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ABSTRACT OF THE DISSERTATION

Search for topological semimetal and topological superconductor candidates
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Evdoxia Emmanouilidou

Doctor of Philosophy in Physics
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Professor Ni Ni, Chair

The discoveries of the two-dimensional quantum Hall effect, the quantum spin Hall

effect, and three-dimensional topological insulators started a new era in solid-state physics.

Topology soon became a word in most solid state physicists’ vocabulary. A topological phase

of matter is characterized by a nonzero topological invariant, which is determined by the

bulk electronic wavefunctions of a material. The conventional insulators and metals have a

zero, or trivial, topological invariant, and their properties are not affected by the topology of

their band structure. Topologically non-trivial materials, however, display a host of exotic

phenomena in their transport and spectroscopic properties, and band topology has to be

invoked to explain them.

Band topology has even emerged as a classification principle of the states of matter, with

the topological invariant characterizing the topological class of the materials. Soon after the

discovery of topological insulators, topological semimetals were theoretically predicted and

experimentally realized. These are gapless systems characterized by protected band cross-

ings with linear energy dispersions resembling those of relativistic particles. The physical

realization of these systems is important not only because of the opportunity to study novel

quantum phases of matter and emergent phenomena which have led to the discoveries of

surface Dirac cones, surface Fermi arcs, the chiral anomaly and colossal photovoltaic effects,

but also because they hold promise for applications in quantum devices.
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Although it has recently been realized that topological materials are fairly ubiquitous in

nature, signatures of their nontrivial topology are still not easily accessible due to the lack

of ideal material realizations. For years this was the main obstacle in the study of nodal-line

semimetals. For topological physics to be accessible, two things must occur. First, the nodes

(line or point) must be very close to the Fermi level and second, there should be no other

trivial bands at the Fermi level. The search for material realizations of ideal semimetals of

each type is the subject of my dissertation.

An ideal nodal-line semimetal predicted to satisfy both of these criteria is CaAgAs. We

are the first group to synthesize single crystals of this material, and study their transport

properties and band structure. We additionally studied CaCdGe, a compound with the same

crystal structure and topological nodal line, but a much more complicated Fermi surface

with trivial bands near the Fermi level. By comparing the transport properties of these

two materials, our study provided evidence that the large magnetoresistance and the highly

debated linear magnetoresistance seen in topological semimetals might simply be due to

electron-hole compensation and charge fluctuations, respectively. Furthermore, a topological

surface state was observed in our CaAgAs in our collaborative angle-resolved photoemission

spectroscopy experiment, unambiguously proving that this material was correctly dubbed

the “hydrogen atom” of nodal-line semimetals.

Experimental work provides key insights that lead to a revision of the theory and thus

our understanding of the physics of a material. This is what our study on CuMnAs ac-

complished. CuMnAs was predicted to be an antiferromagnetic Dirac semimetal, with a

topological protection that relied on a theoretically predicted magnetic structure. However,

no such structure had ever been experimentally confirmed. In our study, we grew single crys-

tals of CuMnAs, resolved this magnetic structure and showed that it was actually different

from the theoretically predicted one. Although this led to the Dirac fermions no longer being

protected, our collaborative first-principles calculations found that it leads to the emergence

of spin-polarized surface states, a much sought after property for spintronics.

Many of the topological semimetals that are currently being studied were first synthe-
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sized decades ago. However, in light of new predictions regarding the topology of their

band structure, their properties are now being re-examined. Our studies of NbGe2, a chi-

ral non-centrosymmetric superconductor first studied in the 1970s and recently predicted to

host Kramers-Weyl fermions, reveal that it might be possible for this material to harbor a

superconducting topological surface state.

iv



The dissertation of Evdoxia Emmanouilidou is approved.

Stuart Brown

Paula Loredana Diaconescu

Ni Ni, Committee Chair

University of California, Los Angeles

2020

v



To Evripidis

vi



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

1 Background and history of three-dimensional topological materials . . . 1

2 Overview of nontrivial topology, magnetism, quantum oscillations and su-

perconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 The Berry phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 The quantum Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 The Z2 or Quantum Spin Hall insulator . . . . . . . . . . . . . . . . . . . . . 18

2.4 3D Topological Insulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Topological semimetals; Weyl, Dirac and Nodal-line . . . . . . . . . . . . . . 22

2.5.1 Weyl semimetals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.2 Dirac semimetals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.3 Nodal-line and Kramers-Weyl semimetals . . . . . . . . . . . . . . . . 26

2.6 Brief overview of common magnetic interactions and structures and metam-

agnetic transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Elements of magnetotransport in semimetals and topological semimetals . . 30

2.8 Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



3.1 Single crystal growth using the flux method . . . . . . . . . . . . . . . . . . 37

3.2 Crystal structure and composition determination . . . . . . . . . . . . . . . 40

3.2.1 Powder X-ray diffraction . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.2 Energy dispersive X-ray spectroscopy . . . . . . . . . . . . . . . . . . 40

3.3 Electrical and thermodynamic properties . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Resistivity, magnetoresistance and Hall resistivity . . . . . . . . . . . 40

3.3.2 Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.3 Specific heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.4 Single crystal neutron diffraction . . . . . . . . . . . . . . . . . . . . 42

4 Magnetotransport properties of the single crystalline nodal-line semimetal

candidates CaTX (T= Ag, Cd; X= As, Ge) . . . . . . . . . . . . . . . . . . . . 43

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Single crystal growth of CaAgAs and CaCdGe . . . . . . . . . . . . . 45

4.2 Transport properties of CaAgAs and CaCdGe . . . . . . . . . . . . . . . . . 47

4.3 Shubnikov-de Haas oscillations in CaCdGe . . . . . . . . . . . . . . . . . . . 53

4.4 Fermiology revealed by quantum oscillations and DFT calculations . . . . . . 57

4.5 Topological surface states revealed by ARPES in CaAgAs . . . . . . . . . . . 58

4.6 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Magnetic order induces symmetry breaking in the single-crystalline or-

thorhombic CuMnAs semimetal . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 Single crystal growth of CuMnAs . . . . . . . . . . . . . . . . . . . . 65

5.2 Electrical transport and thermodynamic properties . . . . . . . . . . . . . . 68

5.3 The magnetic structures of PA and PB . . . . . . . . . . . . . . . . . . . . . 70

viii



5.4 Bulk band structure calculations with experimentally determined magnetic

structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Spin-flop transition in the orthorhombic antiferromagnetic topological semimetal

Cu0.95MnAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Fermiology and Type-I superconductivity in the chiral superconductor

NbGe2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1.1 Single crystal growth of NbGe2 . . . . . . . . . . . . . . . . . . . . . 84

6.1.2 Transport properties and Fermiology of NbGe2 . . . . . . . . . . . . . 86

6.2 Berry phase revealed by the dHvA oscillations . . . . . . . . . . . . . . . . . 89

6.3 Quasi linear magnetoresistance arising from open Fermi surfaces . . . . . . . 93

6.4 Type-I superconductivity with a full superconducting gap . . . . . . . . . . . 95

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A Temperature dependent resistance curves for CuMnAs crystals from all

synthesis trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B First principles calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

ix



List of Figures

1.1 (a),(b) Surface electronic band dispersion in Bi2Se3 along the Γ̄ - M̄ and Γ̄ - K̄

momentum-space cuts. (c) The momentum distribution curves from (a) show

that two surface bands converge at a single Dirac point at Γ̄. (d) The 3D BZ and

its projection on the (111) plane. (e) The Fermi surface (FS) of the 2D surface

states is a circle around Γ if the chemical potential lies inside the band gap. (f)

Theoretically calculated electronic structure of the (111) surface in the presence

and absence of SOC. Simply degenerate surface bands that cross the Fermi level

appear only when SOC is included in the calculations. Taken from [10]. . . . . . 3

1.2 Spin momentum locking in Bi2Te3 using spin-resolved ARPES. Taken from [11]. 4

1.3 (a) The non-primitive tetragonal unit cell of Cd3As2, which consists of 160 atoms.

(b) The band structure, with 3D Dirac band touching points near the Γ point.

(c), (d) The valence (c) and conduction (d) bands near the Γ point mapped using

ARPES. Adapted from [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 The crystal structure and electronic structure of Na3Bi. Taken from [18]. . . . . 7

1.5 NLMR in Na3Bi due to charge pumping between the two branches of the lowest

LL. Taken from [20]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 (a) The crystal structure of TaAs, with the red arrow indicating where the crystal

can be cleaved. (b) The FS on the (001) surface of TaAs, including Fermi arcs

as well as trivial Fermi pockets. (c) A schematic of the Fermi arcs connecting

W1 and W2 nodes with chiral charges ± 2 and 1 respectively. (d) Photoemission

intensity plot around W1 (left) and the extracted Fermi arcs (right.) Taken

from [22]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 (a) The chiral edge mode arises at the interface between the QHE and the vacuum,

a trivial insulator. (b) At the same interface, the gap between the valence and

conduction bands closes, leading to an edge state. Taken from [34]. . . . . . . . 17

x



2.2 (a) The states at Γa = 0 and Γb = π/a connect pairwise, and the bands intersect

the Fermi level (FL) an even number of times. (b) The bands intersect the FL

an odd number of times and cannot be eliminated. Shaded bands correspond to

bulk bands, while the lines indicate edge states. Taken from [34]. . . . . . . . . 19

2.3 The counter-propagating edge states of the spin Hall insulator. Taken from [34]. 20

2.4 (a) A schematic of a Dirac cone in the surface of a strong 3D TI. (b),(c) Fermi

loops in the surface BZ for EF1 (b), and EF2 (c). Arrows indicate spin chirality.

Taken from [41]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 (a) Fermi arcs connect two Weyl nodes of opposite chirality. (b) Fermi arcs

observed through ARPES measurements in the monophosphide family of Weyl

semimetals. Taken from [48]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Type-II Weyl nodes. Electron and hole pockets touch at Weyl nodes. Taken

from [45]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Origin of the chiral anomaly. Adapted from [45]. . . . . . . . . . . . . . . . . . 26

2.8 Example band structure of a Kramers-Weyl semimetal in the absence (a) and

presence of SOC (b). Adapted from [50]. . . . . . . . . . . . . . . . . . . . . . . 27

2.9 (a) An example two-sublattice collinear AFM state. (b) Spin-flop state. (c)

Above a critical magnetic field it becomes energetically favorable for the system

to switch into the spin-flop phase. Adapted from [51]. . . . . . . . . . . . . . . . 29

3.1 (a) A glovebox filled with Ar gas where most of the materials are kept. (b)

The apparatus for evacuating and sealing quartz tubes. Tubes are connected

to a pumping line, evacuated, and sealed off using a blow torch. (c) Sealed

quartz tubes, with the starting materials held inside the Al2O3 crucibles. (d) Box

furnaces that can reach 1100oC. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Pictures of single crystals grown using the flux method, against a 1mm scale. (a)

CaCdGe, (b) CuMnAs, (c) NbGe2. . . . . . . . . . . . . . . . . . . . . . . . . . 39

xi



4.1 Binary phase diagram for Ca-Cd (a) and Ge-Cd (b). Taken from [83,84]. . . . . 46

4.2 The powder x-ray diffraction patterns of CaCdGe and CaAgAs. The ticks below

each pattern indicate the Bragg peak positions determined by the respective

crystal structure. Some very small impurity peaks are detected in both patterns;

in CaAgAs this corresponds to AgAs, and in CaCdGe it is due to Cd. . . . . . . 46

4.3 (a) Crystal structure of CaAgAs and CaCdGe. The TX4 octahedra are shown in

blue and the Ca atoms are shown in green. (b) and (c) Mirror symmetry pro-

tected nodal-lines in CaAgAs and CaCdGe. (b) Schematic of a band structure

diagram for the nodal-line feature in CaAgAs and CaCdGe. The conduction and

valence bands consist of the Ag(Cd) 4d and As(Ge) 4p orbitals, respectively. The

band crossings near the Γ point are protected because the two bands have op-

posite mirror eigenvalues. (c) and (d) First-principles calculated band structures

of CaAgAs near the Γ point without SOC (c) and with SOC. (e) Wilson loop

calculation of the SOC band structure on the kz = 0 and kz = π/2 planes. . . . 48

4.4 (a) Temperature dependence of the electrical resistivity ρxx for CaCdGe and

CaAgAs at B = 0 T with I//c. (b) MR of CaCdGe and CaAgAs single crystals

at T = 2 K with I//c and B ⊥ ac. . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 CaAgAs single crystal with I//c and B ⊥ ac: (a) Hall resistivity ρyx. (b) Field

dependent transverse MR. (c) Temperature dependent carrier density and mobility. 50

4.6 CaCdGe single crystal S3 with I//c andB ⊥ ac: (a) transverse magnetoresistivity

ρxx. (b) Hall resistivity ρyx. The symbols correspond to experimental data,

while the lines are the curves obtained from the two band model fitting. (c)

Temperature dependent carrier densities. (d) Temperature dependent mobilities. 51

xii



4.7 (a) The oscillations in δρxx are periodic in 1/B and their amplitude decays as

the temperature is lowered. Inset: Measurement configuration. (b) Temperature

dependence of the normalized amplitude of the oscillations denoted as A/A(2K).

Inset: FFT spectrum of the oscillations for a few representative temperatures.

The magnetic field was perpendicular to the ac plane. (c) 1/B dependence of the

quantity ln(δρxx/4ρ0RT ) with a fit to extract the Dingle temperature. (d) The

LK fit of the 3 K data. Black dots indicate data points and the green dashed line

corresponds to the fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.8 (a) and (b) Angular dependence of the experimental FSdHa (yellow lines; see text)

and the calculated FDFTβ (black lines; see text) with the measurement geometries

in the insets. (c) and (d) The electronic band structure of CaCdGe with SOC: (c)

using the LDA/GGA potential and (d) using the MBJ potential. (e) The Fermi

pockets associated with (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.9 ARPES measurements and DFT calculations of the band dispersion along high

symmetry directions. The red arrows indicate the lower part of the topological

surface states. (a) - (c) ARPES momentum-energy maps along (a) Γ-A, (b) Γ -

M, and (c) Γ-K. (d)-(f) DFT-derived angle-resolved density of states along (d)

Γ-A, (e) Γ - M, and (f) Γ-K. The bright curves indicate topological surface states

and the yellow dashed line shows the approximate Fermi level position that agrees

with the ARPES data. (g) The DFT calculated band structure of CaAgAs with

SOC. The inset shows the detail of the band dispersion along Γ - M near the nodal

point. The nodal line around the Γ point is gapped out under SOC, resulting in

a topological insulator with ∆ = 73 meV. Adapted from [2]. . . . . . . . . . . . 59

xiii



5.1 (a),(b) Crystal structure of ORT CuMnAs. (a) CuAs4 (orange) and MnAs4 (blue)

tetrahedral building blocks. (b) The distorted Mn honeycomb lattice (Mn in

blue). (c) Powder x-ray diffraction patterns of ORT (pulverized single crystals

from batch A) and TET (from powder synthesis) phases. Ticks indicate the

Bragg peak positions. Inset: A picture of an ORT single crystal against a mm

sized grid. The as-grown surface is the bc plane. . . . . . . . . . . . . . . . . . . 62

5.2 Taken from [101]. (a) The crystal structure of the orthorhombic CuMnAs(P),

with red arrows showing the orientations of the magnetic moments of the Mn

atoms. (b) The Brillouin zone of CuMnAs(P) and its projection on the (010)

surface. (c) Illustration of the screw rotation symmetry S2z. The red dashed line

corresponds to the rotation axis, and the yellow circle corresponds to the Mn

atom that the orange arrrow is pointing at, after the rotation about the z axis

(C2z) and a half translation along the (101) direction (τ=(1/2,0,1/2)). (d) The

electronic structure of CuMnAs along high-symmetry lines in the presence (blue)

and absence (red) of SOC. The magnetic moments of the Mn atoms are predicted

to be along the z direction. The insets (yellow boxes) show the details of the

band crossings near the Fermi level, which has been set to zero. . . . . . . . . . 64

5.3 PA: (a) Normalized resistivity ρ(T)/ρ(400 K) and its derivative dρ/dT vs T .Inset:

Hall resistivity ρyx vs T. PB [(b)–(d)] (b) Normalized resistivity ρ(T)/ρ(400 K)

and dρ/dT vs T.(c) Susceptibility M/H and d(M/H)/dT vs T.(d) Heat capacity

Cp vs T.Inset: Cp/T vs T2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 (a) The (1,1,0) intensity vs ω for PA. (b) A comparison between the (1,1,0) peak

intensity and the dρ/dT vs T. The red line corresponds to the power-law fit. (c)

Magnetic structure of PA in the CAFM state. Only the Mn sublattice is shown.

(d) The view of the magnetic structure from the b direction. Mn atoms are shown

in blue. “+” denotes spins pointing out of plane while “-” denotes spin pointing

in plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xiv



5.5 (a),(b) Intensity vs ω for PB. The black arrows indicate the trend of the peak

intensity with decreasing temperature. (c) A cut of the neutron scattering in the

hk0 plane. (d) A comparison between the (0.9,1,0) peak intensity and dρ/dT vs

T . The light blue box marks the temperature region where CAFM and ICAFM

compete and coexist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6 (a) Calculated band structures of the ORT CuMnAs with SOC and the magnetic

structure shown in Figure 5.4 (c). The inset shows the Brillouin zone and its

projection to the (010) surface. ∆ is the band gap of a massive topological

fermion along ΓX line. (b) The detail of the band structure marked by the yellow

box in (a). (c) Fermi-surface contour on the (010) surface at the calculated Fermi

level. Corresponding electronic spectra along (d) k̄x = π/a and (e) k̄z = 0. The

Fermi level is set to zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.7 Temperature dependence of the susceptibility χ of Cu0.95MnAs with a magnetic

field of 1 T, applied parallel to the a, b and c axes. Inset: The derivative of

the quantity χ T with respect to temperature. The dashed lines indicate the

transition temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.8 (a) The magnetization, M, of Cu0.95MnAs at several temperatures for H // b.

(b) The magnetoresistance, MR, of Cu0.95MnAs at several temperatures, for H

// b and I // b. Inset: The MR for for fields up to 35 T. (c)-(d) The derivatives

of M and MR with respect to H. The dashed lines go through the peaks of the

derivatives, which is the criterion we used to determine the transition temperatures. 78

5.9 (a) The field dependence of the magnetization of Cu0.95MnAs for 2 K, 20 K,

40 K and 60 K with the field parallel to a. (b) The field dependence of the

magnetization of Cu0.95MnAs for 2 K and 40 K with the field parallel to c. . . . 79

5.10 The magnetic phase diagram of Cu0.95MnAs with the field parallel to the b axis. 80

5.11 (a)-(b) The isothermal magnetization (a) and magnetoresistance (b) of Cu0.98Mn0.96As

for certain temperature values. The magnetic field was applied parallel to the b

axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

xv



6.1 (a) The binary phase diagram of Nb-Ge. Taken from [125]. (b) A picture of the

vertical tube furnace used for the synthesis of NbGe2. Arrows indicate Ar flow,

and the cylinder indicates the approximate location of the Ta tube. . . . . . . . 84

6.2 The x-ray powder diffraction pattern of NbGe2, with indexed peaks. The peaks

with asterisks are due to impurities, most likely due to Ge flux. The crystal

structure and a picture of a single crystal against a mm background are shown

as insets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 The resistivity of a NbGe2 single crystal at 0 T. Inset: zoomed-in plot of the

superconducting transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4 (a) The contour plot of the FFT frequencies as a function of angle. Three fre-

quency branches can be distinguished, labeled α, α′ and β. Strong spin splitting

is observed for α and α′. The black dots correspond to the DFT calculated fre-

quencies. The inset shows the measurement geometry. (b) The orbital-resolved

electronic band structure of bulk NbGe2 with SOC. The blue and red dots indi-

cate Nb-4d orbitals and Ge-4p orbitals, respectively. The red arrows denote the

positions of Weyl points. (c) The Fermi surfaces in the full BZ of NbGe2. The

first three panels show hole like pockets and the last panel an electron pocket.

