	also	show	
the	potential	gains	of	using	a	reuse	policy	for	single	container	trucks.	The	first	experiment	we	
performed	involved	solving	the	Double	Container	Reuse	model.	For	this	experiment,	we	made	
the	assumption	that	it	was	cheaper	to	use	one	double	container	truck	rather	than	two	single	
trucks	for	every	route.	Another	assumption	as	well	was	that	it	was	cheaper	to	have	a	double	
truck	deliver	both	containers	to	the	same	location,	rather	than	two	different	locations.	We	then	
set	all	𝑥:,<,=	and	𝑦:,<,=	variables	to	zero	and	ran	the	same	experiment.	We	called	this	trial	the	
Single	Container	Reuse.	Third,	to	have	a	baseline,	we	ran	the	experiment	using	only	single	
container	trucks	going	from	the	port	to	non-port	destinations.	This	experiment	would	mostly	
resemble	the	current	situation.	The	results	for	these	experiments	are	shown	in	Table	4.	
	
Table	4.	Results	from	the	data	of	the	Ports	of	Los	Angeles	and	Long	Beach	

Scenario	
#	Double	
Truck	Trips	

#	Single	
Trucks	Trips	

Double	
Truck	Miles	

Single		
Truck	Miles	

Total	Truck	
Miles	

Double	Container	Reuse	 245	 0	 1558	 0	 1558	
Single	Container	Reuse	 0	 490	 0	 3116	 3116	
Single	Direct	(Current)		 0	 500	 0	 3702	 3702	
Double	Container	(Port	
Forbidden)	 45	 400	 200.5	 2717	 2917.5	
Double	Container	(Second	
leg	allowed	to	Port)	 90	 310	 845	 2189	 3034	

 
 
There	are	some	interesting	results	from	these	experiments.	One	noticeable	detail	is	that	the	
Double	Container	Reuse	and	the	Single	Container	Reuse	solutions	yield	the	same	movement	of	
containers,	with	the	only	difference	being	that	the	Double	Container	Reuse	uses	only	double	
container	trucks,	while	the	other	experiment	uses	only	single	container	trucks.	This	means	that	
the	number	of	trucks	and	miles	is	exactly	double	for	the	Double	Container	Reuse	compared	
with	the	Single	Container	Reuse.	Now,	comparing	the	Single	Container	Reuse	versus	the	current	
situation	there	is	about	a	16%	reduction	in	truck	miles.		
	
After	these	experiments,	we	ran	two	other	experiments	on	the	Double	Container	Reuse	by	
changing	the	cost	parameters.	This	allowed	us	to	simulate	different	situations.	We	first	took	
into	account	that	double	container	trucks	are	not	allowed	in	the	Ports.	We	therefore	prohibited	
any	part	of	a	double	truck	from	entering	or	leaving	the	port	by	assigning	a	large	cost	for	both	
the	first	and	second	leg	of	the	double	container	trip.	This	forbade	double	container	truck	trips	
from	entering	the	port,	but	allowed	double	container	truck	trips	for	the	street	exchanges.	
Afterwards,	we	allowed	the	second	leg	of	a	double	truck	container	to	be	able	to	enter	the	Port	
since	it	would	only	carry	one	container	during	this	part	of	the	trip.	We	therefore	lowered	the	
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cost	of	the	second	part	of	a	truck	container	going	from	a	non-port	location	to	the	port.	The	
results	for	these	two	experiments	are	shown	in	the	last	two	rows	of	Table	4.	
	
As	it	can	be	observed,	the	amount	of	truck	miles	and	trucks	does	go	up	in	these	two	
experiments,	compared	to	the	Double	Container	Reuse.	However,	this	is	still	a	reduction	on	the	
Single	Container	Reuse.	When	comparing	these	two	experiments	where	double	containers	are	
not	allowed	into	the	port,	there	are	some	advantages	and	disadvantages	to	each.	By	allowing	
the	second	leg	of	the	truck	trip	to	go	into	the	Port	the	number	of	truck	miles	goes	up,	but	the	
number	of	trucks	goes	down,	compared	to	when	no	double	container	trips	can	go	into	the	Port.	
This	tradeoff	between	truck	miles	and	number	of	trucks,	is	due	to	the	fact	that	when	the	
second	leg	of	a	truck	trip	is	allowed	into	the	Port,	the	model	will	choose	to	send	a	second	leg	of	
a	truck	into	the	Port	even	if	this	increases	the	number	of	miles	the	truck	must	travel.	By	doing	
so	it	increases	the	number	of	double	container	truck	trips,	thus	reducing	the	total	number	of	
trips.	The	policy	that	is	most	beneficial	will	thus	depend	on	the	cost	of	an	extra	truck	compared	
to	the	cost	of	having	longer	trips.	
	
In	conclusion,	we	can	say	that	double	container	trucks	are	more	efficient	than	single	truck	trips,	
even	when	further	restrictions	are	implemented	on	where	double	container	trucks	can	go.	This	
was	somewhat	expected	since	double	container	trucks	carry	more	capacity	than	single	
container	trucks.	It	is	also	concluded	that	implementing	the	empty	container	reuse,	even	with	
only	single	truck	trips,	is	more	efficient	than	the	current	movement	of	containers,	and	that	both	
the	number	of	trucks	and	truck	miles	are	reduced.	
	
