UC Berkeley
 Research Reports

Title
Model Selection And Initial Application Of CONTRAM Model For Evaluating In-vehicle Information Systems

Permalink

https://escholarship.org/uc/item/37s9526g

Authors

Gardes, Yonnel
Haldors, Bruce
May, Adolf D.
Publication Date
1991

Model Selection and Initial Application of CONTRAM Model for Evaluating In-Vehicle Information Systems

Yonnel Gardes
Bruce Haldors
Adolf D. May

PATH Research Report
UCB-ITS-PRR-91-11

This work was performed as part of the California PATH Program of the University of California, in cooperation with the State of California, Business and Transportation Agency, Department of Transportation, and the United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California. This report does not constitute a standard, specification, or regulation.

This paper has been mechanically scanned. Some errors may have been inadvertently introduced.

ACKNOWLEDGEMENTS

The authors would like to thank TRRL, especially, Nick Taylor, without whom much of this work would not have been possible. Additionally, the authors would like to thank the City of Los Angeles and Caltrans for their generous support and assistance. The authors would also like to thank the staff at the PATH office for all of their support and assistance, in particular Anna Bozzini and Sherry Parrish.

TABLE OF CONTENTS

EXECUTIVESUMMARY 1
1.0 INTRODUCTION 3
1.1 Background
1.2 . Purpose
1.3 Scope and Study Approach
2.0 PREVIOUSRESEARCH 5
2.1 1987-1989
2.2 1989/1990 RESEARCH
3.0 MODEL EVALUATION 9
3 . 1 CONTRAM
3.1.1 Basic Structure
3.1.2 Input Data Requirements
3.1.3 outputs
3.1.4 Demonstration
3.1.5 Reported Applications
3.2 SATURN
3.2.1 Basic Structure
3.2.2 Input Data Requirements
3.2.3 Outputs
3.2.4 Demonstration
3.2.5 References
3.3 INTEGRATION
3.3.1 Basic Structure
3.3.2 Input Data Requirements
3.3.3 outputs
3.4 MODEL SELECTION
4.0 FEATURES OF CONTRAM IMPORTANT TO THIS APPLICATION 29
4.1 CONTRAM 5
4.1.1 Representation of Traffic
4.1.2 Assignment
4.1.3 Queue and Delay Model
4.1.4 Blocking-Back
4.1.5 Speed/Flow Relationships
4.2 COMEST
4.2.1 Principles
4.2.2 COMEST/CONTRAM Relationship
4 . 3 RODIN
5.0 SMARTCORRIDOR 38
5.1 Availability of Good Data Base
5.1.1 Supply Parameters
5.1.2 Control Parameters
5.2 Size of the Corridor and Traffic Congestion
5.3 Meeting with City of Los Angeles Department of Transportation and Caltrans
5.4 Pathfinder
6.0 INITIAL MODEL APPLICATION 42
6.1 Linear Test Freeway Segment
6.2 Smart Corridor Freeway Modelling
, 6.2.1 Introduction
6.2.2 Bottleneck Location and Queue Length Pattern
6.2.3 Average Speeds
6.2.4 Overall Summary Measures
6.2.5 Conclusions
7.0 DESIGN OF EXPERIMENT, REFERENCE BASE ASSIGNMENT, SIMULATION AND VALIDATION 59
7.1 Design of Experiment
7.2 Reference Base Assignment and Simulation
7.3 Network Description and Calibration
7.4 Corridor Demand
7.4.1 Initial Origin-Destination Matrix Generation
7.4.2 Use of the COMEST Program
7.4.3 Final Origin-Destination Matrix
7.5 Base Run Validation
7.5.1 Travel Times/Route Choice
7.5.2 Bottleneck Location/Queuing Pattern
7.5.3 Overall Corridor Wide Summary Information
8.0 INCIDENT MODELLING 76
8.1 Incident Scenario
8.1.1 Location
8.1.2 Incident Severity and Duration
8.2 Incident Modelling Within CONTRAM
8.2.1 Methodology
8.2.2 Results
9.0 SIMULATION RESULTS UNDER SEVERE INCIDENT SCENARIO 85
9.1 Methodology: Modelling Guidance Systems in CONTRAM
9.2 Analysis Results
9.2.1 System-Wide Results
9.2.2 Benefits to Guided and Unguided Vehicles
9.3 General Evaluation
10.0 OVERALL ASSESSMENT AND FUTURE RESEARCH 104
10.1 Suitability of CONTRAM
10.1.1 Strengths
10.1.2 Weaknesses -Suggested Improvements
10.2 Weaknesses in Study
10.3 Major Findings
10.4 Future Research

LIST OF FIGURES

3.1 OVERALL STRUCTURE OF CONTRAM \& SUITE OF PROGRAMS 10
3.2 CONTRAM TEST NETWORK 17
3.3 THE SIMULATION AND ASSIGNMENT PHASES OF SATURN 19
3.4 BASIC STEPS USED BY INTEGRATION 25
4.1 ITERATIVE PROCEDURE USED BY CONTRAM 31
4.2 SPEED/FLOW RELATIONSHIP IN CONTRAM 33
4.3 COMEST-CONTRAMRELATIONSHIP 35
4.4 RODIN-CONTRAM RELATIONSHIP 37
5.1 LOCATION MAP - SMART CORRIDOR 41
6.1 LINEAR TEST FREEWAY INFORMATION 44
6.2 SPEED/SHOCK WAVE INFORMATION - MANUAL CALC. 45
6.3 SPEED/SHOCK WAVE INFORMATION - CONTRAM 46
6.4 SPEED FLOW CURVE - TEST FREEWAY (BOTTLENECK) 48
6.5 SPEED/FLOW CURVE - TEST FREEWAY (ONE SS DOWNSTREAM) 49
6.6 NETWORK FOR SANTA MONICA EASTBOUND 51
6.7 DEMAND INFORMATION - SANTA MONICA EASTBOUND 52
6.8 QUEUING PATTERN - FREQ, CONTRAM COMPARISON 55
6.9 SPEED PATTERN - FREQ, CONTRAM COMPARISON 57
7.1 DESIGN OF EXPERIMENT 60
7.2 MAPOFNETWORKMODELLED 61
7.3 ORIGIN-DESTINATION LOCATION MAP 64
7.4 ORIGIN-DESTINATION MATRIX 65
7.5 ORIGIN-DESTINATION DIFFERENCE GRAPH 66
7.6 FINAL DEMAND INFORMATION 69
7.7 TRAVEL TIME COMPARISON (ORIGIN 1 TO DEST. 14) 70
7.8 COMPARATIVE DISTANCE TRAVEL TIME COMPARISON 71
7.9 UFPASCEXAMPLEOUTPUT 73
7.10 QUEUING PATTERN - REFERENCE BASE ASSIGNMENT 74
8.1 QUEUING PATTERN - SLIGHT INCIDENT (EB SANTA MONICA) 79
8.2 QUEUING PATTERN - SEVERE INCIDENT (EB SANTA MONICA) 80
8.3 QUEUING PATTERN - SLIGHT AND SEVERE INC. (FREQ) 81
9.1 PERCENT INCREASE IN AVG. SPEED (NETWORK-WIDE) SEV. INC. 88
9.2 AVERAGE TRAVEL TIME INCREASE PER VEH. SEV. INCIDENT 89
9.3 PERCENT REDUCTION IN TRAVEL TIME (NETWORK-WIDE) SEV. INC. 90
9.4 PERCENT DECREASE IN TOTAL FINAL QUEUES SEV. INCIDENT 91
9.5 ORIGIN-DESTINATION PAIRS EVALUATED 93
9.6 AVERAGE SPEED ORIGIN 5006 TO DEST. 9014 95
9.7 AVERAGE TRAVEL TIME ORIGIN 5006 TO DEST. 9014 96
9.8 AVERAGE SPEED ORIGIN 5001 TO DEST. 9015 97
9.9 AVERAGE TRAVEL TIME ORIGIN 5001 TO DEST. 9015 98
9.10 AVERAGE SPEED ORIGIN 5025 TO DEST. 9014 99
9.11 AVERAGE TRAVEL TIME ORIGIN 5025 TO DEST. 9014 100
9.12 ROUTE CHOICE - GUIDED, UNGUIDED VEHICLES 101