The extremal cross sections with oscillation frequencies less than 500 T are la-

beled A, A′, B, C and C′. From a comparison of dHvA and DFT, it is clear that

the α, α′ and β branches correspond to A, A′ and B, respectively. . . . . . . . . 88

6.5 Fβ branch: (a) ∆τ , obtained after subtracting a polynomial background, as a

function of 1/B for temperatures up to 3.2 K. (b) The FFT plot of ∆τ , revealing

Fβ = 257 T at this angle. (c) A fit of the amplitude at a fixed magnetic field of

8.8 T to obtain the effective mass associated with the orbit. (d) Data at 1.8 K

(black line) with LK fit (red line). . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xvi



6.6 (a) The FFT spectrum of the oscillations obtained with the magnetic field at

an angle of ≈ 60o with respect to the [011] axis. (b) Fit of the temperature

dependence of the FFT amplitude to determine the effective masses. (c)-(e)

∆τ (black line) with the LK fit with two frequencies shown in red. For both

frequencies, (c) φi and TD are all free parameters; (d) TD are free parameters

and φi are set to be equal; (e) φi are free parameters and TD are set to be equal. 91

6.7 (a) and (b) MR at several temperatures. (c) Hall resistivity at various temper-

atures. (d) The calculated MR at 20 K and 100 K with offset. The calculation

was done by solving the Boltzmann transport equation within the relaxation time

approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.8 (a) A comparison of the electronic part of the specific heat Cel/γnTc to the pre-

dictions of the BCS model. Inset: Cp/T as a function of T 2, with the fit to

Cp/T = γ + βT 2 and the derived parameters shown as an inset. (b) M − H

loop at 0.5 K. (c) Specific heat with H‖[111] direction at various fields. The

criterion inferring Tc is shown. (d) Magnetic isotherms with H ⊥ [111] at several

temperatures. The criterion inferring Tc is shown. (e) Resistivity under vari-

ous fields with H‖[011]. The criterion inferring Tc is shown. (f) H − T phase

diagram, with values determined from specific heat, magnetic susceptibility and

resistivity measurements. The purple line corresponds to a fit to the expression

Hc(T ) = Hc(0)[1− (T/Tc)
2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.9 The electron-phonon coupling weighted phonon band structure of NbGe2. The

size and color of each marker denotes the mode and wave-vector resolved electron-

phonon coupling. The colorbar denotes the value of the electron-phonon coupling. 99

A.1 The temperature dependent resistance for pieces selected from batch A. . . . . . 103

A.2 The temperature dependent resistance for pieces selected from batch B. . . . . . 104

A.3 The temperature dependent resistance for pieces selected from batch C. . . . . . 104

A.4 The temperature dependent resistance for pieces selected from batch D. . . . . . 105

xvii



A.5 The temperature dependent resistance for pieces selected from batch E. . . . . . 105

xviii



List of Tables

5.1 Synthesis details of CuxMnyAs single crystals . . . . . . . . . . . . . . . . . . . 66

5.2 Single crystal crystallographic data of PA and PB in the ORT Pnma space group

at 300 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Atomic coordinates and equivalent isotropic displacement parameters of PA and

PB at 300 K. Ueq is defined as 1/3 of the trace of the orthogonalized Uij tensor
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CHAPTER 1

Background and history of three-dimensional

topological materials

The discovery of topological insulators started a new era for the field of condensed matter

physics by drawing interest to the idea of a new type of classification of matter that went

beyond the concept of symmetry breaking. Prior to that, physicists classified the different

states of matter according to the symmetries they broke. For instance, the transition from

the gaseous phase to a solid can be thought of as breaking translational invariance; magnets

break time-reversal symmetry and superconductors break gauge symmetry. Not all distinct

phases of matter can be classified in terms of spontaneous symmetry breaking however and

this became apparent with the integer quantum Hall effect (IQHE), which defied such an

explanation and needed the concept of topology in order to be understood. Its experimental

observation and theoretical understanding took place in the 1980s, but interest in topological

order was rekindled much later with the discovery of topological insulators, which spurred

a flurry of interest in this field and led to the subsequent prediction and experimental re-

alization of several other materials with topological order and novel properties, that are

important not only for advancing our understanding of condensed matter physics, but also

for technological applications. In this chapter I will give an overview of the discoveries of

these topological phases of matter in a chronological order, and discuss the most notable

materials and their experimental signatures.

Topology is a field of mathematics concerned with the study of geometrical properties of

objects that remain unchanged under continuous deformations such as stretching or bending.

Imagine how a coffee cup can be continuously deformed into a donut, without breaking or
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cutting it. These two objects are said to be topologically equivalent, and they can be iden-

tified by their number of holes, which is known as the genus. Surfaces with different genuses

cannot be continuously deformed into one another, and are topologically inequivalent. In

condensed matter systems, the role of the genus is played by the topological invariant, which

is essentially an integral over the band structure. Materials where this integral vanishes are

topologically trivial, whereas those with a non-zero topological invariant are characterized

by measurable physical properties that arise precisely from their non-trivial topology.

Nonmagnetic topological insulators (TIs) were predicted when it was realized that ar-

guments for the topological characterization of the quantum spin Hall state, the “cousin”

of the integer quantum Hall state that exhibits quantized spin Hall conductance and van-

ishing charge Hall conductance, can be extended to 3D materials [6–8]. Topological surface

states that are protected from gapping out by time reversal T symmetry were also predicted

as a result of topological order [6], while band inversion is a necessary condition for the

emergence of these surface states. The first 3D TI was experimentally discovered in the

thermoelectric semiconducting alloy Bi0.9Sb0.1 using angle resolved photoemission spectroso-

copy (ARPES). [9] This material however had a small band gap and complicated surface

structure, and this motivated the search for candidates with simpler surface structure. Not

long after the discovery of Bi0.9Sb0.1 as a TI, Bi2Se3 and Bi2Te3 were experimentally con-

firmed to be 3D TIs. What motivated this search was the fact that, while in Bi0.9Sb0.1 the

topological order originates from bulk band-inversions at the three equivalent L points, in

Bi2Se3 only one band is inverted, so a simpler surface state is expected. Bi2Se3 has a rhom-

bohedral crystal structure and a hexagonal Brillouin zone (BZ), as shown in Figure 1.1(d).

Figure 1.1 (a)-(b) show clear ‘V’ shaped bands approaching the Fermi level along the Γ̄ - M̄

and Γ̄ - K̄ momentum lines. A comparison with the theoretically predicted band structure

showed that the V band was a surface Dirac cone enclosing a Kramer’s point (Γ). Because

of its simple topological surface spectrum, Bi2Se3 was termed the “hydrogen atom” of strong

TIs.

The use of spin-resolved ARPES allowed the observation of spin-momentum locking, a
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Figure 1.1: (a),(b) Surface electronic band dispersion in Bi2Se3 along the Γ̄ - M̄ and Γ̄ -

K̄ momentum-space cuts. (c) The momentum distribution curves from (a) show that two

surface bands converge at a single Dirac point at Γ̄. (d) The 3D BZ and its projection on the

(111) plane. (e) The Fermi surface (FS) of the 2D surface states is a circle around Γ if the

chemical potential lies inside the band gap. (f) Theoretically calculated electronic structure

of the (111) surface in the presence and absence of SOC. Simply degenerate surface bands

that cross the Fermi level appear only when SOC is included in the calculations. Taken

from [10].
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Figure 1.2: Spin momentum locking in Bi2Te3 using spin-resolved ARPES. Taken from [11].

key signature of topological order in TIs. Bi2Te3 was a better candidate than Bi2Se3 for this

purpose because in Bi2Se3 there is an additional component to the density of states around

the Γ point due to the degenerate bulk conduction band. Figure 1.2 shows the ARPES

intensity map at the chemical potential of the (111) surface with red arrows indicating the

direction of the spin projection around the Fermi surface. As shown on the right panel, pho-

toelectrons emmitted along the kx cut are spin-polarized along the y-direction. Electrons of

opposite momentum have polarization signals of equal magnitude and opposite spin, indi-

cating that there is one-to-one correspondence between spin and momentum that is due to

the topology of Bi2Te3.

The discoveries of 3D TIs were soon followed by the prediction and experimental obser-

vation of nonmagnetic topological semimetals, such as Cd3As2, Na3Bi and ZrTe5. These are

materials that respect both T and space inversion I symmetries. A finite amount of SOC

lifts the degeneracy of any bands that cross due to band-inversion, however the presence of

additional symmetries can protect some band crossings from opening up. In Cd3As2, this role

is played by the C4 rotational symmetry, which ensures the existence of two band touching

points with low energy excitations that can be described by the Dirac equation for massless

particles [12]. Unlike 3D TIs, 3D Dirac semimetals possess bulk Dirac fermions with linear

energy dispersions along all three momentum directions.
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Figure 1.3: (a) The non-primitive tetragonal unit cell of Cd3As2, which consists of 160 atoms.

(b) The band structure, with 3D Dirac band touching points near the Γ point. (c), (d) The

valence (c) and conduction (d) bands near the Γ point mapped using ARPES. Adapted

from [13].
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Cd3As2 has a tetragonal crystal structure with the centrosymmetric space group I41/cd.

Figure 1.3 (a) shows its complex crystal structure, which holds 160 atoms in the unit cell.

The band structure is shown in Figure 1.3 (b), with symmetry allowed band crossings near

the Γ - Z line. Here too, ARPES measurements continued to be the best suited experimental

technique to confirm the electronic structure of these materials. Figure 1.3 (c) shows the

band dispersion along the M-Γ-M direction, with a linearly dispersing band seen clearly in

addition to another hole type wealy parabolic bulk band. Figure 1.3 (d) shows the dispersion

of the conduction band in the direction perpendicular to the Γ-Z line. The shape of these

3D conical bands presented clear evidence for the existence of massless 3D fermions.

The topological character of the surface states in 3D TIs, the linearly dispersing bands

and the Fermiology of 3D Dirac semimetals can also be probed by studying the quantum

oscillations that can appear in thermodynamic or transport properties. For example, the

first transport measurements on Cd3As2 were conducted over 40 years ago, and it was shown

to have extremely high mobility of unknown origin as well as linear magnetoresistance (MR)

[14, 15]. After the discovery of its topological properties, interest in its peculiar transport

properties was renewed and, naturally, it was suspected that the presence of Dirac fermions

might be responsible for these properties. Studies on the ultrahigh mobility and giant MR

came shortly after the confirmation of Dirac fermions in the bulk. Liang et al. [16] observed

large, unsaturating MR in all of their samples and interestingly, that only their low mobility

samples exhibited a linear MR, while samples with high mobility had an MR ∝ Hα, with α

= 2-2.5. The linear MR was observed at fields far below the Landau limit, so it could not be

explained as being due to transport at the lowest Landau level, and instead, a mechanism

involving charge fluctuations was proposed [16,17].

The other celebrated 3D Dirac semimetal is Na3Bi. As discussed previously, the pro-

tection of the band touching points with linear dispersions is guaranteed by T , I as well

as additional crystalline symmetries, which in the case of Na3Bi is a 3-fold rotational sym-

metry [19]. Its hexagonal crystal structure, with space group P63/mmc, consists of Na-Bi

honeycomb layers stacked along the c axis with Na atoms between these layers. ARPES
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Figure 1.4: The crystal structure and electronic structure of Na3Bi. Taken from [18].

measurements again confirmed the presence of a Dirac point at Γ, by observing linear energy

dispersion. Figure 1.4 shows a plot of constant energy contours at different binding energies,

with the red dashes lines added to highlight the conical shape of the energy dispersion [18].

A Dirac point can be split into two with the application of magnetic field which breaks

T symmetry and removes the spin degeneracy of the bands, splitting a Dirac point into

two Weyl points of opposite chirality. Such field-induced Weyl nodes have been suggested

in Cd3As2, Na3Bi and ZrTe5. Another way that the spin degeneracy can be removed is

through the removal of inversion symmetry I. Such a material would be an intrinsic Weyl

semimetal. The first nonmagnetic intrinsic Weyl semimetal that was discovered was TaAs.

First-principles calculations predicted TaAs, along with other monophosphides, to be Weyl

semimetals hosting 12 pairs of Weyl nodes in their Brillouin zone. The existence of Weyl

nodes is ensured by the lack of I symmetry in these noncentrosymmetric compounds [21].

Figure 1.6 (a) shows the crystal structure of TaAs, which crystallizes in a tetragonal crystal

structure with space group I41md, which has no I summetry. In addition to linear band

dispersions near the band touching points, Weyl semimetals are characterized by an addi-

tional “smoking gun” signature known as a Fermi arc. Fermi arcs are discontinuous Fermi

surfaces that start and end at surface projections of two Weyl nodes with opposite chiral-
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Figure 1.5: NLMR in Na3Bi due to charge pumping between the two branches of the lowest

LL. Taken from [20].

ity. These were disentangled from normal surface states forming Fermi surface pockets and

matched to pairs of Weyl nodes with perfect agreement with theoretical calculations [22].

Figure 1.6 (d) shows Fermi surface arcs on the (001) surface of TaAs connecting the Weyl

nodes. The topological character of TaAs has also manifested in transport properties and

quantum oscillations. At 1.8 K and 9T, TaAs exhibits an extemely high transverse MR

that reaches ≈ 80,000% due to the electron-hole compensation effect. Additionally, analysis

of the Shubnikov de Haas (SdH) oscillations showed strong evidence for the presence of a

nontrivial π Berry phase [23].

The existence of pairs of Weyl points with opposite chirality was proposed to give rise

to another novel transport property, the negative longitudinal magnetoresistance (NLMR).

This occurs when E // B, and is a consequence of the electron tansfer between nodes of

opposite chiralities [13]. While the chiral anomaly expected when Dirac points are split into

two Weyl points was not unambiguously proven in Cd3As2 or the Weyl semimetal TaAs due

to the artificial current jetting effect, it was observed in Na3Bi. Xiong et al. [20] provided

strong evidence for the chiral anomaly in this material by detecting a large NLMR. Figure

1.5 shows the lowest Landau level (LL) (N=0) which disperses linearly with k with slopes

determined by the chirality χ = ±1. When electric and magnetic fields are applied parallel
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Figure 1.6: (a) The crystal structure of TaAs, with the red arrow indicating where the crystal

can be cleaved. (b) The FS on the (001) surface of TaAs, including Fermi arcs as well as

trivial Fermi pockets. (c) A schematic of the Fermi arcs connecting W1 and W2 nodes with

chiral charges ± 2 and 1 respectively. (d) Photoemission intensity plot around W1 (left) and

the extracted Fermi arcs (right.) Taken from [22].
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to each other electrons are pumped between the two branches, and this causes the MR to

decrease. This observation was further confirmed by an experiment which exaggerated the

artificial current jetting effect [24].

The investigation of the interplay between topology, magnetism, electron correlations

and charge transport has recently attracted more and more interest due to the successful

material realization of magnetic topological materials such as magnetic Weyl semimetals and

magnetic topological insulators. In magnetic Weyl semimetals, the presence of Weyl points

is ensured by breaking T symmetry via intrinsic magnetism rather than external magnetic

field, as was the case for Nb3Bi. One important example from this category is Co3Sn2S2,

where the Berry curvature around the magnetic Weyl nodes gives rise to a giant intrinsic

anomalous Hall effect (AHE) [25]. More recently the interplay between magnetism and

topology has been manifested in van der Waals materials with the discoveries of intrinsic

antiferromagnetic (AFM) and ferromagnetic (FM) topological insulators in the Mn-Bi-Te

family of materials [26–28]. Even more exotic materials such as topological superconductors,

which can host Majorana particles, have also been predicted [29].

The enormous success of the investigation of the effects of non-trivial topology on phys-

ical properties has been largely driven by the material realization of compounds with band

structure characteristics such as band inversion, Dirac, and Weyl nodes. However, ideal

material realizations with clean band structures where only minimum band crossings exist

at the Fermi level are still rare and thus highly desirable. To address this material challenge,

my thesis work focuses on the search, design, growth and characterization of the ideal topo-

logical material realization. In this dissertation I discuss my work on topological nodal line

semimetals, an AFM Dirac semimetal and a topological superconductor. Chapter 4 focuses

on CaAgAs, where we show that it is the “hydrogen atom” of nodal line semimetals. In

nodal line semimetals, the conduction and valence band cross along a closed curve. Through

a comparative study with its “sister” compound CaCdGe we show that the existence of

another electron pocket changes the transport properties dramatically. We then elucidate

the origin of the usually-observed extremely large magnetoresistance and the debated linear
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magnetoresistance in topological semimetals. ARPES measurements performed through a

collaboration reveal a topological surface state and a single donut-like Fermi pocket, pro-

viding clear evidence that CaAgAs indeed is the “hydrogen atom” of nodal line semimetals.

In Chapter 5 I discuss the synthesis and characterization of CuMnAs single crystals, which

was predicted to be an AFM 3D Dirac semimetal with clean band structure. I will discuss

the synthesis of crystals with slightly different stoichiometries, and the profound effects that

these have on the magnetism. Our experimentally determined magnetic structure led to

new theoretical predictions about the surface states in this material. The metamagnetic

properties of CuMnAs will also be discussed. Chapter 6 focuses on NbGe2, a chiral non-

centrosymmetric superconductor predicted to host Kramers-Weyl fermions. I will discuss

our results from an analysis of the de Haas-van Alphen oscillations observed in the mag-

netic torque, namely a complex Fermi surface with pockets characterized by spin-splitting

and how it compares to first-principles calculations, as well as our observation of semi-linear

magnetoresistance. I will finally discuss our finding that NbGe2 with a full superconducting

gap is one of very few binary compounds that are Type-I superconductors and interestingly

shows a Type-II to Type-I crossover around 1.5 K.
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CHAPTER 2

Overview of nontrivial topology, magnetism, quantum

oscillations and superconductivity

The physical properties of a material have long been understood in the framework of

the lattice, orbit, spin and charge degrees of freedoms. It was not until the discovery of

the quantum Hall effect (QHE) in a two-dimensional (2D) electron gas, where quantized

Hall conductance emerged under magnetic fields in the absence of spontaneous symmetry

breaking, that the important role of band topology in determining the physical properties

of a material was realized. Twenty years later, after the prediction, material realization and

observation of 3D TIs, the study of new phases and phenomena caused by non-trivial topol-

ogy is exploding, making the last decade one of the most active periods in discovering novel

emergent phenomena. Band topology has even emerged as a classification principle of the

states of matter, with the topological invariant characterizing the topological class of mate-

rials. Essential elements in the determination of the band topology are the Berry phase, the

Chern invariant and the Z2 invariant, which will be discussed first in this chapter. Rigorous

calculations will not be reproduced here as they are beyond the scope of this dissertation,

but elements of these theories will be presented in a simplified manner. Following that, I will

discuss the main elements of the theoretical predictions of the topological phases discussed

in previous chapters such as topological insulators and the various topological semimetals.

Lastly, I will also give an overview of the magnetic phases and transitions characterizing the

materials I will discuss in later chapters, the analysis of quantum oscillations and a brief

discussion on superconductivity.
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2.1 The Berry phase

In his 1983 paper titled “Quantal phase factors accompanying adiabatic changes”, Michael

Berry argued that the implications of adiabatic change for a quantum mechanical system

were incomplete [30]. According to the adiabatic theorem, when the Hamiltonian H of a

system with n eigenstates is altered slowly, the system will remain in the nth eigenstate, and

pick up a dynamical phase factor of the form Ent/h̄ as well as an additional phase of the

form γn(t), known as the geometrical phase factor.

The wavefunction of a system that started in state
∣∣∣n(~R(0))

〉
and evolved with H can

be written as

|ψ(t)〉 = exp

[
−i
h̄

∫ t

0

dt′En(~R(t′))

]
exp(iγn(t))

∣∣∣n(~R(t))
〉

(2.1)

The geometrical phase factor γn(t) can be determined by substituting 2.1 into Schrodinger’s

equation

H(~R(t)) |ψ(t)〉 = ih̄
∣∣∣ψ̇(t)

〉
(2.2)

and leads to

γn =

∫
C
d~R · An(~R) (2.3)

where

An(~R) = i
〈
n(~R)

∣∣∣ ∂
∂ ~R

∣∣∣n(~R)
〉

(2.4)

An(~R) is known as the Berry connection. The Berry connection is gauge dependent and

it was previously believed that one can always choose a suitable gauge such that γn can be

canceled out, and was thus deemed unimportant.
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Berry challenged this conclusion by considering what happens under a cyclic evolution

along a closed path C, with ~R(T ) = ~R(0). If a gauge transformation of the form

∣∣∣n(~R)
〉
→ eiζ(

~R)
∣∣∣n(~R)

〉
(2.5)

is made, → eiζ(
~R) must be single-valued, meaning that

ζ(~R(0))− ζ(~R(T )) = 2π × n (2.6)

where n is an integer. This shows that for a closed path, γn can only change by a factor

of 2π, and cannot be removed. It is thus a gauge-invariant quantity given by

γn =

∮
C
d~R · An(~R) (2.7)

In analogy with electrodynamics, we can define the Berry vector potential

~Ωn(~R) = ∇~R ×An(~R) (2.8)

and rewrite Equation 2.7 as

γn =

∫
S
d~S · Ωn(~R) (2.9)

We can now focus on how these concepts apply to crystalline solids, where the parameter

space is the band structure. The band structure of a crystal, within the independent electron

approximation, is determined by the single electron H

H =
p2

2m
+ V (~r) (2.10)

V(~r) is the periodic potential of the crystal, and according to Bloch’s theorem, single
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electron wavefunctions can be written as

ψ(~r) = ei
~k·~ru~k(~r) (2.11)

where ~k is the crystal momentum and u is a function that satisfies the periodic boundary

condition

u~k(~r + ~a) = u~k(~r) (2.12)

where ~a is the Bravais lattice vector. If we consider a closed path in ~k space, such as one

that can be generated by a magnetic field that induces cyclotron motion, then Bloch states

will pick up a Berry phase given by

γn =

∮
C
d~k ·

〈
un(~k)

∣∣∣i∇~k∣∣∣un(~k)
〉

(2.13)

Here too we can define the Berry curvature of the bands as

~Ωn(~k) = ∇k ×
〈
un(~k)

∣∣∣i∇~k∣∣∣un(~k)
〉

(2.14)

As we can see from Equation 2.14, the Berry curvature is a quantity that depends only

on the wavefunction of the material.