5.2	Randomly	Generated	Data	Instances	

We	next	test	the	effectiveness	of	the	heuristics	for	a	more	general	setting	of	parameters	where	
the	LP	relaxation	may	yield	fractional	values	to	test	the	quality	of	the	two	heuristics	(STH	and	
IPH).	In	the	previous	experiments	only	even	numbers	were	used,	both	for	demand	and	the	
capacity	at	each	location.	This	was	done	so	that	the	LP	relaxation	yielded	a	feasible	solution.	In	
the	next	set	of	experiments	we	test	the	STH	and	IPH	heuristics	to	see	how	well	they	perform	
under	more	general	conditions.	We	study	three	parameters	that	can	have	an	influence	on	the	
solution.	These	are	the	position	of	the	locations,	demand	size,	and	location	capacity.	For	all	the	
experiments	in	this	section	we	use	a	12-hour	day,	with	time	discretized	into	15	minute	
intervals.	We	also	assume	that	all	locations	can	process	one	container	in	1	hour,	and	that	
getting	into	and	out	of	the	Port	takes	2	hours.	We	also	use	rectilinear	distances	between	any	
two	locations,	with	the	port	always	being	in	the	center	at	the	bottom	of	the	area.	There	are	
always	7	importers	and	5	exporters.	We	then	test	3	parameters	that	could	have	an	influence	on	
the	quality	of	the	heuristics.	These	are	the	position	of	the	locations,	demand	size,	and	storage	
capacity.	The	parameter	settings	are	summarized	in	Table	5	below.	Finally,	for	all	experiments	
the	IPH	is	run	for	15	CPU	minutes.	
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Table	5.	Parameter	settings	

Parameter	name	
Parameter	
value	

#	of	importers	(I)	 7	
#	of	exporters	(E)	 5	
#	of	depots	(D)	 2	
Loading	and	unloading	of	
containers	 1	hour	
Location	of	port	 bottom	center	
Truck	turnover	time	at	
port	 2	hours	
Daily	time	horizon	 12	hours	
Time	discretization	size	 15	mins	

 
 
The	first	parameter	we	test	is	the	position	of	the	locations.	More	specifically	we	test	how	close	
or	spread	out	they	are	from	each	other.	That	is,	the	locations	are	randomly	generated	from	a	
square	of	varying	size.	The	Port	is	located	at	the	bottom	center	of	the	square.	For	example,	an	
experiment	may	have	each	location	be	uniformly	distributed	on	a	25x25	square	(locations	can	
only	be	on	integer	coordinates),	with	the	Port	being	located	on	coordinate	(13,0).	We	ran	10	
replications	for	each	square	size,	each	with	a	new	set	of	locations	in	the	same	square.	Demand	
was	fixed	with	each	importer	demanding	115	containers	and	each	exporter	demanding	95	
containers.	The	capacity	for	each	location	was	also	fixed	at	17	containers.	The	results	are	shown	
in	Table	6.	In	order	to	compare	the	results	of	the	heuristics,	we	use	the	ratio	between	the	
heuristic	and	the	solution	to	the	LP	relaxation.	Note	that	LP	stands	for	the	solution	for	the	
Linear	Program	Relaxation,	which	is	a	lower	bound	of	the	problem	and	in	general	is	not	a	
feasible	solution.		
	
Table	6.	Sensitivity	of	the	results	for	the	location	parameter	

Grid	
Size	

Total	Cost	
Ratio	
IPH/LP	

Total	Cost	
Ratio	STH/LP	

10x10	 1.010	 1.124	
15x15	 1.011	 1.123	
20x20	 1.011	 1.124	
25x25	 1.011	 1.121	
30x30	 1.012	 1.126	
Avg.	 1.011	 1.124	
Std. 0.0007 0.002 
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From	this	set	of	experiments	we	can	see	that	the	IPH	heuristic	performs	extremely	well	and	is	
within	2%	of	the	lower	bound.	The	STH	does	not	perform	as	well	and	is	within	12.6%	of	the	
lower	bound.	The	tradeoff	between	both	heuristics	is	that	the	IPH	takes	15	mins	to	get	a	
solution	but	gets	a	good	solution,	while	the	STH	takes	less	than	a	second	but	yields	a	worse	
solution.	The	location	parameter	does	not	really	have	an	impactful	effect	on	either	heuristic.	
For	this	reason,	a	25x25	square	with	random	locations	are	used	for	the	rest	of	the	experiments.	
	
The	next	parameter	that	can	have	an	impact	on	the	quality	of	the	heuristics	is	the	demand	size.	
To	experiment	on	this	parameter,	the	demand	was	set	uniformly.	The	range	of	these	numbers	
was	changed	for	each	trial	and	on	each	trial	10	replications	were	made.	As	stated	before	a	
25x25	square	with	random	locations	is	used,	with	the	Port	at	coordinate	(13,0).	Also	the	
capacity	of	each	location	is	fixed	at	17	containers.	The	results	are	shown	on	Table	7.	
	
Table	7.	Sensitivity	of	the	results	for	demand	parameter	

Importer	
Demand	

Exporter	
Demand	 Capacity	

Total	Cost	Ratio	
IPH/LP	

Total	Cost	
Ratio	STH/LP	

Unif(65-85)	 Unif(50-70)	 17	 1.007	 1.120	
Unif(85-105)	 Unif(65,85)	 17	 1.003	 1.122	
Unif(95-115)	 Unif(80-100)	 17	 1.010	 1.120	
Unif(105-125)	 Unif(95-105)	 17	 1.012	 1.121	
Unif(110-130)	 Unif(100-120)	 17	 1.009	 1.124	

	  Avg.	 1.008	 1.121	
	  Std.	 0.003	 0.002	

	
	
As	seen	in	Table	7	the	IPH	heuristic	performs	extremely	well	within	2%	of	the	lower	bound	and	
the	STH	heuristic	performs	within	12.1%	on	average.	The	demand	size	does	not	seem	to	have	
any	significant	impact	on	either	heuristic.	The	STH	seems	to	decrease	only	slightly	when	the	
demand	size	increases.		
	
