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Brain-inspired automated visual object discovery
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aDepartment of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095; and bDepartment of Electrical Engineering, Stanford
University, Stanford, CA 94305

Contributed by Thomas Kailath, April 23, 2018 (sent for review February 12, 2018; reviewed by Rama Chellappa, Shree Nayar, and Erik Sudderth)

Despite significant recent progress, machine vision systems lag
considerably behind their biological counterparts in performance,
scalability, and robustness. A distinctive hallmark of the brain
is its ability to automatically discover and model objects, at
multiscale resolutions, from repeated exposures to unlabeled con-
textual data and then to be able to robustly detect the learned
objects under various nonideal circumstances, such as partial
occlusion and different view angles. Replication of such capabil-
ities in a machine would require three key ingredients: (i) ac-
cess to large-scale perceptual data of the kind that humans expe-
rience, (ii) flexible representations of objects, and (iii) an efficient
unsupervised learning algorithm. The Internet fortunately pro-
vides unprecedented access to vast amounts of visual data. This
paper leverages the availability of such data to develop a scal-
able framework for unsupervised learning of object prototypes—
brain-inspired flexible, scale, and shift invariant representations
of deformable objects (e.g., humans, motorcycles, cars, airplanes)
comprised of parts, their different configurations and views, and
their spatial relationships. Computationally, the object prototypes
are represented as geometric associative networks using proba-
bilistic constructs such as Markov random fields. We apply our
framework to various datasets and show that our approach is
computationally scalable and can construct accurate and opera-
tional part-aware object models much more efficiently than in
much of the recent computer vision literature. We also present
efficient algorithms for detection and localization in new scenes
of objects and their partial views.

computer vision | brain-inspired learning | brain-inspired
object models | machine learning | brain memory models

V isual object classification and recognition is of fundamen-
tal importance for (almost) all living animals, and evolution

has made the underlying systems highly sophisticated, enabling
abstractions and specificity at multiple levels of the perception
hierarchy. The design of unsupervised, scalable, and accurate
computer vision (CV) systems, inspired by principles gleaned
from biological visual-processing systems, has long been a cher-
ished goal of the field. For example, the recent success of
the Deep Neural Network (DNN) framework has largely been
attributed to its brain-inspired architecture, comprised of layered
and locally connected neuron-like computing nodes that mimic
the organization of the visual cortex (1–5). The features that a
DNN automatically discovers are considered to be its primary
advantage (2, 5), and it outperforms more conventional clas-
sifiers driven by hand-crafted features [such as scale-invariant
feature transform (SIFT) and histogram of oriented gradients
(HOG) (6, 7)].

While the deep learning (DL) framework is undoubtedly a sig-
nificant achievement, especially in simultaneously learning the
visual cues of more than a thousand object categories, it is widely
acknowledged that brains are much more efficient and that their
operating principles are fundamentally different from those of
DNNs or other existing machine-learning platforms (8, 9). Some
key limitations of existing DNN-like platforms are as follows: (i)
a predominantly supervised framework, where one must train

them using large manually labeled training sets, and (ii) lack of a
formal framework for bringing in the higher levels of abstrac-
tion necessary for developing a robust perceptual framework,
such as recognizing the persistent identity of an object cate-
gory (e.g., humans, cars, and animals) that is invariant under
different views and under variabilities in their shape and form.
To put it another way, these platforms lack a framework for a
contextual understanding of scenes where different objects and
concepts occur together. On the other hand, biological vision sys-
tems (i) are largely unsupervised learning systems that can learn
highly flexible models for objects based purely on familiarity and
repeated visual exposures in different contexts, (ii) can detect
such learned objects at various scales and resolutions, and (iii)
are highly computationally efficient. Therefore, exploring poten-
tial synergies between biological and CV systems remains a topic
of considerable ongoing interest.

In this paper, we consider unsupervised machine-learning
scenarios—imitating what humans encounter—such as the fol-
lowing: An automated probe browsing the Internet encounters a
large body of contextual images, which we also refer to as per-
ceptual data, where a majority of the images contain discernible
and high-quality instances of objects from an unknown set of
categories. For example, images obtained from videos of real-
world scenes show the same objects persistently in their natural
environments. Similarly, contextual visual browsing based on text
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tags, can provide such large-scale perceptual data. This is exactly
the perceptual learning world view with which, for example, an
infant is faced, and this is what the Internet makes available to
computers and machines for the first time. It is worth reiter-
ating that in our unsupervised learning framework, and unlike
in supervised training scenarios, no labels or bounding boxes
of any kind are used to tag these images. Given such percep-
tual data, the tasks are (i) to discover and isolate the underlying
object categories just by processing these unlabeled images, (ii)
to build visual models of the discovered categories, and then
(iii) to detect instances of the said objects in new scenarios, all
in a robust manner not affected by operations such as scaling,
occlusion, and different viewpoints. Humans and many other
animals routinely execute these and much more complex visual
tasks.

As a step toward developing such an unsupervised contextual
learning framework, we first abstract some of the key aspects of
biological vision systems. The immediate goal is not to emulate
the exact granular feature-generating brain hardware, such as
neurons and their layered interconnections, but to try to com-
putationally capture the basic principles that have been strongly
hypothesized as being used in brains and to integrate them into
an end-to-end CV framework.

Object Prototypes–SUVMs
The related cognitive science review is outlined in more detail in
SI Appendix, section 1, p. 1. We have incorporated only certain
specific abstractions of the object prototype theory of percep-
tion (10) in defining what we shall call a structural unsupervised
viewlets model (SUVM) that has two interacting parts to it. (i)
Viewlets: There is strong evidence for the presence of neurons
(e.g., those in the inferotemporal cortex) that fire selectively in
response to views of different parts of objects. Neurons in this
cortex respond selectively to stimuli from color and texture and
even from complex views such as faces (10). It is as if the brain
breaks up an object into visually distinct but potentially overlap-
ping jigsaw pieces of different sizes. Each such view is a building
block in our model, and to emphasize that such views are not nec-
essarily distinct functional parts, we refer to them as “viewlets.”
Thus, for our modeling purposes, viewlets are multiscale visual
cues representative of different appearances of the object under
different circumstances—for example, in the case of humans, dif-
ferent views of the head or arms in different poses or a half body
view or just the legs in different poses and partially or fully cov-
ered. As explained in Methodology, each viewlet is modeled as a
distribution over a feature space, allowing for variations in the
appearance of exemplars belonging to the same category. (ii) A
set of models that determine how these viewlets are geometri-
cally organized to create an entire or a partial image of an object,
which includes the following models.