To start seeing how a nonzero Berry curvature can appear in physically measurable

quantities, we will consider the dynamics of Bloch electrons in an electric field ~E [31]. If

we consider a crystal under the perturbation of a weak electric field ~E = −∇V − ∂ ~A
∂t

, the

Hamiltonian can be written as

H =
(~p+ e ~A)2

2m
+ V (~r) (2.15)

If we re-define the crystal momentum so that it is gauge invariant

~k = ~k +
e

h̄
~A(t) (2.16)
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then ~k will satisfy the equation of motion ~̇k = − e
h̄
~E, and it can be shown that [31]

~vn(~k) =
∂εn(~k)

h̄∂~k
− e

h̄
~E × Ωn(~k) (2.17)

A nonzero Berry curvature must be taken into account for a complete description of

electron dynamics. The second term in Equation 2.17 is sometimes called the anomalous

Hall velocity, and is what gives rise to what is known as the intrinsic anomalous Hall effect.

Interestingly, this expression was derived in the 1950s [32], but it took several years for the

connections with the Berry phase to be made.

Although Equation 2.17 shows that the velocity of Bloch electrons is not fully described

just by a band dispersion contribution, in many cases the Berry curvature vanishes, and the

textbook equation is valid. Specifically, when a crystal respects both T and I symmetries,

the Berry curvature is equal to zero. If a system breaks either of those symmetries however,

then the Berry curvature term must be considered for a complete description of the electron

dynamics.

2.2 The quantum Hall effect

The QHE was first observed in the 1980s when Klitzing et al. applied strong magnetic

fields to a two-dimensional electron gas and found the Hall conductivity to be quantized

in units of e2/h̄ [33]. Using equation 2.17, one can show that for a 2D insulator, the Hall

conductivity can be written as

σxy =
e2

h̄

∫
BZ

d2k

(2π)2
Ωkxky (2.18)

This is an integral of the occupied states over the entire BZ and is an example of what is

known as the Chern number. This number is a topological invariant of the system, meaning

that it does not change when H is varied smoothly, and different gapped phases that can be

continuousy deformed into one another are said to be topologically equivalent.
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Figure 2.1: (a) The chiral edge mode arises at the interface between the QHE and the

vacuum, a trivial insulator. (b) At the same interface, the gap between the valence and

conduction bands closes, leading to an edge state. Taken from [34].

The Hall conductivity in the QHE is the Chern number multiplied by the factor e2/h̄. The

phenomenon was first explained by Thouless et al. [35] and we can see that essentially the only

condition that is necessary for the Hall conductivity to be quantized is that the Chern number

of the bands must be nonzero. Perhaps the most important experimental consequence of

topology is the presence of gapless conducting states at the interfaces between systems that

are not topologically equivalent. Such edge states are responsible for the quantized Hall

conductivity observed in the QHE [36], and we can think of them (semi-classically) as arising

from the motion of electrons whose cyclotron orbits bounce off the edge of the material. The

edge states also only carry current in one direction and are thus called chiral. The existence

of these states is rooted in the topological character of the QHE. At the interface between

the QHE and a trivial insulator, such as the vacuum, the energy gap must close, because

the two states are characterized by different topological invariants. If H changes near the

surface, the number of edge states can also change as well. However, the difference between

right and left moving chiral edge modes is determined by the topology of the system and

cannot change. This bulk-boundary correspondence is summarized by [34]

NR −NL = ∆n (2.19)
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where ∆n is the difference in Chern numbers across the interface.

2.3 The Z2 or Quantum Spin Hall insulator

As discussed previously, the QHE is a state that breaks T , and the Chern number requires

either T or I to be broken. However, a different class of insulators which are topologically

distinct from trivial insulators can still exist without breaking T .

T is defined by the operator

T = eiφσyΘ (2.20)

where Θ is the complex conjugation operator. In classical mechanics, applying T twice

should take a system back to its original state. In quantum mechanics however, and more

specifically when we are considering spin 1/2 particles, T 2 = -1 [37]. This has very important

consequences which are summarized in Kramers’ theorem, and states that, for a system that

respects T , all energy levels must be doubly degenerate. This is true for every system with

an odd number of fermions. For every eigenstate with energy E, there must be another state

with the same energy.

Figure 2.2 shows the electronic states of a T invariant 2D insulator along kx, where

Γa = 0 and Γb = π/a. Generally, Kramer’s doublets can occur at different points k and -k.

However, at high symmetry points k=0 or k=π/a, -k is just k, so each one of these points are

doubly degenerate. The addition of SOC can lift this degeneracy away from high symmetry

points, as shown in Figure 2.2, but because energy is a smooth function of k, these energy

states must be connected again at Γa or Γb. There are two ways that this can happen, and

they are intimately connected to the topological structure of the material [37].

Figure 2.2 (a) shows two states at Γa connected to the same Kramer’s doublet at Γb. We

can see that in this case, depending on where the chemical potential lies, we might have 0, 2

pairs, 4 pairs etc. of edge states. The existence of edge states is not guaranteed in this case,

so this would be an example of a trivial insulator. In the case described in Figure 2.2 (b) on
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Figure 2.2: (a) The states at Γa = 0 and Γb = π/a connect pairwise, and the bands intersect

the Fermi level (FL) an even number of times. (b) The bands intersect the FL an odd

number of times and cannot be eliminated. Shaded bands correspond to bulk bands, while

the lines indicate edge states. Taken from [34].

the other hand, the states at Γa are connected to different Kramer’s doublets at Γb. In this

case, regardless of the location of the chemical potential, there will always be an odd number

of edge states crossing it or, more specifically, an odd number of left moving states, with the

corresponding number of right moving states. T invariant 2D insulators can therefore either

be trivial, with an even number of edge states, or topological, with an odd number of edge

states at the FL. Kane and Mele introduced a new type of topological invariant to describe

T invariant systems, which can take the values ν = 0 (trivial) or 1 (nontrivial) [38]. At the

interface between two 2D insulators, the number of edge states intersecting the FL is given

by

NK = ∆ν mod 2 (2.21)

This state is also known as the quantum spin Hall insulator, and was first predicted to exist

in graphene [39] and later in HgTe/CdTe quantum wells [40].

The name spin Hall insulator is a result of the fact that these insulators are characterized

by a Hall conductivity of zero, but a finite spin Hall conductivity. We can see this by plotting

Figure 2.2 from −π/a to π/a, as shown in 2.3 (b). The two edge states that are originating

from the Kramer’s doublet at k=0, are counter-propagating but have opposite spins.
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Figure 2.3: The counter-propagating edge states of the spin Hall insulator. Taken from [34].

2.4 3D Topological Insulators

A huge breakthrough in this field was achieved with the prediction that topologically

protected states could also be realized in 3D materials. The 3D topological insulators are

characterized by topologically protected surface states, rather than edges, and four Z2 in-

variants ν0; ν1ν2ν3. The surface BZ is characterized by four Kramer’s points, which are

degenerate in the presence of T , but the presence of SOC can lift the degeneracy away from

these points.

There are 2 categories of 3D TIs; weak and strong. The main difference between the

two is that the first can be regarded as a system of stacked 2D TIs, while the latter cannot.

Weak TIs are still considered a somewhat obscure topic, and have eluded clear experimental

observation, so they will not be further discussed here.

Strong 3D TIs were experimentally observed soon after they were predicted, and some of

those discoveries were discussed in the previous chapter. The Bi2Se3 family of materials is

characterized by a surface band structure such as the one illustrated in Figure 2.4, with (a)

showing the surface band structure in the bulk band gap. The band crossing point(s) occur

at Kramers points, and the dispersion is linear in kx and ky, hence the name Dirac cone.

Figures 2.4 (b) and (c) show the surface Fermi circle depending on where the FL lies. In a

strong 3D TI, the surface Fermi circle encloses an odd number of Dirac points. T requires

states at (kx,ky) and (-kx,-ky) to have opposite spins, and that results in the spin rotating
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Figure 2.4: (a) A schematic of a Dirac cone in the surface of a strong 3D TI. (b),(c) Fermi

loops in the surface BZ for EF1 (b), and EF2 (c). Arrows indicate spin chirality. Taken

from [41].

around the Fermi loop.

It should be noted here that the evaluation of the Z2 invariants is far from trivial. A

huge simplification of the procedure can be made for materials that respect I; the sign of the

product of the parities of all occupied bands can be used to distinguish topologically trivial

from non-trivial phases [42]. Specifically, trivial insulators always have a positive product

of parities, while those with an odd product are non-trivial (even refers to +1 and odd

to -1). This simplification led to the search for materials showing band inversion between

valence and conduction bands of opposite parity as a result of strong SOC. This is because

an inversion between bands of opposite parity will change the sign of the products of the

parities, and drive a material that was previously trivial to becoming a topological phase.

It is also possible for surface states to be protected as a result of crystal symmetries [43].

Liang Fu introduced the term “topological crystalline insulator” to describe insulators which

cannot be smoothly deformed into the trivial atomic insulator, when T and certain point

group symmetries are preserved. He considered insulators with the C4 or C6 rotational

symmetries and showed that the (001) surface surface can host gapless surface states that

disperse quadratically.
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2.5 Topological semimetals; Weyl, Dirac and Nodal-line

The idea that metals can have a topologically nontrivial electronic structure is not new;

as early as 2007 it was hypothesized that a topological gapless state could come about as a

result of a phase transition between the spin Hall and insulating phases in 3D [44], it wasn’t

until the discovery of Dirac and Weyl semimetals that topological semimetals emerged at

the forefront of quantum materials research.

2.5.1 Weyl semimetals

The defining characteristic of Weyl semimetals is again the existence of band touch-

ing points, where two bands are degenerate at particular points in momentum space. We

might expect that band touching points are rare or unstable unless they are protected by a

symmetry, however, that is not always the case. Consider a material with non-degenerate

bands, such as a noncentrosymmetric or magnetic material, and suppose two bands touch at

some point ~k0 at energy E0. The Hamiltonian near that point can be expanded as a Taylor

series [45]

H(~k) = E0σ̂0 ± h̄vF (~k − ~k0) · σ̂ (2.22)

Such a point cannot be removed. Changing E0 or ~k0 can introduce a mass term which will

only change the location of the node, and changing vF will only change the slope of the

dispersion.

If we set E0 = 0, the equation takes a form very similar to that of a Weyl Hamiltonian,

which represents massless chiral particles. Hermann Weyl envisioned neutrinos as the parti-

cles that would be described by this equation, and almost certainly could not have expected

that particles described by his H would first be observed in solid state systems. These band

touching points are named Weyl points or nodes because of this similarity of their band

dispersion to the Weyl equation.

The energies of the H described by Equation 2.22 with E0 = 0 and ~k0 =0 are given by

E±(~k) = ±h̄vF
√
k2
x + k2

y + k2
z (2.23)
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Figure 2.5: (a) Fermi arcs connect two Weyl nodes of opposite chirality. (b) Fermi arcs

observed through ARPES measurements in the monophosphide family of Weyl semimetals.

Taken from [48].

Recall that because Weyl semimetals break either T or I, they have a nonzero Berry cur-

vature. The Berry curvature of the ± band associated with a Weyl node is given by [46]

~Ω(~k) =
χ

2

~k

k3
(2.24)

Using the analogy between the Berry curvature and electrodynamics, Weyl nodes are often

said to act as monopoles, or sources and sinks of Berry curvature, with charge χ
2
.

If we consider a system with N Weyl nodes at momentum ~ki each with chirality χi, the

net Berry curvature of they system is given by [46]

~Ω(~k) =
1

2

N∑
i=1

χi
~k − ~ki
k3

(2.25)

The monopole charge can be found by taking the divergence of the Berry curvature,∫
BZ

d3k∇~k · ~Ω(~k) = 2π
N∑
i=1

χi

∫
BZ

d3kδ(~k − ~ki) = 2π
N∑
i=1

χi (2.26)

According to the “no-go” theorem [47], this sum must be equal to zero, meaning that Weyl

nodes can only exist in pairs of opposite chirality. This has a spectacular experimental

consequence, the existence of Fermi arcs.
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Figure 2.6: Type-II Weyl nodes. Electron and hole pockets touch at Weyl nodes. Taken

from [45].

A non-zero Berry curvature means that Weyl semimetals are characterized by a non-zero

Chern number, and according to the bulk-boundary correspondence must have protected

surface states. These surface states appear on surfaces parallel to a line connecting the Weyl

nodes, and are known as Fermi arcs due to their arc-like appearance. Figure 2.5 shows

observed Fermi arcs in the monophosphide family of Weyl semimetals.

The reason that Fermi arcs were so clearly observed in these materials is that their Weyl

nodes are close to the FL, and additionally, there are few or zero trivial bands near the FL,

highlighting the need for clean band structures for the signatures of nontrivial topology to

be observed.

Weyl semimetals can be classified as Type-I or Type-II. To discuss this distinction we

need to revisit Equation 2.22. If ~k0 is a Kramer’s point, then Equation 2.22 applies as

written, gives rise to Type-I semimetals. TaAs and the rest of the semimetals in this family

are Type-I. If ~k0 on the other hand is away from a Kramer’s point, then the coefficient of σ̂0

is not a constant, but also has a linear term and H becomes

H = h̄ṽF (~k − ~k0) · σ̂0 ± h̄vF (~k − ~k0) · σ̂ (2.27)

after setting E0=0. If ṽF > vF , then the Weyl nodes are found at points where the electron
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and hole pockets touch [45], as shown in Figure 2.22.

2.5.2 Dirac semimetals

Dirac semimetals are closely related to Weyl, however one important distinction between

the two is that the first respect T and I, and the band touching points, that typically arise

from band inversions are protected from gapping out by additional rotational symmetries.

Each Dirac node can be thought of as a pair of degenerate Weyl nodes of opposite chiralities

χ. Another way that a 3D Dirac semimetal can be realized is by tuning some parameter of

H so as to induce a transition between a topological and a trivial insulator.

In addition to spectroscopic properties, Dirac and Weyl semimetals also exhibit trans-

port properties that provide evidence of their topological character. When a magnetic field

is applied in a 3D (semi)metal, the electrons form Landau bands, meaning that they are

quantized in the direction that is perpendicular to the field, but disperse in the other mo-

mentum directions. In Dirac and Weyl semimetals, when the FL is exactly at the charge

neutrality point, the system is in the quantum limit where only the zeroth LL is occupied.

The quantum limit is met when the magnetic field is strong enough to push all the LLs ab

With the magnetic field applied along the z axis, the Landau levels for Weyl nodes are given

by [49]

εnkz = vF sgn(n)

√
2h̄|n|e

∣∣∣ ~B∣∣∣+ (h̄kz)2 for n 6= 0 (2.28)

and

ε0kz = −χh̄vFkz for n = 0 (2.29)

The zeroth LL is chiral, and disperses linearly with kz. If an electric field is applied, only a

component that is parallel to the magnetic field can cause electrons to propagate, with an

equation of motion

h̄
dkz
dt

= −eEz (2.30)

This forces right-handed particles and left-handed anti-particles to be produced, as shown

25



Figure 2.7: Origin of the chiral anomaly. Adapted from [45].

schematically in Figure 2.7 (or vice versa).

In Dirac and Weyl semimetals this phenomenon leads to a negative longitudinal magne-

toresistance, while in magnetic Weyl semimetals, which are systems where the T is broken

by the systems intrinsic magnetism, it can lead to an anomalous Hall effect.

2.5.3 Nodal-line and Kramers-Weyl semimetals

Nodal-line semimetals are yet another category of topological semimetals that is char-

acterized by conduction and valence bands crossing at closed loops in momentum space.

The bulk Fermi surface of these materials is 1D and the density of states near the nodal

touchings is proportional to |E − EF |2. Additionally, they can be identified by surface states

with unique shape, known as “drumhead” surface states.

Although the presence of symmetries has so far been important in guaranteeing the

presence of band crossings, chiral crystals present a different case. These materials lack I

or mirror symmetries, and are characterized by band crossings at Kramers points, which

are guaranteed by chirality, lattice translation and time-reversal symmetry requirements. In

all non-magnetic chiral crystals with SOC, the bands will be split everywhere except at the
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Figure 2.8: Example band structure of a Kramers-Weyl semimetal in the absence (a) and

presence of SOC (b). Adapted from [50].

Kramers points, where Kramers theorem requires that the bands remain degenerate. These

degeneracies are characterized by a Chern number and carry a chiral charge just as Weyl

fermions, and were thus termed Kramers-Weyl fermions [50]. The effect of SOC on the band

structure and the degenerate band crossings are illustrated in 2.8.

2.6 Brief overview of common magnetic interactions and struc-

tures and metamagnetic transitions

In most solids, magnetism arises due to atoms with incomplete d or f orbitals. In this

section I will briefly go over some of the ways that magnetic moments can interact with each

other to give rise to long range magnetic order. I will also discuss the origin of metamagnetic

transitions, which were observed in some of the materials that will be discussed in later

chapters.

Two magnetic moments µ1 and µ2 can interact with each other via the magnetic dipolar

interaction with energy given by

E =
µ0

4πr3
[ ~µ1 · ~µ2 −

3

r2
( ~µ1 · ~r)(( ~µ2 · ~r))] (2.31)

This interaction is, however, too weak to account for the observed ordering in magnetic ma-

terials, which can be accounted for by the so-called exchange interactions. These interactions
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are essentially a result of the exclusion principle for electrons, and the effective Hamiltonian

for a large system of atoms is given by

H = −
∑
ij

Jij ~Si · ~Sj (2.32)

This is known as the Heisenberg model, and Jij is the exchange constant between ith and

jth spins. For a system of 2 electrons at ~r1 and ~r2, J is equal to

J =

∫
ψ∗1(~r1)ψ∗2(~r2)Ĥψ∗1(~r2)ψ∗2(~r1)d~r1d~r2 (2.33)

The calculation of this integral for a many body system is of course not trivial, but often

the observed magnetic structures can be understood by considering J to be a constant for

nearest neighbor interactions and 0 otherwise.

The sign of J in 2.32 determines the magnetic ordering. A positive J favors ferromagnetic

(FM) ordering, while a negative favors AFM ordering. The simplest AFM case is the collinear

one, which can be broken down to two interpenetrating sublattices, where the moments of

each sublattice are parallel to each other, but opposite to those of the other sublattice. In

more complex cases they can have a noncollinear arrangement, meaning that there is no

single spin quantization axis for the entire crystal.

Detailed magnetic structures can only be resolved using neutron scattering. However,

the magnetic susceptibility can offer some insight into the overall magnetic ordering in a

crystal. The magnetic susceptibility of a system in its paramagnetic state is given by the

Curie-Weiss law

χ ∝ 1

T −Θ
(2.34)

If one plots the inverse of the susceptibility, 1/χ, as a function of T, the intercept can

provide a way to interpret the data. Specifically, if Θ = 0, the material is a paramagnet, if

it is positive it orders ferromagnetically, and if it is negative it orders antiferromagnetically.

The rest of this section will focus on the effects of strong magnetic fields in AFM systems

with collinear magnetic structure. When a magnetic field is applied perpendicular to the

sublattice magnetization, it causes the moments to tilt in the direction of the field, so that
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Figure 2.9: (a) An example two-sublattice collinear AFM state. (b) Spin-flop state. (c)

Above a critical magnetic field it becomes energetically favorable for the system to switch

into the spin-flop phase. Adapted from [51].

some net magnetization is produced along that direction. When a magnetic field is applied

parallel to the sublattice magnetization, a critical field exists, above which moments suddenly

change their orientation. Below this critical field which is known as the spin-flop field, the

AFM state, shown in 2.9 (a), has the lowest energy. However, above the critical field the

configuration that minimizes the energy of the system is shown in 2.9 (b). We can see why

that is by writing down the energy of this two sublattice system, taking into account the

Zeeman energies, exchange coupling and anisotropy, for the general case where one sublattice

forms an angle θ with the magnetic field, and the other an angle φ [51]

E = −MBcosθ −MBcosφ+ AM2cos(θ + φ)− 1/2∆(cos2θ + cos2φ) (2.35)

In the AFM case shown in 2.9 (a), E = −AM2 − ∆, and in the spin-flop phase, where

φ = θ,

E = −2MBcosθ + AM2cos2θ −∆cos2θ (2.36)

Using the condition ∂E/∂θ = 0, one can calculate the angle that minimizes the energy,

which will be a function of the magnetic field. This is graphed in Figure 2.9 (c), which shows
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that at low fields the AFM state is energetically favorable, but the system undergoes a phase

transition into the spin flop phase above the spin flop field. If the magnetic anisotropy is

very strong it is also possible for the system to move into an FM state in a single step; this

is known as the spin-flip transition.