For	the	next	set	of	experiments,	we	use	the	same	parameter	settings,	except	we	change	the	
capacity.	The	demand	for	importers	is	set	as	a	uniform	variable	ranging	from	(95-115)	while	the	
demand	for	exporters	is	set	at	(80-100).	We	then	ran	10	different	scenarios,	each	with	a	
different	capacity	setting	for	the	locations.	We	ran	10	replications	for	each	scenario.	Table	8	
shows	the	results,	and	we	also	plot	the	results	in	Figure	5.	
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Table	8.	Sensitivity	of	the	results	for	the	capacity	parameter	

Cap	

Total	Cost	
Ratio	

IPH/LP	
Total	Cost	
Ratio	STH/LP	

15	 1.015	 1.125	
16	 1.002	 1.009	
19	 1.010	 1.106	
20	 1.002	 1.008	
21	 1.008	 1.090	
22	 1.001	 1.006	
25	 1.005	 1.076	
26	 1.0009	 1.006	
29	 1.0010	 1.062	
30	 1.0007	 1.005	

Avg.	 1.005	 1.049	
Std.	 0.005	 0.048	

	
	

	
Figure	5.	Sensitivity	of	the	results	to	capacity	
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As	seen	in	Table	8	and	Figure	5	the	capacity	has	a	big	effect	on	the	STH	solution,	and	a	smaller	
effect	on	the	IPH	solution.	There	is	also	a	much	bigger	effect	when	capacity	is	odd	as	compared	
to	even.	Capacity	has	an	effect	in	the	STH	solution	because	of	how	the	LP	relaxation	assigns	the	
flow	of	the	containers.	All	the	containers	start	at	the	Port	and	then	move	to	an	importer,	then	
to	an	exporter	and	finally	back	to	the	Port.	The	LP	relaxation	pairs	up	a	particular	importer	to	an	
exporter,	depending	on	how	costly	it	is	to	move	a	container	from	that	importer	to	that	
exporter.	It	does	this	for	all	exporters	such	that	every	exporter	is	assigned	to	a	particular	
importer	while	minimizing	the	total	cost.	It	is	for	this	reason	that	the	total	cost	increases	so	
much	when	the	capacity	is	odd.	When	capacity	is	even	at	all	locations,	the	LP	relaxation	is	
usually	an	integer	solution.	This	is	why	the	ratio	keeps	increasing	and	decreasing	when	capacity	
is	odd	versus	when	it	is	even.	For	the	IPH	however	the	impact	of	the	capacity	changes	is	not	as	
much	(both	when	it	is	even	or	odd)	because	instead	of	simply	using	a	single	truck	to	meet	the	
demand,	it	pairs	multiple	locations	in	such	a	way	that	it	uses	a	double	truck	to	meet	demand.		
	
The	other	noticeable	effect	of	Figure	5	is	the	downward	slope	especially	for	the	STH	heuristic.	
This	downward	slope	is	caused	by	the	fact	that	as	capacity	increases	the	total	number	of	times	
that	the	heuristic	needs	to	adjust	the	flow	is	decreased	because	the	total	number	of	times	that	
the	location	capacity	needs	to	be	filled	goes	down,	and	the	“tightness”	of	the	problem	also	goes	
down.	From	this	result	we	can	conclude	that	the	capacity	does	have	an	effect	on	the	STH	
heuristic	solution	quality,	and	they	both	perform	better	when	the	capacity	is	even	than	when	it	
is	odd.	It	also	suggests	that	the	demand	to	capacity	ratio	is	also	a	factor.	As	the	demand	to	
capacity	ratio	decreases	the	heuristic	to	linear	programming	ratio	goes	down.	If	the	ratio	is	
taken	all	the	way	to	1	the	heuristic	will	tend	to	go	towards	the	same	result	as	the	linear	
programming	solution.	With	only	a	minor	difference	if	the	demand	is	even	or	odd,	which	only	
affects	the	last	unit	of	demand.	
	
	
6.	Truck	Routing	

Up	to	this	point,	this	report	has	made	the	assumption	that	trucks	are	not	a	limiting	resource	
and	that	there	are	enough	trucks	in	the	area	ready	to	respond	to	any	container	movement.	We	
now	relax	this	assumption.	This	means	that	trucks	are	a	limiting	resource	and	that	a	truck	
routing	plan	is	needed	to	direct	trucks	throughout	the	day.	The	construction	of	a	vehicle	route	
is	a	well-known	problem	called	“The	Vehicle	Routing	Problem”	(VRP).	To	add	this	complexity	to	
the	Double	Container	Reuse	Model	we	will	add	one	parameter,	one	variable,	and	four	
constraints	to	the	model,	as	well	as	modifying	the	objective.	Below	we	introduce	the	
parameter,	variables,	and	constraints	that	must	be	added	to	the	double	container	reuse	model	
in	order	to	yield	feasible	truck	routes.	We	will	call	this	model	the	Double	Container	Truck	Route	
Model	(DCTRM).	
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6.1	Double	Container	Truck	Route	Model	

Added	Parameter:	

𝜋:,<,=
= 𝐶𝑜𝑠𝑡	𝑜𝑓	𝑎	𝑡𝑟𝑢𝑐𝑘	𝑤𝑖𝑡ℎ	𝑛𝑜	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠	𝑚𝑜𝑣𝑖𝑛𝑔	𝑓𝑟𝑜𝑚	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑖	𝑡𝑜	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑗	𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡	
	
Added Variable: 

