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Pion-induced radiative corrections to neutron beta-decay

Vincenzo Cirigliano,1, 2, ∗ Jordy de Vries,3, 4, † Leendert Hayen,5, 6, ‡

Emanuele Mereghetti,1, § and André Walker-Loud7, ¶
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2Institute for Nuclear Theory, University of Washington, Seattle WA 98195-1550

3Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics,
University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
4Nikhef, Theory Group, Science Park 105, 1098 XG, Amsterdam, The Netherlands

5Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
6Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
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We compute the electromagnetic corrections to neutron beta decay using a low-energy hadronic
effective field theory. We identify and compute new radiative corrections arising from virtual pions
that were missed in previous studies. The largest correction is a percent-level shift in the axial
charge of the nucleon proportional to the electromagnetic part of the pion-mass splitting. Smaller
corrections, comparable to anticipated experimental precision, impact the β-ν angular correlations
and the β-asymmetry. We comment on implications of our results for the comparison of the ex-
perimentally measured axial charge with first-principle computations using lattice QCD and on the
potential of β-decay experiments to constrain beyond-the-Standard-Model interactions.

PACS numbers:
Keywords:

Introduction — High-precision measurements of low-
energy processes, such as β decays of mesons, neutron,
and nuclei, probe the existence of new physics at very
high energy scales through quantum fluctuations. Re-
cent developments in the study of β decay rates at the
sub-% level [1–5] have led to a 3-5σ tension with the
Standard Model (SM) interpretation in terms of the uni-
tary Cabibbo-Kobayashi-Maskawa (CKM) quark mixing
matrix [5, 6]. Further, global analyses of β decay ob-
servables [7, 8] have highlighted additional avenues for
β decays to probe physics beyond the Standard Model
(BSM) at the multi-TeV scale, such as the comparison
of the experimentally extracted weak axial charge, gA,
with precise lattice Quantum ChromoDynamics (QCD)
calculations [9–11]. This test is a unique and sensitive
probe of BSM right-handed charged currents.

Given the expected improvements in experimental pre-
cision in the next few years [12–14], a necessary condition
to use neutron decay as probe of BSM physics is to have
high-precision calculations within the SM, including sub-
% level recoil and radiative corrections with controlled
uncertainties. These prospects have spurred new theo-
retical activity, which has focused first on radiative cor-
rections to the strength of the Fermi transition (vector
coupling) [1–4], and more recently on the corrections to
the Gamow-Teller (axial) coupling [15, 16]. These recent
studies are all rooted in the current algebra approach de-
veloped in the sixties and seventies [17, 18], combined
with the novel use of dispersive techniques.

In principle, lattice QCD can be used to compute the
full Standard Model n → peν̄ decay amplitude includ-
ing radiative QED corrections, similar to the determina-
tion of the leptonic pion decay rate [19, 20]. However, it

will be some years before these calculations reach suffi-
cient precision. Currently, lattice QCD calculations are
carried out in the isospin limit. The global average de-
termination of gA carries a 2.2% uncertainty [21] with
one result achieving a 0.74% uncertainty [11, 22]. The
PDG average value, on the other hand, has an 0.1% un-
certainty [6] with the most precise experiment having an
0.035% uncertainty [23].

In this work, we perform a systematic study of neu-
tron decay using effective field theory (EFT). We com-
pute new structure-dependent electromagnetic correc-
tions originating at the pion mass scale, including ef-
fects of O(α) and O(αmπ/mN ), with α = e2/4π the
fine-structure constant and mπ(mN ) the pion (nucleon)
mass. By doing so we uncover new percent-level elec-
tromagnetic corrections to the axial coupling gA, which
were missed both in the only other neutron β decay EFT
analysis [24] and recent dispersive treatments [15, 16].

Neutron decay from the Standard Model — The energy
release in neutron decay is roughly the mass splitting of
the neutron and proton, i.e. qext ∼ mn −mp ∼ 1 MeV,
which is significantly smaller than the nucleon mass. The
energy scale of nucleon structure corrections, on the other
hand, is related to the pion mass, so that mN � mπ �
mn −mp. Large scale separations, such as these, make
for ideal systems for an EFT description.

As a consequence, corrections to neutron β decay can
be parametrized in terms of two small parameters: (i)
εrecoil = qext/mN ∼ 0.1% which characterizes small ki-
netic corrections; (ii) ε/π = qext/mπ ∼ 1%, which char-
acterizes nucleon structure corrections dominated by ra-
diative pion contributions. At these relatively low en-
ergies, the decay amplitude can be described by a non-
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relativistic Lagrangian density (see also Refs. [24, 25])

L/π = −
√

2GFVud

[
ēγµPLνe

(
N̄ (gV vµ − 2gASµ) τ+N

+
i

2mN
N̄(vµvν − gµν − 2gAv

µSν)(
←−
∂ −

−→
∂ )ντ

+N

)
+
icTme

mN
N̄ (Sµvν − Sνvµ) τ+N (ēσµνPLν)

+
iµweak

mN
N̄ [Sµ, Sν ]τ+N ∂ν (ēγµPLν)

]
+ . . . (1)

where pions have been integrated out (hence subscript
/π), and the ellipsis denote terms not affected by our
analysis. In this expression, NT = (p, n) is an isodou-
blet of nucleons, while vµ and Sµ represent the velocity
and spin of the nucleon, respectively. The effective vec-
tor and axial-vector couplings gV,A are related, as dis-
cussed below, to the isovector nucleon vector and axial
charges, while µweak and cT are the weak magnetic mo-
ment and an effective tensor coupling, respectively. The
Lagrangian (1) can be used to compute the differential
neutron decay rate and the parameters can then be fitted
to data.