2.7 Elements of magnetotransport in semimetals and topological

semimetals

The application of a magnetic field can cause significant changes to the electrical trans-

port in a semimetal. The transverse magnetoresistance (MR), obtained when electric and

magnetic fields are perpendicular to each other, is given by

MR =
ρ(B)− ρ(0)

ρ(0)
(2.37)

In a metal, this quantity is expected to have a quadratic field dependence and saturate

quickly, however, semimetals often exhibit extremely high MR at low temperatures and

high magnetic fields, which can reach a few thousand percent and even higher values have

been observed in topological semimetals. The high MR can be attributed to electron-hole

compensation, and high carrier mobilities. The carrier concentrations and mobilities can be

easily extracted from the Hall resistivity ρxy when the transport is dominated by a single

band at the FL; in this case ρxy is linear, and carrier density n and mobility µ can be

calculated from equations

n =
B

eρyx
(2.38)

from which we can define the Hall coefficient RH = 1/ne, and

µ = RH · σxx (2.39)

where σxx is the longitidunal conductivity, approximately equal to 1/ρxx.

However, most semimetals have more than one band contributing to the transport prop-

erties. The carrier concentrations and mobilities are then estimated using the two-band
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model, which assumes one eletron and one hole band contributing to the transport. Within

this model, these quantities are then obtained by simultaneously fitting ρxx and ρxy to

ρxx = Ex/Jx =
neµe + nhµh + (neµh + nhµe)µeµhB

2

e(neµe + nhµh)2 + e(nh − ne)2µ2
eµ

2
hB

2
(2.40)

and

ρyx = Ey/Jx =
B(nhµ

2
h − neµ2

e) + (nh − ne)µ2
eµ

2
hB

3

e(neµe + nhµh)2 + e(nh − ne)2µ2
eµ

2
hB

2
(2.41)

where ne, nh, µe and µh are fitting parameters, representing the carrier densities and mobil-

ities of electrons and holes respectively.

When the carrier concentrations are equal to each other, combining Equations 2.37 and

4.1 leads to

MR = µeµhB
2 (2.42)

In the case of perfect electron-hole compensation, MR is expected to increase quadratically

without saturation, and is directly proportional to the product of the mobilities. This model

has several shortcomings [52], however, it is still widely used as it can account for the high

MR observed in compensated semimetals with high mobilities.

Another phenomenon that is frequently observed in the TMR of semimetals are the

Shubnikov-de Haas (SdH) oscillations. Briefly, these oscillations arise from the quantization

of the occupied bands into LLs. The spacing of these levels is proportional to the magnetic

field. Increasing the magnetic field leads to a modulation of the density of states (DOS)

at the FL, which can be detected as oscillations in physical properties that are dependent

on the DOS. The energies of the LLs for nonrelativistic electrons in 3D materials with the

magnetic field applied in the z-direction is given by [52]

εn,k =
h̄eB

m∗
(n− 1

2
) +

h̄2k2
z

2m∗
(n = 1, 2, 3, ...) (2.43)

while that of relativistic fermions is given by 2.28.

The SdH oscillations in a 3D system can be described by the Lifshitz - Kosevich formula

∆ρ ∝ B1/2RTRDRScos

[
2π

(
F

B
− γ + δ

)]
(2.44)
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RT represents the thermal damping factor, which is a finite temperature correction to the

Fermi-Dirac distribution, and is given by equation

RT =
αTµ

Bsinh(αTµ/B)
(2.45)

RD is the so-called Dingle damping factor, which represents the relaxation time due to

impurity scattering,

RD = exp(−αTDµ/B) (2.46)

and RS is the spin damping factor, which accounts for the interference between two oscilla-

tions from spin-split LLs.

RS = cos
(πgµ

2

)
(2.47)

The constants µ and α are represent the ratio between the effective mass m∗ and the free

electron mass me, and the quantity (2π2 kBme)/(h̄e) = 14.69 T/K, respectively. TD is the so-

called Dingle temperature, a useful quantity that is related to the quantum lifetime through

equation

TD = h̄/(2πkBτq) (2.48)

The frequency of the oscillations F, which can be determined by applying a Fast Fourier

Transform (FFT), is related to the extremal cross section of the Fermi surface that is per-

pendicular to the magnetic field.

Of particular importance for the study of topological semimetals is the phase factor γ,

which is equal to

γ =
1

2
− φB

2π
(2.49)

where φB is the Berry phase. The cyclotron motion of particles with linear energy dispersions

causes them to pick up a Berry phase of π, which can be determined by fitting the oscillations

to Equation 2.44 [53]. However, non-ideal linear dispersions and gap openings at band

crossing points can lead to deviations from a precise value of π. δ is a dimensionality factor

which takes a value of 0 when the Fermi surface is 2D, and ±1/8 when the Fermi surface is

3D. The positive sign corresponds to a minimal (maximal) cross sectional area of the Fermi

surface and the negative sign to a maximal (minimal) for electrons (holes) [54].
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Quantum oscillations can also appear in the magnetization of a material, and this is

known as the de Haas-van Alphen (dHvA). These oscillations can be probed using magneti-

zation measurements and are described by

∆M ∝ −B1/2RTRDRSsin

[
2π

(
F

B
− γ + δ

)]
(2.50)

They can also be deteted by torque magnetometry, which takes advantage of the fact

that a magnetic moment in a field B will experience a torque given by ~τ = ~M × ~B. These

oscillations are described by a similar expression as the SdH oscillations but with the sign

depending on details of the Fermi pocket topology, given by

∆τ ∝ ±B3/2RTRDRSsin

[
2π

(
F

B
− γ + δ

)]
(2.51)

2.8 Superconductivity

Superconductivity was unexpectedly discovered in 1911 when Kamerlingh Onnes, who

was trying to liquefy Helium, observed that the resistivity of a solid Hg sample abruptly

dropped to zero at 4.2 K [55]. Currently, 33 elements and hundreds of other compounds are

known to become superconducting under ambient pressure below a critical temperature Tc,

where an interaction between conduction electrons causes them to form Cooper pairs. There

are two spectacular phenomena that are associated with superconductivity; vanishing direct

current (DC) electrical resistivity and a complete magnetic flux expulsion, independent of

the superconductor’s prior state (i.e. whether or not it was cooled below Tc under an applied

field) also known as the Meissner effect. The observation of this phenomenon motivated a

simple model of superconductivity summarized by a set of classical electrodynamic equations

known as the London equations after the brothers Heinz and Fritz London who developed

them [56]. These are the simplest equations that were introduced to describe superconducting

phenomena on a macroscopic scale.

In a perfect conductor, Ohm’s law is replaced by the first London equation

~E =
∂

∂t
(
m

nse2
~Js) =

∂

∂t
(Λ ~Js) (2.52)
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where ~Js is the superconducting current density, m the electron mass and ns the number

density of superconducting carriers. This equation describes charges accelerating under the

application of electric fields with no dissipation. The second London equation describes the

relationship between magnetic field and superconducting current density:

∇× ~Js = −
~B

Λ
(2.53)

If Ampere’s law is applied to this equation then it can be re-written as

∇2 ~B =
µ0nse

2

m
~B =

1

λ2
~B (2.54)

The solution to this equation is an exponential function, indicating that applied magnetic

fields decay within a superconductor with a characteristic length λ known as the penetration

depth.

Another successful phenomenological theory was provided by Vitaly Ginzburg and Lev

Landau 15 years after the London theory was developed [57], and was based on Landau’s

previous theory of second-order phase transitions. In their work, they proposed that the free

energy of a superconductor, F, can be written near Tc in terms of a complex order parameter

ψ(~r), which is zero above Tc and nonzero in the superconducting state. The square of ψ was

later interpreted as the density of the superconducting carriers.

Another important quantity in the description of superconductivity is the coherence

length ξ. It was first introduced by Pippard to describe the length over which two electrons

interacted with each other and is given by

ξ0 = a
h̄vf
kBTc

(2.55)

where vF is the Fermi velocity and a is a proportionality constant.

Ginzburg and Landau introduced the dimensionless parameter κ given by κ = λ/ξ. Both

the penetration and the coherence length are temperature dependent quantities that diverge

as (Tc - T)−1/2, so the ratio is essentially independent of temperature. The superconductors

that had been discovered up to that point had λ ≈ 500 Å and ξ ≈ 3,000 Å so κ << 1.
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These belong to the class that would later be called Type-I superconductors. They are

characterized by one critical field Hc, above which superconductivity is abruptly destroyed.

When the penetration depth λ is much greater than the coherence length ξ, the magnetic

field can penetrate the superconductor enough so that a mixture of superconducting and

normal domains can form. Their formation is determined by the sign of the surface energy

between the two domains, which is also associated with the value of the parameter κ. When

the surface energy is positive and κ < 1/
√

2 the formation of domains is not favorable; these

are the Type I superconductors that exist in either the Meissner or the normal states. When

the surface energy is negative and κ > 1/
√

2 the formation of domains in the superconducting

state is favorable. These Type-II superconductors are characterized by two critical fields Hc1

and Hc2. Below Hc1, the superconductor expels the field completely, but between Hc1 and Hc2

magnetic flux is allowed to penetrate the sample in the form of vortices that are surrounded

by the superconducting condensate. Above Hc2, the superconductor enters the normal state.

On a microscopic level, superconductivity can be explained by the Bardeen-Cooper-

Schrieffer (BCS) theory, a remarkable theory that explained nearly all of the observed phe-

nomena in conventional superconductors starting from interactions between electrons and

atoms in a solid. The attractive interaction that leads to the formation of a Cooper pair is

thought to be mediated by electron-phonon coupling, and this was based on the observation

of the isotope effect, which refers to the observation that for many superconductors their

critical temperature Tc and the atomic mass M vary according to TcM
α = constant, with

α ≈ 1/2. The fact that the Debye frequency varies as ωD ∝ M−1/2 hinted at lattice vibra-

tions being involved in the mechanism that gives rise to superconductivity. The Cooper pair

wavefunction has the following form [58]:

ψ0(~r1 − ~r2) =

[∑
k>kF

gkcos
[
~k · (~r1 − ~r2)

]]
(↑↓ − ↓↑) (2.56)

Some of the assumptions of this theory are that the two electrons have to have equal and

opposite momenta, and the coefficients gk spherical symmetry. To obey the Pauli exclu-

sion principle, a spin singlet configuration is necessary. Such a superconductor is termed

conventional and is characterized by an isotropic, nodeless gap.
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In a system that has no I symmetry, an asymmetric crystal field potential of the form

~E = −∇Φ (2.57)

can give rise to an antisymmetric spin-orbit interaction described by equation [59]

( ~E × ~p) · ~S (2.58)

also known as Rashba spin-orbit interaction. The pairing state in this case can no longer

be described as spin-singlet or spin-triplet and, similarly, the spatial wavefunction cannot

be taken to be symmetric or antisymmetric. It is this possibility of an admixture between

spin-singlet and spin-triplet states and thus unconventional superconductivity that has made

noncentrosymmetric superconductors an attractive new field of research in unconventional

superconductivity.

Superconductivity and topology can coexist in materials known as topological supercon-

ductors. Topological superconductors are a class of exotic materials characterized by bulk

superconductivity and with a nontrivial topology of their band structure expected to lead

to the emergence of gapless surface states that host Majorana fermions [34]. The Majorana

fermion is a type of exotic quasiparticle which has its origins in relativistic quantum me-

chanics, and its unique property is that it is its own antiparticle. While these hypothetical

fermions have so far eluded detection as free particles, in condensed matter systems, where

electrons and holes play the roles of particles and antiparticles respectively, the excitations in

the middle of the superconducting gap are Majorana fermions. The protected surface states

of topological superconductors are also expected to be of importance to topological quantum

computing. Following theoretical predictions regarding the emergence of Majorana fermions

due to interactions at the interface between conventional superconductors and topologically

protected surface states [60], experimentalists have mostly focused their efforts in inducing

superconductivity in systems that are already well known to be topological. Examples in-

clude CuxBi2Se3 [61] and SrxBi2Se3 [62], where Cu/Sr atoms are intercalated between Se

layers.
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CHAPTER 3

Experimental methods

3.1 Single crystal growth using the flux method

The importance of single crystals to solid state physics research cannot be emphasized

enough. It would be fair to say that almost none of the experimental discoveries that have

allowed the field to progress would have been possible, had it not been for the discoveries of

methods to synthesize high quality single crystalline materials. Having a single ordered phase

whose orientation can be determined is essential for the elucidation of the Fermi surface of

a material through SdH or dHvA oscillations. Additionally, many properties, such as the

magnetization or the resistivity, are anisotropic and can only be studied in a material that is

a single ordered phase. Spectroscopic surface-sensitive techniques like ARPES or STM also

rely heavily on the availability of high quality single crystals.

Single crystals for all of the materials studied in this dissertation were grown using the

high temperature solution growth method, also known as flux growth. This method is based

on traditional crystallization methods used in chemistry, where the solute has high solubility

in a solvent at high temperatures but very limited solubility at low temperatures, and can

precipitate out of solution. The flux here refers to the solvent; it can be further classified as

self-flux when one of the constituents of the target compound is used as the solvent. This is

usually preferable to the non-self flux method, as it avoids the introduction of impurities into

the single crystals. The choice of flux is governed by several criteria; it should have a low

melting point, low vapor pressure, not react with the crucible used and, most importantly,

the rest of the elements must be soluble in it.

In solid state and inorganic chemistry, flux growth is one of the most commonly used
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Figure 3.1: (a) A glovebox filled with Ar gas where most of the materials are kept. (b)

The apparatus for evacuating and sealing quartz tubes. Tubes are connected to a pumping

line, evacuated, and sealed off using a blow torch. (c) Sealed quartz tubes, with the starting

materials held inside the Al2O3 crucibles. (d) Box furnaces that can reach 1100oC.

techniques to grow single crystals. It should be noted, however, that many other techniques

exist; these include the Bridgman, floating zone, and the Czochralski methods. The downside

of these methods is that they can only be used to synthesize materials that melt congruently

or near-congruently. The flux method on the other hand is much more flexible and does not

require that the materials melt congruently. Some of the other benefits conferred by the flux

method are the small amounts of materials required, the relatively simple equipment and the

fast growth time scales, which are typically 1-2 weeks long. This is particularly important as

optimization of the single crystal growth usually requires several attempts where the initial

composition of the solution or the temperature profile are adjusted in order to maximize the

size and quality of the single crystals.

The most commonly used crucibles to hold the materials are composed of Al2O3, which

does not get attacked by most of the elements used as solutions (Bi, Ga, Ge In, Sn etc.) [63].
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Figure 3.2: Pictures of single crystals grown using the flux method, against a 1mm scale.

(a) CaCdGe, (b) CuMnAs, (c) NbGe2.

To protect the solution from reacting with O2 or N2 in the air, the crucible is placed into

an amorphous silica tube, evacuated using a pumping station and finally sealed off using an

O2 - CH4 blow torch (Figure 3.1 (b)). A small amount of quartz wool is placed below and

above the crucible, as shown in Figure 3.1 (c). The quartz wool at the bottom ensures that

the different expansion rates of the crucible and the quartz tube won’t cause the latter to

rupture, while the piece at the top plays the role of a filter when the flux is being removed.

Furnaces with programmable temperature controllers are used to heat the solution in the

desired manner. A typical temperature profile consists first of rapid heating (100 oC/h - 200

oC/h) to temperatures around or over 1000 oC. The mixture is then allowed to homogenize

for a few hours, followed by slow cooling (2 oC/hour - 5 oC/hour). It is during this slow

cooling step that crystallization occurs, and as a result, usually the slower the cooling rate

the larger the size of the single crystals. A centrifuge is used while the solution is still liquid

to extract the crystals. The choice of decanting temperature is also crucial; it should be high

enough that the flux is still liquid, but low enough for the crystals to have had ample time

to grow. Any remaining flux on the crystals can be mechanically or chemically removed.

Figure 3.1 summarizes most of the aforementioned steps in pictures and Fig. 3.2 show the

pictures of the materials which will be discussed in my thesis, against a 1mm scale.
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3.2 Crystal structure and composition determination

3.2.1 Powder X-ray diffraction

To perform phase identification and determine the purity and the lattice parameters of

the materials synthesized, X-ray powder diffraction measurements were performed at room

temperature using a PANalytical Empyrean CuKα diffractometer. Phase identification was

performed using the software HighScore Plus and Rietveld Refinement was performed using

the FullProf software.

3.2.2 Energy dispersive X-ray spectroscopy

Energy Dispersive X-ray spectroscopy (EDS) was used to identify the composition of

CuxMnyAs single crystals. Measurements were performed using an energy dispersive X-

ray spectroscopic analyzer (EDAX; EDAX Inc.) mounted on a scanning electron microscope

(JEOL JSM 6700 F). In EDS, an electron beam incident on the material removes an electron

from an inner shell, and when another, higher energy electron fills the hole left in the inner

shell, it emits an X-ray. These X-rays are characteristic of the elements present in the sample,

and their energy and intensity are used to determine the composition of the sample.

3.3 Electrical and thermodynamic properties

3.3.1 Resistivity, magnetoresistance and Hall resistivity

The temperature dependent resistivity, the magnetoresistance and Hall resistivity were

measured in a Quantum Design (QD) Physical Properties Measurement System (PPMS).

The majority of the measurements were performed between 300 K and 2 K, and a Dilu-

tion Refrigerator (DR) was used when studying the superconducting properties of NbGe2.

When The four-probe method was used for measurements of the longitudinal resistivity,

and the 6-probe method was used for measurements of the Hall resistivity. Single crys-
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tals were typically cut and polished so as to approach a rectangular geometry. Pt wires

where attached using Epotek EE129 or EJ2312 silver epoxy. To eliminate unwanted contri-

butions from mixed transport channels of the magnetotransport data, data were collected

while sweeping the magnetic field from -9 T to 9 T. The data were then symmetrized to

obtain ρxx(B) using ρxx(B) = (ρxx(B) + ρxx(−B))/2 and antisymmetrized to get ρyx(B)

using ρyx(B) = (ρyx(B) − ρyx(−B))/2. The sign of ρyx is chosen so that hole carriers lead

to positive ρyx. The magnetoresistance is defined as MR = (ρxx(B)− ρxx(0))/ρxx(B). Some

magnetoresistance measurements for CuMnAs were also performed at the National High

Magnetic Field Laboratory (NHMFL) in Tallahassee, FL at magnetic fields reaching 18 T.

3.3.2 Magnetization

Magnetic susceptibility and isothermal magnetization were measured in a QD Magnetic

Properties Measurement System (MPMS). The crystals were attached to a quartz sample

holder using a small amount of GE varnish, a low temperature insulating varnish.

3.3.3 Specific heat

Specific heat measurements at constant pressure were performed in a QD PPMS between

400 K and 2 K for most materials. The DR option was employed to measure the supercon-

ductivity in NbGe2. Sample preparation for specific heat measurements involved ensuring

that the sample could fit on a 2 mm x 2 mm platform, and that it had a flat surface that

would enhance good thermal contact with the sample platform. Apiezon N grease was used

to attach the sample to the platform at temperatures below 300 K, and H grease at temper-

atures above 300 K. The relaxation technique is used to measure the specific heat; during a

measurement, heat is applied to the sample at constant power for a certain amount of time,

followed by a cooling period of the same length. The temperature of the platform T obeys
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the following equation

Ctotal
dT

dt
= −Kw(T − Tb) + P (t) (3.1)

Ctotal is the total heat capacity of the sample and sample platform; Kw is the thermal

conductance of the supporting wires; Tb is the temperature of the thermal bath (puck frame);

and P(t) is the power applied by the heater. The solution of this equation allows for a

calculation of Ctotal.

3.3.4 Single crystal neutron diffraction

Neutron diffraction measurements were performed at the HB-3A four-circle diffractome-

ter at the High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory (ORNL) to

determine both crystal structure and magnetic properties of CuMnAs single crystals. Neu-

trons are spin 1/2 particles with a non-zero magnetic moment. It can interact with nuclei

through the strong nuclear force, giving information about the crystal structure, but they

can also couple to the net magnetic moments of atoms. This magnetic scattering is what en-

ables us to deduce the magnetic structure of a material. The neutron wavelength was 1.546Å

from a bent Si-220 monochromator [64]. The magnetic symmetry analysis was carried out

on the Bilbao Crystallographic Server [65] and the data were refined with the FULLPROF

Suite [66].
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CHAPTER 4

Magnetotransport properties of the single crystalline

nodal-line semimetal candidates CaTX (T= Ag, Cd;

X= As, Ge)

This chapter is adapted from [1].