LIST OF TABLES

2.1 PRELIMINARY SCREENING PROCESS 7
5.1 IDEAL SATURATION FLOW RATES 39
6.1 RELATIONSHIP BETWEEN MIN. DIST. HEADWAY AND DENSITY 47
6.2 MAIN FREEWAY EVENTS (FREQ) 53
6.3 MAIN FREEWAY EVENTS (CONTRAM) 54
6.4 OVERALL NETWORK WIDE SUMMARY 56
7.1 CORRESPONDING TIME SLICE DEMANDS 67
7.2 BASE REFERENCE ASSIGNMENT SUMMARY 75
8.1 SLIGHT INCIDENT ASSIGNMENT SUMMARY 82
8.2 SEVERE INCIDENT ASSIGNMENT SUMMARY 83
9.1 SYSTEM WIDE RESULTS - INCIDENT RUNS 87
9.2 AVERAGE SPEED, TRAVEL TIME - O/D PAIRS 102
REFERENCES 109
A P P E N D I C E S 111
Appendix A
Appendix B
Appendix CAppendix DAppendix E

EXECUTIVE SUMMARY

BACKGROUND

The preliminary evaluation of the potential benefits of in-vehicle information systems was conducted by an Institute of Transportation Studies research team in 1988 and 1989 using the computer programs, FREQ and TRANSYT to model the Smart Corridor in Los Angeles, California. Out of that study came recommendations for future research on the need for more realistic simulation of the interaction between the freeway and parallel arterials. A study was conducted in 1990 to assess which models were suitable to evaluate in-vehicle information systems within an integrated freeway/arterial corridor. Twenty-four models were identified as being potentially suitable. Of the 24 models identified, three were recommended for further analysis and application: CONTRAM, SATURN, and INTEGRATION.

OBJECTIVES

The objectives of this study were to select a traffic assignment and simulation model, apply that model to an integrated freeway/arterial network such as the Smart Corridor in Los Angeles, California, and, using the model, make an initial evaluation of in-vehicle information systems and the applicability of the model.

APPROACH

The approach consisted of first evaluating of the CONTRAM, SATURN, and INTEGRATION models and then selecting of one of the models for a detailed analysis of the features which would be best suited to this particular application. The next step was an initial application of the selected model to a generic network and then the Smart Corridor. The final steps in the study were to make an assessment of the model, present major findings of the study, and describe the potential for future research.

RESULTS

After review of the CONTRAM, SATURN, and INTEGRATION models, the CONTRAM model was chosen for further evaluation. Since the CONTRAM model was primarily developed for use in the design of traffic management schemes for urban signalized arterial networks, further analysis into the models ability to model freeway congestion was necessary. In order to gain a more clear understanding of the freeway modelling characteristics within CONTRAM, several test networks were designed and evaluated and as a result problems were discovered regarding the ability of the model to accurately reflect freeway congestion. However, an analysis ensued to evaluate the potential benefits of in-vehicle
information systems. The results of the study should be viewed with some caution due to difficulties with the freeway modelling characteristics of CONTRAM, as well as weaknesses within the characteristics of the network and structure of the demand pattern. The results are best considered in a qualitative manner with the findings being, the more vehicles that are equipped with in-vehicle information, the better the system performance. For a severe incident condition on the freeway, as the percentage of vehicles equipped with information increases, the performance of the system improves until the system is at a level of performance that is only slightly less than that before the incident occurred.

1.0 INTRODUCTION

This report describes the results of the study team's efforts to:

1) select a traffic assignment and simulation model;
2) apply that model to an integrated freeway/arterial network such as the Smart Corridor in Los Angeles, California; and,
3) using the model, make an initial evaluation of in-vehicle information systems and the applicability of the model.

1.1 Background

As traffic congestion increases worldwide, attempts are being made at improving the efficiency of the existing systems through the use of information available through computers. Past research has indicated that up to $\$ 45$ billion per year is lost due to excess travel time which could be recovered if there was a more efficient transportation system that used navigational systems [1].

Several researchers have attempted to make a quantitative assessment of in-vehicle information systems [2]. Most previous studies have been network specific, i.e., the benefits of in-vehicle information systems were related only to the network in question. This holds true for this particular application as well. For this study, the integrated freeway/arterial network chosen for modelling was the Smart Corridor in Los Angeles, California.

1.2 Purpose

The purpose of this study was to select an appropriate traffic assignment and simulation to evaluate invehicle information systems. After the appropriate model was selected, an initial application to the Smart Corridor was conducted and a second and third application were undertaken to simulate an incident on the freeway. Varied percentages of in-vehicle information systems were then modelled which permitted an initial evaluation of the applicability of the model.

1.3 Scope and Study Approach

Based on previous research (Al-Deek, Martello, Sanders and May [3]), it was determined that an equilibrium model combining traffic simulation, control, and assignment was desirable for evaluating the potential benefits of in-vehicle information systems in an integrated freeway/arterial corridor. Thus, a study was begun to evaluate the models available for the task of evaluating in-vehicle information systems. This project is an extension of the original work by May in 1986 [3].

Chapter 2 of this report outlines the history and background of this and previous studies. Chapter 3 describes the evaluation of the CONTRAM, SATURN, and INTEGRATION models. Chapter 4 discusses in more detail the features in CONTRAM that were best suited for application in this study. Chapter 5 describes the Smart Corridor and the features that made it particularly attractive to be used in the modelling process. Chapter 6 describes the initial applications of the CONTRAM model to both a generic freeway segment, and the freeway segment to be used in the entire corridor. Chapter 7 outlines the design of the experiment and how a reference-base-run assignment was derived. Chapter 8 gives a description of incident modelling within CONTRAM. Chapter 9 presents the analysis findings and results, while Chapter 10 summarizes an assessment of the model and the modelling effort and discusses the potential for future research.

2.0 PREVIOUS RESEARCH

Since the early 1980's much research has been conducted in the area of in-vehicle information systems [4-9]. One of the primary objectives of much of this research has been to provide a quantitative assessment of in-vehicle information value in a real-world freeway corridor under recurring and nonrecurring congestion.

$2.1 \quad$ 1987-1989

The history of this study dates back to 1987. PATH Research Report UCB-ITS-PRR-88-2[3] details the initial attempts at understanding the Potential Benefits of In-Vehicle Information Systems in a Real Life Freew ay Corridor under Recurring and Incident-Induced Congestion. This initial attempt was conducted using the simulation models FREQ and TRANSYT-7F. The Santa Monica freeway corridor was simulated based on data collected by the Los Angeles Department of Transportation and Caltrans from 1984 to 1988.

Since TRANSYT-7F and FREQ do not perform traffic assignment, a network model was developed called PATHNET. PATHNET was utilized to determine the travel times for the shortest path between any origin and destination point in the network or for any other path in the network. PATHNET is a prototype version of a generalized network analysis package. PATHNET prints a report listing the links in the minimum-cost path and the cumulative route cost for each link. Thus, the research team was able to assess the potential benefits by comparing travel times between different origin and destination pairs under different scenarios.

The results of the study were as follows [3,10-11]:

- under the recurring, non-incident congestion scenario, the travel time savings were generally negligible (less than three minutes for a 20-25 minute trip);
- under the non-recurring, incident congestion scenario, travel time savings were found to be significant (greater than three minutes);
- the greatest travel time savings occur during the time slices following the introduction of a freeway incident.

One recognized weakness with the earlier study was the fact that the user equilibrium issue was not addressed. To address this weakness, a traffic assignment model which combines traffic assignment with
simulation was chosen as the tool for evaluation which achieves user equilibrium through each assignment. Thus, the first objective of this study was to find a model that could model an integrated freeway/arterial network and also combine traffic assignment with simulation.

$2.2 \quad$ 1989-1990 RESEARCH

The 1989-1990 research focused on the modelling approaches for evaluating advanced traffic control strategies and in-vehicle information systems within an integrated network of traffic signals and freeways. Efforts included a literature review of candidate freeway/arterial models. An assessment of model suitability was carried out in order to determine if any existing model would be potentially suitable, the specific modifications needed to be included in a reasonable level of effort, or the specifications that would be required for developing a new model.

The approach consisted of a literature review and preliminary assessment of candidate models, an in-depth evaluation of the most promising models, and the selection of a few models for further analysis and testing. The literature review resulted in the identification of twenty-four candidate models, classified into four categories:

1) Transportation planning models: MINUTP, Tmodel, TRANPLAN, CARS, MICROTRIPS, EMME2, MULATM;
2) Freeway operation models: FREQ, INTRAS, MACK-FREFLO-FRECON, KRONOS, FREESIM, ROADRUNNER;
3) Signalized network operation models: TRAFFICQ, MICRO-ASSIGNMENT, SATURN, CONTRAM, JAM;
4) Freeway/arterial operation models: CORQ1C, SCOT, TRAFLO, DYNEV, CORQCORCON, INTEGRATION.