There are a number of short-comings to this approach.
First, by utilizing measured values of Vud gV , gA/gV ,
µweak, and cT , we cannot extract fundamental SM pa-
rameters nor distinguish SM from BSM contributions to
these low-energy constants (LECs). Second, it is not pos-
sible to disentangle, for example, how much of gA arises
from isospin symmetric QCD versus electromagnetic con-
tributions. Therefore, it is desirable to utilize an EFT
Lagrangian which encodes the corrections as functions
of the SM parameters, such as the quark masses and
the electromagnetic couplings. This is known as chiral
perturbation theory (χPT) [26, 27], or specifically for
baryons, heavy baryon χPT (HBχPT) [28]. The cost of
such a description is the introduction of new scales, mπ

and Λχ = 4πFπ ∼ 1 GeV with Fπ ' 92.4 MeV, which
form another expansion parameter, εχ = mπ/Λχ, and
new operators with potentially undetermined LECs.

Radiative corrections to neutron decay can be orga-
nized in a double expansion in αεnχε

m
/π . First, we inte-

grate out the pions and match the χPT amplitude to the
/πEFT amplitude, thus determining the quark mass and
electromagnetic corrections to effective couplings such as
gA. Then, the neutron decay amplitude can be com-
puted with /πEFT (with dynamical photons and leptons)
while retaining explicit sensitivity to the parameters of
the Standard Model. In our analysis of the decay am-
plitude we retain terms of O(GF εrecoil), known in the
literature, O(GFα), where we uncover previously over-
looked effects, and terms of O(GFαεχ) and O(GFαε/π),
never before considered in the literature.

χPT setup for neutron decay — To study radiative
corrections to weak semi-leptonic transitions, we adopt

the HBχPT framework [28] with dynamical photons [29–
31] and leptons, in analogy with the meson sector [32].
This EFT provides a necessary intermediate step in the
analysis of neutron decay, before integrating out pions,
and is the starting point for the study of related processes
such as muon capture, low-energy neutrino-nucleus scat-
tering, and nuclear β decays, which of course require a
non-trivial generalization to multi-nucleon effects.

In χPT with dynamical photons and leptons, semilep-
tonic amplitudes are expanded in the Fermi constant GF
(to first order), the electromagnetic fine structure con-
stant α, and εχ, while keeping all orders in qext/mπ, ac-
cording to Weinberg’s power counting [33–35]. Follow-
ing standard practice, derivatives (∂ ∼ p) and the elec-
troweak couplings e, GF are assigned chiral dimension
one, while the light quark mass is assigned chiral dimen-
sion two (m2

π ∼ p2). The relevant effective Lagrangians,
ordered according to their chiral dimension, are

Lπ = L(2)
π + ... (2a)

LπN = L(1)
πN + L(2)

πN + L(3)
πN + ... (2b)

Llept ≡ L(1)
lept = ē

(
i/∂ + e /A−me

)
e+ ν̄i/∂ν . (2c)

At a given chiral dimension, one can further separate the
strong and electromagnetic Lagrangians

L(2)
π = Lp

2

π + Le
2p0

π (3a)

L(1)
πN = LpπN (3b)

L(2)
πN = Lp

2

πN + Le
2p0

πN (3c)

L(3)
πN = Lp

3

πN + Le
2p
πN + Le

2p
πN` , (3d)

whose explicit forms are given in the Appendix, where for

the first time we present the effective Lagrangian Le
2p
πN`

that reabsorbs the divergences from one loop diagrams
involving nucleons, photons, and charged leptons.

The leading amplitude AGF p0 arises from one insertion
of the lowest order Lagrangian LpπN expanded to first
order in the external weak currents

LpπN ⊃ −
√

2GFVud N̄
(
vµ − 2g

(0)
A Sµ

)
τ+N ēγµPLνe ,(4)

where g
(0)
A denotes the nucleon axial charge in the chiral

limit and in absence of electromagnetic effects.

To capture electromagnetic corrections to O(GFα),
O(GFαεχ), and O(GFαε/π), we need to compute the neu-

tron decay amplitude to chiral dimension three (Ae2GF p0)

and four (Ae2GF p). The former arises from one-loop di-
agrams involving virtual nucleons, pions, photons, and
charged leptons, with vertices from LpπN and Le2p0π (see
Fig. 1, upper panel). Here, an important role is played
by insertions of

Le
2p0

π = 2e2F 2
πZππ

+π− +O(π4), (5)
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with the LEC Zπ fixed by the relation m2
π± − m2

π0 =
2e2F 2

πZπ, up to higher-order corrections. Additional con-
tributions arise from tree-level graphs with one insertion

of Le
2p
πN or Le

2p
πN`. The Ae2GF p amplitude, on the other

hand, is a combination of one-loop diagrams with one

vertex from Lp
2

πN or Le
2p0

πN and any number of vertices

from L(1)
πN and L(2)

π (see Fig. 1, lower panel).