4.1 Introduction

Topological semimetals are characterized by protected crossings between conduction and

valence bands. These materials have recently attracted significant interest because of deep

connections to high-energy physics, novel topological surface states, and unusual transport

phenomena. When we embarked on our study of CaCdGe and CaAgAs, nodal-line semimet-

als were the least explored of the proposed topological phases. In nodal-line semimetals,

conduction and valence bands cross to form a 1D closed loop in momentum space. They

differ from the Weyl semimetal in three aspects : (1) the bulk Fermi surface is 1D in nodal-

line and 0D in Dirac/Weyl semimetals ; (2) the density of states near the nodal touchings

is proportional to |E − EF|2 in nodal-line and |E − EF| in Weyl semimetals ; (3) on the

surface, the nodal-lines are “stitched” together by a “drumhead” surface state, while Weyl

nodes are connected by Fermi arc surface states. These unique properties of nodal-line

semimetals make new physics accessible. For example, the weak dispersion of the drumhead

surface states leads to a large density of states near the Fermi level. Possible interaction-

induced instabilities on the surface of nodal-line semimetals have been widely discussed in

theory [67–69].
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Despite intense theoretical interest [70–77], there haven’t been many experimental stud-

ies on nodal-line semimetals. One of the major reasons for that was the absence of ideal

nodal-line semimetals. Ideal here refers to a semimetal with a band structure that contains

only nodal lines near the Fermi energy, and no other topologically trivial Fermi pockets.

Such a “hydrogen atom” nodal-line semimetal is crucial for separating the spectroscopic and

transport signals of the nontrivial nodal lines from those of trivial states. For example, even

before the discovery of TaAs, Fe, an elemental ferromagnetic metal, was known to have hun-

dreds of Weyl nodes in its band structure [78]. However, Fe is not an ideal platform to study

Weyl physics because its complicated Fermi surface is dominated by irrelevant (non-Weyl)

trivial pockets. In fact, because Weyl nodes are symmetry allowed when time-reversal or

inversion symmetry are broken, they are likely to exist in the band structure of most ferro-

magnetic or non-centrosymmetric compounds. It is therefore important to identify materials

where the topological band crossings (Dirac nodes, Weyl nodes, or nodal-lines) are the dom-

inant features at the Fermi level. Examples of such Weyl or Dirac semimetals are Cd3As2,

Na3Bi, and TaAs, and so, unsurprisingly, these compounds have been studied extensively.

By contrast, in nodal-line semimetals, experimental work has been focused on PbTaSe2 and

ZrSiX (X=S, Se, Te) [79, 80]. However, both compounds have a quite complex band struc-

ture where multiple trivial pockets coexist with the nodal lines at the Fermi level. CaAgAs

and CaAgP were recently predicted to be “hydrogen atom” nodal-line semimetals as only

two nontrivial bulk bands touch along a line and no other trivial bands exist at the Fermi

level [81]. They crystallize in the P -62m space group, and their crystal structure consists

of a 3D network of edge and corner sharing AgAs4 tetrahedra as shown in Figure 4.3(a). A

study on polycrystalline CaAgAs/P that was published while we were studying this material

revealed that it was a low carrier density metal and that CaAgAs was a more promising

candidate than CaAgP for the purpose of studying nodal-line physics [82].

Single crystals are superior to polycrystalline samples for electrical transport and surface

sensitive measurements, and this motivated us to study the magnetotransport properties of

CaAgAs and its “sister” compound CaCdGe. In this chapter, I will show that our work
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suggests that CaAgAs has a topological surface state and a single donut-like hole Fermi

pocket, experimentally proving it is an ideal material realization of a topological nodal-line

semimetal. Furthermore, we show that CaCdGe not only hosts the nontrivial nodal-line

feature but also an extra trivial electron pocket at the Fermi level. Lastly, the comparative

study of the magnetotransport in these two compounds elucidates the origin of the extremely

larger magnetoresistance and the highly debated linear magnetoresistance observed in topo-

logical semimetals.

4.1.1 Single crystal growth of CaAgAs and CaCdGe

CaAgAs single crystals were grown using AgAs as self-flux. This step is commonly taken

when the desired material includes As. As is an extremely hazardous element that sublimates

at 614 oC. Its volatility can be minimized by allowing it to react with another element at

temperatures below its sublimation point. As chunks were ground to form a fine powder

using a mortar and pestle, and then mixed thoroughly with Ag powder at a 1:1 molar ratio.

These procedures took place in the glovebox shown in Figure 3.1 (b), which is filled with

Ar gas. This mixture was then pressed into a pellet, placed inside a quartz tube and slowly

heated to 600 oC, where it was allowed to dwell for 1-2 days. This type of synthesis is an

example of the solid state reaction, commonly used for the preparation of polycrystalline

materials. The mixture never melts, but the high temperatures and close contact between

the surfaces of particle grains facilitates the formation of bonds between them. AgAs was

then mixed with Ca granules using a molar ratio of Ca:AgAs=1:4, placed in Al2O3 crucibles

and then sealed inside quartz tubes under 1/3 atm of Ar. The quartz tube was heated to

1100 oC, kept at that temperature for 3 hours, and cooled to 750 oC at a rate of 3 oC per

hour. The single crystals were subsequently separated from the flux by decanting using a

centrifuge.

CaCdGe single crystals were grown using an excess of Cd as the flux. The binary phase

diagrams of Ca-Cd and Ge-Cd were investigated to ensure that Ca and Ge would be soluble

in Cd. As shown in Figure 4.1, a narrow window of solubility in Cd exists for both Ca and Ge.
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Figure 4.1: Binary phase diagram for Ca-Cd (a) and Ge-Cd (b). Taken from [83,84].

Figure 4.2: The powder x-ray diffraction patterns of CaCdGe and CaAgAs. The ticks

below each pattern indicate the Bragg peak positions determined by the respective crystal

structure. Some very small impurity peaks are detected in both patterns; in CaAgAs this

corresponds to AgAs, and in CaCdGe it is due to Cd.
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The materials were combined at a ratio of Ca:Ge:Cd=1:1:47 and sealed inside quartz tubes

in the same manner as CaAgAs. Cd is a volatile, toxic element with high vapor pressure, so

synthesis attempts must be carefully planned out. The solution was initially heated to 800

oC for 3 hours, and cooled to 400 oC at a rate of 3 oC/hour. However, only small needle-like

crystals were obtained, which indicated that higher temperatures where necessary to grow

larger single crystals. After several trials, an optimal temperature profile was determined;

heating the solution to 1000 oC and increasing the amount of Cd by 25%, yielded large, thick

single crystals. One such single crystal is shown in Figure 3.2 (a). This reaction took place

in a furnace that had been placed inside a fume hood to ensure that no Cd vapor would

enter the laboratory in the event of an explosion.

The x-ray diffraction patterns of CaAgAs and CaCdGe are shown in Figure 4.2. The

refined lattice parameters were a = b = 7.3056(1)Å and c = 4.4785(1)Å for CaCdGe, and a

= b = 7.2041(1)Å, c = 4.2699(1)Å for CaAgAs.

4.2 Transport properties of CaAgAs and CaCdGe

The valence analysis (Ca2+, Ag1+, As3− for CaAgAs and Ca2+, Cd2+, Ge4− for CaCdGe)

suggests a semimetal/ semiconductor ground state for both compounds, which was confirmed

by band structure calculations. As shown in Figure 4.3, the conduction and valence bands

cross in the absence of SOC. The energy dispersion around the Fermi level is nearly linear

and the band crossing forms a 1D loop (a nodal line) that encloses the Γ point. Theoretical

calculations show that near the Γ point, the lowest conduction and valence bands consist of

the Ag(Cd) 4d and As(Ge) 4p orbitals, respectively. A band inversion takes place near the

Γ point as the top of the valence (As 4p) band moves above the bottom of the conduction

(Ag 4d) band. Furthermore, because the z = 0 plane of the crystal is a mirror plane, the

electron states on the kz = 0 plane must be eigenstates of the mirror operator Mz.

The Ag 4d conduction band and the As 4p valence band have opposite mirror eigenvalues.

This fact prevents them from hybridizing, leading to a nodal line on the kz = 0 plane enclosing
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Figure 4.3: (a) Crystal structure of CaAgAs and CaCdGe. The TX4 octahedra are shown

in blue and the Ca atoms are shown in green. (b) and (c) Mirror symmetry protected

nodal-lines in CaAgAs and CaCdGe. (b) Schematic of a band structure diagram for the

nodal-line feature in CaAgAs and CaCdGe. The conduction and valence bands consist of

the Ag(Cd) 4d and As(Ge) 4p orbitals, respectively. The band crossings near the Γ point

are protected because the two bands have opposite mirror eigenvalues. (c) and (d) First-

principles calculated band structures of CaAgAs near the Γ point without SOC (c) and with

SOC. (e) Wilson loop calculation of the SOC band structure on the kz = 0 and kz = π/2

planes.
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Figure 4.4: (a) Temperature dependence of the electrical resistivity ρxx for CaCdGe and

CaAgAs at B = 0 T with I//c. (b) MR of CaCdGe and CaAgAs single crystals at T = 2 K

with I//c and B ⊥ ac.

the Γ point. The inclusion of SOC leads to the opening of a nontrivial gap of about 20meV,

as shown in Figure 4.3(d). This can be clearly seen in the Wilson loop calculation of the

SOC band structure on the kz = 0 and kz = π/2 planes shown in Figure 4.3(e). As long as

the Fermi level is not located in this narrow gap, both CaAgAs and CaCdGe are expected

to exhibit semimetallic behavior.

CaCdGe and CaAgAs both demonstrate metallic behavior, as can be seen in Figure

4.4(a). The RRR is 3 with a residual resistivity ρ0 of 25 µΩ·cm for CaAgAs and 12 with

a ρ0 of 9 µΩ·cm for CaCdGe. Figure 4.4(b) shows the transverse magnetoresistance (MR)

of four CaCdGe samples, and one CaAgAs sample. CaCdGe exhibits large, quadratic-like

MR with no sign of saturation up to 9 T. S1 in particular, has an MR around 3200% at 2

K under 9 T. This behavior is reminiscent of the extremely large MR that was observed in

materials such as the Weyl semimetals TaAs and NbP, the type II-Weyl semimetal WTe2,

the Dirac semimetal Cd3As2 and the weak topological insulator NbAs2 [16, 23, 85–90]. In

sharp contrast to the giant quadratic MR of CaCdGe, the MR of CaAgAs only reaches about

18% and most notably has a nonquadratic character, which agrees with what was observed

in polycrystalline CaAgAs [82].

49



Figure 4.5: CaAgAs single crystal with I//c and B ⊥ ac: (a) Hall resistivity ρyx. (b) Field

dependent transverse MR. (c) Temperature dependent carrier density and mobility.

Figure 4.5(b) shows the MR of CaAgAs for some representative temperatures. While

quadratic at small magnetic fields, it develops a linear behavior at high fields. Linear MR

has also been observed in the topological semimetals Na3Bi [91], WTe2 [90], and Cd3As2

[16,89,92] that have linear energy-momentum dispersions, as well as materials with parabolic

dispersions such as Ag2−δSe [93] or the GaAs quantum well [94], and recently in the candidate

topological superconductor Au2Pb [95]. Despite being a subject of study for decades, its

origin is still under debate. Since it has been observed in a few topological semimetals, it

was believed to be likely associated with the non-trivial band characters of these materials.

However, the counter-experiment on the n-type GaAs well, which has a quadratic electron-

like band structure, showed that this simple, defect-free system was also characterized by

an extremely high (105% at 30T) linear MR, which was eventually attributed to density

fluctuations [94]. Even though CaAgAs contains only nodal-lines at its Fermi level, since the

MR is just around 18% at 2 K at 9 T, this suggests that the linear behavior is probably due

to charge fluctuations as well, which is reasonable considering the possible As deficiency in

this material.
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Figure 4.6: CaCdGe single crystal S3 with I//c and B ⊥ ac: (a) transverse magnetoresis-

tivity ρxx. (b) Hall resistivity ρyx. The symbols correspond to experimental data, while the

lines are the curves obtained from the two band model fitting. (c) Temperature dependent

carrier densities. (d) Temperature dependent mobilities.
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Figure 4.5(a) shows the positive Hall resistivity ρyx of CaAgAs. It is linear with applied

magnetic field up to 9 T and shows almost no temperature dependence, indicating single-

band transport and that hole carriers overwhelmingly dominate the electrical transport.

This is indeed consistent with the theoretical prediction that only one Fermi pocket exists

at the FL [81]. Therefore, using single-band theory with n = B/eρyx and µ = RH/σxx, we

obtained the temperature dependent carrier density n and mobility µ which are shown in

Figure 4.5(c). The carrier density n is temperature independent and is of the order of 1.7 ×

1026 m−3, while µ shows a strong temperature dependence ranging from 0.3 m2 V−1 s−1 at

2 K, to 0.025 m2 V−1 s−1 at 300K.

The transport properties of CaCdGe are shown in Fig. 4.6(a)(b). We can see that

CaAgAs and CaCdGe exhibit quite different behavior under magnetic field. While CaAgAs

features a linear Hall resistivity and small MR, CaCdGe shows non-linear Hall resistivity

and large MR. The non-linear Hall resistivity suggests that transport in this compound is

governed by both electron and hole carriers and two-band model should be used. The carrier

densities and mobilities of the carriers in CaCdGe were thus obtained using the semiclassical

two band model [87,96].

ρxx = Ex/Jx =
neµe + nhµh + (neµh + nhµe)µeµhB

2

e(neµe + nhµh)2 + e(nh − ne)2µ2
eµ

2
hB

2
(4.1)

and

ρyx = Ey/Jx =
B(nhµ

2
h − neµ2

e) + (nh − ne)µ2
eµ

2
hB

3

e(neµe + nhµh)2 + e(nh − ne)2µ2
eµ

2
hB

2
(4.2)

where ne, nh, µe and µh are fitting parameters, representing the carrier densities and mobil-

ities of electrons and holes respectively.

Simultaneously fitting our data to equations 4.1 and 4.2, allowed us to determine the

temperature dependences of ne, nh, µe and µh. The fitting curves are shown as lines in Figures

4.6(a) and 4.6(b) and agree well with the experimental data. Figures 4.6(c) and 4.6(d) show

the temperature dependent ne, nh, µe and µh calculated from the fits. Both electron and

hole carrier densities are approximately equal to 5 × 1025 m−3 and show essentially no

temperature dependence. This nearly perfect electron-hole compensation is most likely the
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origin of the large MR we observed. Both µe and µh (Figure 4.6(d)) increase with decreasing

temperatures, consistent with the idea of weaker scattering at lower temperatures. At 2K,

µe is equal to 0.7 m2 V−1 S−1, and µh is equal to 0.3 m2 V−1 S−1. The mobilities are smaller

than those observed in other compensated semimetals [97], leading us to believe that they

are not responsible for the large, nonsaturating MR, which we ultimately attributed to the

near perfect electron-hole compensation.

4.3 Shubnikov-de Haas oscillations in CaCdGe

In CaCdGe, Shubnikov-de Haas (SdH) oscillations were observed above 6 T in the resis-

tivity, as can be seen in Fig. 4.7(a). These oscillations are a result of the singularity in the

density of states that occurs every time a Landau level crosses the Fermi level as we discussed

in Chap. 2. We analyzed the SdH data by first subtracting a polynomial background and

then plotting δρxx = ρxx-ρbkg as a function of 1/B.

Figure 4.7(a) shows δρxx for S1 as a function of 1/B at a few representative temperatures

with I//c and B⊥ac. The oscillations are periodic in 1/B and their frequency F is related

to the extremal cross sectional area S of the Fermi surface perpendicular to the magnetic

field through the Onsager relation [96]

F =
h̄S

2πe
(4.3)

The fast Fourier transform (FFT) spectrum of the oscillations reveals only one frequency

around 204 T, which is labeled as FSdHa and shown in the inset of Fig. 4.7(b). The amplitude

of the oscillations, taking finite temperature and impurity scattering effects into account, is

described by the Lifshitz-Kosevich formula, given by equation

δρxx
4ρ0

∝ RTRD (4.4)

where RT and RD are given by equations 2.45 and 2.45 respectively. By fitting the tem-

perature dependence of the oscillations at fixed field, we extracted an effective mass of 0.23

me, as shown in Fig. 4.7(b). We calculated a Dingle temperature of 8.9 K. By fitting the 3
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Figure 4.7: (a) The oscillations in δρxx are periodic in 1/B and their amplitude decays as the

temperature is lowered. Inset: Measurement configuration. (b) Temperature dependence of

the normalized amplitude of the oscillations denoted as A/A(2K). Inset: FFT spectrum of

the oscillations for a few representative temperatures. The magnetic field was perpendicular

to the ac plane. (c) 1/B dependence of the quantity ln(δρxx/4ρ0RT ) with a fit to extract the

Dingle temperature. (d) The LK fit of the 3 K data. Black dots indicate data points and

the green dashed line corresponds to the fit.
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K data with the LK formula Eq. 2.44, we obtained a trivial Berry phase of 0.21π. This is

consistent with our conclusion that the observed oscillations are associated with the trivial

electron Fermi pocket.

The appearance of oscillations in CaCdGe can be understood by considering that at 2

K and 9 T, h̄ωC = h̄eB/m∗= 4.52 meV, much larger than kBT = 0.17 meV, meaning that

thermal smearing effects that can obscure quantum oscillations have been overcome at these

experimental conditions. In contrast, for CaAgAs, ωτ is equal to |ρyx|/ρxx and at 2 K and

9 T it is equal to 1.2. This would place it in the intermediate field region, and explain

why quantum oscillations were not observed under our experimental conditions. Using the

Onsager relation, we estimated the Fermi wave vector

kF =
√

2eF/h̄ (4.5)

and the Fermi velocity

vF = h̄kF/m
∗ (4.6)

to be 0.079 Å−1 and 4.0 × 105 m s−1 respectively.

Metallic systems are characterized by two different relaxation times. The transport life-

time τtr is given by equation

τtr =
µm∗

e
(4.7)

and is a measure of backscattering processes that relax the current. The quantum lifetime

τq on the other hand, reflects all processes that can give rise to Landau level broadening

[16, 98]. The ratio τtr/τq typically exceeds 1, as the quantum lifetime takes into account

more scattering mechanisms. However, extremely high values have been associated with

novel mechanisms that protect against backscattering and give rise to an extremely high

mobility [16]. Using equation 2.48 and TD = 8.9 K, we calculated a quantum lifetime of 1.4

× 10−13 s at 2 K. We estimated the transport lifetime using the effective mass we calculated

and the average of the electron and hole mobilities, which resulted in the value 6.5×10−13 s.

Thus, the ratio τtr/τq was estimated to be 4.6, which is typical of metallic systems, indicating

that no clear topological protection of the scattering is at play here.
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Figure 4.8: (a) and (b) Angular dependence of the experimental FSdHa (yellow lines; see

text) and the calculated FDFTβ (black lines; see text) with the measurement geometries in

the insets. (c) and (d) The electronic band structure of CaCdGe with SOC: (c) using the

LDA/GGA potential and (d) using the MBJ potential. (e) The Fermi pockets associated

with (d).
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4.4 Fermiology revealed by quantum oscillations and DFT calcu-

lations

The angular dependence of the SdH oscillations we observed in CaCdGe allowed us to

determine portions of its Fermi surface experimentally. By adjusting the theoretical calcu-

lations with the experimentally mapped-out Fermi surfaces, we can reveal the Fermiology of

CaCdGe. Figures. 4.8(a) and (b) show the angular dependence of FSdHa with two different

rotation geometries depicted in the insets, respectively. This allows us to study the 3D char-

acteristics of the Fermi pocket associated with FSdHa . As plotted in Fig. 4.8(b), when the

field is rotated in the basal hexagonal ac plane, FSdHa shows a sixfold rotational symmetry

with a ratio of 1.028 between maxima and minima. This is consistent with its hexagonal

crystal structure and indicates small in-plane anisotropy of the associated Fermi pockets.

The theoretically predicted band structures are shown in Figs. 4.8(c) and 4.8(d). De-

tails of this calculation can be found in Appendix B. Regardless of the choice of potential,

an extra trivial band (red), besides the nontrivial band carrying the nodal-line feature as

proposed in CaAgAs (black), also crosses the Fermi level in CaCdGe. The calculated band

structures show that both conduction and valence bands cross the Fermi level, supporting

our experimental observation of electron-hole compensation.