Spatial Relationship Network. It has been hypothesized that
viewlets that have stable geometrical relationships to each other
are indexed in the brain according to their relative spatial loca-
tions (11). Exemplars are recognized as class members if and
only if the structural information is close enough to that of
the prototype (12). We capture this feature through the spa-
tial relationship network (SRN), which uses a variation of the
spring network model (13): This is a graph in which nodes are
the viewlets and edges impose relative distance and scale/size
constraints that the viewlets should satisfy. To encode varia-
tions, the edges are represented as springs of varying stiffness
and length. Since not all parts directly connect to each other
in a physical object, our model naturally allows for sparsity:
It introduces springs only among key viewlet pairs that are
needed to maintain the integrity of the whole object. Collectively,
the entire object model is then defined by the spring-viewlet
ensemble.

Configuration-Independent Parts Clustering. A configuration-
independent parts clustering (CIPC) that captures certain
semantic structures of the object prototype by grouping viewlets
with distinct appearances into higher level concepts of parts.
For example, the notion of the “left arm” is captured by a set
of viewlets corresponding to different configurations of the
arm—for example, hanging down or elbows out. Such viewlets
look very different from each other in appearance and yet can
be structurally identified as configurations of the same part since
they occupy the same relative position with respect to other
body parts such as the torso and the head.

Global Positional Embedding. A global positional embedding
(GPE), in which each viewlet is assigned its own 2D location
and a scale value. An optimization algorithm computes these
viewlet-specific location and scale coordinates so that they yield
best fits to the relative location and scale constraints in the struc-
tural relationship network (SRN). GPE brings out the underlying
hierarchical semantic structure of the object—that is, how the
viewlets are organized both spatially and hierarchically in scale.
Thus, for example, the GPE would show that an upper half-
body viewlet subsumes viewlets that correspond to the head and
shoulder regions. This spatial map can be further segmented into
clusters of viewlets that define important regions of the object
prototype, which in turn could be interpreted as higher level
parts of the object category.

The semantic structures encoded in the CIPC and in the
GPE play an important role in robust detection. For example,
detection of matching viewlets (those whose relative location
and scale values match predictions made by the object pro-
totype) corresponding to two different body parts is a much
more robust indicator of the presence of a human than detect-
ing multiple viewlets corresponding to only a single body part.
As demonstrated by our results, the SUVM leverages both spa-
tial structure and semantic information to enable high-precision
object detection.

A Positive-Only Learning Setup for Estimating SUVMs. In Methodol-
ogy, we formulate a probabilistic model for an SUVM to allow
us to develop reliable estimation and learning algorithms. Then
we describe how SUVMs for unknown object categories can
be automatically learned from large-scale unlabeled perceptual
data (a large body of contextual images). Our framework mimics
the process of perceptual learning observed in biological systems,
wherein category prototypes are learned via repeated exposures
to exemplars and examining them from different perspectives in
multiple contexts (10). Since for our model building we do not
need explicit negative examples, we refer to our setup as positive-
only learning. Our perceptual framework corresponds to closely
related frameworks in the CV literature ranging from weakly
supervised to unsupervised. For example, in the weakly super-
vised setup of ref. 14, positive exemplars belonging to a single
category are unlabeled, but negative exemplars (e.g., background
or clutter images, and images from categories other than the
one being learned) are explicitly provided as part of the training
set (15). Our model automatically learns to create its own neg-
ative examples and does not need such external information. In
another instance, the unsupervised setup of refs. 16, 17 use data
that have a perceptual bias over multiple categories. For exam-
ple, in ref. 17, automated object category discovery is carried out
over contextual data that contain unlabeled exemplars belonging
to over 20 different categories; this work, however, does not build
stand-alone models for each category that can be used to detect
instances from new data (see SI Appendix, section 10, p. 23).
While our paper reports experimental results involving percep-
tual data that have exemplars belonging to a single category of
interest at a time (thus, closer to the weakly supervised models
in CV), there is nothing in the framework that precludes it from
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discovering and modeling tens of categories as long as there are
sufficiently many instances of each category in the dataset. Our
framework will create SUVMs, complete with multiple viewlets
and their geometric arrangements, for each such category in
the data.

The learning step involves joint estimation of the set of un-
known viewlets relevant to the object category, and of the asso-
ciated models (i.e., SRN, CIPC, and GPE) that constitute the
SUVM. We use maximum likelihood estimation (MLE) as our
foundational framework and incorporate sparsity constraints
and convex relaxations to ensure computational tractability.
This leads to an intuitive but mathematically rigorous and
computationally simple learning framework.

Object Detection and Localization. Given a learned SUVM, we
turn to the task of detecting instances of objects in a new image.
Again, we abstract how brains are theorized to detect objects as
belonging to a category: by the occurrence of a sufficient num-
ber of compatible viewlets that are spatially located as predicted
by the SUVM. While we follow an MLE framework of locating a
portion of the image that has a high likelihood of being generated
by the SUVM, we avoid exponential search complexity (usually
associated with the exhaustive combinatorial search required in
MLE), by intuitive but careful pruning of the search space based
on the structure of the SUVM. This enables a linear-time detec-
tion and localization algorithm that can locate multiple instances
of the object, unaffected by scale and to the presence of occlu-
sions in the images. The mathematical details are provided in
Methodology.

Relation to Previous Work. There is a long history of efforts, sim-
ilar in spirit to ours, aimed at building CV frameworks that
develop parts-aware object prototypes (13, 14, 16–22) [see, for
example, Geman et al. (23) for a review]. More details on
these models are given in Results, Discussion, and SI Appendix,
section 10, p. 23. Our conclusion is that the goal of learning per-

sistent and flexible object models, especially when the object is
deformable and comprised of multiple configurable parts, in an
automated and unsupervised manner is largely unsolved. Most
parts-aware approaches require strongly supervised training (18,
21, 22, 24). Moreover, to compensate for computational scala-
bility challenges, they use limited object models such as (i) using
only a few parts in describing the object and (ii) further restrict-
ing the kinds of relationship patterns between parts so that
they form networks such as trees and stars. Almost all previous
attempts at unsupervised (e.g., ref. 17, which can be interpreted
as using a star-network spring model) and weakly supervised
(e.g., ref. 15) frameworks require datasets where exemplars have
very similar views. For example, exemplars must have arms in
the same position relative to the body (e.g., see Fig. 1, where
we illustrate this point). On the other hand, our SUVM frame-
work is flexible, computationally scalable and allows for models
comprising hundreds of viewlets per object, all embedded in a
flexible spatial model and a semantic structure that is indepen-
dent of visual appearances. From a purely modeling perspective,
SUVMs can be considered as combining ideas from both the
supervised approaches [e.g., Poselets (19)], which use an ensem-
ble of templates with embedded exemplars, with tags at key
points, to define an object category, and the flexible mixtures
of parts model for human pose detection and estimation (22)
(which can be interpreted as grouping viewlets into an ensemble
of tree networks, instead of a single SRN) and the probabilis-
tic parts-constellation models used in the weakly supervised
approach of refs. 14, 15 and the unsupervised approaches in refs.
16, 17.