Matching at O(α) and O(αεχ) – The diagrams con-
tributing to the matching between χPT and /πEFT at
O(ε0χ) and O(εχ) are shown in Fig. 1. The result of this
matching for the leading vector and axial operators is
given by

gV/A = g
(0)
V/A

[
1 +

∞∑
n=2

∆
(n)
V/A,χ +

α

2π

∞∑
n=0

∆
(n)
V/A,em

+

(
mu −md

Λχ

)nV/A ∞∑
n=0

∆
(n)
V/A,δm

]
, (6)

where g
(0)
V = 1, ∆

(n)
χ,em,δm ∼ O(εnχ), and nA = 1, nV =

2 [36, 37]. Explicit calculation gives ∆
(0),(1)
A,δm = 0 and we

do not consider the tiny effect of ∆
(0)
V,δm 6= 0. Concerning

the chiral corrections in the isospin limit, ∆
(n)
V,χ vanish

due to conservation of the vector current, while ∆
(n)
A,χ

have been calculated up to n = 4 in Refs. [38–40], and
can for our purposes be absorbed into a definition of gA
in the isospin limit, which we denote by gQCD

A .
To O(αε0χ) we consider the diagrams in Fig. 1, up-

per panel. Diagram (a1) appears in the same form in
both EFTs, and thus does not contribute to the match-
ing. An explicit calculation shows that the O(ε0/π) term of

diagrams (b1) and (d1) and (c1) and (e1) cancels, leav-
ing O(ε/π) corrections discussed below. Diagrams (g1)
and (j1) vanish exactly at O(ε0χ), while (f1), (h1), (i1)
contribute to the vector operator only to be cancelled by
corrections to the nucleon wavefunction renormalization
(WFR) at q = 0. As a consequence, gV does not re-
ceive loop corrections in the matching between χPT and
/πEFT, instead picking up contributions only from local

operators of O(e2p) so that ∆
(0)
V,em = ĈV . By contrast,

the axial operator is modified through diagram (i1), the
WFR, and local operators of O(e2p), leading to

∆
(0)
A,em = Zπ

[
1 + 3g

(0)2
A

2

(
log

µ2

m2
π

− 1

)
− g(0)2

A

]
+ĈA(µ) .

(7)
We provide in the Appendix the explicit dependence of
ĈV,A on the LECs of O(e2p). Here we note that as

written, ĈV,A contain information about short-distance
physics and in particular large logarithms connecting the
weak scale to the hadronic scale [41] and finite terms that
have been calculated via dispersive methods [1–4].

A similar analysis applies to the NLO amplitude, for
which we report a few representative diagrams in the
lower panel of Fig. 1. At q = 0, all diagrams contribut-
ing to the vector operator are cancelled by the WFR,

resulting in ∆
(1)
V,em = 0. We are left with a correction to

gA

∆
(1)
A,em = Zπ 4πmπ

[
c4 − c3 +

3

8mN
+

9

16mN
g

(0)2
A

]
, (8)

dominated by the LECs c3,4 from Lp
2

πN that contribute
via topology (a2).

Matching at O(αε/π) — Through our final matching
step, we identify additional isospin breaking terms to
the LECs of the pion-less Lagrangian. Specifically, the
pion loops with the vector current coupling to two pi-
ons (topology (f1)) induce an isospin-breaking correction
to the weak magnetism term. In terms of the physical
nucleon magnetic moments, µn/p (themselves containing
electromagnetic shifts), we find

µweak − (µp − µn) = −αZπ
2π

g2
AmNπ

mπ
. (9)

which is not captured in experimental analyses thus far.
Finally, the pion-γ box (b1) induces the tensor coupling

cT =
α

2π

gAmNπ

3mπ
. (10)

We discuss the numerical implications of these results
below.

Connection to previous literature — Recent ap-
proaches using current algebra and dispersion techniques
[15, 16] evaluated axial contributions as originating from
vertex corrections, in which the virtual photon is emit-
ted and absorbed by the hadronic line, and γW box,
in which the virtual photon is exchanged between the
hadronic and electron lines. The latter was found to be
largely consistent with the vector contribution using ex-
perimental data of the polarized Bjorken sum rule [15]
and additional nucleon scattering data [16], as such in-
cluding inelastic contributions without explicit calcula-
tion. The vertex corrections, on the other hand, have
only been calculated in limiting scenarios. Following the
notation of Ref. [15], the a priori non-zero contribution
depends on a three-point function

Dγ =

∫
d4k

k2

∫
d4yeiq̄y

∫
d4xeikx

× 〈pf |T
{
∂µJ

µ
W (y)Jλγ (x)Jγλ (0)