Despite the similarities between the two calculated band structures, their calculated

angular dependence of the quantum oscillation frequencies are quite different. We were

unable to relate FSdHa to any of the Fermi pockets arising from the LDA/GGA band structure

since all pockets are very large. On the other hand, the size of FSdHa matches well with the

oval shaped β Fermi pocket in Fig. 4.8(e), which originates from the trivial band shown

in red when the MBJ potential was used. The comparison between the FSdHa (yellow line)

and the calculated oscillation frequency associated with the β pocket, FDFTβ (black lines) is

shown in Figs. 4.8(a) and 4.8(b). Although the magnitudes of the two frequencies are in

good agreement with each other, FDFTβ shows much stronger anisotropy than FSdHa in the

ac plane but weaker anisotropy in the ab plane and does not exhibit the six-fold rotational
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symmetry observed in the experimental data. No frequencies associated with the toroidal α

Fermi pocket were observed under our experimental conditions, which might be possible if

higher magnetic field is applied, as was the case for CaAgAs [99].

4.5 Topological surface states revealed by ARPES in CaAgAs

ARPES measurements performed by our collaborators on our crystals provided clear

evidence that CaAgAs is indeed a “hydrogen atom” topological nodal-line semimetal. Its

topological surface state is protected by a mirror reflection symmetry; the mirror reflection

plane is the plane where the Ca atoms are located, between two AgAs4 octahedra. The nodal

ring around the Γ point in the absence of SOC is expected to give rise to a topologically

protected surface when projected onto the (0001) surface [81]. The DFT calculations of the

band structure of CaAgAs with the inclusion of SOC are shown in Figure 4.9(g). When SOC

is taken into account, it causes a gap of 73 meV to open at the Γ point while the topological

surface state is still protected by T . ARPES measurements showed clear evidence of this

surface state. These results, along with a comparison to angle-resolved density of states

(AR-DOS) calculations, are summarized in Figs. 4.9(a)-(e). Figure 4.9(a) shows linear

bands on both sides of the Γ point along the Γ-A direction. These bands are absent from

the bulk band structure, but can be seen in the AR-DOS (Figure 4.9(d)), which contains

information from both bulk and surface bands, indicating that the linear bands are surface

bands. Linear bands, marked by red arrows, can also be observed along the other two

directions (Figures 4.9(b) and (c)), and correspond to the surface state obtained by DFT

calculations along those directions (Figures 4.9(e)-(f)), which is connected to the Dirac cone

topological surface state near the theoretical Fermi level. These linear bands undoubtedly

correspond to the topological surface state, providing evidence that CaAgAs really is the

“hydrogen atom” of topological nodal line semimetals.
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Figure 4.9: ARPES measurements and DFT calculations of the band dispersion along high

symmetry directions. The red arrows indicate the lower part of the topological surface

states. (a) - (c) ARPES momentum-energy maps along (a) Γ-A, (b) Γ - M, and (c) Γ-K.

(d)-(f) DFT-derived angle-resolved density of states along (d) Γ-A, (e) Γ - M, and (f) Γ-K.

The bright curves indicate topological surface states and the yellow dashed line shows the

approximate Fermi level position that agrees with the ARPES data. (g) The DFT calculated

band structure of CaAgAs with SOC. The inset shows the detail of the band dispersion along

Γ - M near the nodal point. The nodal line around the Γ point is gapped out under SOC,

resulting in a topological insulator with ∆ = 73 meV. Adapted from [2].
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4.6 Conclusion and outlook

CaAgAs was predicted to be a topological nodal-line semimetal with only the nodal-line

feature at the Fermi level. To engineer a similar band structure and elucidate the effect

of non-trivial band characteristics, we also synthesized single crystals of its “sister” com-

pound CaCdGe. CaCdGe has the same crystal structure but with different electron fillings.

Therefore, these two materials provide an ideal platform to perform comparative studies.

Our magnetoresistance, Hall measurements and DFT calculations reveal that CaAgAs is a

single-band material with one donut-like hole Fermi pocket, consistent with the proposal that

it is the first “hydrogen atom” nodal-line semimetal. Our quantum oscillations measurement

on CaCdGe are consistent with the DFT calculations, suggesting that that CaCdGe has one

donut-like hole Fermi pocket originating from the band with the nodal-line feature and one

trivial ovoid-like electron Fermi pocket. The additional trivial electron pocket in CaCdGe

has a large impact on the magnetotransport properties leading to an extremely large non-

saturating quadratic MR up to 3200%, while in CaAgAs it is small and linear. Our data

analysis suggests that the electron-hole compensation effect is responsible for the extremely

large MR observed in CaCdGe and that charge fluctuations can account for the linear MR in

CaAgAs, elucidating that neither effect is necessarily associated with non-trivial band topol-

ogy. Furthermore, our collaboration with the ARPES group directly imaged the topological

surface state and revealed a single donut-like hole Fermi pocket at the Fermi level, providing

smoking gun evidence of CaAgAs being the first material realization of the “hydrogen atom”

topological nodal-line semimetal. It is worth noting that a recent study of CaAgAs under

a magnetic field up to 45 T shows quantum oscillation and the data analysis indicates a

non-trivial Berry phase of π for the donut-like pocket [99].
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CHAPTER 5

Magnetic order induces symmetry breaking in the

single-crystalline orthorhombic CuMnAs semimetal

The majority of this chapter has been adapted from [3].

5.1 Introduction

As with many of the recently studied topological semimetals, CuMnAs was first synthe-

sized and characterized years before any of its topological properties were predicted [100].

What piqued our interest in this material was the theoretical prediction by Tang et al. that

3D antiferromagnetic (AFM) Dirac semimetals can, under certain conditions, break both

time reversal T and inversion P symmetries but preserve their product PT , allowing a

topological protection of the Dirac crossings even in the presence of SOC [101]. The authors

then proposed that the orthorhombic AFM semimetals CuMnAs and CuMnP could be ma-

terial realizations of such AFM Dirac semimetals with very few band crossing at the Fermi

level.

CuMnAs has two polymorphs and both of them are proposed to show non-trivial topol-

ogy; a tetragonal (TET) phase which crystalizes in the space group P4/nmm, and an or-

thorhombic (ORT) phase crystalizing in the Pnma space group. The TET phase consists

of alternating layers of edge-sharing CuAs4 and MnAs4 tetrahedra. It has been proposed

to have favorable applications in spintronics [102, 103] and to feature a topological metal-

insulator transition driven by the Néel vector [104]. The ORT phase consists of a 3D network

of edge-sharing CuAs4 and MnAs4 tetrahedra, where the Mn atoms form a 3D distorted hon-
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Figure 5.1: (a),(b) Crystal structure of ORT CuMnAs. (a) CuAs4 (orange) and MnAs4

(blue) tetrahedral building blocks. (b) The distorted Mn honeycomb lattice (Mn in blue).

(c) Powder x-ray diffraction patterns of ORT (pulverized single crystals from batch A) and

TET (from powder synthesis) phases. Ticks indicate the Bragg peak positions. Inset: A

picture of an ORT single crystal against a mm sized grid. The as-grown surface is the bc

plane.
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eycomb lattice, as shown in Figs. 5.1(a) and 5.1(b). This space group has many symmetries

that can be generated by a combination of 3 key symmetries; inversion P , the gliding mirror

reflection of the y-plane Ry, and the two-fold screw rotation about the z-axis S2z.

The predicted, most energetically favorable AFM structure of ORT CuMnAs is shown

in Figs. 5.2(a) and 5.2(b). The magnetic moments of the Mn atoms related by inversion

symmetry are in opposite directions; this means that although P and T are broken, PT

is preserved. In the absence of SOC, multiple band crossings are predicted along high-

symmetry lines, as shown in Fig. 5.2(d). When SOC is taken into account in the first-

principles calculations, the presence of the crossing points depends on the orientation of the

magnetic moments of the Mn atoms. The authors found that only when the moments were

aligned along the z-axis, the S2z symmetry was still preserved, leading to the protection of

the four-fold degenerate band crossing points along the X-U line, and the gapping of the rest

as shown in Figure 5.2(d).

Although the physical properties of the polycrystalline ORT CuMnAs have already been

studied [100], neither single crystals nor the magnetic structure determination of the ORT

phase have been made before. Both are crucial for symmetry analysis and further investi-

gation by ARPES and STM techniques to understand the topology of the material. In this

chapter I will discuss the characterization of CuxMnyAs single crystals, including the experi-

mental determination of their magnetic structure using neutron-diffraction experiments. As

expected from the theoretical prediction, we confirmed that the P and T symmetries were

broken, but their combination PT was preserved. However, we found that the experimen-

tally determined magnetic order breaks the S2z symmetry, and thus massless Dirac fermions

are no longer robust. First-principles calculations taking into account the observed mag-

netic structure showed that ORT CuMnAs can host an interesting topological phase with

spin-polarized surface states, which could be promising for spintronics applications.
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Figure 5.2: Taken from [101]. (a) The crystal structure of the orthorhombic CuMnAs(P),

with red arrows showing the orientations of the magnetic moments of the Mn atoms. (b)

The Brillouin zone of CuMnAs(P) and its projection on the (010) surface. (c) Illustration

of the screw rotation symmetry S2z. The red dashed line corresponds to the rotation axis,

and the yellow circle corresponds to the Mn atom that the orange arrrow is pointing at,

after the rotation about the z axis (C2z) and a half translation along the (101) direction

(τ=(1/2,0,1/2)). (d) The electronic structure of CuMnAs along high-symmetry lines in the

presence (blue) and absence (red) of SOC. The magnetic moments of the Mn atoms are

predicted to be along the z direction. The insets (yellow boxes) show the details of the band

crossings near the Fermi level, which has been set to zero.
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5.1.1 Single crystal growth of CuMnAs

CuxAsyMn has two polymorphs; a tetragonal (TET) phase and an orthorhombic (ORT)

phase. Using the solid state reaction technique, we determined that stoichiometric or slightly

less As leads to the ORT CuMnAs phase, while 6 % of extra As results in the TET phase

and a slight amount of MnAs. We did not further characterize or try to synthesize TET

single crystals, but focused on studying the ORT phase.

Single crystals in the ORT phase were grown using Bi as the flux [105]. Cu shots, Mn

granules, As and Bi chunks were mixed together and placed inside a 5-ml alumina crucible.

The alumina crucible was then placed inside an evacuated quartz tube with 1/3 atm of Ar

gas. The ampoule was subsequently heated to 1100 oC for 3 h, cooled to 850 oC in 2 h

and then cooled to 400 oC at a rate of 3 oC/h. To investigate the effect of annealing, some

batches were annealed at 400 oC for 24 h before the single crystals were separated from the

flux using a centrifuge. Several different nominal compositions were attempted, as shown

in Table 5.1 as we discovered a remarkable sensitivity of the magnetic properties on the

composition, which will be discussed in more detail in the relevant chapter. We anticipated

that the stoichiometry and site mixing of Cu and Mn might be difficult to control as several

off-stoichiometric compounds, such as ORT CuMn3As2 and Cu2Mn4As3 had already been

discovered [105]. A picture of a typical CuMnAs single crystal is shown in Figure 3.2 (b).

The crystals have a rectangular plate-like growth habit, with a typical thickness of 0.07mm.

The as-grown surface corresponds to the bc plane. Powder diffraction data for both the ORT

and TET phases are shown in Figure 5.1 (c), with the vertical lines corresponding to the

respective Bragg peak positions.

Collaborative single crystal x-ray diffraction was performed on CuMnAs single crystals.

It was used to determine the stoichiometry of batches A and B (see Table 5.1), which will

be referred to as PA and PB and studied in detail using resistivity, magnetization, specific

heat and neutron diffraction measurements. Five different structural models were used in the

refinement. Model I assumes vacancies on both Cu and Mn sites. Model II assumes Mn on Cu

sites. Model III assumes Cu on Mn sites. Model IV assumes Cu vacancy and Cu on Mn sites.
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Batch Cu: Mn: As: Bi

A 1 : 1 : 0.9 : 12

B 1 : 1 : 1 : 12

C 1 : 1 : 1.1 :12

D 0.9 : 1 : 1 : 12

E 1.1 : 1 : 1 : 12

Table 5.1: Synthesis details of CuxMnyAs single crystals

Model V assumes Mn vacancies and Mn on Cu sites. Using single-crystal x-ray diffraction

data, we found that Models I, II, and III resulted in the best refinements. Combined with

the SEM-EDX data, from which we determined a concentration of Cu0.98(3)Mn0.98(4)As1.02(4)

for both PA and PB, we concluded that both site vacancies and site disorders are present in

both batches. Tables 5.2 and 5.3 summarize the refined crystal structure, atomic positions,

and site occupancies of PA and PB. The major difference between the two is the exact

stoichiometry. PA has fully occupied Mn sites with 5.0(2)% of Cu site vacancies, leading

to a chemical formula of Cu0.95MnAs, while PB has vacancies in both Cu and Mn sites

and a chemical formula of Cu0.98Mn0.96As. For the rest of this chapter, Cu0.95MnAs will

be denoted as PA and Cu0.98Mn0.96As as PB. The differences in the physical properties

between PA and PB most likely arise from the different stoichiometries of the Mn and Cu

sites. It is worth noting that due to the similar atomic numbers of Cu and Mn, it is difficult

to extract reliable information on the Cu/Mn site disorder using only single-crystal x-ray-

diffraction data. Therefore, collaborative single-crystal neutron-diffraction data were also

used to investigate the extent of Cu/Mn site mixing. Taking into account the number of

vacancies revealed by single-crystal x-ray diffraction, the refinement of the neutron-diffraction

data suggests 6% of site disorder in PB and 5% of site disorder in PA.
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Table 5.2: Single crystal crystallographic data of PA and PB in the ORT Pnma space group

at 300 K.

CuMnAs PA PB

F.W. (g/mol) 190.22 190.05

a(Å) 6.5716(4) 6.5868(4)

b(Å) 3.8605(2) 3.8542(3)

c(Å) 7.3047(4) 7.3015(5)

V (Å3) 185.32(2) 185.36(6)

No. reflections; Rint 1624;0.0210 2189;0.0304

R1; wR2 0.0172; 0.0342 0.0227; 0.0459

Goodness of fit 1.154 1.047

Table 5.3: Atomic coordinates and equivalent isotropic displacement parameters of PA and

PB at 300 K. Ueq is defined as 1/3 of the trace of the orthogonalized Uij tensor (Å2) and

SOF stands for site occupancy factor.

Atom Site SOF x y z Ueq

PA: Cu0.95MnAs

Cu 4c 0.950(2) 0.37684(6) 1/4 0.05894(5) 0.0120(1)

Mn 4c 1 0.46024(7) 1/4 0.67737(6) 0.0121(2)

As 4c 1 0.25394(4) 1/4 0.37525(4) 0.0080(1)

PB: Cu0.98Mn0.96As

Cu 4c 0.977(3) 0.3770(1) 1/4 0.0590(1) 0.0120(2)

Mn 4c 0.964(4) 0.4589(1) 1/4 0.6773(1) 0.0122(2)

As 4c 1 0.2544(1) 1/4 0.3754(1) 0.0079(1)
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5.2 Electrical transport and thermodynamic properties

The resistivities of the ORT single crystals were typically around a few tenths of mΩ· cm

and showed metallic behavior. Resistivity measurements were performed on crystals from

all the batches shown in Table 5.1, and we observed two distinct behaviors; some of the

crystals showed two transitions, whereas others only one. Figures 5.3(a) and 5.3(b) show the

normalized resistivity, ρ(T)/ρ(400 K), of piece A (PA) from batch A and piece B (PB) from

batch B. The resistivities of crystals from batches C-E can be found in Appendix A. Figure

5.3(a) shows only one resistivity drop in PA, suggesting the existence of one phase transition.

The derivative of the resistivity, dρ/dT, shows a sharp peak at 360 K. On the other hand,

PB shows two slope changes in the resistivity, suggesting the occurrence of two successive

phase transitions. The dρ/dT plot indicates that one transition appears around 320 K and

the other occurs around 230 K. The quality of the single crystals is clearly very sensitive

to the nominal concentration of Cu/Mn/As. If we take the resistivity of the polycrystalline

CuMnAs as an indicator of the quality of the sample, we can see that only when the starting

As concentration is slightly less than the stoichiometric concentration (batch A), do the

resulting single crystals show only one resistivity slope change around 360 K. This is similar

to what was observed in polycrystalline CuMnAs, whose composition was verified by EDS

measurements to have a 1:1:1 ratio. Even for batch E where only one transition was observed,

it was found to occur around 300 K, which is 60 K lower than the one in the polycrystalline

sample, suggesting poorer sample quality or deviation from the stoichiometric composition.

The inset of Figure 5.3(a) shows the field-dependent Hall resistivity ρyx(H) of PA at

2 and 100 K. Its positive sign indicates that holes dominate the transport, and the linear

field dependence suggests that the single-band model can be used. Using equation 2.38, we

estimated the carrier density to be ≈ 6.5 × 1020 cm−3. This value is significantly greater than

that of the Dirac semimetals Cd3As2 [16], Na3Bi [91], and the Weyl semimetal TaAs [85], but

comparable to that of the Dirac nodal-line semimetal candidates ZrSiSe [80] and CaAgAs [1].

The temperature-dependent susceptibility [M/H(T)] and heat capacity [Cp(T)] of PB

are presented in Figs. 5.3(c) and 5.3(d). Two slope changes can also be observed in the
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Figure 5.3: PA: (a) Normalized resistivity ρ(T)/ρ(400 K) and its derivative dρ/dT vs T

.Inset: Hall resistivity ρyx vs T. PB [(b)–(d)] (b) Normalized resistivity ρ(T)/ρ(400 K) and

dρ/dT vs T.(c) Susceptibility M/H and d(M/H)/dT vs T.(d) Heat capacity Cp vs T.Inset:

Cp/T vs T2.
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M/H(T) data, which can be clearly seen in d(M/H)/dT. From 300 K to 400 K, the highest

temperature we were able to measure, the magnetic susceptibility is almost temperature

independent, showing no Curie-Weiss behavior. The specific heat shows only one heat-

capacity jump around 320 K without any anomaly at 230 K, suggesting that the phase

transition at 230 K is most likely a transition between two ordered phases. Since both phase

transitions are at high temperatures, we were able to fit the Cp/T data from 2 to 10 K using

equation

Cp = γT + αT 3 + βT 5, (5.1)

where the first term refers to the electronic heat capacity and the rest to the low-temperature

lattice heat capacity. We deduced a Sommerfeld coefficient γ = 1.88 mJ mol−1 K−2 which

indicates a small density of states at the Fermi level for the ORT CuMnAs.

5.3 The magnetic structures of PA and PB

Neutron-diffraction experiments were also performed to elucidate the nature of the ob-

served phase transitions. Figure 5.4(a) presents the rocking curve scan at (1,1,0) on PA. A

large peak is observed at 150 K, but is absent at 400 K, indicating the presence of AFM order

at 150 K. The onset of the increase in the (1,1,0) peak intensity agrees well with the peak

in dρ/dT , as shown in Figure 5.4(b). This second order paramagnetic to antiferromagnetic

phase transition, that can be fit by the power law

I(T )/I0 = [M(T )/M0]2 = A+ (1− T/TN)2β (5.2)

where M0 is the saturation moment. Using TN = 360 K, the critical exponent is β =

0.35(3), which suggests the breakdown of the mean-field theory (β = 0.5) and thus a strong

spin fluctuation near TN . The magnetic and nuclear structure of Cu0.95MnAs was refined

using 76 effective magnetic reflections. Pn′ma is the only magnetic symmetry that can fit the

data. The R factor was 0.0508 and the goodness of fit 6.08. The refined propagation vector

k=0 indicates that the unit cell of magnetic structure coincides with that of the crystal

structure, leading to commensurate antiferromagnetism (CAFM). Figures 5.4(c) and 5.4(d)
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show the refined CAFM structure. Mn spins sit on a distorted honeycomb sublattice and

order parallel to each other along the b axis [Figure 5.4(c)] with the nearest-neighboring

spins antiferromagnetically aligned to each other [Figure 5.4(d)]. This magnetic structure

is the same as the one proposed theoretically by Tang et al., but with the spin orientation

along the b, instead of the c axis. The refined magnetic moment at 150 K is 4.0(1) µB/Mn.

To elucidate the difference in the magnetic structures between PA and PB, neutron

diffraction measurements were also performed on PB. The (1,1,0) peak is not allowed by the

crystal structure symmetry in the ORT CuMnAs phase, and the small, nonzero intensity we

observed above 320 K is due to the half-wavelength (λ/2) contamination of the neutron beam

[64]. The wavelength of 1.546Å we used at HB3A is selected by the Si-220 monochromator,

which also picks the half-wavelength neutrons that make up 1.4% of the main beam flux at

HB3A. In Figure 5.5 (a), magnetic satellite peaks begin to appear near (1,1,0) as the sample is

cooled below 320 K, suggesting incommensurate antiferromagnetism (ICAFM) [106]. Figure

5.5 (c) shows a cut in the (hk0) plane at 227 K. We can clearly detect the three peaks

shown in Figure 5.5 (a). The concentration of points at (0.9,1,0) and (1.1,1,0) indicates the

presence of the incommensurate magnetic peaks, that can be indexed by the incommensurate

propagation vector k = (0.1,0,0). Upon further cooling of the sample below 230 K, we observe

that both the (0.9,1,0) and (1.1,1,0) peak intensities decrease while the (1,1,0) peak intensity

starts to increase, indicating a competition between the CAFM with the propagation vector

k = 0 and ICAFM. Below 190 K, both (0.9,1,0) and (1.1,1,0) peaks have almost completely

diminished while the (1,1,0) peak keeps increasing, suggesting the disappearance of ICAFM.