Results
Data Description. We experimented with two datasets:

i) The CalTech-4 dataset, comprising faces (435 images),
motorbikes (800 images), airplanes (800 images), and cars
(800 images). A primary motivation for selecting this dataset

Fig. 1. The colored dots in the figure show estimated average (X, Y) coordinates of the centers (as determined by the GPE algorithm) of some of the
viewlets in our human SUVM. Recall that each viewlet is a distribution over a set of example views/patches that have similar appearances. The patches
belonging to the same viewlet are averaged at the pixel level to create a representative visualization patch. Viewlets automatically clustered as comprising
a “part” are given the same color code. For example, we automatically group viewlets corresponding to different views of the left arm as belonging to the
same part cluster, which thus can be tagged as the left arm part. Three such viewlets corresponding to the arm straight down and with elbow out are shown
here. Similarly, multiple viewlets corresponding to different views of head/face, legs, and torso are also shown.
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Table 1. Confusion matrices for the CalTech-4 dataset with one
multicategory classifier.

Classifier −→ (SUVM + SVM)/[Fergus et al. (15)]

Query ↓ (F)ace (M)otorbike (A)irplane (C)ar

F 0.982/0.862 0.000/0.073 0.018/0.028 0.000/0.014
M 0.000/0.000 0.990/0.977 0.010/0.013 0.000/0.000
A 0.005//0.003 0.013/0.042 0.967/0.888 0.015/0.060
C 0.000/0.008 0.000/0.092 0.020/0.197 0.980/0.670

The table entry (i, j) is the percentage of query images belonging to cat-
egory (i) that are classified as belonging to category (j). Each table entry is
separated with the delimeter ”/”: the number to the left is the performance
of the (SUVM + SVM) approach and the entry to the right is the performance
for Fergus et al. (15). For SUVMs, a visual dictionary is learned from all of the
images (i.e., a shared visual dictionary is created), but each model is learned
only from its category-specific images. A single 4-class SVM classifier is built
by combining the outputs of all of the four models as was done in ref. 15.

is that there are existing results, using earlier weakly super-
vised and unsupervised parts-aware formalisms (14, 15),
which we can use to evaluate our framework (see Tables 1
and 2). The other motivation is that it enables us to perform a
number of experiments to explore the limits of our SUVM
framework. It allows us, for example, to evaluate how our
learning framework performs with small-size data (e.g., only
218 images are available to learn models for a face; the other
217 being used for testing). The data do not always contain
enough exemplars to capture many of the variations in shape
and orientations of the object instances. We also ask ques-
tions such as, If the machine’s world view is limited only to
one object category, how would it interpret the rest of the
world? For example, would a face SUVM (learned only from
face-related perceptual data and with no exposure to images
from other categories) “see” faces everywhere when shown
images of motorbikes or cars? Furthermore, it allows us to
illustrate another brain-like activity: the ability to improve
detection/localization performance by jointly using multiple
object prototype models (learned from different perceptual
datasets). Table 3 illustrates how the face SUVM learned
from the CalTech-4 dataset can be used in conjunction with
the full-body human SUVM to obtain face detectors with
higher precision.

ii) a celebrity dataset, which we created by crawling 12,047 high-
quality images from the web. This is a good example of the
types of perceptual data the Internet can provide and is ide-
ally suited to our perceptual framework: The images are
from natural settings with diverse backgrounds and resolu-
tions and often have multiple instances of individuals (the
unknown category to be modeled) in the same image, who
display a wide diversity in clothing and body gestures. For
evaluation purposes only, we manually annotated the whole
dataset with precise main body part (such as the head and
the torso) locations; this information was not used in the
learning process. There are no unsupervised approaches to
extract object prototypes from such datasets, and hence, we
compare our detection and localization performance with
those of supervised frameworks. See the detailed discussion
on torso detection in Evaluation of SUVMs via Detection and
Localization Tasks.

SUVM Learning and Visualizations. For the celebrity dataset, we
used 9,638 images as a learning set and the rest of the images as
a test set. As a first step, we learn a set of visual words, which
we shall call a “visual dictionary,” that captures the repeated
visual patterns in the learning set (see Methodology ). To build
the visual dictionary, we first randomly sample 239,856 image
patches (each of size 128× 96 pixels) from the dataset using a

scale pyramid: We successively scale down each image by a con-
stant multiplicative factor or scale to create a layered “pyramid.”
Then we select fixed-size windows, located at random locations
in each layer, to crop image patches. These patches are then
represented in the form of dimension-reduced HOG descriptors
(7). These descriptor vectors are then grouped into k clusters
using the k-means algorithm. After comparing the results of k-
means clustering for different ks, we settled on k = 1,006, and
the corresponding clusters formed our visual dictionary.

We next followed our SUVM learning steps as described in
Methodology and derived a sparse SRN, containing 566 viewlets.
Thus, while the visual dictionary contains 1,006 visual words, only
a subset of them are viewlets in the human model, and the rest
describe background scenes. These viewlets are then visualized
as a weighted average of all of the constituent image patches
and are shown in SI Appendix, section 8; examples of a few
select viewlets are also shown in Fig. 1. As one can determine
via visual inspection, each viewlet corresponds to a meaningful
human body part. We then (i) constructed a CIPC network and
automatically found 18 distinct parts (see SI Appendix, Fig. S8)
and (ii) computed a GPE of the viewlets. Fig. 1 illustrates some
of the salient aspects of our human SUVM.

The same steps are executed for the CalTech-4 datasets, with
one twist: (i) separate dictionaries—the visual dictionary for each
category is constructed from its category-specific images, and
then an SUVM is derived for each category from its own image
set—and (ii) shared dictionary—a common visual dictionary is
derived from all of the learning sets, and then four separate
SUVMs are learned by processing their respective category-
specific images. The resulting viewlets and their automated
groupings as parts are illustrated in SI Appendix, section 9.