}
|pi〉 , (11)

where γ(W ) denotes electromagnetic (weak) currents,
and T{. . .} the time-ordered product. In the chiral
limit the divergence of the weak axial current vanishes
(∂µA

µ ∝ mπ → 0), while the vector current is conserved
to higher order corrections in α and md −mu. Ref. [15]
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a1) b1) c1) d1)

f1) g1) h1) i1)

e1)

j1)

c2)a2) b2)

LO

NLO

FIG. 1: Diagrams contributing to the matching between χPT and /πEFT at O(ε0χ) (upper panel) and O(εχ) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians Lp
2

π and LpπN , while diamonds represent insertions of Le
2p0

π . Circled dots denote

interactions from the NLO chiral Lagrangian Lp
2

πN .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to λ = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted λ and the (isosymmetric) QCD
axial charge is given by [9]

λ = gQCD
A

(
1 + δ

(λ)
RC − 2Re(εR)

)
, (12)

where εR ∼ (246 GeV/ΛBSM)2 is a BSM right-handed
current contribution appearing at an energy scale ΛBSM

[9, 10]. To the order we are working the radiative correc-
tion is

δ
(λ)
RC =

α

2π

(
∆

(0)
A,em + ∆

(1)
A,em −∆

(0)
V em

)
. (13)

For the numerical evaluation of the loop contributions to

∆
(0),(1)
A,em we use Zπ = 0.81 (obtained from the physical

pion mass difference and Fπ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)
A = gA ≈ 1.27 [6], as the difference formally con-

tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild mπ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to π-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

∆
(0)
A−V,em ∈ {2.4, 5.7} , ∆

(1)
A,em = {10.0, 14.5, 15.9}, (14)

where the range in ∆
(0)
A−V,em is obtained by setting

ĈA(µ)− ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of ∆
(1)
A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA − ĈV to
zero. In addition, in an EFT without explicit ∆ degrees
of freedom, c3 and c4 are dominated by ∆ contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to λ at the percent level,

δ
(λ)
RC ∈ {1.4, 2.6} · 10−2 . (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination
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PNDME18
CalLat19
FLAG21QCD

UCNA
PERKEO3
PDG20exp

1.20 1.25 1.30 1.35

QCD(1 + RC)
1.242(40)
1.289(12)
1.271(30)

FIG. 2: Overview of the required shift to lattice QCD de-
terminations of gA and comparison with current experimen-
tal determination of λ. The bottom panel shows the shift
and increased uncertainty in magenta with corrected val-
ues. The keys in the figure are FLAG21 [21], CalLat19 [22],
PNDME18 [42], PDG21 [6], PERKEO3 [23], UCNA [45].

of λ is at present obtained from experiments, where
these corrections are automatically included. The correc-
tion does have a big impact when comparing with first-
principles lattice QCD computations of neutron β decay.
Present lattice calculations of gA work in the isospin limit
without QED, but Eq. (15) shows these results cannot be
directly compared to the experimentally extracted value
of gA without subtracting the newly identified isospin-
breaking radiative corrections in this Letter.

In Fig. 2 we show the significance of the correction δ
(λ)
RC

in comparing lattice QCD calculations with the state-of-
the-art experimental determination of λ. Compared to
the most precise individual lattice calculation [22], our
radiative corrections corresponds to a 2.7σ shift and a
more modest ∼ 1σ shift in the conservative FLAG’21
average [21]. δ

(λ)
RC generally improves the agreement be-

tween lattice QCD and experimental determination of
λ and is essential if one wishes to obtain robust ranges
(or constraints) on right-handed currents. For example,
assuming existing central values and an increased lattice-

QCD precision, the neglect of radiative corrections (δ
(λ)
RC)

would wrongfully point to BSM physics at O(1 TeV).
Isospin-breaking corrections to the weak magnetism do

translate into explicit spectral changes (see the appendix
for the full differential decay rate). Relative corrections
of O(10−4) occur in the SM predictions of both a, the
β-ν angular correlation, and A, the β-asymmetry. These
are comparable to anticipated experimental precision in
the coming decade within the context of CKM unitarity
tests [12]. Even larger relative changes (O(0.1%)) can
occur due to cancellations in the leading-order SM pre-
diction, such as in nuclear mirror systems used in com-

plementary |Vud| determinations [46]. An extension of
this effort to nuclear systems is deemed crucial and fits
within rejuvenated superallowed efforts [5, 47]. On the
other hand, the induced tensor coupling cT produces a
shift to the Fierz term and the neutrino-asymmetry pa-
rameter B at the level of 10−5, negligible in light of the
expected experimental accuracies.

Conclusions and outlook — By using a systematic ef-
fective field theory approach we have identified and com-
puted novel radiative corrections to neutron β-decay.
The largest correction, at the percent level, can be under-
stood as a QED correction to the nucleon axial charge.
While this does not impact the extraction of Vud from
experiments, it has important consequences for the po-
tential of β-decay experiments to constrain BSM right-
handed currents when comparing the measured value of
λ = gA/gV to the first-principles calculation of the same
quantity with lattice QCD. In addition, we have iden-
tified changes in the neutron differential decay rate, in
particular a shift in the β-ν angular correlation and the
β-asymmetry, that are relevant for next-generation ex-
periments.