𝜏:,<,=
= 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑟𝑢𝑐𝑘𝑠	𝑤𝑖𝑡ℎ	𝑛𝑜	𝑐𝑜𝑛𝑡𝑖𝑎𝑛𝑒𝑟𝑠	𝑔𝑜𝑖𝑛𝑔	𝑓𝑟𝑜𝑚		𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑖	𝑡𝑜	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑗	𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡	
 
Modified Objective: 

𝑚𝑖𝑛 (𝑒:,<,= ∗ 𝑥:,<,= + 𝑓:,<,= ∗ 𝑦:,<,= + 𝑔:,<,= ∗ 𝑧:,<,=)
<ЄST:ЄST=ЄSU

+ 𝜋:,<,= ∗ 𝜏:,<,=
<∈ST:∈STr{w}=∈SU

	

 
Added Constraints: 

𝑥:,<,=
<∈ST

+ 𝑧:,<,=
<∈ST

= 𝜏<,:,=_`a,b,c
<∈STr{w}

																															∀𝑖 ∈ 𝑆𝐴						∀𝑡 ∈ 𝑆𝑇																																						(17)	

𝑦:,<,h_`a,b,x

=

hij:∈ST

+ 𝑧:,<,h_`a,b,x

=

hij:∈ST

≥ 𝜏<,:,h

=

hij:∈ST

					∀𝑗 ∈ 𝑆𝐴						∀𝑡 ∈ 𝑆𝑇																																							(18)	

		𝜏:,<,= ≥ 0													∀𝑖 ∈ 𝑆𝐴							∀𝑗 ∈ 𝑆𝐴						∀𝑡 ∈ 𝑆𝑇										 𝑁𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 													(19) 

		𝜏:,<,= 	 ∈ ℤ												∀𝑖 ∈ 𝑆𝐴							∀𝑗 ∈ 𝑆𝐴						∀𝑡	 ∈ 𝑆𝑇										(𝐼𝑛𝑡𝑒𝑔𝑒𝑟	𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡)																																		(20) 

	
To	keep	track	on	the	number	of	trucks	used,	we	have	also	added	the	zeroth	{0}	location.	This	
location	is	an	artificial	location	and	determines	whether	a	truck	is	initiated	for	use	on	a	given	
route.	This	location	can	be	thought	as	the	truck	depot.	All	the	added	constraints	revolve	around	
the	introduction	of	the	new	variable	𝜏:,<,=.	This	variable	corresponds	to	a	truck	without	a	
container	going	from	location	i	to	location	j	starting	at	time	t.	The	cost	of	moving	a	truck	
without	a	container	from	location	i	to	location	j	starting	at	time	t	is	𝜋:,<,=,	in	other	words	the	
cost	of	one	unit	of	𝜏:,<,=.	However,	𝜋w,<,=	is	always	the	cost	of	using	one	extra	truck	for	any	j	and	
t.	This	cost	is	usually	much	higher	than	any	possible	distance	reduction	that	could	be	made	by	
any	truck	route.	Therefore,	the	model	first	prioritizes	reducing	the	number	of	trucks,	and	then	
reducing	the	total	truck	miles.		
	
The	new	added	constraints	(17)	and	(18)	can	be	thought	as	enforcing	the	conservation	of	
trucks.	Constraint	(17)	equals	the	number	of	trucks	that	leave	location	i	with	containers	to	the	
number	of	trucks	without	containers	that	must	arrive	at	location	i	at	time	t.	Constraint	(18)	
enforces	the	constraint	that	the	number	of	trucks	with	containers	that	end	their	job	at	location	
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j	(𝑦:,<,=	for	double	truck	trips	and	𝑧:,<,=	for	single	truck	trips)	by	time	t	must	be	greater	than	or	
equal	to	the	total	number	of	trucks	without	containers	that	leave	location	j	by	time	t.	
Constraints	(19)	and	(20)	state	that	the	new	VRP	variable	must	be	integer	and	non-negative.		
	
Once	the	model	is	solved	we	can	build	truck	routes.	Notice	that	the	Double	Container	Truck	
Route	Model	will	yield	both	the	movement	of	trucks	with	containers	(either	loaded	or	empty)	
variables	(𝑥:,<,=,	𝑦:,<,=,	or	𝑧:,<,=),	and	the	movement	of	trucks	without	container	variables	(𝜏:,<,=).	
Truck	routes	are	stored	in	ordered	sets	called	𝑅z.	These	ordered	sets	contain	tuples	that	will	
direct	the	trucks	how	to	move.	For	example,	the	tuple	{𝑖, 𝑗, 𝑘, 𝑡}	means	that	a	double	
container	truck	p	should	go	from	location	i,	to	location	j,	to	location	k,	starting	at	time	t.	These	
tuples	represent	two	types	of	trips:	truck	movements	without	a	container	and	movement	of	
trucks	with	container	(either	loaded	or	unloaded)	also	referred	to	as	jobs.	For	each	truck	p,	the	
ordered	set	𝑅z	alternates	between	a	truck	movement	with	no	containers	and	a	truck	
movement	with	containers.	Truck	movement	without	containers	are	stored	in	the	order	set	𝑅z	
only	at	odd	positions.	Thus,	a	tuple	{𝑖, 𝑗, 𝑗, 𝑡}	found	in	an	odd	position	in	the	ordered	set	𝑅z	
represents	that	truck	p	moves	without	any	containers	from	location	i	to	location	j	at	time	t.	By	
definition	the	first	tuple	in	any	route	is	{0, 𝑖, 𝑖, 𝑡},	which	means	that	truck	p	starts	its	route	at	
location	i	at	time	t.	
	