A preliminary screening process (summarized in Table 2.1) indicated that only five of the models chosen were capable of simultaneously performing traffic assignment and traffic simulation under oversaturated conditions, which were considered as two essential features for the purposes of this study. For three of these models (INTEGRATION, SATURN and CONTRAM), an in-depth evaluation was carried out, including tabular summaries of the characteristics of each model, rating of the performance of each model and the corresponding strengths and weaknesses, and a discussion on model suitability with regard to our application. A final report describing the 1989/1990 activities was published in June 1990 [12]. It was

TABLE 2.1
PRELIMINARY SCREENING PROCESS

MCOEL	OPERATING ENVIROMAEXT			TRAFFIC ASSIGMENT	$\begin{gathered} \text { कUEUING } \\ \text { CowITIONS } \end{gathered}$
	Freeway	Corridor	Arterial		
1) Cars	x	P	P	x	
2) EMME2	x			x	
3) MICROTRIPS	x			x	
4) MINUTP	x			x	
5) MULATM	P	P	P	x	P
6) TMOOEL	x	p	P	x	
7) TRANPLAN	\times			x	
8) FREESIM	x				
9) FRED	x	p		p	x
10) INTRAS	x	p	P		
11) KRONOS	x				x
12) MACX-FREFLO	x				x
FRECCN2	. x	x	P		x
13) ROADRUNNER	x				
(14) CONTRAM	p	P	x	\mathbf{x}	x
(15) JAM	P	p	\times	x	x
(16) MICRO-ASSIGNMEST			X	X	P
17) SATURN	P	p	X	x	x
(18) TRAFFICO			x		x
(19) C0Ro1C	X	x	x	x	P
120) CORO-CORCON	x	x	x	x	x
121) DYNEV	x	x	x	x	
(22) INTEGRATION	X	x	x	x	x
23) SCOT	x	x	x	x	
24) TRAFLO	x	x	x	x	1

recommended that the three selected models be acquired in order to perform a hands-on experiment and assessment.

3.0 MODEL EVALUATION

The main features of the CONTRAM, SATURN and INTEGRATION models are highlighted in this chapter and a demonstration of SATURN and CONTRAM is described.

3.1 CONTRAM

CONTRAM is a traffic assignment model developed by the Transport and Road Research Laboratory for use in the design of traffic management schemes in urban areas. CONTRAM5 (Continuous Traffic Assignment model Version 5) is the latest version of the CONTRAM program which was originally written in the early 1970s. Given the traffic demands between origins and destinations for a network, it predicts routes of vehicles and flows and queues on links. It is a capacity restrained model which takes account of the interactive effects of traffic between intersections and the variation through time of traffic conditions. In particular, CONTRAM models the build up and decay of congestion such as occurs during peak periods.

3.1.1 Basic Structure [13]

The overall structure and suite of programs in CONTRAM is outlined in Figure 3.1. The inputs are the network data, the traffic demand data, and the control data. The bases of the program are the assignment process, which calculates and stores vehicle route information, and the calculation through time of the delays on links derived from the flows and queues of vehicles.

3.1.2 Input Data Requirements [13]

The three major components of input to the model are the network and time data, the demand data, and the control data. The following pages outline the characteristics of these three areas.

3.1.2.1 Network and Time Data

This defines the period to be simulated and the geometric properties of the network. The following provides a description of the basic card types used in the CONTRAM model.

FIGURE 3.1
OVERALL STRUCTURE OF CONTRAM
\& SUITE OF PROGRAMS
INPUTS

y

UFDESC

Card type 1 is the time card which defines the duration of the simulation period and the time intervals into which the period is divided. The maximum number of time intervals is 13 while the maximum duration of a simulation period is eight hours.

Card type 2 defines the general parameters of the network. It sets the values of certain network parameters used for the estimation of storage capacity on a link, to specify signal lost time for capacity calculations and to select the separate calculation of geometric delay at intersections.

Card type 3 defines the links to which an origin is connected.
Card types 4,5 , and 6 define the type of control used at link junctions. Card type 4 represents an uncontrolled link. It gives detail required for an uncontrolled link: cruise time (or cruise speed, or speedflow relationship to be used), length, saturation flow, storage capacity. Card type 5 represents give-way links. Card type 6 represents signal-controlled links and has the same basic requirements as card type 4 plus percentage green and delay factors.

Card type 7 defines the speed-flow relationships. Speed/flow relationships have been incorporated to be used on roads where cruise time is a significant proportion of total time, e.g. on urban freeways and other limited-access high speed urban roads. The effect of a speed/flow relationship is in addition to explicit queuing at the downstream end of the link to which it applies. The general form of speed/flow relationships used by CONTRAM consists of two linear sections of different slope. The exact form is determined by entering as data three points:

1) the free speed, where flow is zero
2) the break point, where the slope changes
3) the capacity point, which is a point through which the second section passes.

Card type 8 is the change of mind card, which allows the user to vary values of a parameter without changing the original data cards.

Card type 9 defines the vehicle classes used in the simulation. The card specifies passenger car unit equivalents and relative cruise times for each vehicle type. The model distinguishes three classes of vehicle, car, bus, and trucks.

Card type 10 defines the coefficients of the fuel model, which is based on the following formula for fuel consumption per unit distance at steady speed V:

$$
F=A+(B / V)+\left(C * V^{2}\right)
$$

Card types 11 and 12 allow the saturation flow value on a link to be varied from time interval to time interval, for example to allow the effect of an accident to be simulated.

Card type 13 allows the calculation of a geometric delay due to deceleration and acceleration at an intersection. CONTRAM 5 provides the option to calculate the geometric delay explicitly for each separate turning movement.

Card types 14,15 and 16 set the speeds for turning movements out of individual links.

Card type 18 defines the range of allowed destination numbers.

3.1.2.2 Traffic Demand Data

The traffic demand data specifies the flow rate during each time interval for each origin-destination movement. The traffic demand for each origin-destination movement in a network is specified as a series of flow rates (veh/h) for each time interval. For a given O-D pair, one data card is used for each classified vehicle demand (C, B or L). The card also contains:

- the packet size, which can be generated automatically;
- the "straight-line" distance between the origin and destination (optional);
- the start-code (time of start of the first packet from the O-D demand to enter the network in the first time interval).

It is possible to model the movements of more than one demand for the same class of vehicle, between the same origin and destination, by using separate cards, or the change of mind card. The change of mind cards can be used to change specified flow rates.

3.1.2.3 Control Data

The data in the control data pack has two control functions. The first, describing the running of the program, defines the number of iterations to be carried out and the types of output required. The second provides the additional data required for signalized intersections. The data required for vehicles with fixed routes are also specified in this pack.

- Card type 50: Maximum number of iterations

Selection of outputs:

- Card type 51: Network summary information for assessing convergence
- Card type 52: Change in vehicle arrivals - convergence matrix
- Card type 53: Link-by-link data - all parameters
- Card type 54: Link-by-link values - flows, queues, queue times, average speeds
- Card type 55: Measure of fairness
- Card types 56 and 57: Output of turning movements
- Card type 58: Alternative units of measurement
- Card type 59: Alternative file units for results
- Card type 60: Control of algorithms (used to select variable or constant packet size)
- Card type 154: Selection of tables in output

Cost parameters are specified by the following card types:

- Card type 61: Perceived cost output units
- Card type 62: Perceived cost functions
- Card types 63 and 64: Resource cost functions

The perceived cost is the cost that is perceived by drivers which they seek to minimize by their route choice. The resource cost is assumed to represent the real cost of travel and in CONTRAM, is purely an output quantity which has no effect on route choice. In CONTRAM, the functional form of both perceived and resource cost is $C=A d+B t+\mathrm{Cv}^{2 *} d$ which expresses cost C in terms of distance d, time t and average speed v.

Additional signal data can be specified by the following card types:

- Card type 70: Common signal coordination factor
- Card type 71: Signal plans - fixed cycle/fixed splits
- Card type 72: Signal plans - fixed cycle/optimized splits
- Card type 73: Signal plans - optimized cycle/optimized splits
- Card type 77: Intersection signal plans schedule

Fixed route data can be specified by the following card types:

- Card type 81: Specification of fixed routes
- Card type 85: O-D movements having fixed routes

3.1.3 outputs [13]

There are six forms of output, any selection of which can be called by the appropriate card types 51 to 56.

3.1.3.1 Summary Information

The data provided for each time-slice are as follows:

- Total Journey-time (veh.h)
- Total Distance Travelled (veh.kms)
- Overall Network Speed (km/h)
- Total Final Queues (veh)
- Fuel Consumption (litres)
- Total Link Counts (veh)

3.1.3.2 Convergence Monitor

The purpose of these printouts is to provide data for assessing convergence. The convergence indicators are, for all iterations, the total journey-time, the total distance travelled, and the changes in initial queues plus arrivals on links.