The new shift in the nucleon axial charge depends upon
non-analytic contributions associated with pion loops as
well as analytic short-distance corrections parameterized
by LECs. The LECs that lead to the largest part of
the correction (c3 and c4) are precisely extracted from
pion-nucleon scattering data, but others are presently
unknown leading to a sizable uncertainty in our results.
Lattice QCD can compute the hadronic n→ p amplitude
in the presence of QED [19, 20], which enables a determi-
nation of the unknown LECs. There are subtleties that
must be addressed related to gauge invariance and the
non-factorizable contributions to the renormalization of
the four-fermion operator [48]. QEDM [49], in which the
photon is given a non-zero mass, may simplify the iden-
tification of the matrix element of interest by increasing
the energy gap to the excited state contamination.

Looking beyond neutron decay, it is very possible
that similar-sized corrections affect nuclear β-decay.
The computations in this Letter provide the first step
towards a full EFT treatment of radiative corrections
to the multi-nucleon level. Given the interest in these
low-energy precision tests of the Standard Model and
the existing deviations from first-row CKM unitarity,
it is imperative to accurately determine these radiative
corrections in order to make full use of the anticipated
precision of upcoming experiments.
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APPENDIX

Effective Lagrangians and power counting — We start
from two-flavor QCD in presence of external sources

L = LQCD − q̄R(s+ ip)qL − q̄L(s− ip)qR
+ q̄Lγ

µlµqL + q̄Rγ
µrµqR (16)

where qT = (u, d) and s(x), p(x), lµ(x), rµ(x) can be writ-
ten in terms of quark mass, Standard Model gauge fields,
and external classical fields s̄, p̄, l̄µ, r̄µ as follows

χ ≡ B0(s+ ip) = B0(mq + s̄+ ip̄) (17a)

lµ = −eQEML Aµ + QWL J
lept
µ + QW†L J lept†

µ + l̄µ (17b)

rµ = −eQEMR Aµ + r̄µ . (17c)

Here B0 is a constant with dimension of mass, mq is
the quark mass matrix, QEML = QEMR = diag(qu, qd)
(with qu = 2/3, qd = −1/3), QWL = −2

√
2GFVud τ

+, and
J lept
µ = ēLγµνeL. The Lagrangian in (16) is invariant un-

der local G = SU(2)L×SU(2)R×U(1)V transformations

qL → L(x)eαV (x)qL , qR → R(x)eαV (x)qR , (18)

with L,R ∈ SU(2)L,R, provided QEML,R and QWL trans-

form as “spurions” under the chiral group QEM,W
L →

LQEM,W
L L† and QEMR → RQEMR R†, and that l̄µ and r̄µ

transform as gauge fields under G. This implies

χ → RχL† (19a)

lµ → LlµL
† + iL∂µL

† + ∂µαV (19b)

rµ → RrµR
† + iR∂µR

† + ∂µαV . (19c)

Note that the external sources can be decomposed in
SU(2) singlet and non-singlet components as follows:
lµ = lnsµ + lsµ, rµ = rnsµ + rsµ.

To construct the effective chiral Lagrangians, one in-
troduces the nucleon and pion fields as follows [50, 51],

N =

(
p
n

)
, U = u2 = eiΠ/(F ), Π =

(
π0

√
2π+

√
2π− −π0

)
(20)

and F ∼ Fπ = 92.4 MeV. These fields transform under
the chiral group as follows

u → LuK†(u) = K(u)uR† (21a)

U → LUR† (21b)

N → e3iαVK(u)N (21c)

where K(u) is a pion-dependent SU(2)V transformation.
To construct chiral invariant Lagrangians, it is very

useful to use chiral-covariant derivatives

DµU ≡ ∂µU − ilµU + iUrµ → L(DµU)R† (22a)

∇µN ≡
(
∂µ + Γµ − i

3(lsµ + rsµ)

2

)
N → K(∇µN)(22b)

Γµ =
1

2

[
u(∂µ − irnsµ )u† + u†(∂µ − ilnsµ )u

]
→ K(u)ΓµK(u)† +K(u)∂µK(u)† . (22c)

It is also very useful to use combinations of fields that
transform homogeneously with K(u):

uµ = i
[
u(∂µ − irµ)u† − u†(∂µ − ilµ)u

]
→ K(u)uµK(u)† (23a)

χ± = u†χu† ± uχ†u→ K(u)χ±K(u)† (23b)

QEM,W
L = u†QEM,W

L u→ K(u)QEM,W
L K(u)†(23c)

QEMR = uQEMR u† → K(u)QEMR K(u)† (23d)

Finally, in the literature one often finds the combinations
of charge building blocks with definite parity

Q± ≡
1

2
(QL ±QR) . (24)

The standard χPT power counting assumes that exter-
nal momenta and meson masses are comparable (qext ∼
mπ). Including charged lepton masses one assumes p ∼
qext ∼ mµ ∼ mπ � Λχ ∼ 4πFπ ∼ mN . Given this, one
makes the following assignments:

∂ ∼ p , χ± ∼ B0mq ∼ m2
π ∼ p2 . lµ, rµ ∼ p , (25)

with the latter identification implying e ∼ p and GF ∼ p
(though we will never go beyond one insertion of GF and
two insertions of the electromagnetic coupling e). The
above scalings allow us to assign chiral dimension to each
lagrangian vertex in a straightforward way.