Evaluation of SUVMs via Detection and Localization Tasks.
CalTech-4 dataset results. The results on the CalTech-4 dataset
as summarized in Tables 1 and 2 show that the SUVM

Table 2. Confusion matrices for the CalTech-4 dataset based on
four separate category models

Models

Query image ↓ F M A C

SUVM(separate)/[Fergus et al. (14)]
(F)ace 0.980/0.964 0.069/0.33 0.215/0.32 0.252/-
(M)otorbike 0.000/0.50 0.95/0.925 0.370/0.51 0.237/-
(A)irplane 0.000/0.63 0.007/0.64 0.665/0.902 0.025/-
(C)ar 0.000/ 0.000/- 0.002/- 0.600/-

SUVM (shared)
(F)ace 0.972477 0.087156 0.674312 0.073394
(M)otorbike 0.007500 0.960000 0.675000 0.140000
(A)irplane 0.000000 0.002500 0.745000 0.117500
(C)ar 0.000000 0.000000 0.167500 0.970000

Each category model (j) only outputs whether a query image contains
an exemplar of category (j). The table entry (i, j) is the percentage of query
images belonging to category (i) that are detected to contain an instance
of category (j) [by using a category model (j)]. For the top half of the table,
each table entry is separated with the delimeter ”/”: the number to the left
is the performance of the SUVM(separate) approach and the entry to the
right is the performance for Fergus et al. (14). The top half of the table cor-
responds to the case where SUVMs are created using separate dictionaries,
whereas the bottom half of the table corresponds to the shared dictionary
case. Column 1 in the top half of the table, for example, shows that the face
SUVM returned no FPs when tested on nonface images; the face model in
ref. 14, on the other hand, returned 50% FPs on motorbike images. Simi-
larly, the FP rate on face images for the motorbike model is 6.9% for SUVM
vs. 33% in ref. 14. The bottom half of the table shows that the face, motor-
bike, and car models do extremely well, even without a separate multiclass
classifier.
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Table 3. Face detection—SUVM vs the Viola–Jones algorithm
(VJA) (25)

SUVM

Performance metrics VJA H-1 H-2 HF-1 HF-2

True-positive (TP) 3,072 2,965 3,048 2,959 3,047
FP 972 54 301 31 183
Coverage/recall 92.9% 89.7% 92.2% 89.5% 92.2%
Precision 76.0% 98.2% 91.0% 99% 94.3%

Coverage/recall is the ratio of (number of TPs) and (actual number of pos-
itives in the labeled test data). Precision is the ratio of (number of TPs) and
(number of TPs + number of FPs). For a description of the OpenCV imple-
mentation used for VJA and ROC plots, see SI Appendix, section 8, p. 19,
column 1. The columns labeled H-1 and H-2 represent face detection results
for two different settings of parameters, when our human SUVM is used for
prediction. A subset of these predicted face patches with high-enough res-
olution (e.g., those with heights greater than 150 pixels) are then filtered
through the face SUVM, derived from the CalTech-4 dataset, and those that
do not pass are rejected. The respective results after this filtering are shown
in columns HF-1 and HF-2. The human SUVM provides much higher precision
while matching the coverage of the well-known algorithm.

framework significantly outperforms the only other comparable
unsupervised/weakly supervised framework in the literature (14,
15). As noted earlier, this dataset allows us to explore the work-
ings of SUVMs in more detail. For example, Table 2 shows that
a face SUVM, learned solely from face images, makes no errors
[i.e., does not give false-positives (FPs) of detecting faces] when
fed with images from the rest of the categories. In compari-
son, the face model in ref. 14 detected faces in 50% of the test
motorbike images. Fig. 2A shows an instance of what happens
when a motorbike image is viewed through the lens of a face
SUVM: Each patch in the motorcycle image has to be assigned
to one of the visual words derived from the face-only dataset,
and consequently, individual face viewlets are detected all over
the image. However, they do not have the collective structural
integrity to be detected as instances of face. The airplane and car
categories are not as discriminative when their visual worlds are
based on such separate dictionaries. As shown in the bottom half
of Table 2, however, performance improved considerably across
three categories (face, motorcycle, and car) when we used a
shared dictionary (i.e., we used images from all of the categories
to learn a shared set of visual words) but still learned individual
SUVMs solely based on their category-specific images, and no
negative examples were used. The airplane model is the worst
performer: Not enough examples are present in the learning set
(comprised of only 400 images) to learn the different shapes and
orientations of airplanes (for example, there are several images
with planes pointing in opposite directions) in the data. Finally,
by combining the four models together using an SVM (support
vector machine), one gets almost perfect detection results across
all four categories as shown in Table 1.
Human dataset results. Regarding the precision and cover-
age/recall performance for various detection tasks and com-
parison with supervised methods, recall that during our object
prototype learning process, we automatically break up the given
perceptual visual data into a visual dictionary that is comprised
of two sets: visual words that are part of an object prototype,
which we refer to as viewlets, and the rest that represent visual
cues of the background scenes. Since we do not bring in any neg-
ative exemplars, everything the model sees is interpreted only in
terms of this dictionary, and hence, the quality and diversity of
the perceptual data plays a very important role in how the model
performs when it sees a new image. During detection, the first
step is to decompose the given image into patches at multiple
scales using a sliding window and a scale pyramid and then to
assign to each patch the likelihood of it being a particular word

from the dictionary that was already learned. We have used the
k-nearest-neighbor (kNN) classifier for this classification task.