3.1.3.3 Link-by-Link Values (All Parameters)

These data contain, for each time slice, the values of the following parameters:

- Link entry flow (veh);
- Mean initial queue (veh): number of vehicles queuing on the link at the start of the time slice;
- Vehicle arrivals (veh): number of vehicles in each class reaching the stopline on the link in the time slice;
- Departures from queue (veh): number of vehicles which leave the link in the time slice;
- Mean final queue (veh): number of vehicle queuing on the link at the end of the time slice;
- \quad Spare throughput capacity (veh): difference between the maximum throughput capacity of the link and the number of vehicles which leave the link in the time slice;
- Mean PCU factor (Passenger Car Units);
- Rho = ratio of arrivals to capacity at stop line, to be used in place of degree of saturation;
- Mean total and queue time per vehicle (secs);
- Total delays by source (free moving, flow-delay or queuing) (veh.h);
- Percentage of occupancy;
- Measure of the number of stops, as a percentage of arrivals;
- An estimate of the efficiency of signal coordination.

The following information is necessary for signal controlled links:

- Plan type
- \quad Cycle time (secs)
- Green time (secs)

The following network totals for each time interval are printed out:

- Total times by vehicle class (veh.h)
- Total distances travelled (veh.km)
- Total fuel consumption (litres)

3.1.3.4 Link-by-Link All Intervals Tables

The following lists the tables that can be output for each time slice:

- Arrivals (veh/h)
- Capacities (veh/h)
- Mean final queues (veh)
- Mean queuing times per vehicle (sec)
- Mean travel times per vehicle (sec)
- Total delay (veh-hr)
- Average speed of a car (km / h)
- Generalized costs

3.1.3.5 Point to Point Speeds

This output indicates the variation with time of the average straight-line speed (km / h) for selected O-D movements.

3.1.3.6 Turning Movements: For Selected Intersections or For All Links

These data provide detailed information for all time slices of turning movements. The first form of this option is intersection-oriented and contains additional information on flows, signal timings, final queues, and mean queue time for the links feeding the intersection. The second form provides turning movements from all links without any additional information.

3.1.4 Demonstration [14]

3.1.4.1 Test Network

The test network shown on Figure 3.2 has been designed to demonstrate the use of the facilities in CONTRAM [14].

3.1.4.2 Input Data Files

TEST.NET (Appendix A): Network and Time Data
TEST.DEM (Appendix A): Traffic Demand Data
TEST.CON (Appendix A): Control Data

3.1.4.3 Running the Program

The main executable program is called CONTRAM7.EXE. The command CONTRAM7 TEST is used to run the program with the TEST data files.

3.1.4.4 output

Three output files are created:

1) TEST.RES (Appendix A): Normal Results file (printer file)
2) TEST.RTE (Appendix A): Vehicle Route file (detailed information for each packet path)
3) TEST.PAF: Post Analysis Output File

- Demonstration of UFPASC (User Friendly Post Analysis System for Contram)

Input: TEST.PAF Post Analysis file
TEST.RTE Vehicle Route file

FIGURE 3.2
CONTRAM TEST NETWORK

Output: OUTPUT1 (Appendix A)

- Demonstration of UFDESC5 (User Friendly Data Entry System for Contram)

Input: TEST.NET or TEST.DEM or TEST.CON

- Demonstration of COMEST (Constrained O-D Matrix Estimation)

Input: X2.OBS Observed link counts
X2.RTE Assigned routes and flows in CONTRAM type packet route format
X2.CON Control file

Output: X2.RES Results file

3.2 SATURN

SATURN (Simulation and Assignment of Traffic to Urban Road Networks) is a computer model developed at the Institute for Transportation Studies, University of Leeds, for the analysis and evaluation of traffic management schemes over relatively localized networks (typically of the order of 100 to 150 intersections) [15]. It is primarily intended to be used as a highly sophisticated traffic assignment model. This sophistication is due to a highly detailed simulation of delays at intersections. Unlike conventional assignment models, SATURN places great emphasis on intersections and specific turning movements as opposed to links.

3.2.1 Basic Structure

The basic structure of SATURN incorporates two phases, as shown in Figure 3.3, a simulation and an assignment phase [15].

Figure 3.3
The Simulation and Assignment Phases of SATURN

3.2.1.1 The Simulation Model [15]

The primary objective of the simulation is to determine intersection delays resulting from a given pattern of traftic. Two fundamental assumptions are made to do this:

1) A traffic pattern is constant for time periods of 15 or 30 minutes;
2) A cyclical behavior is imposed on the flows by traffic signals operating with a common cycle time of typically 60 to 120 seconds.

The first assumption restricts analysis to the average behavior of the system within the given time period. However, a quasi-dynamic analysis of traffic patterns may be carried out by modelling a series of successive 15 or 30 minute time periods. By changing the trip matrices for each time period, one can follow, for instance, the growth and decay of traffic over a morning or evening peak period.

The second assumption permits concentration of the simulation effort on one cycle, where traffic is represented as semi-continuous flow profiles, as opposed to individual vehicles or packets of vehicles.

3.2.1.2 The Assignment Model [15]

The simulation model is used to model the flow-delay curves by calculating the delays for each turning movement at zero flow, current flow and capacity, with all other flows (i.e. opposing traffic) fixed.

The model assumes that:

1) the travel time of each link is fixed independent of flow
2) the delay of each turning movement at an intersection is a function of that turning volume.

The flow-delay curves determined by the simulation are fed to the assignment. The objective of the assignment phase is to select minimum time routes through the network for each element in the trip matrix. The model uses an equilibrium technique which optimally combines a succession of all-or-nothing assignments.

3.2.1.3 The Complete Model [15]

As shown in Figure 3.3, the complete model is based on an iterative loop between the assignment and simulation phases. Although described as two separate phases, SATURN appears as a single program for the user. The simulation and assignment stages can be run automatically without user intervention until either convergence has been achieved or a specified number of iterations performed.

3.2.2 Input Data Requirements [15]

Two distinct forms of data input are required. The first is an O/D trip matrix representing the period of interest, or a set of trip matrices. The second is network data.

3.2.2.1 Trip Matrices

The O/D trip matrix is conventional in most respects, but a very fine zoning system is often required in order to perform detailed modelling. The accuracy of the assigned flows will depend critically on the validity of that matrix. The traditional techniques to gather a O/D matrix are direct observations, such as roadside interviews or license plate surveys. However, these techniques are expensive in terms of manpower and data processing, as well as being subject to errors.

To overcome these problems, at least partially, SATURN makes use of a technique which was also developed at the Institute for Transportation Studies, known as ME2. The technique is based on the principles on entropy maximization; in essence, ME2 calculates the most likely trip matrix consistent with all the available information, which may be, in the simplest case, a limited number of traffic counts. Since link counts, as opposed to O/D trips, can be obtained quickly, cheaply and accurately, the method is extremely attractive. ME2 has been an essential component in virtually every application of SATURN to date.

3.2.2.2 Network Data

As usual, the road network is described graphically as a set of nodes and connecting links. SATURN allows networks to be coded at two levels of detail:

1) an "inner" or "simulation" network which is coded and simulated in detail, restricted to 100-150 intersections; and
2) an "outer" or "buffer" network coded in much less detail, in a conventional link-based detail.

Since SATURN assumes that virtually all delays to traffic occur at intersection, the simulation network coding is primarily intersection-based. The user is required to supply for each intersection:

1) A node type (basically signals, priority or roundabout);
2) The travel distances and times (or speeds) from the previous intersection for each entry arm;
3) The number of lanes on each entry arm;
4) For each permitted turn, the lanes used and the saturation flow;
5) Information on whether one stream of traffic takes priority over any other;
6) The phase structure of all traffic signals (cycle times, offsets, green splits between different turns, etc.).

3.2.3 Outputs [15]

3.2.3.1 Assignment Stage

Outputs from the SATURN assignment stage are essentially conventional, e.g. flows and travel times for both links and turns plus various aggregate measures such as average speeds, total vehicle-kilometers, interzonal travel times, etc.

3.2.3.2 Simulation Stage

Mostly intersection-based, the information provided by the simulation phase is far more detailed. It includes:

1) Capacities, average delays, and average queues for each individual turn;
2) Cyclical flow profiles, as in TRANSYT;
3) The rate of growth of any permanent queues at over-capacity intersections;
4) Estimates of the number of vehicle stops at each intersection (these estimates are used in estimates of fuel consumption);
5) Separate performance measures for buses.