The pion Lagrangian has the usual expansion in even
chiral powers:

Lπ = L(2)
π + L(4)

π + ... (26a)

L(2)
π = Lp

2

π + Le
2p0

π

=
F 2

4
〈uµuµ + χ+〉+ e2ZπF

4〈QEML QEMR 〉, (26b)

which leads to the identification

m2
π± −m2

π0 = 2e2F 2
πZπ . (27)
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The gauge-kinetic leptonic Lagrangian has chiral di-
mension n = 1:

Llept = ē
(
i/∂ + e /A−me

)
e+ ν̄i/∂ν . (28)

To the order we work, we need to include the following
purely leptonic counter-term [32]

LCTlept = e2X6 ē
(
i/∂ + e /A

)
e . (29)

The pion-nucleon Lagrangian has both odd and even
chiral powers, starting at n = 1:

LπN = L(1)
πN + L(2)

πN + L(3)
πN + ... (30a)

L(1)
πN = LpπN = N̄viv · ∇Nv + gAN̄vS · uNv (30b)

L(2)
πN = Lp

2

πN + Le
2p0

πN (30c)

L(3)
πN = Lp

3

πN + Le
2p
πN + Le

2p
πN` (30d)

where in the nucleon rest-frame vµ = (1,0) and Sµ =
(0,σ/2). We have displayed explicitly here only the lead-
ing order Lagrangians and we will report below the ap-
propriate higher order terms as needed. All these effec-
tive Lagrangian are know in the literature, see for exam-

ple Ref. [31], except for Le
2p
πN`, which is needed to reabsorb

divergences from loops that involve virtual baryons, pi-
ons, leptons, and photons. We report here only the terms
that play a significant role in our analysis.

The one-loop diagrams with virtual nucleons, pions,
and photons generate divergences which are absorbed

by counterterms in the Le
2p
πN Lagrangian. When con-

structing the baryon electromagnetic Lagrangian, it has
been common practice in the literature [29–31] to use
charge spurions corresponding to the nucleon charge ma-
trix Q̄ = diag(1, 0). Now Q̄ differs from the quark charge
matrix only in its SU(2) singlet component: therefore
the two objects have the same transformation properties
under the chiral group and this procedure is justified. In
what follows we indicate all the chiral building blocks
built from the nucleon charge matrix with a bar. A min-

imal version of Le
2p
πN was constructed in Ref. [31]

Le
2p
πN = e2

∑
i=1,12

gi N̄v O
e2p
i Nv , (31)

Only four operators contribute to neutron decay at tree
level,

Oe
2p

1 = 〈Q̄2
+ − Q̄2

−〉S · u (32a)

Oe
2p

2 = 〈Q̄+〉2 S · u (32b)

Oe
2p

9 =
i

2
[Q̄+, v · c+] + h.c. (32c)

Oe
2p

11 =
i

2
[Q̄+, S · c−] , (32d)

with

c±µ = − i
2

(
u[lµ, Q̄]u† ± u†[rµ, Q̄]u

)
. (33)

As standard practice in χPT, the divergences are sub-
tracted as follows [26]:

gi = ηi λ(µ) + gri (µ) ,

λ(µ) =
µd−4

(4π)2

(
1

d− 4
− 1

2
(−γ + log 4π + 1)

)
.(34)

We use the same subtraction scheme for all LECs. The
coefficients ηi can be found in Table 5 of Ref. [31]. We
checked that the gi couplings absorb correctly the diver-
gences of diagrams without virtual leptons, thus provid-
ing a consistency check on our calculation.

The one-loop diagrams with virtual nucleons, pions,
photons, and charged leptons generate divergences which

are absorbed by counterterms in the new Le
2p
πN` La-

grangian. These are the analogue of the operators intro-
duced in the meson sector in Ref. [32], that contribute
to (semi)leptonic meson decays to O(e2p2). We find five
structures, of which only the first three contribute to neu-
tron decay at tree level

Le
2p
πN` = e2

∑
i=1,5

X̃i Õi , (35)

where

Õ1 = ēγανL N̄vv
αQWL Nv (36a)

Õ2 = ēγανL N̄vv
α[QWL , Q̄EMR ]Nv (36b)

Õ3 = ēγανL N̄vS
α[QWL , Q̄EMR ]Nv (36c)

Õ4 = ēγανL N̄vv
α〈QWL Q̄EMR 〉Nv (36d)

Õ5 = ēγανL N̄vS
α〈QWL Q̄EMR 〉Nv . (36e)

The couplings X̃i are dimensionless (note that QW car-
ries dimension via the GF factor).