The limitations of the kNN classifier are well known, and that
is why in most CV applications considerable effort is expended
to train much more powerful classifiers using additional negative
exemplars that represent other object categories and background
scenes. It is, however, instructive to note how well an SUVM
does, even with very weak classifiers for viewlets and without the
benefits of training with negative exemplars. Fig. 3 illustrates the
types of viewlets detected in images with multiple people in them.
In Discussion, we point out how one can incorporate negative
exemplars to improve performance.
Head/face detection. We used a subset of the viewlets in our
human SUVM and mapped their detected locations to where
the head would be to create a face detector. As summarized
in Table 3, our results turned out be vastly superior to those
obtained by the VJA (25), which was developed via extensive
manual training over multiple years and was the face-detection
algorithm of choice until the recent development of superior face
detectors, made possible by even more extensive training and
DL. The superior performance is clearly because of the struc-
ture embedded in our human SUVM: Viewlets corresponding
to other body parts can locate the position of the face, even
when our face-only viewlet detectors are weak. As explained
in Table 3, this experiment allowed us to combine two differ-
ent SUVMs: The precision of our face detector (based on our
human SUVM) can be significantly increased, without compro-
mising recall performance, by further examining the predicted
faces via the face model obtained from the CalTech-4 dataset.
This emulates how human vision tends to work: First impressions
of objects, based on outlines, are further refined by focusing on
the details. Fig. 4 illustrates a couple of face detection results
under different views.
Torso detection. Torsos are much harder to localize, due to
lack of distinctive features and the large variety introduced by
dress patterns. These considerations make a rigid template-
based torso detector impractical. However, part-based models
can detect torsos by mapping other detected parts to where
the torso would be. We compare our model with two other
notable part-based approaches—namely, Poselets (19) and the
Deformable Parts Model (DPM) (18)—and the results are sum-
marized in Table 4. As shown in Table 4, we again outperform
these strongly supervised models. Note that the ingenious Pose-
lets approach is based on processing manually tagged data to
generate hundreds of distinctive templates (and associated clas-
sifiers obtained through extensive supervised training) that have
exemplars with various views/poses and scales embedded in
them. Such templates, however, do not constitute detailed object
prototypes of the kind illustrated in Fig. 1.The slightly lower
recall rate in our model is to be expected, as the weak kNN clas-
sifer misses many of the viewlets that are otherwise present in
an image. As further elaborated in Discussion (see the part on

Fig. 2. (A) A motorcycle image viewed through the lens of a face model.
While it sees face viewlets everywhere, it does not detect any faces because
the viewlets do not match structurally. (B) The same image viewed through
a motorcycle model.
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Table 4. Torso detection—SUVM vs. parts-aware supervised
approaches

Performance
Approaches

metrics DPM (18) Poselets (19) SUVM SUVM, stricter

TP 1,239 3,115 2,935 2,838
FP 5,263 1,678 277 52
Coverage/recall 38.3% 96.3% 90.7% 87.7%
Precision 19.1% 65.0% 91.4% 98.2%

For details of DPM and Poselets, see SI Appendix, section 8, p. 20, column
2. SUVM outperforms all of the models in precision [for Poselets, we used
the recommended threshold value of 3.6 (19)], while providing a solid
recall performance. As discussed in the torso detection section in Evalua-
tion of SUVMs via Detection and Localization Tasks, the recall performance
of an SUVM can be improved by replacing the kNN classifiers it uses
with superior supervised classifiers and introducing negative examples. We
have intentionally persisted with the weak kNN classifiers to emphasize
the power that an SUVM derives from its structure and its hundreds of
viewlets.

dealing with low-resolution images and integrating supervised
learning), we can also train classifiers for each visual word in
our model to improve our performance. The point of this paper
is to show how well the SUVM does even with a limited and
self-contained world view.

Discussion
Improving SUVMs. Several features can be added to SUVMs, so
as to increase both their accuracy and power of representation.
For example, currently we have not explicitly assigned prior
probabilities to the occurrences of individual viewlets and parts.
Doing this would make detection more robust: An occurrence
of a distinctive viewlet or a part could be given more weight
in making a decision during object detection. Similarly, the
assumption that pairwise relative distances among viewlets is
unimodal in distribution can be relaxed. For many highly flex-
ible objects such as humans, the separation distance could be
bimodal: For example, if we want to capture both standing and
sitting postures of humans via a single SUVM, then the rela-
tive distance between head and feet viewlets would clearly have
to be bimodal in distribution. Furthermore, instead of relying
on random sampling and then clustering the samples, the com-
pilation of a visual dictionary and determination of viewlets
can be improved, especially using joint-segmentation and unsu-
pervised object discovery techniques introduced, for example,
in ref. 17.

We also recognize that complex objects can have such radi-
cally different views so as to make them look like two different
objects altogether, where they share none or very few viewlets. A
sideways profile view versus a full-body frontal view of humans
provides such an example. In such situations, one can have two
different SUVMs representing the two scenarios and recognize
them to be the same object category based on cues other than
just images. For example, spatiotemporal continuity or flow of
objects in a video, where a person moves from facing the cam-
era to facing perpendicular to it in consecutive frames, would be
sufficient to determine that the views belong to the same object
category. Using motion to persistently detect objects is a field of
considerable interest and can be incorporated into our frame-
work (26). Shared text tags in image databases can also provide
such information (27).

Dealing with Low-Resolution Images and Integrating Supervised
Learning. Traditionally a lot of the curated and publicly available
databases have predominantly low-resolution images—for exam-
ple, a distant silhouette of someone walking or multiple people
in the same image, where only full body views have enough res-

olution for detection. Detecting objects in such databases is
challenging for any parts-aware approach and especially so for
ours, where we use weak classifiers: There is not enough res-
olution to reliably detect individual viewlets corresponding to
different parts, thereby losing the advantage afforded by collec-
tive decision making by a group of viewlets. For dealing with
such situations, one can actively create low-resolution templates
from the high-resolution learned object prototypes. That is, once
an SUVM is learned from high-resolution datasets, one can
methodically subsample the viewlets and embed them in differ-
ent scenes and build an ensemble of classifiers using the full
power of discriminative learning afforded by sophisticated clas-
sifiers, such as DNNs. The discriminative power can be further
enhanced by including nonobject visual words and image patches
corresponding to viewlets belonging to other categories as nega-
tive examples. The success of a recent approach for detecting tiny
faces based on an ensemble of supervised classifiers (each classi-
fier trained for a particular scale) (28) is a good indicator that our
suggested approach would succeed. The training sets needed for
our method, however, are automatically generated, minimizing
the need for supervised learning.

Scaling up to Detect Multiple Categories. Using the Internet, one
can find large-scale perceptual data of the kind analyzed here
for almost any category of objects (27). Thus, given enough data
and computational power, efficient SUVMs for most individ-
ual categories can be reliably built. The preceding discussions,
however, highlight that the main challenge will lie in integrat-
ing the different SUVMs: While structural information plays a
very important role, it is still necessary that viewlets belonging
to different object prototypes be mapped to a common feature
space—a shared visual world view—so that they can be reliably
distinguished. To facilitate such integration, the paradigm of DL
with its proven capability to simultaneously learn a thousand or
more different categories can be incorporated into our frame-
work. The manually created training sets that are currently used
to train DNNs, however, can now be replaced by the automati-
cally generated viewlets. The network will no longer be trained
to detect manually tagged categories but to detect automat-
ically generated viewlets. Thus, one can potentially automate
both the tasks of object discovery and high-accuracy detection.
Recent work on domain adaptation methods (29) provide a
proof-point for the validity of such an approach. Instead of
generating an object model from a set of contextual unlabeled
images (as in our work), these approaches attempt to model
the overall bias between two datasets belonging to different

Fig. 3. An illustration of what the human SUVM sees in images with
multiple people. For each individual, matching viewlets corresponding to
different body parts and their poses are detected even in the presence of
occlusion.
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Fig. 4. Face detection at different scales and with different views (front
vs. side).

domains. By capturing the differences between a source domain
(where the classifier was trained) and the target domain (where
it is applied), the performance of updated classifiers can be
improved. Here, the target domain can be unlabeled, but the
source domain must be labeled and hence supervised. Our unsu-
pervised SUVM framework can benefit from such an approach:
The SUVMs for a category can be further tuned and differen-
tiated from SUVMs for a different category in an unsupervised
manner.