One of the basic programs which comes with the SATURN suite, SATLOOK, allows the user to look directly at delays, queues, etc., at a selected intersection, as opposed to having all possible data output to the line printer following each run.

3.2.4 Demonstration [16]

The basic model has six components:
-SATNET: Network Build Program

- SATASS: Assignment Program
- SATSIM: Simulation Program
- SATLOOK: Analysis Program
- SATED: Network Editing Program
- P1: Network Plot Program

The demonstration was made in the following way:

1) Build the trip matrix

Command: MI LIVTRIPS
Printer Output: LIVTRIPS.LPM (Appendix B)
2) Build the network

Command: SATNET LIVNET
Printer Output: LIVNET. LPN (Appendix B)
3) Run first assignment

Command: SATASS LIVNET LIVTRIPS
Printer Output: LIVNET.LPA (Appendix B)
4) Run first simulation

Command: SATSIM LIVNET LIVNET1
Printer Output: LIVNET1.LPS (Appendix B)
5) Run second assignment

Command: SATASS LIVNET1 LIVTRIPS
Printer Output: LIVNET1.LPA

The process may then be repeated to convergence.

3.2.5 References

The following applications have been reported:

- Harrogate, North Yorkshire, England [17]

1980, 45 nodes, 24 zones
Ref: Traffic Engineering \& Control, April 1980

- Liverpool, England [18]

1982, 818 nodes, 106 zones
Ref: Traffic Engineering \& Control, January 1983

3.3 INTEGRATION [19]

INTEGRATION is a traffic model developed at Queen's University in Kingston, Canada to evaluate the operation of integrated freeway/traffic signal networks during periods of recurring and non-recurring congestion.

The INTEGRATION modelling approach consists of a discrete simulation that traces the path of each vehicle throughout the network. The links that a vehicle uses are selected in accordance with its estimate of the best route, and, along its path, each vehicle's route is further adjusted in view of any changes in the prevailing traffic congestion and traffic controls.

The self-assignment capability circumvents the need to use either an explicit time slice or iterations during the traffic assignment. Consequently, one can consider continuously variable traffic demands and controls, both freeway and signalized networks, as well as any links that join them.

3.3.1 Basic Structure [19]

Figure 3.4 provides an overview of the main steps within the modelling approach and indicates that it basically consists of four stages. The first stage sets up the model by generating the configuration of the network (link-node structure) and specifying the traffic demands (O-D demands). The second stage performs the actual simulation of traffic flows; it enters vehicles into the network; routes them through it; and then remove them upon reaching their destination. This second phase frequently interfaces with the third, which updates the dynamic parameters of the network, and may provide intermediate statistics or graphics. Lastly, the fourth stage generates any final statistics.

Insert Figure 3.4

Figure 3.4 also illustrates that the main simulation consists primarily of a loop, which steps through time in increments of a decisecond. Within this loop, checks are made to see if any vehicles are eligible to enter the network or to be moved forward within it. In addition, checks are made to determine if minimum path trees should be updated or any intermediate statistics provided.

3.3.2 Input Data Requirements [19]

The model requires five basic inputs:

1) Node coordinates file
2) Link descriptor file
3) Traffic demand file
4) Signal timings file
5) Incident descriptor file

3.3.2.1 Node Coordinates File

This file is used to describe the $\mathrm{x}-\mathrm{y}$ location of the nodes. The coordinates are utilized primarily for purposes of displaying the network and its attributes during the progress of the simulation, but they can also be used to assist in the computation of approximate link lengths.

3.3.2.2 Link Descriptor File

This file provides the attributes of each link that joins the above nodes. The primary data required in this file are:

- \quad link length (meters)
- number of lanes (integer)
- saturation flow per lane (veh/hour/lane)
- saturation flow reduction coefficient for congested conditions (ratio $=$ congested saturation flow/uncongested saturation flow)
- number of traffic signal controlling the link, if any
- \quad signal phase number (phase during which the signal has effective green)
- \quad link descriptor label (character string)

3.3.2.3 Traffic Demand File

The traffic demand to be applied to the network is expressed to the model as a series of origin-destination flow rates for a user-specified time period.

The model internally translates these flow rates into corresponding individual vehicle departures during the specified 'time period.

3.3.2.4 Signal Timings File

This file identifies the signal control logic that is to be used to set or modify the signal timings at any signalized intersections or ramp meters in the network. This file provides the initial timings as well as the signal timing constraints that cannot be violated by the traffic signal optimizer, if utilized:

- initial, minimum and maximum cycle time (sec)
- offset of phase 1 relative to absolute clock (sec)
- number of phases at intersection (integer)
- phase start/end time and associated lost time

3.3.2.5 Incident Descriptor File

This file indicates the number of incidents that are to be modelled, their severity and duration. Multiple consecutive or concurrent incidents can be modelled. The incident severity is specified as an effective reduction in the number of lanes, while the incident duration is specified in terms of the start and end times of the incident with reference to the master simulation clock.

3.3.3 outputs [19]

At the conclusion of the simulation run, the model produces two types of summary outputs. The first provides user-oriented statistics on the trips between each origin-destination (Appendix C). The second provides system-oriented statistics on the operation of each network link (Appendix C). INTEGRATION was not tested as a copy of the program was not available at the time the evaluations were conducted in November 1990. However, the model is now available.

3.4 MODEL SELECTION

Based on an evaluation of the test runs and further evaluation of previous applications of each of the models, it was determined that CONTRAM was best suited for this particular application. This is not a negative reflection upon the other two models, as both other models could have been used for this project as well. Chapter 4 describes in greater detail the features of CONTRAM that made it most attractive for 'this application.

4.0 FEATURES OF CONTRAM RELEVANT. TO THIS APPLICATION

CONTRAM 5 is the latest version of the Transport and Road Research Laboratory's traffic assignment program which models time-varying traffic demands on urban and other road networks subject to capacity constraints, and predicts the variation through time of the resulting routes, queues and delays. This chapter summarizes the main features of the model relevant to our specific application.

Two programs, COMEST and RODIN [20], used in our study in relation with CONTRAM are also discussed in this chapter.

4.1 CONTRAM 5

4.1.1 Representation of Traffic

The traffic, for each Origin-Destination movement, is handled in groups called packets. Each packet consists of an integral number of vehicles of the same type, typically in the range 1-20, assigned at the same time between the same origin and destination. The grouping of vehicles into packets can be regarded, for assignment purposes, as a process in which the behavior of one vehicle in a packet is taken as typical of the behavior of the other vehicles in that packet.

The default mode of packet generation in CONTRAM 5 is variable packet size. This means that packet size can be adjusted up to a certain maximum value, so as to match the demand specified in the O-D data. The maximum packet size for each O-D movement can be specified in the data or calculated automatically (subject to an optional scaling factor or an optional upper limit). The optimum choice of packet size is necessarily a compromise:

- Large packet sizes require fewer assignments leading to shorter run time, but produce a grainy loading and possibly an unrealistic assignment;
- \quad Small packet sizes tend to give a better representation of the demand flow profile.

4.1.2 Assignment

The method of assignment in CONTRAM 5 is a modified form of Dijkstra's algorithm which at any point on a route seeks to minimize the sum of the actual cost from the origin to that point and an estimate of the minimum cost from that point to the destination. Packets are assigned to their minimum cost routes
by an iterative procedure shown in Figure 4.1. After the initial loading iteration the sequence of operations for assigning each packet is:
(i) Remove the increment of flow, due to the packet, from the flows stored for each link (in the appropriate time intervals) for the route taken by the packet in the previous iteration;
(i i) Recalcula e the queues on links affected by the previous route of the packet;
(iii) Assign the packet to its new minimum cost route;
(iv) Add the flow due to the packet to the links on the new route and recalculate the queues affected by the new route;
(v) Take the next packet and repeat steps (i) through (iv).

The updating of flows and queues on links and the recalculation of delays for the reassignment of each packet is made for the appropriate time intervals during which a packet travels along each link of its journey. The procedure for loading and assigning traffic combines progressive and incremental loading techniques. Although the assignment procedure for an individual packet is all or nothing, it is not all or nothing overall, since different packets for the same O-D movement can be assigned to different routes in response to changes in traffic conditions throughout the period modelled.

4.1.3 Queue and Delay Model

CONTRAM 5 calculates the lengths of queues using time-dependent stochastic queuing theory. Random-and-oversaturation queues are calculated using the queue formulae developed by Kimber and Hollis (1979) and Kimber and Daly (1986), and other formulae are used to calculate queues due to signals. Vertical queuing is assumed, i.e., the queuing process is formally defined as occurring at the stop line.