To compute the neutron decay amplitude to O(GFαεχ)
we must consider one-loop diagrams with insertions of

Lp
2

πN , for which (in the notation of Ref. [52]) we use
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Lp
2

πN = N̄

[
1

2mN

(
(v · D)2 −D2

)
− i gA

2mN
{S · D, v · u}+ c1Tr(χ+) +

(
c2 −

g2
A

8mN

)
(v · u)2

+c3u · u+

(
c4 +

1

4mN

)
[Sµ, Sν ]uµuν + c5χ̃+ −

i

4mN
[Sµ, Sν ]

(
(1 + κ1)f+

µν +
1

2
(κ0 − κ1)Tr

(
f+
µν

))]
N. (37)

Given these Lagrangians, Weinberg’s power counting
argument [33–35] implies that connected diagrams scale
as A ∼ pν with

ν = 2L+1+
∑

n=2,4,...

(n−2)NM
n +

∑
m=1,2,...

(m−1)NF
m (38)

where L is the number of loops and NM
n (NF

m) is the
number of mesonic (fermionic) vertices with chiral di-
mension n (m). In deriving this formula, pion propaga-
tors are counted as p−2 and baryon / lepton propagators
are counted as p−1.

Using this power counting one sees that the amplitude
for neutron decay can be organized as follows

A = A(1) +A(2) +A(3) +A(4) + ... (39a)

A(1) = AGF p
0

(39b)

A(2) = AGF p (39c)

A(3) = AGF p
2

+Ae
2GF p

0

(39d)

A(4) = AGF p
3

+Ae
2GF p (39e)

...

We are interested in computing the leading and next-to-
leading electromagnatic corrections to the neutron decay,
which appear at chiral order n = 3 and n = 4, respec-
tively. Using Eq. (38) one can easily identify the tree-
level and one-loop diagrams that contribute to a given
order, up to A(4):

• The amplitude A(1) is given by a tree-level diagram

with insertion of the weak vertices from L(1)
πN .

• The amplitude A(2) is obtained by tree-level graphs

with one insertion of L(2)
πN and any number of inser-

tions from L(1)
πN and L(2)

π . It contributes to neutron
decay at order GF εrecoil.

• The amplitude A(3) is given by tree-level graphs

with one insertion of L(3)
πN and any number of inser-

tions from L(1)
πN and L(2)

π ; and by one-loop diagrams

with vertices from L(1)
πN and L(2)

π . In Fig. 1 (upper
panel) we show all one-loop topologies contribut-
ing up to O(e2GF p

0), These involve virtual pions,
virtual photons, and virtual charged leptons.

• The amplitude A(4) is given by tree-level graphs

with one insertion of L(4)
πN and any number of in-

sertions from L(1)
πN and L(2)

π ; and by one-loop dia-

grams with one vertex from L(2)
πN and any number

of vertices from L(1)
πN and L(2)

π . Note that tree level

graphs with insertion of L(e2p2)
πN do not contribute.

In Fig. 1 (lower panel) we show representative one-
loop diagrams contributing up to O(e2GF p), These
involve virtual pions, virtual photons, and virtual
charged leptons.

The counterterm contributions to the amplitude at
O(e2GF p

0) are captured by the combinations ĈV/A (see
Eq. (7)) as follows:

ĈA = 8π2

[
−X6

2
+

1

g
(0)
A

[
X̃3 +

(
g1 + g2 +

g11

2

)]]

ĈV = 8π2

[
−X6

2
+ 2

(
X̃1 − X̃2

)
+ g9

]
. (40)

Neutron decay rate — We now present the neutron
differential decay rate up-to-and-including O(GF εrecoil,
O(GFα), O(GFαεχ), and O(GFαε/π) corrections. We fol-
low Refs. [9, 24, 53] and write

dΓ

dEedΩedΩν
=

(GFVud)
2

(2π)5
(1+3λ2)w(Ee)D(Ee, ~pe, ~pν , ~σn) ,

(41)
where ~σn denotes the neutron polarization and λ =
gA/gV . The spectrum of the electron is described by

w = |~pe|Ee(E0 − Ee)2F (Ee)
(

1 +
α

2π
δ(1)
α (Ee)

)
, (42)

where E0 = (m2
n−m2

p +m2
e)/(2mn) is the maximal elec-

tron energy, and F (Ee) is the Fermi function for an elec-
tron in the field of the final-state proton. The radiative

correction δ
(1)
α is discussed below. The function D can
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be parametrized1 as

D = 1 + c0 + c1
Ee
mN

+
me

Ee
b̄+ ā

~pe · ~pν
EeEν

+ Ā
~σ · ~pe
Ee

+B̄
~σ · ~pν
Eν

+ C̄aa

(
~pe · ~pν
EeEν

)2

+C̄aA
~pe · ~pν
EeEν

~σ · ~pe
Ee

+ C̄aB
~pe · ~pν
EeEν

~σ · ~pν
Eν

. (43)

The various coefficients can be further decomposed
through [9, 53]