Truck	movements	with	containers	are	referred	to	as	jobs,	which	can	be	either	a	single	container	
job	or	a	double	container	job.	For	a	double	container	truck	movement,	a	job	is	defined	by	the	
tuple	{𝑖, 𝑗, 𝑘, 𝑡},	where	the	movement	of	the	first	leg	of	the	double	container	is	from	location	i	
to	location	j,	and	the	second	leg	is	from	location	j	to	location	k	at	time	t.	Similarly,	a	single	
container	truck	job	is	defined	by	the	tuple	{𝑖, 𝑗, 𝑗, 𝑡}	where	the	truck	moves	one	container	
from	location	i	to	location	j	starting	at	time	t.	These	jobs	are	also	stored	in	the	ordered	sets	𝑅z	
but	only	in	even	positions.	Finally,	let	𝑤:,<,q,=	be	the	number	of	job	tuples	of	the	form	{𝑖, 𝑗, 𝑘,
𝑡}	in	𝑅z	for	all	p.	We	next	describe	how	to	construct	the	ordered	sets	𝑅z,	which	will	yield	the	
truck	routes.	We	call	this	algorithm	“Truck	Route	Construction”.	
	
   
Truck	Route	Construction	

1. Solve	the	Double	Container	Truck	Model	to	get	the	job	variables	(𝑥:,<,=,	𝑦:,<,=,	or	𝑧:,<,=)	
and	the	truck	movement	without	any	containers	variables	(𝜏:,<,=).	

2. Set	all	𝑤:,<,q,=	such	that:		

a. 𝑤:,<,q,= = (𝑥:,<,= + 	𝑦<,q,=rsa,b,c)/2	

b. 𝑤:,<,<,= = 𝑧:,<,=	

3. Set	𝑝 = 1	
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4. Choose	any	positive	𝜏w,<,=.	Suppose	we	choose		𝜏w,:|,=|.		

5. Add	the	truck	movement	without	container	tuple	{0, 𝑖}, 𝑖}, 𝑡}}	to	the	ordered	set	𝑅z	

6. Set	𝜏w,:|,=| = 	 𝜏w,:|,=| − 1	

7. Set	𝑞} = 𝑡} + 𝑙w,:|,=| 	

8. Choose	any	positive	𝑤:|,<,q,h|.	Suppose	we	choose	𝑤:|,<|,q|,h|.	

9. Add	the	truck	job	tuple	 𝑖}, 𝑗}, 𝑘}, 𝑠} 	to	the	ordered	set	𝑅z	

10. Set	𝑤:|,<|,q|,h| = 	𝑤:|,<|,q|,h| − 1	

11. Set	𝑟 = 𝑞} + 𝑙:|,<|,h| + 𝑙<|,q|,h|rsa|,b|,�| 	

12. If	there	are	no	positive	𝜏q|,�,�	go	to	Step	16,	where	𝑢 ≥ 𝑟	and	𝑢 ∈ 𝑆𝑇.	Otherwise,	
choose	a	positive	𝜏q|,�,�	with	the	smallest	u.	Suppose	we	choose	𝜏q|,�|,�|.	

13. Add	the	truck	movement	without	container	tuple	 𝑘}, 𝛼}, 𝛼}, 𝑢} 	to	the	ordered	set	𝑅z	

14. Set	𝜏q|,�|,�| = 	 𝜏q|,�|,�| − 1	

15. Go	back	to	Step	8	with	𝑞} = 𝑢} + 𝑙q|,�|,�| 	and	𝑖} = 𝛼}	

16. If	there	is	a	positive	𝜏w,<,=	set	𝑝 = 𝑝 + 1	and	go	back	to	Step	4.	Otherwise	STOP	and	
Return	𝑅z	for	all	p.	

 
This	algorithm	initializes	a	truck	route	p	by	first	choosing	a	positive	𝜏w,<,=.	After	it	has	chosen	an	
initial	starting	location,	constraint	(17)	guarantees	that	there	is	a	job	waiting	at	that	location.	It	
then	services	one	of	those	jobs.	It	will	end	the	job	at	location	𝑘}.	Then	constraint	(18)	states	
that	if	truck	p	needs	to	service	another	job	then	there	will	be	a	positive	𝜏q|,�,�.	If	there	isn’t	
then	truck’s	p	route	ends	there.	If	there	is,	then	we	route	truck	p	to	the	start	of	its	next	job.	
One	property	of	the	algorithm	is	that	at	the	end	we	will	be	left	with	P	number	of	truck	routes	
were	𝑃 = 𝜏w,<,==∈SU<∈ST .	Finally,	also	when	the	algorithm	stops	because	of	the	combination	
of	constraints	(17)	and	(18),	all	𝑤:,<,q,=	will	equal	zero	meaning	that	all	jobs	are	satisfied.	
	
6.2	Double	Container	Truck	Route	Algorithm	

The	Double	Container	Truck	Route	Model	is	computationally	hard	to	optimally	solve	since	it	is	a	
combination	of	two	large	scale	problems	(the	Empty	Container	Reuse	Problem	and	a	VRP).	
Thus,	our	approach	to	solve	the	problem	separates	both	problems.		We	first	solve	the	Double	
Container	Reuse	Model	(presented	in	section	3.2)	which	solves	the	Empty	Container	Reuse	
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Problem.	Solving	this	problem	will	only	yield	the	truck	movement	with	container	variables	
(𝑥:,<,=,	𝑦:,<,=,	or	𝑧:,<,=)	and	not	the	truck	movement	without	container	variables	(𝜏:,<,=).	We	then	
use	the	truck	movement	with	container	variables	to	generate	truck	jobs	in	order	to	solve	a	VRP	
problem	using	a	modified	version	of	Ropke	and	Pisinger’s	Adaptive	Large	Neighborhood	Search	
Heuristic	(ALNS)	(2006).	
	