Queuing models are compatible with those employed by the intersection modelling programs ARCADY2, PICADY2 and OSCADY2 (Semmens 1985 a,b, Burrow 1987). A queue is calculated either for a particular moment within a time slice, such as the arrival time of a packet, or for the end of a time slice, to provide a size for the initial queue in the next time slice. The size of the queue depends on five variables:

1) the initial queue at the start of the time interval;
2) the mean vehicle arrival rate;

FIGURE 4.1
ITERATIVE PROCEDURE USED BY CONTRAM

3) the throughput capacity (average flow rate at which vehicles discharge from a queue on a link);
4) the length of time during which the queue develops;
5) the intersection type.

4.1.4 Blockirig-Back

Blocking-back occurs when the queue of vehicles on a link extends back to the previous links, thereby blocking free access to the link from the upstream links. The net effect is to reduce the throughput capacity of the upstream links as long as the blocking-back condition persists.

The basis of the blocking-back mechanism is as follows: since the CONTRAM model is based on vertical queuing at a stopline, the onset of blocking-back on a link is detected by comparing the equivalent length of the queue with the storage capacity of the link (number of vehicles which can be stored on the link). The comparison is made immediately after each packet has been assigned to its new route, for each of the links along the packet's route working backwards from the destination to the origin. If the queue on a link calculated, using the current arrivals, is found to exceed its storage capacity, then the throughput of the upstream link is reduced to match the sum of the initial queue on the link and the current arrivals at the stop line, for the rest of the time interval for the remainder of the iteration.

4.1.5 Speed/Flow Relationships

Speed/flow relationships are intended to be used in CONTRAM for two main purposes: to represent cruise speeds on high-speed and limited access roads; and to take account of the aggregate effect of delays in buffer networks, i.e., parts of a network which need not be modelled in detail but which may affect traffic alignment in the areas of main interest.

The effect of a speed/flow relationship is in addition to any delay due to explicit queuing at the downstream end of the link to which it applies. The relatively simple, time-independent, form assumed for speed/flow relationship, presumes that traffic is free-flowing or well under saturation so that any queuing effects can be subsumed by the relationship. The speed/flow relationships are not intended to model congestion.

CONTRAM 5 uses COBA-type speed/flow relationships whose general form consists of two linear sections of different slope (see Figure 4.2). The exact form of each relationship is determined by entering as data three points through which it passes:

FIGURE 4.2
SPEED/FLOW RELATIONSHIP IN CONTRAM

V_{0} - The free speed where flow is Zero
$V_{8}-$ The break point speed where the slope of the line changes
V_{C} - The capacity point, which is the highest level of traffic flow observed
$V_{M}-\quad$ The speed at which the inter-vehicle headway equals minimum distance
$Q_{B}-\quad$ The break point flow
QC - The capacity flow

1) the free speed (where flow is zero);
2) the break point (flow and speed) where the slope changes;
3) the capacity point (flow and speed) which is a point through which the second section passes.

This last point need not actually represent capacity but it is convenient to identify it with the highest level of traffic flow that has been observed. A minimum speed cut-off can also be entered.

4.2 COMEST

COMEST stands for Constrained O-d ESTimation. Its purpose is to fit a time-varying origin-destination matrix to a set of observed link counts and set of routes.

4.2.1 Principles

Due to the difficulty of obtaining detailed origin-destination information, a synthetic O-D matrix generation technique must be used. The COMEST program uses a combination of entropy maximization (Van Zuylen and Willumsen, 1980) and Furness-type balancing (Maher, 1987) to achieve its objectives. The latter acts as a constraint on the way individual O-D flows change so avoiding bias due to the number of times each O-D is counted.

4.2.2 COMEST/CONTRAM Relationship

COMEST is designed to be used with CONTRAM-type data files in which time-variation is represented by specifying O-D and link counts in up to 13 consecutive time slices. A flow diagram of the operation of COMEST in relation with CONTRAM is shown in Figure 4.3.

COMEST loads three sets of data in sequence:

1) a set of control parameters;

.RELATIONSHIP BETWEEN COMEB'T AND CO\TRAM

2) a set of target link counts, which may be time-dependent and disaggregated by the three CONTRAM vehicle classes;
3) a set of prior O-D movements and routes, in the form of a CONTRAM-type route file containing the routes and times of a number of packets.

4.3 RODIN [20]

RODIN is an external software developed by Nick Taylor (TRRL) and intended to be used in relation with CONTRAM to simulate route guidance. This program converts a packet route file output by CONTRAM into an O-D matrix and a set of routes which it embeds as fixed routes in a copy of the network file. The O-D movements are duplicated and each set is preceded by a percentage multiplying or split factor.

When rerun using the new network and O-D files as data, the first set of 0-Ds is assigned on the fixed routes (i.e. along the original routes), while the second set is assigned to minimum cost routes in the usual way. This provides a framework in which experiments involving two user classes (guided and unguided vehicles) can be performed.

The use of RODIN in relation with CONTRAM is highlighted in Figure 4.4. RODIN is designed to perform the basic operations described above. In addition to these functions, it provides:

- a choice of methods for setting packet sizes;
- alternate vehicle class for the second set of 0-Ds;
- randomization of the output O-D counts.

FIGURE 4.4
RODIN-CONTRAM RELATIONSHIP

5.0 SMART CORRIDOR

Five key factors led to the decision whereby the Smart Corridor in Los Angeles, California would be used as the integrated freeway/arterial network in the CONTRAM simulation of the potential benefits of in-vehicle information systems.

1) The availability of a good database in terms of traffic counts, arterial geometric considerations, average arterial and freeway travel times, and freeway capacity calibrations.
2) The size of the corridor and the fact that the corridor is experiencing traffic congestion and incidents occur regularly.
3) The interest and continued assistance of CALTRANS and the City of Los Angeles Department of Transportation.
4) The Pathfinder in-vehicle motorist information and road navigation project that is currently underway within the corridor.

5.1 Database

As mentioned previously, this project is a continuance of an earlier project [3]: the database used in the earlier project provided the vast majority of information used in setting up the CONTRAM model. Due to time and resource constraints, and since the earlier project had only evaluated the morning peak period, it was determined that the morning peak period would be used in all analyses. The morning peak period captures mostly work trips; therefore, people are typically more time conscious. Additionally, the morning peak period provides a more defined peak period as well as the fact that the arterials have more available capacity in the morning peak hours. Demand data was provided to the earlier research effort by the City of Los Angeles Department of Transportation and Caltrans.

5.1.1 Supply Parameters

To properly code the network into the CONTRAM model it was important that the supply side of the Smart Corridor be coded properly. These supply parameters consist of the link distance, the cruise speed on each link, and the number of lanes and the ideal saturation flows per link for each intersection approach. The saturation flows used on each link were a result of the earlier research team's effort to calibrate the model. Table 5.1 summarizes the general guidelines established for the saturation flows.

Table 5.1
Ideal Saturation Flows

Movement Type	$\begin{array}{c}\text { Ideal Saturation Flow } \\ \text { (vphgpl) }\end{array}$
Exclusive Through	1

The ideal saturation flow for a shared through-left movement was calculated by reducing the ideal saturation flow for an exclusive left turn movement by applying a left turn factor. This factor was determined from utilization of Chapter 9 of the 1985 Highway Capacity Manual[21]. An absolute minimum of 450 vphgpl was used as a result of the advice from the City of Los Angeles Department of Transportation.

The ideal saturation flows for exclusive left-turn movements with permitted phasing was calculated based upon the relationship of the exclusive left permitted saturation flow rate versus the opposing flow rate. Once again, the saturation flows were determined from Chapter 9 of the 1985 Highway Capacity Manual [21]. As before for shared through-left movements, an absolute minimum of 450 vphgpl was used on advice of the City of Los Angeles Department of Transportation.

5.1.2 Control Parameters

The control parameters required for the CONTRAM model consist of the signal timing data. Information such as interval lengths, minimum phase durations, cycle lengths, offsets/yield points, reference intervals, type of signal control, and phase sequencing were all obtained from the City of Los Angeles Department of Transportation.

5.2 Size of the Corridor and Traffic Congestion

The Santa Monica Freeway in Los Angeles is considered to be one of the most congested freeways in the world. As one of eight freeways which provides direct access to the downtown Los Angeles area, the

Santa Monica Freeway is also.the only facility which connects the west side of Los Angeles to the central downtown region. The Santa Monica Freeway is the only east-west freeway between the Santa Monica Mountains to the north and the Artesia Freeway to the south, a distance of approximately 13 miles. The five major arterials, Olympic, Pico, Venice, Washington and Adams Boulevards are connected to the freeway by approximately 15 major north-south streets. Figure 5.1 displays a map of the entire corridor.