To better visualize the competition and coexistence between these two phases, Figure

5.5(d) shows the (0.9,1,0) and (1,1,0) peak intensities and dρ/dT as a function of temper-

ature. We can see that Cu0.98Mn0.96As undergoes a second-order paramagnetic (PM) to

ICAFM phase transition at 320 K as well as a second-order ICAFM to CAFM phase tran-

sition at 230 K. ICAFM competes and coexists with the CAFM phase between 230 and 190

K and disappears below 190 K. Based on an analysis of 102 effective magnetic peaks, the

refined CAFM structure is the same as the one in Cu0.95MnAs [Figures 5.4 (c) and 5.4 (d)]
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Figure 5.4: (a) The (1,1,0) intensity vs ω for PA. (b) A comparison between the (1,1,0) peak

intensity and the dρ/dT vs T. The red line corresponds to the power-law fit. (c) Magnetic

structure of PA in the CAFM state. Only the Mn sublattice is shown. (d) The view of the

magnetic structure from the b direction. Mn atoms are shown in blue. “+” denotes spins

pointing out of plane while “-” denotes spin pointing in plane.
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Figure 5.5: (a),(b) Intensity vs ω for PB. The black arrows indicate the trend of the peak

intensity with decreasing temperature. (c) A cut of the neutron scattering in the hk0 plane.

(d) A comparison between the (0.9,1,0) peak intensity and dρ/dT vs T . The light blue box

marks the temperature region where CAFM and ICAFM compete and coexist.
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with a refined magnetic moment at 6 K of 4.3(2) µB/Mn and an R factor of 0.0555. The

moment is smaller than 5 µB/Mn, the theoretical saturation moment for Mn2+.

5.4 Bulk band structure calculations with experimentally deter-

mined magnetic structure

Based on the magnetic structure and easy axis determined experimentally, in order to

explore the electronic and topological properties of ORT CuMnAs with the magnetic mo-

ments oriented along the b axis, we recalculated its bulk band structure and the (010) surface

states. Although no chemical disorder or vacancies are considered in the DFT calculation,

since the material still holds the translational symmetry and maintains the ORT structure,

the electronic structure and surface states shown in Figure 5.6 should capture the main fea-

tures. Due to the presence of the PT symmetry in the experimentally determined CAFM

phase, every bulk state is doubly degenerate. Furthermore, band inversion still occurs in this

system, thus the nontrivial topological properties can still appear. Because the CAFM order

breaks the nonsymmorphic gliding symmetry Ry and screw symmetry S2z, in contrast to

the case with spin orientation along the c axis [101], now the gapless coupled Weyl fermions

disappear and the Dirac nodal line becomes fully gapped everywhere by SOC in the bulk

Brillouin zone, as shown in Figure 5.6 (a). As shown in Figure 5.6 (b), the band gap induced

by SOC along the ΓX line is only 7 meV. Figure 5.6(c) shows the spin-polarized surface

states emerging from the gapped bulk states [Figures 5.6 (d) and 5.6 (e)] on the (010) side

surface. Due to the absence of rotational symmetries on the (010) surface, the Fermi-surface

contour at the Fermi level is asymmetric, and the spin-polarized surface states are gapped.

Because the bulk Dirac fermions in this case are massive and the time-reversal symmetry is

broken, the fluctuations could resemble the dynamical axion field, which gives rise to exotic

modulations of the electromagnetic field showing a similar signature to axion insulators [107].
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Figure 5.6: (a) Calculated band structures of the ORT CuMnAs with SOC and the magnetic

structure shown in Figure 5.4 (c). The inset shows the Brillouin zone and its projection to

the (010) surface. ∆ is the band gap of a massive topological fermion along ΓX line. (b)

The detail of the band structure marked by the yellow box in (a). (c) Fermi-surface contour

on the (010) surface at the calculated Fermi level. Corresponding electronic spectra along

(d) k̄x = π/a and (e) k̄z = 0. The Fermi level is set to zero.
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Figure 5.7: Temperature dependence of the susceptibility χ of Cu0.95MnAs with a magnetic

field of 1 T, applied parallel to the a, b and c axes. Inset: The derivative of the quantity χ

T with respect to temperature. The dashed lines indicate the transition temperatures.

5.5 Spin-flop transition in the orthorhombic antiferromagnetic topo-

logical semimetal Cu0.95MnAs

This section has been adapted from [4].

AFM materials had originally been dismissed as candidates for spintronics devices be-

cause they have no net magnetic moment. However, it was eventually realized that antiferro-

magnets actually have many characteristics that make them suitable for spintronics; they are

insensitive to magnetic field perturbations, do not generate stray fields and have faster spin

dynamics than ferromagnets since their resonant frequencies are higher [108,109]. Since our

study suggests that ORT CuMnAs can be a promising material for AFM spintronics, its mag-

netic properties deserve further investigation. In this section I will discuss the observation of

a spin-flop transition in Cu0.95MnAs, and its absence in Cu0.98Mn0.96As, through a thorough

study of their magnetic susceptibility and magnetoresistance, and present a magnetic phase

diagram for Cu0.95MnAs.
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Figure 5.7 shows the temperature-dependent magnetic susceptibility χ of Cu0.95MnAs

under a magnetic field of 1 T, applied parallel to the a, b and c axes. Cu0.95MnAs undergoes

a temperature induced second-order paramagnetic (PM) to AFM phase transition at 360 K

and the effect of the transition is most pronounced when H // b, as the susceptibility begins

to decrease dramatically below this temperature. With H // a and H // c, χ shows much

smaller change across 360 K, which can be seen more clearly in the d(χ T)/dT plot shown

in the inset of Figure 5.7. This suggest that the magnetic easy axis for Cu0.95MnAs is the

b axis, consistent with our neutron diffraction results. No Curie-Weiss behavior is observed

up to 400K.

As the sample is further cooled, a second anomaly is observed around 27 K. In contrast

to the high temperature transition, the susceptibility with H // a, starts decreasing sharply,

while increasing in the other two directions. For H // b the increase is dramatic; the sus-

ceptibility at 2 K is more than twice as large as that at 30 K. This transition can also be

clearly seen in the inset of Figure 5.7.

To investigate the nature of the low temperature transition, we measured the isothermal

magnetization and magnetoresistance of Cu0.95MnAs with H // b for temperatures between 2

K and 100 K, as shown in Figure 5.8. A metamagnetic phase transition, which broadly refers

to the abrupt increase of the magnetization with applied magnetic field, can be seen very

clearly as a sharp upturn in the isothermal magnetization up to 100 K, as shown in Figure 5.8

(a). The critical field HSF , defined here as the maximum of dM/dH, increases with increasing

temperature, as shown in Figure 5.8 (c). This behavior suggests a spin-flop transition, which

was first experimentally observed in CuCl2 · H2O single crystals [110], and has since also been

observed in many other systems with magnetocrystalline anisotropy [111–117]. In a spin-flop

transition with weak magnetocrystalline anisotropy, when a magnetic field is applied parallel

to the magnetic easy axis of a material and exceeds a critical value HSF , the antiferromagnetic

spins try to align perpendicular to the magnetic field, and this results in a net moment along

the easy axis [118]. Upon further increasing the field, the net moment grows until saturation.

The spin-flop transition takes place because the total energy of the system is a sum of the
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Figure 5.8: (a) The magnetization, M, of Cu0.95MnAs at several temperatures for H // b.

(b) The magnetoresistance, MR, of Cu0.95MnAs at several temperatures, for H // b and I

// b. Inset: The MR for for fields up to 35 T. (c)-(d) The derivatives of M and MR with

respect to H. The dashed lines go through the peaks of the derivatives, which is the criterion

we used to determine the transition temperatures.
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Zeeman energy of each magnetic sublattice and the magnetic anisotropy energy. At low

fields the AFM configuration is the ground state, but above HSF , it is the spin-flop state

with spins almost perpendicular to the field that minimizes the energy [51].

No hysteresis is observed in Figure 5.8 (a), as is the case for most AFM materials with

spin-flop transitions. The spin-flop transition had been considered to be first-order, despite

the fact that no hysteresis has been been observed experimentally. Hysteresis loops are

an experimental hallmark of first-order transitions, and its absence in spin-flop transitions

has been attributed to low magnetic anisotropy, but the nature of the transition has more

recently been challenged [119]. No saturation is observed up to 7T for Cu0.95MnAs, which

indicates that the system remains in the spin-flop state without saturation up to 7 T. This

is consistent with the fact that the maximum magnetic moment at 2 K and 7 T is just 0.04

µB / f.u., much smaller than the saturation moment of Mn2+.

The spin-flop transition can also be clearly seen in the isothermal magnetoresistance

data, shown in Figure 5.8 (b). Associated with the transition is a sharp drop in the mag-

netoresistance to about -1% at 9 T, suggesting the loss of spin scattering above HSF , which

is consistent with the spin-flop transition scenario. The inset of of Figure 5.8 (b) shows

the magnetoresistance measured up to 35 T at 2 K. The magnetoresistance decreases lin-
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early with field above 9 T, suggesting that the system remains in the spin-flop state up to

35 T without saturation. The critical fields in both measurements are in very good agree-

ment, as seen in Figures 5.8 (c) and 5.8 (d), which show the derivatives of the isothermal

magnetization and magnetoresistnace respectively. The small mismatches can ascribed to

misalignment between the magnetic field direction and the magnetic easy axis.

To further investigate the magnetic anisotropy, the isothermal magnetization of Cu0.95MnAs

with H // a and H // c was measured and is shown in Figures 5.9 (a) and (b), respectively.

With H // a, the isothermal magnetization shows a metamagnetic transition below 30 K,

while linearly increasing with field above 30 K. This is in sharp contrast to what we observe

when H // b, where the metamagnetic transition can be observed even at 100 K. When the

field is parallel to the c direction, the magnetization remains linear with field at both 2 K

and 40 K up to 7 T, showing no sign of a metamagnetic transition. This behavior suggests

that the b axis is the easy axis and c the hard axis.

Based on our observations, we propose that this spin-flop transition results in a canted

antiferromagnetic state when a small magnetic field is applied as shown schematically in

80



0 3 6 9
0.000

0.002

0 3 6 9
0

1

H (T)
 

20 K

2 K

 

 

M
(

 / 
f.u

.) 

Cu0.98Mn0.96As
H // b 

(a)
60 K

H (T)
 

 100 K
50 K

2 K

 M
R

(%
)

(b)
 

Cu0.98Mn0.96As
H // b 
I // b 

Figure 5.11: (a)-(b) The isothermal magnetization (a) and magnetoresistance (b) of

Cu0.98Mn0.96As for certain temperature values. The magnetic field was applied parallel to

the b axis.

Figure 5.10. A proposed magnetic phase diagram for Cu0.95MnAs, based on our results from

magnetic susceptibility, magnetization and magnetoresistance with the field parallel to the

easy axis is shown in Figure 5.10. The HSF at each temperature was determined by the field

at which the derivative had its maximum value. At high temperatures and below HSF , the

Mn spins are oriented along the b axis. Above HSF , the magnetic structure consists of the

Mn spins that have now flipped and form a small canting angle with the a axis that causes

the magnetization to have a small component along the b axis. In the previous section,

we suggested that in ORT CuMnAs, the magnetism is very sensitive to the Cu vacancies

and Cu/Mn site mixing. while Cu0.95MnAs is a commensurate antiferromagnet below 360

K, Cu0.98Mn0.96As enters an incommensurate antiferromagnetic state at 320 K and then a

commensurate antiferromagnetic state below 230 K.

To further examine the effect of Cu vacancies and Cu/Mn site mixing on the spin-flop

phase transition, we performed isothermal magnetization and magnetoresistance measure-

ments on Cu0.98Mn0.96As. The data are summarized in Figures 5.11 (a) and (b). No sign

of a spin-flop transition was observed. The field-dependent magnetization evolves from a

convex shape at 2 K to linear behavior at 60 K, with no sharp upturn. The MR is positive
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and quickly plateaus, reaching a maximum of 0.5%. We attribute the disappearance of the

spin-flop transition to a few % of Cu vacancies or mixing with Mn atoms. Similar to what

was discussed in the previous section, these findings confirm the sensitivity of the magnetic

properties on defects or disorder in CuMnAs.

5.6 Conclusion

I discussed the synthesis and magnetic structure of ORT Cu0.95MnAs and Cu0.98Mn0.96As.

While Cu0.95MnAs is a commensurate antiferromagnet below 360 K with a propagation vec-

tor of k = 0, Cu0.98Mn0.96As undergoes a second-order paramagnetic to incommensurate

AFM phase transition at 320 K with k = (0.1,0,0), followed by a second-order incommen-

surate to commensurate AFM phase transition at 230 K. Neutron diffraction measurements

revealed that when both compounds are in their commensurate AFM state, their distorted

Mn honeycomb sublattice has Mn spins aligned antiparallel to each of their nearest neigh-

bors with all spins parallel to the b-axis. We concluded that this magnetic structure breaks

the S2z symmetry, leading to the disappearance of Dirac fermions. Our first-principles cal-

culations also showed that this magnetic order can support spin-polarized surface states, a

much sought-after property for spintronics. Furthermore, we mapped out the H − T phase

diagram of Cu0.95MnAs. A spin-flop transition at high temperatures and low fields with

the field along the easy axis b is observed, leading to a canted AFM state with a small net

moment along the b axis. On the other hand, in Cu0.98Mn0.96As these transitions are absent,

indicating that the magnetic interactions in this system are very sensitive to Cu vacancies

and Cu/Mn site mixing.

82



CHAPTER 6

Fermiology and Type-I superconductivity in the chiral

superconductor NbGe2

This chapter is adapted from [5]

6.1 Introduction

A new addition to the class of topological semimetals are the Kramers-Weyl semimet-

als [50]. Topological insulators and semimetals are characterized by band crossings that are

protected by crystalline or time-reversal symmetries. In nonmagnetic chiral crystals which

only have pure rotational symmetries, spin-orbit coupling (SOC) splits the doubly degener-

ate bands everywhere except at the time-reversal invariant momenta (TRIMs), where the

bands must remain doubly degenerate according to Kramers’ theorem. These crossings are

characterized by a quantized chiral charge and were thus termed Kramers-Weyl fermions [50].

NbGe2, the subject of this chapter, was predicted to belong to this new class of Kramers-

Weyl semimetals. Additionally, studies dating back to the 1970s found that it becomes

superconducting (SC) at low temperatures, although the reported Tcs ranged from 2 K in

single crystals to 16 K in sputtered films [120,121]. In non-centrosymmetric superconductors

(NCSs), the lack of an inversion center and the presence of antisymmetric spin-orbit coupling

(ASOC) can lead to an admixture of spin-singlet and spin-triplet states [122]. Previously

discovered NCSs exhibit a wide range of behaviors, with some showing evidence of unconven-

tional SC [123] and others being fully gapped s-wave SCs [124]. The presence of nontrivial

band topology coupled with superconducting properties make NbGe2 a candidate for chiral
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Figure 6.1: (a) The binary phase diagram of Nb-Ge. Taken from [125]. (b) A picture of

the vertical tube furnace used for the synthesis of NbGe2. Arrows indicate Ar flow, and the

cylinder indicates the approximate location of the Ta tube.

topological SC.

In this chapter, I will present our results on the single crystal growth, thermodynamic,

magnetotransport and torque measurements, as well as first principles calculations.

6.1.1 Single crystal growth of NbGe2

NbGe2 was synthesized using the self-flux method, with Ge as the flux. This was a

particularly challenging growth because a small concentration of Nb becomes soluble in

Ge only in temperatures above 1000 oC. Because the quartz tube which is used to protect

the growth from air deforms at ∼ 1250 oC, a modified two-step process was used for the

growth of NbGe2 single crystals. A large alumina tube was placed inside a tube furnace

capable of reaching 1500 oC, and the furnace was placed on its side with the alumina tube

standing vertically on a metal support plate. Both ends of the tube were connected to an

Ar gas cylinder using rubber tubing so that Ar gas can flow through the tube to prevent
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Figure 6.2: The x-ray powder diffraction pattern of NbGe2, with indexed peaks. The peaks

with asterisks are due to impurities, most likely due to Ge flux. The crystal structure and a

picture of a single crystal against a mm background are shown as insets.

the oxidation of the growth ampoule. Enough firebrick was placed in the bottom half of

the tube, so that the Ta tube could be placed on it. The exact position was determined

after calibrating the furnace with a thermocouple. Nb powder was combined with Ge pieces

at a molar ratio of 6:94 and placed inside alumina crucibles which were in turn placed in

Ta tubes, which were evacuated and filled with some Ar gas before being sealed using an

arc-welder. The Ta tubes were subsequently placed in the vertical one-zone surface that was

flushed with Ar gas during the heat treatment, which consisted of quick heating to 1400 oC,

dwelling for 2 hours, and then slowly cooling to 900 oC. At that point the furnace was shut

down and allowed to cool to room temperature. The alumina crucible was finally retrieved

from the Ta tube and placed in a quartz tube, which was placed into a pre-heated furnace at

960 oC for 30 minutes and then a centrifuge was used to separate the liquid from the single

crystals. Small but thick three dimensional single crystals were obtained, as shown in Figure

3.2 (c).

NbGe2 has a CrSi2-type (C40) hexagonal noncentrosymmetric crystal structure with the
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space group P6222, as shown in the inset of Figure 6.2, where each Nb atom is covalently

bonded to 6 Ge atoms that lie on the vertices of a hexagon in the ab plane and four Ge atoms

out of plane. The powder diffraction shows that all peaks can be matched to the NbGe2,

except ones with the asterisks denoting impurity peaks.

6.1.2 Transport properties and Fermiology of NbGe2

Figure 6.3 presents the temperature-dependent resistivity of NbGe2 from 300 K to 2 K.

The sample shows metallic behavior with a resistivity of 50 µΩ·cm at room temperature and

has a residual resistivity ratio (RRR), defined here as ρ(300 K)/ρ(2.2 K), of 520. The high

RRR and the sharp superconducting transition, shown in the inset of Fig. 6.3 are indicative

of the high quality of the sample.

The Fermi surface of NbGe2 was studied by measuring the angular dependence of the

de Haas-van Alphen oscillations observed in torque. Figure 6.4(a) shows a contour plot of

the frequencies obtained using a Fast Fourier Transform (FFT) as a function of angle. The

measurement geometry is shown in the inset, and the data were collected at 5o intervals.

Three branches of dHvA frequencies (FdHvA) were observed, which we assigned to three

different Fermi pockets. The small difference in frequencies and similar angular dependence

of α and α′ suggest spin splitting of the electronic structure caused by ASOC. Since ASOC has

the form of a Zeeman term but with a fictitious magnetic field that is momentum dependent,

it lifts the two-fold spin degeneracy in noncentrosymmetric materials, resulting in a spin-split

Fermi surface. This behavior has also been observed in other noncentrosymmetric materials

such as VSi2 [126], but was too small to be discerned in the chiral Weyl semimetal CoSi [127].

DFT calculations were performed to examine the Fermiology and compare with the ex-

perimental dHvA data. The orbital-projected electronic band structure of NbGe2 obtained

from DFT calculations along high symmetry directions with SOC considered is shown in

Fig. 6.4(b). The different colors depict contributions from different orbitals while the size

of the dots shows the actual contribution. It can be readily seen that several valence and

conduction bands cross the Fermi energy, suggesting a metallic type behavior with the ma-
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Figure 6.3: The resistivity of a NbGe2 single crystal at 0 T. Inset: zoomed-in plot of the

superconducting transition.

jor contributions to the band structure coming from the hybridization of the Nb−4d and

Ge−4p orbitals around the Fermi energy. The band structure shows band splitting due to

the breaking of spatial inversion symmetry everywhere except at the TRIMs (Γ, M , A, and

L) of the BZ. Our calculation indicates that these gapless band crossings at the TRIMs

marked by the red arrows in Fig. 6.4(b) are the Kramers-Weyl points, which is consistent

with the recent publication [50]. The Weyl point at the high symmetry point M (≈ 0.05

eV) is close to the Fermi energy, and is expected to contribute relativistic electrons/holes

near the Fermi level. Additionally, the band structure at M (≈ 0.05 eV) and H (≈ −0.05

eV) features a saddle-point-like dispersion near the Fermi level which eventually results in

a Van Hove type singularity in the DOS at Fermi energy, which may be responsible for the

observed SC.