SUVMs and Recent Work on Unsupervised DL. The unsupervised
DL literature can be broadly categorized into three groups: (i)
Autoencoders (2) generate low-dimensional representations of
input signals, which can then be clustered to derive visual words
in the dataset. We currently perform this step using non-DL
methods: By using predefined features, such as HOG, and then
by performing PCA, we obtain low-dimensional feature vectors
for our image patches. Then, we cluster these feature vectors
using k-means to obtain visual words. Our main contribution lies
in creating object models that build on these visual words, a step
currently not done by the DL methods. In our ongoing work,
we are implementing deep autoencoders, which can provide bet-
ter features and hence a more robust set of visual words. (ii) In
generative adversarial networks (GANs) (30), a DNN, driven by
random noise, generates sample images that try to mimic a given
set of images in an adversarial setting. If everything converges
(it tends to get stuck in local minima often), then the adversarial
network learns to generate outputs/images similar to those in the
learning set. It, however, does not generate and is not intended
to generate a parts-based persistent model of an object category
of the type we do. (iii) In sequence prediction, given a sequence
of images (for example, in a video setup), one can learn to pre-
dict future frames based on current and a few past frames. Thus,
the prediction network [such as the long–short-term memory
(LSTM) model (31)] can be said to have learned a representa-
tion of how objects move and change shape. This is again a useful
end-to-end model that learns an overall representation and is
not intended to learn parts-aware representational models. In
summary, the paradigm of DNNs with its ability to memorize
patterns and templates is a powerful tool, and in our future work,
we plan to use its power to make our models more accurate and
expressive.

From Modeling Object Categories to Modeling Scenes. Once indi-
vidual object prototypes are learned, one can go to a higher level
of abstraction. Instead of viewlets and their relative positions in
an SUVM, one can capture the cooccurrence and relative loca-

tions and orientations of object instances (belonging to different
categories) to define an analogous scene model. (See ref. 23 for
an insightful discussion on the importance of this problem.)

Methodology
The SUVM: Representation and Learning. We outline the mathe-
matical and computational formulations of the SUVM (most of
the details are deferred to SI Appendix, section 2).
Viewlets. Recall that viewlets are multiscale characteristic
appearances of views of objects. To account for variations, each
viewlet Vi is modeled as a random variable that outputs a patch
or a part of an image with an appearance feature vector random
variable Ai , which is drawn from a certain distribution over a fea-
ture space. For example, in this paper, each sample of a viewlet
Vi is represented by a rectangular patch of fixed width (w) and
fixed height (h). Moreover, because viewlets can represent larger
or smaller sections of the same object category under consider-
ation (e.g., a half-body viewlet will contain the head and hence
has a larger size or scale than a head-only viewlet), we associate
a relative scale parameter Si with Vi . To accommodate varia-
tions, Si is itself a random variable. The best way to visualize Si

is to imagine a global scale parameter s for an exemplar embed-
ded in a given image—that is, s determines the overall size of the
object in pixels. In such a scenario, any sample of viewlet Vi has
a width of s(x)i =w ∗Si ∗ s pixels and a height of s(y)i = h ∗Si ∗ s
pixels. The appearance feature vector, Ai , of a sample is a set
of features derived from the underlying image patch. Though for
our experimental results we use local HOG features (see Results
and SI Appendix, section 8), SUVMs can use any feature set,
including those derived using DNNs.
The SRN. Let’s recall that the SRN uses a variation of the spring
network model to represent pairwise distance and scale varia-
tions among the viewlets. Nodes in the network are the viewlets,
and edges are the relative distance and scale/size constraints. To
represent distances, each sample of a viewlet, Vi , is assigned a
location coordinate, Xi = (xi , yi), where (xi , yi) are the pixel val-
ues of the top left corner of the associated rectangular patch that
has a width of s(x)i =w ∗Si ∗ s pixels and a height of s(y)i = h ∗
Si ∗ s pixels. The relative distance between two viewlets Vi and
Vj can then be modeled by the random variable (Xi −Xj ). How-
ever, to have both scale and translation invariance, we need to
normalize the location differences appropriately. In particular, as
explained in SI Appendix, section 2, since the variances in the per-
ceived/measured location coordinates (i.e., xi and yi) depend on
the actual lengths, we define a scale-normalized relative distance

measure,

(
xi − xj

s
(x)
i + s

(x)
j

,
yi − yj

s
(y)
i + s

(y)
j

)
.

To model variations in relative positions, each pair of viewlet
nodes Vi and Vj is connected via a spring of stiffness parame-
ter cij ≥ 0 and of zero-stress normalized length µij . Variations
in pairwise relative distances from their respective zero-stress
lengths lead to overall stress, which can then be modeled by a
potential function defined over the ensemble of springs. Further,
assuming an isotropic spring model, where the displacements
along the x axis and the y axis are treated separately and inde-
pendently, a total potential function of a given configuration can
be written as G =G(X) +G(Y), where

G(X) =
1

Z (x)
exp

−1

2

∑
i 6=j

c
(x)
ij

(
xi − xj

s
(x)
i + s

(x)
j

−µ(x)
ij

)2
, [1]

G(Y) =
1

Z (y)
exp

−1

2

∑
i 6=j

c
(y)
ij

(
yi − yj

s
(y)
i + s

(y)
j

−µ(y)
ij

)2
, [2]
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and (i) Z (x) and Z (y) are the corresponding normalization
terms, also referred to as the partition functions, and (ii) µ(x)

ij =(
µ
(x)
i −µ

(x)
j

s
(x)
i +s

(x)
j

)
, µ(y)

ij =

(
µ
(y)
i −µ

(x)
j

s
(y)
i +s

(y)
j

)
are the normalized zero-stress

lengths. The above expressions are functions of the relative scale
parameters Si , and their pairwise variations can again be mod-
eled via springs. Since scale is a multiplicative factor, we take its
logarithm and define an analogous potential function:

G(S) =
1

Z (s)
exp

−1

2

∑
i 6=j

c
(s)
ij

(
log

Si

Sj
− log

µ
(s)
i

µ
(s)
j

)2
, [3]

where µ(s)
i and µ(s)

j are the respective expected scales of viewlets
Vi and Vj .
Gaussian Markov Random Field Model (GMRF). A Markov ran-
dom field is a set of random variables having a Markov property
described by an undirected graph. In particular, each random
variable node is independent of the rest of the random vari-
ables given its neighbors in the network. If the joint distribution
is Gaussian, with joint covariance matrix, Σ, then the GMRF
specifies the zero patterns of the precision matrix Λ = Σ−1:
Λij = 0 implies that the corresponding random variables are con-
ditionally independent and hence does not have an edge in the
GMRF. For quadratic-form potential functions (as in the above
equations), we can regard our spring model as a GMRF. The
precision matrix Λ(x) can be calculated by noting that Λ

(x)
ij is

the coefficient of the product terms (xi −µ(x)
i )(xj −µ(x)

j ) in the
exponent of Eq. 1:

Λ
(x)
ii =

M−1∑
j=1,j 6=i

c
(x)
ij

(s
(x)
i + s

(x)
j )2

+
c
(x)
iM

(s
(x)
i + s

(x)
M )2

, [4]

Λ
(x)
ij =−

c
(x)
ij

(s
(x)
i + s

(x)
j )2

i 6=j , [5]

where without loss of generality, we have assumed XM = 0 to
reduce the degree of freedom to M − 1 (see SI Appendix, sec-
tion 3). Note that if cij = 0, then Λij = 0, and we know from the
properties of multivariate Gaussian distributions that the corre-
sponding location variables are conditionally independent. Now
Eq. 1 can be written as a log-likelihood function:

L(X ) =
1

2
log r |Λ| − 1

2

∑
i 6=j

c
(x)
ij

(
xi − xj

s
(x)
i + s

(x)
j

−µ(x)
ij

)2

, [6]

where |Λ| is the determinant of the precision matrix and r is the
normalization constant for a Gaussian distribution.

Sparsity and Conditional Independence. The direct interactions
(i.e., for which cij > 0), combined with node set, V , form the
SRN network, G(V ,E), and hence, the model complexity of the
SRN corresponds to its sparsity. Sparsity has a physical mean-
ing in our model: For most physical objects, locations of parts
and the resulting views are indeed not statistically fully connected
with each other. Equivalently, a sparse set of springs are enough
to constrain deformations in exemplars. We impose such spar-
sity constraints in the learning process, and a relaxation leads to
a convex optimization problem that can be solved efficiently.
Semantic structure. As already explained in the introduction, we
use two complementary constructs to capture the semantic struc-
ture of the object—namely, the CIPC and the GPE. The specifics
of these two constructs are made precise in Learning SUVMs. For
now, it suffices to mention that together they provide a descrip-
tion of the object prototype in terms of parts (each part being a

grouping of viewlets), their locations, and the inclusion/overlap
relationships among the viewlets and parts.
Generative model and calculating object likelihoods. An SUVM
defined by its parameter set θ=

(
{c(x)ij }, {c

(y)
ij }, {c

(s)
ij }, {µ

(x)
i },

{µ(y)
i }, {µ

(s)
i }
)

that specifies the SRN and the accompanying
CIPC and GPE models is the key representational and gener-
ative tool we use. As a generative model, any exemplar can be
viewed as being created by a four-step process: (i) first, picking
the parts or regions that are to be rendered in the exemplar from
the CIPC and GPE, let Dp be the set of parts that is picked. (ii)
Then picking NG viewlets, numbered 1, . . . ,NG , that go together
for the picked parts; for example, for configurable parts, cer-
tain viewlets are mutually exclusive and should not be picked
together. Let VG be the set of picked viewlets. The probability
P(VG |θ) is stated in SI Appendix, section 3, where we provide a
detailed description of our detection algorithms. For each picked
viewlet, Vi ∈VG , an appearance feature vector Ai is drawn by
sampling its appearance distribution, and a corresponding image
patch is created; let A= {A1, . . . ,ANG}. (iii) Then choosing scal-
ing factors by sampling the joint scale distribution (Eq. 3), let
S = {S1, . . . ,SNG}, and finally (iv), locating these N viewlets spa-
tially by sampling the joint distribution specified by the SRN
(Eqs. 1 and 2), let X = {x1, . . . , xNG}and Y = {y1, . . . , yNG}be
the set of these location coordinates. Note that in our model,
given S and VG , X and Y are picked independently.

Each step has its own likelihood, allowing us to calculate the
likelihood of any such generated exemplar:

P(Generated Exemplar|θ)
=P(A,X ,Y ,S ,VG |θ)
=P(Y |S ,VG , θ)×P(X |S ,VG , θ)

×P(A|VG , θ)×P(S |VG , θ)×P(VG |θ) . [7]

Learning SUVMs. Given a learning dataset comprising unlabeled
instances of the unknown category, we need to construct an
SUVM—that is, appearance feature vectors of the viewlets, the
SRN, and the semantic structures CIPC and GPE.
Learning a visual dictionary. In this step, we determine a set of
visual words, or a dictionary, from the given images. We ran-
domly sample all images in the learning set using a scale pyramid
and using a fixed-size rectangular patch, then convert all patches
into image feature vectors, and then extract a visual vocabulary
out of them using an unsupervised clustering algorithm. Note
that each visual word is a cluster of feature vectors and the visual
dictionary naturally comes with a classification algorithm. For
example, for k-means clustering, one can use the kNN algorithm
to assign a word label to any candidate image patch. Also note
that a visual word represents only a potential viewlet in the object
models to be extracted from the learning set.
A maximum likelihood (ML) framework for learning SRNs. We
have already simplified our model in the form of a sparse net-
work, or a GMRF, which can be determined by an edge set
E , and the related parameters

(
{c(x)ij }, {c

(y)
ij }, {c

(s)
ij }, {µ

(x)
i },

{µ(y)
i }, {µ

(s)
i }
)
. Since we have already created a set of visual

words, we first go back to the original image corpus (e.g., in
the celebrity dataset, 9,638 images are in the learning set; see
Results) and detect in each image the visual words that appear in
it. That is, in every image, we first perform a dense scan (using a
scaling pyramid so that we capture viewlets that have inherently
larger scale) with a fixed-size sliding window (the same size as
used to determine the visual dictionary) and assign a visual word
to each resulting patch using a kNN algorithm. Then, for each
detected visual word, Vi , we have its size in pixels (s(x)i .s