The principal'cause of traffic congestion is the peak hour(s) travel demands. Although the Santa Monica Freeway is four to five lanes in each direction, the travel demand during the peak hours still exceeds the amount of available freeway capacity. Daily traffic volumes on the freeway range from a low of approximately 180,000 to a high of nearly 315,000 close to the downtown area. Stop-and-go conditions exist daily during the peak hours on the freeway, where the average speeds throughout the corridor on the freeway are often below 35 miles per hour in both directions.

Traffic on the parallel arterials is different from that on the freeway. Olympic Boulevard carries the most traffic of the five parallel arterials with a range of approximately 14,000 vehicles per day to nearly 32,000 vehicles per day near Century City. Adams Boulevard is the least travelled arterial with volumes ranging from 2,600 vehicles per day to nearly 11,000 vehicles per day. Adams, Washington and Venice Boulevards have significant amounts of unused capacity. Therefore, the arterials offer a considerable savings over the freeway in terms of travel time, especially when an incident occurs on the freeway. Thus, diverting freeway traffic to one of the major arterials in an incident scenario is a high priority of the Smart Corridor Demonstration Project.

5.4 Pathfinder

Pathfinder is an experimental project designed to test the feasibility of using the latest technological devices to assist motorists in avoiding traffic congestion. The Smart Corridor is the test bed for the project. The project provides drivers of specially equipped General Motors Oldsmobile Eighty-Eights, real-time information about accidents, congestion, highway construction, and alternate routes. The invehicle motorist information and road navigation system demonstration project is being sponsored by Caltrans, the Federal Highway Administration and General Motors.

Since the objective of this research is to determine the potential benefits of in-vehicle information systems using the CONTRAM model, meaningful results may be used at some point to compare with those to come out of the Pathfinder demonstration project. Thus, any results found from this research may be compared with "real-world" results to make a more definitive determination as to what the potential benefits may be since each project is using the Smart Corridor as its test bed.

FIGURE 5.1
LOCATION MAP - SMART CORRIDOR

Source: \quad California Department of Transportation State Highway Map

6.0 INITIAL MODEL APPLICATION

The purpose of this chapter is to describe the initial applications of the CONTRAM model to the Smart Corridor with particular emphasis on freeway performance modelling. The freeway performance modelling was found to be more difficult than originally anticipated and required a number of modifications which are described in this chapter. The freeway performance modelling undertaken for a simple directional freeway is presented first, and then the modelling of the I-10 Santa Monica Freeway is discussed.

The CONTRAM model was primarily developed for use in the design of traffic management schemes for urban signalized arterial networks. As mentioned in Chapter 4, CONTRAM has the ability to represent limited access and buffer network roads. The speed flow relationships represent the relationship between average speed and flow on roads where cruise time is a significant proportion of total time and journey times on links in a buffer network in order to simulate the general effects of capacity restraint. A standard COBA type speed/flow relationship is used whereby two linear sections of different slopes, one representing the break point speed/flow and the second representing the capacity point speed/flow are used.

In order to gain a more clear understanding of the freeway modelling characteristics within CONTRAM, a linear test segment of freeway was designed. To evaluate the characteristics of the CONTRAM model, both manual calculations and the FREQ model were chosen as tools for calibration. The FREQ family of freeway simulation models has been in existence since the 1960's [22]. Both manual calculations and the FREQ model were used in the I-10 calibration process. FREQ is a macroscopic deterministic simulation model in which time can be broken into equal discrete time-slices and the directional freeway segment divided into homogeneous subsets with demands and capacities remaining constant during each time slice. Merging and weaving analysis, when selected, follows the 1965 Highway Capacity Manual procedures. A limitation to the FREQ model is that freeway congestion can only begin and end at boundaries between time slices. The queue contour maps in FREQ provide a picture of both bottleneck locations and queue lengths over both time and space. The speed contour maps also provide a picture of speeds in the queue in the bottleneck and for every subsection over time and space.

The criteria for freeway calibration were based on three key considerations. The first consideration was that CONTRAM identified the bottlenecks in the same subsections as those determined by manual calculations and shown in FREQ. The second consideration was that of queue length. Once the bottlenecks were identified and located properly, queue lengths were evaluated to see whether CONTRAM had the proper queue lengths as shown in the manual calculations and determined by FREQ. The third consideration in the freeway calibration process was that of freeway speeds in terms of free flow speeds, speeds at the bottleneck, and speeds within the congestion.

6.1 Linear Test Freeway Segment

In an attempt to gain a more comprehensive understanding of the operation of the CONTRAM model as it relates to freeway operations, a simple linear test freeway segment was created as shown in Figure 6.1. The test freeway segment is 8,100 feet long with five subsections and nine time slices. Figure 6.1 also presents the 'time slice demands as well as the capacities assumed for each subsection. In the test segment, the first subsection through the third subsection is composed of three lanes. The fourth subsection is two lanes with a length of 100 feet. The fifth and last sub-section is composed of three lanes and is 2000 feet long. The capacity of each lane of the freeway is assumed to be 2000 passenger vehicles per hour.

The demands were set to create queuing at the bottleneck in the fourth time slice. All queuing would dissipate by the beginning of the ninth time slice. A manual shock wave analysis was conducted to predict queue lengths and speeds in each subsection during each time slice. The complete results of the analysis are contained in Appendix D. Figure 6.2 displays the shock wave and speed information in $\mathrm{km} / \mathrm{hr}$ by time slice and subsection. In Figure 6.2 the shock wave can be seen beginning in subsection three at the beginning of time slice four. At the end of time slice six and beginning of time slice seven, the queue reaches its longest at approximately 700 meters. The shock wave ends during time slice eight.

Figure 6.3 presents the speeds and shock wave as predicted by CONTRAM. As seen in the figure, the speeds predicted by CONTRAM do not match those from the manual calculations. The queue pattern does not identically match that of the manual calculations either.

Several key reasons for the differences between the manual analysis and the CONTRAM output deserve mention. It should be noted that because the CONTRAM model is macroscopic and sends vehicles through the system in packets, not all packets make it through each subsection during each time slice. To identify the bottleneck in the proper subsection, the approach used was to code the saturation flow of a link as the capacity of the downstream link. This technique is theoretically correct since the saturation flow of each link is measured as the throughput capacity of that link. Thus, in this particular application the bottleneck was properly identified in sub-section four.

The key input to calibrate queue lengths is the minimum distance headway. Since the CONTRAM model is designed for arterials, an estimated storage capacity is calculated by the program based on a minimum distance headway that is either provided by the program or input by the user. The default provided within the model for the minimum headway distance is 5.75 meters. The minimum distance headway directly determines the densities that are represented on the freeway. Since freeway densities are much lower than those at an intersection, the minimum distance headway in the CONTRAM model must be

FIGURE 6.1
LINEAR TEST FREEWAY INFORMATION

FIGURE 6.2
SPEED/SHOCK WAVE INFORMATION - MANUAL CALC.