ā =

(
aLO + c

(a)
0 + c

(a)
1

Ee
mN

)(
1 +

α

2π
δ(2)
α (Ee)

)
,

Ā =

(
ALO + c

(A)
0 + c

(A)
1

Ee
mN

)(
1 +

α

2π
δ(2)
α (Ee)

)
,

B̄ = BLO + c
(B)
0 + c

(B)
1

Ee
mN

+
me

Ee
bν ,

C̄aa = c
(aa)
1

Ee
mN

,

C̄aA = c
(aA)
1

Ee
mN

,

C̄aB = c
(aB)
0 + c

(aB)
1

Ee
mN

. (44)

The LO coefficients are well known and given by

aLO =
1− λ2

1 + 3λ2
,

ALO =
2λ− 2λ2

1 + 3λ2
,

BLO =
2λ+ 2λ2

1 + 3λ2
. (45)

We write the remaining coefficients in terms of µ̄V =

1 A possible correction to the time-reversal-odd D coefficient only
enters at O(GFαεrecoil) [54].

µp − µn − αZπ
2π

g2AmNπ
mπ

and cT = α
2π

gAmNπ
3mπ

b̄ = − me

mN

1 + 2λ(µ̄V + 3cT ) + λ2

1 + 3λ2
,

c0 = − E0

mN

2λ(λ+ µ̄V )

1 + 3λ2
,

c1 =
3 + 4λµ̄V + 9λ2

1 + 3λ2
,

c
(a)
0 =

E0

mN

2λ(λ+ µ̄V )

1 + 3λ2
,

c
(a)
1 = −4λ(3λ+ µ̄V )

1 + 3λ2
,

c
(A)
0 =

E0

mN

(λ− 1)(λ+ µ̄V )

1 + 3λ2
,

c
(A)
1 =

λ(7− 5λ) + µ̄V (1− 3λ)

1 + 3λ2
,

c
(B)
0 = − E0

mN

2λ(λ+ µ̄V )

1 + 3λ2
,

c
(B)
1 =

λ(7 + 5λ) + µ̄V (1 + 3λ)

1 + 3λ2
,

bν = − me

mN

(1 + λ)(λ+ µ̄V ) + 2cT (1 + 2λ)

1 + 3λ2
,

c
(aa)
1 = −3(1− λ2)

1 + 3λ2
,

c
(aA)
1 =

(λ− 1)(5λ+ µ̄V )

1 + 3λ2
,

c
(aB)
0 =

E0

mN

(1 + λ)(λ+ µ̄V )

1 + 3λ2
,

c
(aB)
1 = − (1 + λ)(7λ+ µ̄V )

1 + 3λ2
. (46)

The explicit expressions for the radiative corrections

δ
(1)
α and δ

(2)
α are given by

δ(1)
α = 2ĈV + 3 log

µ

me
+

1

2

+
1 + β2

β
log

1 + β

1− β
+

1

12β

(
Ē

Ee

)2

log
1 + β

1− β

+4

[
1

2β
log

1 + β

1− β
− 1

] [
log

2Ē

me
− 3

2
+

Ē

3Ee

]
+

1

β

[
−4 Li2

(
2β

1 + β

)
− log2

(
1 + β

1− β

)]
, (47)

δ(2)
α =

1− β2

β
log

1 + β

1− β

+
4(1− β2)

3β2

Ē

Ee

[
1

2β
log

1 + β

1− β
− 1

]
+

1

6β2

Ē2

E2
e

[
1− β2

2β
log

1 + β

1− β
− 1

]
, (48)

where β = |~pe|/Ee and Ē = E0 − Ee. Our expression

for δ
(1)
α coincides with the combination of δ

(1)
α + eRV (µ) in

Ref. [24] upon identifying 2ĈV with the combination of
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counterterms eV − (e1 + e2)/2 ] in Ref. [24]. Finally, ex-

pressing δ
(1)
α in terms of the Sirlin function g(Ee, E0) [17],

we find

δ(1)
α = 2ĈV +

5

4
+ 3 log

µ

mp
+ g(Ee, E0) . (49)
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[8] M. González-Alonso, O. Naviliat-Cuncic, and N. Sev-
erijns, Prog. Part. Nucl. Phys. 104, 165 (2019),
arXiv:1803.08732 [hep-ph] .

[9] T. Bhattacharya, V. Cirigliano, S. D. Cohen, A. Fil-
ipuzzi, M. Gonzalez-Alonso, M. L. Graesser, R. Gupta,
and H.-W. Lin, Phys. Rev. D 85, 054512 (2012),
arXiv:1110.6448 [hep-ph] .

[10] S. Alioli, V. Cirigliano, W. Dekens, J. de Vries, and
E. Mereghetti, JHEP 05, 086 (2017), arXiv:1703.04751
[hep-ph] .

[11] C. Chang et al., Nature 558, 91 (2018), arXiv:1805.12130
[hep-lat] .

[12] V. Cirigliano, A. Garcia, D. Gazit, O. Naviliat-Cuncic,
G. Savard, and A. Young, (2019), arXiv:1907.02164
[nucl-ex] .
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