ALNS	is	a	genetic	algorithm	that	iteratively	modifies	a	solution.	However,	to	start	using	the	
algorithm	we	must	first	build	an	initial	feasible	solution.	Similar	to	the	previous	section	we	must	
first	convert	the	truck	movement	with	container	variables	(𝑥:,<,=,	𝑦:,<,=,	or	𝑧:,<,=)	into	truck	jobs	
(𝑤:,<,q,=).		We	also	use	ordered	sets	𝐿z	to	store	tuples	with	the	truck	routes.	However,	unlike	
𝑅z,	𝐿z	only	holds	job	tuples,	and	does	not	hold	any	tuples	for	truck	movement	without	
containers	because	in	this	section	we	do	not	have	the	truck	movement	without	container	
variables	(𝜏:,<,=).	In	the	ordered	set	𝐿z	it	is	assumed	then	that	trucks	move	without	containers	
between	jobs.	For	example,	if	in	the	ordered	set	𝐿z	the	first	tuple	is	{𝑖, 𝑗, 𝑘, 𝑡}	and	the	second	
tuple	is	{𝛼, 𝛽, 𝛾, 𝑠}.	Truck	p	will	go	to	location	i	service	the	first	job	at	time	t,	which	will	end	at	
location	k.	It	will	then	move	without	containers	from	location	k	to	location	𝛼	and	service	job	
two	starting	at	time	s.	By	construction	there	will	be	enough	time	for	the	truck	to	move	from	the	
end	of	one	job,	to	the	beginning	of	the	next	job.	We	also	use	𝜎z	to	represent	the	ending	time	of	
the	last	job	in	truck	route	p.	To	be	more	specific	𝜎z = 𝑡 + 𝑙:,<,= + 𝑙<,q,=rsa,b,c 	where	all	the	
subscripts	come	from	the	last	tuple	{𝑖, 𝑗, 𝑘, 𝑡}	inserted	into	the	ordered	set	𝐿z	(𝑙:,<,=	is	the	
parameter	introduced	in	section	3.2	and	it	is	the	travel	time	from	location	i	to	location	j).	If	the	
ordered	set	𝐿z	is	empty,	set	𝜎z	to	be	0.	Finally,	we	let	𝛿�,:,=	be	the	travel	time	from	the	last	
location	of	the	last	job	in	the	ordered	set	𝐿z	(𝛼)	to	location	i	arriving	at	time	t.	To	be	more	
specific	if	the	last	tuple	in	the	ordered	set	𝐿z	is	{𝛽, 𝛾, 𝛼, 𝑠}	and	we	are	considering	adding	the	
tuple	{𝑖, 𝑗, 𝑘, 𝑡},	then	𝛿�,:,==	𝑜�,:,=.	We	now	present	our	algorithm	to	get	an	initial	feasible	
solution	below.	We	call	this	algorithm	“VRP	Initial	Solution	Construction”.	
	
 
VRP	Initial	Solution	Construction	

1. Solve	the	Double	Container	Reuse	Model	to	get	the	job	variables	(𝑥:,<,=,	𝑦:,<,=,	or	𝑧:,<,=).	

2. Set	all	𝑤:,<,q,=	such	that		

a. 𝑤:,<,q,= = 	 𝑥:,<,= + 	𝑦<,q,=rsa,b,c 	

b. 𝑤:,<,<,= = 𝑧:,<,=	

3. Set	𝑝 = 1	

4. Set	𝛼 = 0	

5. Choose	a	positive	𝑤:,<,q,= 	with	the	smallest	t	subscript	such	that:	
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𝑡 − 𝛿�,:,= ≥ 𝜎z .	 Break	 ties	 based	 on	 the	 smallest	 distance	 between	𝛼 	and	 i.	
Suppose	we	choose	𝑤:|,<|,q|,=| 	

6. Add	the	tuple	 𝑖}, 𝑗}, 𝑘}, 𝑡} 		to	the	ordered	set	𝐿z.	

7. Set	𝑤:|,<|,q|,=| = 𝑤:|,<|,q|,=| − 1	

8. Set	𝛼 = 	 𝑖}	

9. Repeat	Steps	5	to	8	until	no	more	𝑤:,<,q,=	can	be	chosen	in	Step	5.	

10. If	 there	 is	 at	 least	one	positive	𝑤:,<,q,= 	set	𝑝 = 𝑝 + 1	and	go	back	 to	Step	4.	Otherwise	
STOP.	

 
The	above	algorithm	is	a	greedy	algorithm	and	uses	a	heuristic	that	tries	to	minimize	the	idle	
time.	It	tries	to	accomplish	this	by	inserting	jobs	that	minimize	the	time	between	the	last	job	
added	to	a	truck	route	p	and	the	new	time	of	the	job	being	added	to	truck	route	p.	The	
algorithm	starts	by	adding	the	job	with	the	earliest	starting	time.	It	then	calculates	the	time	that	
it	takes	to	service	this	job.	We	choose	the	next	job,	in	such	a	way	that	we	minimize	the	idle	time	
of	truck	p.	We	do	this	iteratively	until	we	cannot	add	any	more	jobs	to	truck	p.	At	this	time,	if	
there	are	more	jobs	to	be	serviced	we	add	another	truck	and	repeat	the	process.	The	algorithm	
will	always	yield	a	feasible	truck	schedule,	because	the	algorithm	keeps	adding	trucks	until	
there	are	no	more	jobs	and	a	new	truck	can	at	least	complete	one	job.	The	algorithm	(excluding	
solving	the	Double	Container	Reuse	Model)	can	be	implemented	in	O(𝑛�)	time,	were	n	is	the	
total	number	of	jobs.	This	algorithm	yields	a	feasible	solution	that	can	be	used	to	perform	a	
modified	ALNS.	
	