(y)
i )

and its location coordinates (xi , yi). For a pair of visual words,
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Vi and Vj , detected in the same image, we have samples of the

SUV model outputs: Z (s)
ij =

Sj

Si
=

s
(x)
j

s
(x)
i

=
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(y)
j

s
(y)
i

, Z (x)
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(s
(x)
i +s

(x)
j )

,

and Z
(y)
ij =

(yj−yi )

(s
(y)
i +s

(y)
j )

. We need to infer now an edge set E

and the related spring parameters such that the data likelihood,
as captured by Eqs. 1–3, is maximized. For example, to esti-
mate the set of parameters {c(x)ij }, it follows from preceding
discussions on GMRF that the empirical likelihood function
is given by logP(X ) = const + 1

2
log |Λ| − 1

2

∑
i 6=j c

(x)
ij Var(Zij ),

where Var(Zij ) is the empirically observed variance of the
random variable Zij .
Approximate Sparse Estimation of cijs. To maximize logP(X )
while making cij s sparse, we reverse the sign to get a mini-
mization problem and add an L1 regularization term to obtain
L(X ) =− 1

2
log |Λ|+ 1

2

∑
i 6=j cij (Var(Zij ) +λ), where λ> 0 is

the regularization parameter and cij ≥ 0. This is a convex opti-
mization problem and can be solved efficiently. Staying true
to our spirit of performing simple computations, we analyze
this convex optimization problem, and using the Karush–Kuhn–
Tucker (KKT) conditions, we prove an upper bound on the
optimal values of cij : c∗ij ≤ 1

Var(Zij )+λ
(see SI Appendix, sec-

tion 3). Thus, c∗ij decreases monotonically with increases in both
the observed variance, Var(Zij ), and the sparsity parameter, λ.
This bound then leads to an approximate but efficient algorithm
to directly impose sparsity: If we say that all those edges for which
the optimal c∗ij is less than say a target value of c will be removed
from the network, then it implies from the above equation that
all edges with empirical Var(Zij )>

1
c
−λ should be disconnected

or their corresponding cij = 0. Thus, we have derived a simple
threshold rule on the pairwise variances, and by lowering the
threshold (that is, by increasing the sparsity parameter λ), we
get increasingly sparse SRNs. In our implementation, we defined
a combined variance for an edge V = Var(Z x

ij ) + Var(Z
(y)
ij ) +

Var(logZ
(s)
ij ) and then imposed a threshold on it until the SRN is

sparse enough. Note that as the edge set becomes sparse, the ini-
tial network, comprising all visual words, gets disconnected and
the giant connected components correspond to the SRNs of the
underlying object categories.
Extracting parts using CIPC. We first point out two ways in which
a part in the object category gets encoded in terms of viewlets
and their structure in our model: (i) two or more viewlets that
are replaceable in making up the whole object or, equivalently,
two or more viewlets that are mutually exclusive (in terms of co-
occurrence and hence shares no edge in the SRN) and yet have
nearly identical geometrical relationships with other viewlets
(representing other parts). Pairs of such nodes/viewlets can be
identified efficiently by processing the SRN (e.g., by sequentially
examining each viewlet node and finding other nodes that are
not connected to it by an edge but share neighbors in common).
(ii) Viewlets that share a very stable edge in the SRN between
them and have the same geometrical relationships with viewlets
corresponding to other parts of the object. This scenario arises
when two viewlet nodes are only slightly shifted versions of each
other, representing the persistent presence of a part in the object.
Again such pairs can be efficiently detected from the SRN. We
construct a CIPC network, where each pair of viewlets, satisfying

type a or b relationship, is connected by an edge. Each connected
component in the resulting CIPC network then corresponds to a
distinct configurable and stable part of the underlying object cat-
egory. The results shown in Fig. 1 and in SI Appendix, section 8
demonstrate the effectiveness of this methodology.
Extracting semantic structure using GPE. In this step, we use the
pairwise scale and location relationships to embed the viewlets
in the SRN in a 3D space: Each viewlet Vi is assigned an abso-
lute 2D position (x (i), y(i)) and scale S(i) such that the pairwise
constraints obtained from data are best satisfied. We use a mean
squared error-based optimization function, similar to that used
in multidimensional scaling (MDS) (32) and derive an iterative
approach to calculate these mean positions and scales of viewlets
(see SI Appendix, section 4).

From Fig. 1, we notice that viewlets, clustered by CIPC as
belonging to the same part, have very similar global spatial values
and cluster together in the GPE. Our ability to reverse-engineer
human body parts, for example, demonstrates that we are able to
identify the semantic structure of objects automatically, instead
of hand-coding such knowledge via manual tagging.

From Models to Detection. We start with a dense scanning of the
given image using a scale pyramid and obtain N patches; note
that N can easily be in the thousands. Next, we design comple-
mentary algorithms for two different tasks for any given image:
(i) task 1: detection and localization of object instances (e.g.,
cars, humans), and (ii) task 2: detection and localization of spe-
cific parts (e.g., human head/face or torso) of a learned object
category. In both cases, there could be multiple occurrences in
the same image. For task 1, following the probabilistic interpreta-
tion introduced in Eq. 7, we do the following search: (i) We map
each image patch to a visual word and consider only those that
are mapped to viewlets in the SUVM, and then (ii) we group the
viewlet patches into clusters so that each cluster of patches max-
imizes the likelihood of representing an object instance, as given
Eq. 7. This can be accomplished via an exponential search over
all possible assignments of image patches to visual words (15,
18, 24). In accordance with our neuroscience inspirations, how-
ever, we do a restricted search and we consider an object to be
detected if sufficiently many parts (as determined by CIPC and
GPE) that match the relative distances and scale requirements
are detected with high confidence. Thus, we look at all of the
detected viewlets and then start grouping them together based on
whether they structurally match our model. This linear time (in
N and nf ) heuristic search algorithm is agglomerative in nature
rather than exhaustive, making it highly scalable. Moreover, this
natural detection framework allows one to find multiple occur-
rences of objects in the same image efficiently. The details are
given in SI Appendix, section 6.

For task 2, where the goal is to detect and localize targeted
parts of learned object instances, we again use the structure of
the underlying SUVM to compute a geometric mapping between
any given pair of viewlets, Vi and Vj (see SI Appendix, section
6 for details). Thus, a reliable target part and its location are
detected by mapping multiple detected viewlets to where the part
should be.
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