The Fermi surface of NbGe2 is shown in Fig. 6.4(c). Of the four Fermi pockets which

comprise the Fermi surface, three are hole type (left panels) and one is electron type (right

panel). With the magnetic field rotating away from the [011] axis and toward the a axis,

we computed the frequencies FDFT associated with the extremal cross sectional areas for all

Fermi pockets and plotted them in Fig. 6.4(a) as black dots. Excellent agreement between

FDFT and FdHvA is achieved in terms of both angular dependence and magnitude. We circled
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Figure 6.4: (a) The contour plot of the FFT frequencies as a function of angle. Three fre-

quency branches can be distinguished, labeled α, α′ and β. Strong spin splitting is observed

for α and α′. The black dots correspond to the DFT calculated frequencies. The inset shows

the measurement geometry. (b) The orbital-resolved electronic band structure of bulk NbGe2

with SOC. The blue and red dots indicate Nb-4d orbitals and Ge-4p orbitals, respectively.

The red arrows denote the positions of Weyl points. (c) The Fermi surfaces in the full BZ of

NbGe2. The first three panels show hole like pockets and the last panel an electron pocket.

The extremal cross sections with oscillation frequencies less than 500 T are labeled A, A′, B,

C and C′. From a comparison of dHvA and DFT, it is clear that the α, α′ and β branches

correspond to A, A′ and B, respectively.
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the location of the Fermi pockets that correspond to FDFT and labeled them as pockets A,

A′, B, C, and C′ as shown in Fig. 6.4 (c). The α, α′ and β branches correspond to sheets

A, A′ and B, respectively. A and A′ are centered around the M Weyl point and B is near

the trivial H point.

We noticed that the frequency branches associated with the Fermi pockets C and C′ are

missing from the experiment. This is, however, common. In NbAs2, for example, despite the

excellent agreement between DFT and experiment, a small frequency branch is completely

absent from the observed quantum oscillations [87]. If we increase the EF by 25 meV to

examine if a better agreement is possible, pockets C and C′ become much larger and disappear

from the frequency range shown in Fig. 2(a), but the sizes of the FA
DFT and FA′

DFT become

half of the experimental values. It is worth noting that in both cases α, α′ and β correspond

to pockets A, A′ and B.

6.2 Berry phase revealed by the dHvA oscillations

In order to experimentally investigate the topology of each Fermi pocket, we rotated the

sample in such a way so as to only observe the frequencies associated with that pocket.

Figure 6.5(a) shows the oscillations in torque as a function of 1/B after the subtraction of

a polynomial background. The field was applied at an angle of ≈ 120o with respect to the

[011] axis. At this angle, only one frequency Fβ = 257 T was observed, as shown in Fig. 6.5

(b).

As shown in Fig. 6.5(a), the amplitude of the oscillations decays rapidly with tempera-

ture, suggesting that this pocket is associated with a relatively sizable effective mass. Indeed,

using the expression for the thermal damping factor RT (2.45), a fit of the amplitude at a

fixed field of 8.8 T as function of temperature results in the value m∗=1.21(5) me, as shown

in Fig. 6.5(c). Figure 6.5(d) shows a fit of the oscillation pattern to the LK formula (2.51)

with the frequency of 257 T. The phase shift φi is equal to 0.49.

Next, we investigated the topological character of the spin-split A and A′ pockets. Figure
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6.6(a) shows the FFT spectrum of the oscillations obtained when the magnetic field was

applied at an angle of ≈ 60o with respect to the [011] axis at various temperatures. At this

angle, the effect of spin splitting can be seen very clearly without the contamination from

the β frequency. Figure 6.6(b) shows the temperature dependence of the FFT amplitudes of

these two oscillation peaks. An effective field 1/Beff = (1/B1 + 1/B2)/2 with B1 = 9 T and

B2 = 2.5 T, the limits of the FFT we performed, were used to fit RT . The effective masses

associated with frequencies α and α′ were 0.21(1)me and 0.24(1)me, respectively. These

effective masses are much smaller than 1.21me, but still larger than those in the topological

semimetal Cd3As2 [16, 92]. Figures 6.6 (c)-(e) show the fits to the LK formula in order

to determine the Berry phases and quantum mobilities associated with these pockets. We

examined three different cases; that they are characterized by different phase factors and

Dingle temperatures (c), that they have the same phase factors (d), and that they have the

same Dingle temperatures (e). All expressions seem to fit the data very well, and the phase

factors derived from all three fits are quite robust with very similar values. However, since

A and A′ are very similar (Fig. 2 (c), we believe that they should be characterized by the

same Dingle temperatures, therefore the values obtained in Fig. 6.6(e) were adopted.

Table I summarizes the obtained quantum lifetimes τq, quantum mobilities µq, φi and

Berry phase φB. Since it is unclear if the positive or negative sign should be used in Eq. 2.51,

both situations were considered and summarized in Table I. Since all three Fermi pockets are

hole pockets and the data we analyzed was collected near the minima of the extremal cross

sections, δ = −1/8 was used in the calculation of the Berry phases, which are summarized

in Table 6.1.

A trivial Berry phase was expected for the β branch since Fermi pocket B is near the

trivial H point. We therefore believe that the negative sign, which results in a trivial Berry

phase of 0.23π, should be used. On the other hand, regardless of the choice of sign, the

Berry phases calculated for the α and α′ pockets do not allow us to conclude whether they

are trivial or not. Interestingly, in a quantum oscillations study of CoSi, despite a long

Fermi arc surface state being observed in ARPES measurements [128], a trivial Berry phase
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F (T) m/me TD (K) τq (ps) µq (cm2/ v · s) sign φi φB

α 122 0.21 1.2 1.0 8500
+

-

0.11

0.61

1.47 π

0.47 π

α′ 146 0.24 1.2 1.0 7400
+

-

0.16

0.66

1.57 π

0.57 π

β 257 1.21 0.48 2.5 3700
+

-

0

0.49

1.24 π

0.23 π

Table 6.1: Effective masses, Dingle temperatures, quantum lifetimes and mobilities, and φi

Berry phases for pockets α, α′ and β summarized from Figures 6.6 and 6.5.

was observed for the electron pockets at the Kramers-Weyl point [127] because the linear

dispersion region was too far from the Fermi level.

6.3 Quasi linear magnetoresistance arising from open Fermi sur-

faces

The normal state field-dependent magnetoresistance (MR), which was measured with

H‖[011] and is shown in Figures 6.7(a)-(b), is quasi linear and quite high at low temperatures,

exceeding 1000% at 2.4 K and 9 T, but decays quickly with increasing temperature. At 100

K, the highest temperature measured, the MR becomes quadratic and only reaches 1% at

9 T. The field-dependent Hall resistivity is shown in Fig. 6.7(c) for a few temperatures.

The Hall resistivity is non-linear, agreeing with the previous discussion that both hole and

electron pockets are present at the Fermi level. Two-band model fitting cannot be used here

because of the linear MR. To get a rough estimate of the carrier concentration, a linear fit of

the Hall resistivity at 4 K gives a value of 1.27 × 1022 cm−3. Theoretical models for linear

MR have been established for low-carrier-density semimetals with linear dispersions in their

ultra-quantum limit [129], which is clearly not the case here since 9 T is too low for NbGe2

to enter the ultra-quantum limit region. The linear MR has also been proposed to be a
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Figure 6.7: (a) and (b) MR at several temperatures. (c) Hall resistivity at various tempera-

tures. (d) The calculated MR at 20 K and 100 K with offset. The calculation was done by

solving the Boltzmann transport equation within the relaxation time approximation.

result of the lifting of the topological protection from backscattering by magnetic field [16],

mobility fluctuations [92] or the formation of open orbits on their Fermi surface [130].

To understand the possible cause of the linear MR, a theoretical analysis was performed.

To obtain the conductivity tensor we solved the Boltzmann transport equation within the

relaxation time approximation [131] as implemented in the WannierTool code suit [132,133].

The main equation of interest is

σ
(n)
ij (B) =

e2

4π3

∫
dkτnvn(k)vn(k)

(
−∂f
∂ε

)
ε=εn(k)

, (6.1)

where n is the band index, e is electronic charge, f is Fermi-Dirac distribution, vn(k) is the

velocity obtained from the gradient of the band energy and vn(k) is the velocity averaged
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over the past time of the charge carrier written as

vn(k) =

∫ 0

−∞

dt

τn
e
t
τn vn(k(t)) . (6.2)

The evolution of kn(t) is caused by the orbital motion of charge carrier in the external

magnetic filed as written
dkn(t)

dt
= − e

h̄
vn(k(t))×B . (6.3)

The relaxation time for different bands τn is assumed to independent of momentum and

within the relaxation time approximation we have neglected the inter-band scattering events.

Once the conductivity tensor σ̂ was obtained we calculated the resistivity using the equation

ρ̂ = σ̂−1. As shown in Fig. 6.7(d), we can indeed see linear MR at low temperatures

and quadratic MR at high temperatures. This calculation did not take into account SOC

or a complicated anomalous velocity that could result from the Berry curvature, and only

considered Fermi surface effects. The agreement with our experimental results suggests that

the observed linear MR might simply arise from Fermi surface effects, and is most likely due

to the presence of open Fermi surfaces.

6.4 Type-I superconductivity with a full superconducting gap

The superconducting properties of NbGe2 were studied using specific heat, magnetization

and resistivity measurements. The inset of Fig. 6.8(a) shows the low temperature Cp/T

versus T 2, with the red line corresponding to a fit of the normal state data to equation

Cp = Cel + Cph = γnT + βT 3, which results in a Sommerfeld coefficient γn = 6.34 mJ /

mol K−2 and β = 0.05 mJ / mol K−4. The size of the peak indicates that NbGe2 is a

bulk superconductor and the sharpness of the transition highlights the excellent degree of

crystallinity of our sample. The Debye temperature can be calculated from the equation

ΘD = (12π4nR/5β)1/3, where n is the number of atoms in the unit cell. For NbGe2 n = 3,

and thus our estimate of ΘD is 485 K. To estimate the electron-phonon coupling constant
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Figure 6.8: (a) A comparison of the electronic part of the specific heat Cel/γnTc to the

predictions of the BCS model. Inset: Cp/T as a function of T 2, with the fit to Cp/T = γ+βT 2

and the derived parameters shown as an inset. (b) M − H loop at 0.5 K. (c) Specific

heat with H‖[111] direction at various fields. The criterion inferring Tc is shown. (d)

Magnetic isotherms with H ⊥ [111] at several temperatures. The criterion inferring Tc

is shown. (e) Resistivity under various fields with H‖[011]. The criterion inferring Tc is

shown. (f) H − T phase diagram, with values determined from specific heat, magnetic

susceptibility and resistivity measurements. The purple line corresponds to a fit to the

expression Hc(T ) = Hc(0)[1− (T/Tc)
2].
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λep, we used the McMillan formula [134]

λep =
1.04 + µ∗ln( ΘD

1.45TC
)

(1− 0.62µ∗)ln( ΘD
1.45TC

)− 1.04
(6.4)

Using our values for ΘD, Tc, and using µ∗ = 0.13, a common value for intermetallic

superconductors [135], we estimated λep to be 0.47, suggesting the weak coupling in the

superconducting state of NbGe2. Figure 6.8 (a) shows the electronic heat capacity divided

by γnTc as a function of the reduced temperature T/Tc. ∆Cel/ γnTc was estimated to be ≈

1.36, very close to the BCS value of 1.43. The prediction of the single-band α model [136], for

α = αBCS, is shown as a pink dashed line. The excellent agreement in the entire temperature

range indicates that NbGe2 is a fully gapped weak-coupling superconductor.

The hysteresis curve at 0.5 K (Fig. 6.8(b)) shows a typical type-II SC behavior. However,

the specific heat measurements under magnetic field presented in Fig. 6.8(c) provide strong

evidence of type-I SC since the application of a magnetic field causes a sudden jump in the

specific heat and thus a large latent heat even at 1.2 mT. This suggests a first-order phase

transition under field, typical for Type-I SCs [137, 138]. To understand the controversy, we

measured several magnetization isotherms from 0.5 K to 1.5 K with H ⊥ [111] direction, as

shown in Fig. 6.8(d) and found Type-II to Type-I crossover behavior upon warming. This

is consistent with the data shown in Fig. 6.8(c), where the latent heat was only observed

above 1.5 K, suggesting Type-I SC above 1.5 K and Type-II SC below 1.5 K.

The H − T phase diagram is presented in Fig. 6.8(f) using data from all three types of

measurements. The thermodynamic critical fields extracted from magnetization and specific

heat can be fit to the BCS expression Hc(T ) = Hc(0)[1 − (T/Tc)
2], resulting in the value

Hc(0) = 30.9(5) mT. However, the critical fields we obtained using resistivity data show

distinct behavior. Although a different field direction was used, above 1.3 K, all critical

fields are in good agreement, suggesting isotropic superconductivity. Below 1.3 K, however,

the critical fields extracted from resistivity measurements show a steep upturn leading to an

extrapolated Hc(0) around 10 times of that from the other two measurements. The fact that

the upturn of Hc is missing from the specific heat and magnetization data indicates that it is
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filamentary superconductivity. This upturn has also been seen in other noncentrosymmetric

superconductors, such as AuBe, LaRhSi3 and BiPd [139]. The non-trivial band topology

that has been proposed by DFT calculations for NbGe2, AuBe and BiPd raises the question

of whether the upturn of Hc could be related to non-trivial topology. Could it be indicative

of the topological surface superconductivity which arises from the proximity effect of bulk

superconductivity and surface topological electrons, like the one proposed in FeTe1−xSex(x =

0.45) and PbTaSe2 [140,141]? Further theoretical work is necessary to address this interesting

and apparently common behavior in NCSs.

To understand the possible origin and nature of the superconductivity in NbGe2, we

calculated the phonon mode and wave-vector resolved electron-phonon coupling using the

EPW code [142,143].

λqν =
γqν

πN (εF)ω2
qν

, (6.5)

where q is the wave-vector, ν is the phonon branch index, N (εF) is the electron density at

the Fermi energy εF, ωqν is the phonon frequency. The phonon linewidth (imaginary part of

the phonon self energy) γqν obtained from

γqν =2πωqν

∑
nm

∫
BZ

dk

ΩBZ

|gmn,ν(k,q)|2

× δ (εnk − εF) δ (εmk+q − εF) , (6.6)

where gmn,ν(k,q) is the electron-phonon matrix element and m,n are the electronic band

indices. The phonon mode and wave vector resolved electron-phonon coupling for NbGe2 is

shown in Fig. 6.9, where the size and color of the points depict the weight of the electron-

phonon coupling. We found that the modes near the high symmetry point Γ along the Γ−A

direction has the prominent contribution. We have further calculated the total electron-

phonon coupling from the BZ average of the mode-resolved electron-phonon coupling by

using λeq =
∑

qν wqνλqν . Our calculation results in λep = 0.67, which is 30% larger than

0.47, the experimentally obtained value. To estimate the Tc, we used the value of λep = 0.67

with the Allen-Dynes formula

Tc =
ωlog

1.2
exp

[
−1.04(1 + λep)

λep (1− 0.62µ∗)− µ∗

]
, (6.7)
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Figure 6.9: The electron-phonon coupling weighted phonon band structure of NbGe2. The

size and color of each marker denotes the mode and wave-vector resolved electron-phonon

coupling. The colorbar denotes the value of the electron-phonon coupling.

For a screened Coulomb interaction parameter of µ∗ = 0.13 or 0.16, the Tc is estimated to be

≈ 5.4 K and 3.8 K respectively, comparable to the experimental value. This suggests that

the SC in NbGe2 is indeed electron-phonon mediated.

6.5 Conclusion

In this chapter we presented a systematic study of the de Haas-van Alphen (dHvA) oscil-

lations, magnetotransport, and superconductivity in the Kramers-Weyl semimetal candidate

NbGe2. We show that NbGe2 is a type-I chiral superconductor with a Tc of 2.06 K, a full

gap, a Type-II to Type-I crossover around 1.5 K and an enhanced critical field from filamen-

tary superconductivity. The study of the dHvA oscillations reveals three distinct frequency

branches, β and the spin-split α/α′, with cyclotron effective masses of 1.21(5)me, 0.21(1)me

and 0.24me, respectively. The magnetoresistance of NbGe2 exceeds 1000 % at 2.4 K and 9 T,

and exhibits quasi-linear behavior at low temperatures. The comparison of our experimental

results with first-principles calculations shows excellent agreement and suggests that α and α′

correspond to the hole Fermi pockets centered at the Weyl M point and β is associated with
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the hole pocket near the trivial H point in the Brillouin Zone. Furthermore, we show that

a Van Hove singularity arising from the contributions at the M and H points at the Fermi

level, together with the calculated electron-phonon coupling, are strong enough to account

for the observed superconductivity. Lastly, our calculation of the conductivity tensor within

the relaxation time approximation suggests that the observed linear magnetoresistance most

likely arises from the presence of open Fermi surfaces.
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CHAPTER 7

Conclusion

In this dissertation I described our studies of the topological semimetals CaAgAs, CaCdGe,

CuMnAs and NbGe2. Each material provided us with a platform to ask different questions

and utilize a variety of techniques to answer them. Our comparative study of CaAgAs and

CaCdGe shed light on the phenomenon of extremely large magnetoresistance in semimetals,

CuMnAs was found to have a magnetic structure that led to the prediction of spin-polarized

surface states and NbGe2 provided us with an avenue to investigate the interplay between

nontrivial topology and superconductivity. The field of topological materials has blossomed

over the last decade. Materials with special properties arising from their nontrivial topology

are being discovered constantly. As it turns out, nontrivial topology is a far more ubiquitous

phenomenon than what one might have expected ten years ago. The next frontier lies in

identifying and synthesizing ideal material realizations whose topological properties can be

easily probed and are not obscured by contributions from trivial bands. Hopefully the ma-

nipulation of topologically protected properties in technological applications is not too far

in the future.
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Appendix A

Temperature dependent resistance curves for CuMnAs

crystals from all synthesis trials

Figures A.1 to A.5 show the temperature dependent resistance curves for batches A-E,

highlighting how sensitive the physical properties are to the stoichiometry of the material.

Since the pollycrystalline ORT CuMnAs shows a single slope change in the resistivity around

360 K, it was used as a standard to determine the best recipe with pieces whose physical

properties were consistent with the polycrystalline ones. Based on this criterion, we can see

the best recipe is the one we used for batch A. Although some pieces in other batches may

also show only one slope change, the temperature of the phase transition was much lower.

For example, in batch E, the transition temperature is around 300 K, indicating a higher

level of site/mixing or deficiency in the sample compared to batch A.
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Figure A.1: The temperature dependent resistance for pieces selected from batch A.
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Figure A.2: The temperature dependent resistance for pieces selected from batch B.

Figure A.3: The temperature dependent resistance for pieces selected from batch C.
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Figure A.4: The temperature dependent resistance for pieces selected from batch D.

Figure A.5: The temperature dependent resistance for pieces selected from batch E.
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Appendix B

First principles calculations

The electronic structure of CaCdGe was studied using first principles calculations based

on density functional theory and the full-potential linear augmented plane wave method as

implemented in the WIEN2K package [144]. Spin-orbit coupling (SOC) was taken into

account in the calculation. The local density and generalized gradient approximations

(LDA/GGA) [145] and the Tran-Blaha modified Becke-Johnson (MBJ) [146] exchange po-

tential were used in our calculations.

The first-principles calculations for CuMnAs were carried out using the density functional

theory with the projector augmented wave method [147], as implemented in the Vienna ab

initio simulation package (VASP) [148]. The Perdew-Burke-Ernzerhof exchange correlation

functional and the plane-wave basis with energy cutoff of 300 eV were employed. The inner

atomic positions of the lattice were allowed to be fully relaxed until the residual forces

were less than 1×103 eV/ Å. The Monkhorst-Pack k points were 9×15×9, and SOC was

included in self-consistent electronic structure calculations. The maximally localized Wannier

functions were constructed to obtain the tight-binding Hamiltonian [149], which was used to

calculate the bulk Fermi surface, surface electronic spectrum, and surface states.

First principles calculations for NbGe2 were carried out within the framework of density

functional theory (DFT) [150, 151], with the projector augmented wave (PAW) pseudopo-

tentials [152], as implemented in the Vienna ab initio simulation package (VASP) [148,153].

The exchange-correlation effects were included within the generalized gradient approxima-

tion (GGA) with the Perdew-Burke-Ernzerhof (PBE) parametrization [145]. SOC effects

were treated self-consistently to incorporate relativistic effects. To perform the electronic
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calculations, we used a plane-wave energy cutoff of 300 eV while the BZ sampling is done

by a 21 × 21 × 11 Γ-centered k-mesh [154]. Total energies were converged to 10−6 eV in

combination with Gaussian type broadening of 0.05 eV. The experimental lattice parame-

ters were used in all calculations, while the ionic positions were relaxed until the residual

force on each atom was less than 10−3 eV/Å. The Fermi surface calculation was done by

employing a tight-binding model obtained through the VASP2WANNIER90 interface [155],

and visualization of the Fermi surface was done using the Xcrysden software.
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