Before	we	present	our	modified	version	of	ALNS	we	need	to	introduce	some	parameters.	The	
first	parameter	𝜁	determines	how	many	single	job	truck	routes	each	iteration	will	try	to	
eliminate.	The	second	parameter	𝛥	determines	how	many	jobs	will	be	removed	and	reinserted	
at	every	iteration.	Notice	that	𝛥 ≥ 𝜁	since	removing	one	truck	means	that	one	job	is	also	
removed.		The	third	parameter	Ψ	determines	how	many	iterations	of	the	heuristics	will	be	
performed.	Conversely,	the	variable	𝜓	gives	the	current	iteration	number.	Furthermore,	let	
𝑝���	represent	the	maximum	number	of	trucks	that	are	currently	being	used.	We	introduce	a	
new	set	G	which	will	hold	the	removed	jobs	that	later	will	need	to	be	reinserted	back	to	some	
route	in	order	to	preserve	feasibility.	Next,	let	ƨ	represent	the	minimum	cost	of	adding	a	job.	
Finally,	ƕ	holds	the	place	where	the	minimum	cost	of	inserting	a	job	appears.	We	now	
introduce	our	modified	ALNS.	
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Modified	ALNS	

1. Set	𝜓 = 1	

2. Set	𝑝 = 1	

3. If	ordered	set	𝐿z	contains	only	one	tuple.	Remove	it	from	the	ordered	set	𝐿z	and	add	the	
tuple	to	set	G.	Then	set	𝑝��� = 𝑝��� − 1		

4. If	set	G	has	𝜁	elements	go	to	Step	6.	Otherwise,	CONTINUE.	

5. If	𝑝 = 𝑝���,	CONTINUE.	Otherwise,	set	𝑝 = 𝑝 + 1	and	go	back	to	Step	3.	

6. Randomly	remove	any	tuple	from	a	random	truck	route	(𝐿z)	and	add	it	to	set	G.	

7. If	G	has	less	than	𝛥	elements	go	back	to	Step	6.	Otherwise	CONTINUE.	

8. Sort	the	tuples	in	G	based	on	their	starting	time	(t).	

9. Remove	the	first	tuple	 𝑖}, 𝑗}, 𝑘}, 𝑡} 		from	G.	

10. Set	𝑝 = 1	

11. Set	ƨ = 	∞	and	ƕ = {0}	

12. If	 tuple	 𝑖}, 𝑗}, 𝑘}, 𝑡} 	can	be	 inserted	on	 truck	 route	𝐿z.	Calculate	 the	additional	cost	of	
inserting	the	job	on	route	𝐿z.	If	this	cost	is	less	than	ƨ.	Set	ƕ = 𝑝.	Otherwise,	CONTINUE.	

13. If	𝑝 = 𝑝���,		CONTINUE.	Otherwise,	set	𝑝 = 𝑝 + 1	and	go	back	to	Step	12.	

14. If	ƨ < ∞	insert	tuple	 𝑖}, 𝑗}, 𝑘}, 𝑡} 	to	truck	route	ƕ.	Otherwise,	set	𝑝��� = 𝑝��� + 1	and	
add	tuple	 𝑖}, 𝑗}, 𝑘}, 𝑡} 	to	truck	route	𝐿z���.	

15. If	G	is	empty,	CONTINUE.	Otherwise,	go	back	to	Step	9.	

16. If	𝜓 = 𝛹,	STOP.	Otherwise,	set		𝜓 = 𝜓 + 1	and	go	back	to	Step	2.	

 
The	idea	of	this	algorithm	is	that	at	each	iteration	some	jobs	will	be	removed	along	with	some	
trucks	which	only	have	one	job.	The	jobs	are	then	reinserted	such	that	the	total	cost	is	reduced	
in	the	long	run,	although	it	may	increase	at	a	particular	iteration,	since	increasing	the	cost	at	
some	iterations	will	allow	the	heuristic	from	getting	stuck	at	a	local	minima.	As	shown	in	the	
paper	by	Ropke	and	Pisinger	the	algorithm	in	practice	does	tend	to	perform	very	well	compared	
to	other	well-known	algorithms,	although	no	theoretical	performance	is	shown.		
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6.3	Experiments	

In	this	section,	we	use	our	truck	routing	heuristic	on	the	Ports	of	Los	Angeles	and	Long	Beach	
data	set	introduced	in	Section	5.1.	The	same	parameters	are	used	as	the	original	set	of	
experiments.	We	assume	the	cost	of	using	an	additional	truck	is	much	greater	than	any	mileage	
cost.	That	is,	minimizing	the	number	of	trucks	is	more	important	than	any	mileage	reduction	
that	could	take	place	when	using	an	extra	truck.	We	also	set	the	parameter	𝜔	to	10,	which	
represents	the	number	of	jobs	to	be	removed	in	every	iteration	of	the	ALNS.	We	also	set	the	
parameter	𝜌	to	2,	which	is	the	number	of	trucks	that	are	attempted	to	be	removed	at	every	
iteration.	Finally,	we	set	𝜗	to	1000,	which	is	the	number	of	ALNS	iterations	that	will	be	
performed.	These	extra	parameters	are	summarized	below	in	Table	9.	The	results	are	shown	
below	in	Table	10.	
	
Table	9.	Summary	of	parameters	for	VRP	experiment	for	the	Ports	of	Los	Angeles	and	Long	
Beach	

Parameter	name	
Parameter	
value	

#	of	importers	(I)	 5	
#	of	exporters	(E)	 3	
#	of	depots	(D)	 2	
Loading	and	unloading	of	
containers	 1	hour	
Truck	turnover	time	at	
port	 2	hours	
Daily	time	horizon	 12	hours	
Time	discretization	size	 1	hour	
Number	of	ALNS	
iterations	(Ψ)	 1000	
Number	of	jobs	to	
remove	at	each	iteration	
(𝛥)	 10	
Number	of	trucks	to	be	
removed	at	each	
iteration	(𝜁 )	 2	

	
	
Table	10.	Truck	routing	results	for	the	Ports	of	Los	Angeles	and	Long	Beach	

 
#	Double	
Trucks	

#	Single	
Trucks	

Double	Truck	
Miles	

Single	Truck	
Miles	

Empty	Truck	
Miles	

Total	Truck	
Miles	

Double	Container	Reuse	 100	 0	 1555.7	 0	 341	 1896.7	
Single	Container	Reuse	 0	 200	 0	 3113.7	 615	 3728.7	
Single	Direct	(Current)		 0	 200	 0	 3699.7	 546.8	 4246.5	



	

		
20	

As	seen	from	the	results	it	is	preferable	to	use	double	container	trucks.	Once	again	the	routes	
are	the	same	as	using	single	container	trucks	with	reuse,	but	the	single	trucks	must	do	
everything	twice.	Therefore,	twice	as	many	trucks	are	needed	and	twice	as	many	truck	miles	
are	needed	to	fulfill	the	demand.	Meanwhile	the	single	container	truck	reuse	model	uses	the	
same	number	of	trucks	as	the	single	container	direct.	However,	the	trucks	miles	are	reduced	by	
about	14%.	This	means	that	there	is	a	lot	of	savings	to	be	made	even	when	only	using	the	single	
container	reuse	policy	as	opposed	to	using	the	direct	policy	currently	in	practice.	
	
	
7.	Implementation	

This	problem	addresses	how	to	efficiently	move	empty	containers	to	reduce	the	number	of	
total	trucks	and	truck	miles	that	are	required	to	meet	demand.	As	more	and	more	containers	
pass	through	ports	every	year,	it	becomes	increasingly	more	important	to	efficiently	move	
these	containers.	As	shown	in	this	report	empty	container	reuse	helps	improve	the	container	
movement,	and	reduce	congestion	at	the	port.		
	
Furthermore,	it	has	been	shown	that	if	laws	and	infrastructure	were	to	be	modified	to	allow	
double	container	trucks	to	operate,	there	would	be	a	lot	of	efficiency	gained.	We	ran	
experiments,	both	on	randomized	data	sets	and	using	data	from	the	Ports	of	Los	Angeles	and	
Long	Beach	to	show	that	these	gains	can	be	significant.	Additionally,	the	approach	that	this	
paper	developed	can	be	implemented	to	yield	truck	routes	for	both	loaded	and	empty	
container	movements.	The	implementation	of	our	approach	will	require	a	programming	
language,	such	as	Julia,	and	an	optimization	solver,	such	as	Gurobi.		
	
	
8.	Conclusions	

A	model	that	meets	all	demands	for	containers	using	both	single	and	double	container	trucks	is	
proposed.	The	model	was	solved	using	the	Gurobi	solver	for	an	example	based	on	actual	data	
from	the	Ports	of	Los	Angeles	and	Long	Beach.	The	results	look	promising	and	show	that	the	
amount	of	miles	and	number	of	trucks	can	be	significantly	reduced	by	increasing	the	amount	of	
street	exchanges,	and	further	reduced	by	using	double	container	trucks.	This	could	potentially	
reduce	significant	congestion	and	reduce	the	impact	of	container	freight	movement	on	the	
environment.	Furthermore,	we	showed	that	using	a	single	container	policy	instead	of	the	
current	policy	would	reduce	truck	miles	by	about	12%,	and	reduce	significant	truck	trips	to	and	
from	the	port.	The	double	container	policy	reduces	truck	miles	by	about	55%,	compared	to	the	
current	policy,	which	is	a	significant	reduction	in	congestion.		
	
Experiments	were	also	performed	to	test	the	heuristic	on	randomized	data	sets.	In	the	
following	experiments,	it	was	determined	that	the	Single	Truck	Heuristic	solution’s	quality	was	
not	affected	by	the	locations	of	the	importers	and	exporters,	but	was	highly	affected	by	the	
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ratio	of	demand	over	location	capacity.	However,	this	heuristic	experimentally	performs	within	
15%	of	the	lower	bound,	and	is	a	very	fast	heuristic	to	implement.	The	second	heuristic	that	
was	tested	is	not	affected	by	any	parameter,	and	performs	extremely	well	under	all	conditions.	
This	heuristic	however	takes	a	little	longer	to	find	a	solution	than	the	previous	heuristic,	and	
may	have	some	scalability	problems.	These	findings	leads	us	to	believe	that	the	model	
proposed	in	the	report	is	robust	and	could	potentially	be	adapted	for	other	ports	or	container	
rail	yards.		
	
One	future	research	direction	could	be	to	relax	the	assumption	that	all	demand	is	deterministic.	
This	is	a	reasonable	assumption	if	only	one	day	is	being	modeled.	Nevertheless,	to	become	
even	more	efficient	and	use	the	depots	to	their	maximal	potential,	a	stochastic	model	might	be	
used	where	today’s	demand	is	still	deterministic,	but	containers	can	be	allocated	in	such	a	way	
as	to	anticipate	future	demand.	
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