Time	SS 1	SS 2	SS 3	SS 4	SS 5
Slice	$\begin{gathered} \text { SPEED } \\ 94 \end{gathered}$	$\begin{gathered} \text { SPEED } \\ 94 \end{gathered}$	$\begin{gathered} \text { SPEED } \\ 94 \end{gathered}$	$\begin{gathered} \text { SPEED } \\ 91 \end{gathered}$	$\begin{aligned} & \text { SPEED } \\ & \cdot 04 \end{aligned}$
2	$\begin{gathered} \text { SPEED } \\ 98 \end{gathered}$	* SPEED	$\begin{gathered} \text { SPEED } \\ 93 \end{gathered}$	$\begin{gathered} \text { SPEFD } \\ 70 \end{gathered}$	$\begin{gathered} \text { SPEED } \\ \mathbf{9 3} \end{gathered}$
3	$\begin{gathered} \text { SPEED } \\ 91 \end{gathered}$	$\begin{gathered} \text { SPEED } \\ 91 \end{gathered}$	$\begin{gathered} \text { SPEED } \\ 91 \end{gathered}$	$\begin{gathered} \text { SPEED } \\ 68 \end{gathered}$	$\begin{gathered} \text { S-PEED } \\ \mathbf{9 1} \end{gathered}$
4	$\begin{gathered} \text { SPEED } \\ 91 \end{gathered}$	$\begin{gathered} \text { SPEED } \\ \mathbf{9 1} \end{gathered}$		$\begin{gathered} \text { SPEED } \\ 58 \end{gathered}$	$\because \quad \begin{gathered} \text { SPEED } \\ 91 \end{gathered}$
5	$\begin{gathered} \text { SPEED } \\ 91 \end{gathered}$	$\begin{gathered} \text { SPEED } \\ 91 \end{gathered}$		$\begin{gathered} \text { SPEED } \\ 56 \end{gathered}$	$\begin{gathered} \text { SPEED } \\ 91 \end{gathered}$
6	$\begin{gathered} \text { SPEED } \\ 91 \\ \hline \end{gathered}$	$\begin{gathered} \text { SPEED } \\ 91 \\ \hline \end{gathered}$		$\begin{gathered} \text { SPERED } \\ .58 \end{gathered}$	$\begin{gathered} \text { SPEED } \\ 91 . \end{gathered}$
7	$\begin{gathered} \text { SPEED } \\ 33 \end{gathered}$	SPEED 93		$\begin{gathered} \text { SPEED } \\ 58 \end{gathered}$	$\begin{gathered} \text { SPEED } \\ \mathrm{g} 1 \end{gathered}$
8	$\begin{gathered} \text { SPEED } \\ 93 \end{gathered}$	$\begin{gathered} \text { SPEED } \\ 93 \end{gathered}$	$\begin{gathered} \text { SPEED } \\ .93 \end{gathered}$	$\begin{gathered} \text { SPEED } \\ 70 \end{gathered}$	$\begin{gathered} \text { SPEED } \\ 99 \end{gathered}$
9	$\begin{gathered} \text { SPEED } \\ 93 \end{gathered}$	$\begin{gathered} \text { SPEED. } \\ 93 \end{gathered}$	$\begin{gathered} \text { SPEED } \\ 93 \end{gathered}$	$\begin{gathered} \text { SPEED } \\ 88 \\ \hline \end{gathered}$	$\begin{gathered} \text { SPEED } \\ 93 \end{gathered}$

FIGURE 63

SPEED/SHOCK WAVE INFORMATION -CONTRAM

Time Slice	SS 1	SS 2	SS 3	SS 4	SS 5
1	SPEED 95	$\begin{gathered} \text { SPEED } \\ 45 \end{gathered}$	$\begin{aligned} & \text { SPEED } \\ & 108 \end{aligned}$	$\begin{gathered} \text { SPEED } \\ 91 . \end{gathered}$	$\begin{aligned} & \text { SPEED } \\ & .95 \end{aligned}$
2	$\begin{gathered} \text { SPEED } \\ 95 \end{gathered}$	$\begin{aligned} & \text { SPEED } \\ & \times \quad 95 \end{aligned}$	$\begin{aligned} & \text { SPEED } \\ & 108 \end{aligned}$	$\begin{gathered} \text { SPEED } \\ 91 \end{gathered}$	SPEED 95
3	$\begin{gathered} \text { SPEED } \\ 95 \end{gathered}$	SPEED 95	$\begin{gathered} \text { SPERD } \\ 108 \end{gathered}$	$\begin{gathered} \text { SPEED } \\ 56 \end{gathered}$	SPEED 95
4	$\begin{aligned} & \text { SPEED } \\ & 95 \end{aligned}$	SPEED 95	$\left\|\begin{array}{c\|c\|}\hline 188 E D \\ 8\end{array}\right\|$	$\begin{aligned} & \text { SPEED } \\ & 89 \end{aligned}$	* $\begin{gathered}\text { SPEED } \\ 95\end{gathered}$
5	$\begin{aligned} & \text { SPEED } \\ & 95 \end{aligned}$	SPEED 93	$\left\|\begin{array}{c}\text { SPEED } \\ 7\end{array}\right\|$	$\begin{gathered} \text { SPEED } \\ 56 \end{gathered}$	$\begin{aligned} & \text { SPEED } \\ & 95 \end{aligned}$
6	$\begin{gathered} \text { SPEED } \\ 45 \end{gathered}$	SPEXD: 88	(SPEED	$\begin{gathered} \text { SPFED } \\ 56 \end{gathered}$	SPEED 95
7	$\begin{gathered} \text { SPEED } \\ 95 \end{gathered}$	$\begin{gathered} \text { SPEED } \\ 91 \end{gathered}$	$\left\|\begin{array}{\|c\|}\text { Speed } \\ \vdots \\ 4 \\ 4\end{array}\right\|$	$\begin{aligned} & \text { SPEED } \\ & 90 \end{aligned}$	$\begin{aligned} & \text { SPEED } \\ & 95 \end{aligned}$
8	$\begin{gathered} \text { SPEED } \\ 95 \end{gathered}$	SPEED 95	SPEED 17	$\begin{aligned} & \text { SPEED } \\ & 66 \end{aligned}$	SPEED 75
9	$\begin{gathered} \text { SPEED } \\ 45 \end{gathered}$	SPEED, 95	$\begin{gathered} \text { SPEED } \\ 102 \end{gathered}$	$\begin{aligned} & \text { SPEED } \\ & 90 \end{aligned}$	SPEED 95

manipulated to create densities that more closely reflect those that are observed on freeway segments. The storage capacity of each link determines the amount of queuing each sub section can handle. Table 6.1 illustrates the conversion of distance headway in meters to densities in vehicles per mile per lane. The minimum distance headway input by the user is universal over all links, thus densities cannot be changed at each link. Through a series of tests for the specific linear freeway segment under investigation in this study, the minimum distance headway of 20 meters was determined to most effectively represent queue lengths as found in the manual calculations.

Table 6.1
Relationship Between Minimum Distance Headway and Density

Minimum Distance Headway (m)	Density (Vehicles/Mile/Lane)		
5.75	280		
7.50	215		
10.00	161		
12.50	129		
15.00	107		
16.00	101		
17.00	95		
18.00	89		
19.00	85		
20.00	80		

To more realistically represent speeds on the linear test segment as determined in the manual calculations, the speed flow relationship curve as specified in CONTRAM was modified in conjunction with the input cruise speeds. The most effective method of replicating speeds determined by the manual calculations was to use the speed-flow relationships only at the bottleneck and one subsection downstream from the bottleneck. As mentioned previously, CONTRAM has the ability to model high speed limited access roads through the use of a speed-flow curve. Figures 6.4 and 6.5 present the speed flow curves that were

SPEED FLOW CURVE - TEST FREEWAY (BOTTLENECK)


```
                    7
    V - The free speed where flow is zero
    V
    V - The capacity point, which is the highest level of traffic flow observed
    VM - The speed at which the inter-vehicle headway equals minimum distance
    QB - The break point flow
QC - The capacity flow
```

FIGURE 6.5
SPEED/FLOW CURVE - TEST FREEWAY (ONE SS DOWNSTREAM)

$V_{0}-\quad$ The free speed where flow is zero
V_{B} - The break point speed where the slope of the line changes
\dot{V}_{C} - The capacity point, which is the highest level of traffic flow observed
V_{H} - The speed at which the inter-vehicle headway equals minimum distance
headway input by the user
$Q_{B}-\quad$ The break point flow
Q_{C} - The capacity flow
$=$
-
used to best replicate the results as found in the manual analysis for the bottleneck and downstream section. The speed flow curve is a replication of the COBA curve used in the CONTRAM model as described in Chapter 4. As shown in the figures, V_{c} represents the point at which the highest level of flow is observed. V_{b} represents the break point speed and V_{m} represents the speed at which the speedflow relationship predicts an inter-vehicle headway equal to the minimum distance headway as input from the user. The curves shown in Figures 6.4 and 6.5 are those that provided the best results in terms of matching the 'queue lengths and speeds as derived from the manual calculations. In the subsections without the speed flow relationships the cruise speed of $92 \mathrm{~km} / \mathrm{hr}$ was used. The free flow speeds on each link do not match because the model truncates the mean time per vehicle in seconds on the link and does not represent a constant free flow speed. The speed flow relationship that CONTRAM uses for modelling high speed limited access roads does not allow for modelling traffic congestion. That is, the speed-flow relationship only obeys the upper limb of the true speed flow relationship on a freeway. Thus, the speeds as output from CONTRAM do not obey the speed-flow relationship as input to the program in congestion. The method CONTRAM uses for calculating free flow speeds does not provide for a constant speed across all free flowing links. Additionally, for congested links, the speeds as represented by the model are much too high. This has been identified as a problem and is something that needs to be addressed in future research efforts if CONTRAM is to be used to represent a freeway segment.

Although freeway conditions could be represented somewhat realistically through the use of the procedures described in the previous paragraphs, a question regarding the influence of freeway ramps on bottlenecks and other sections of the freeway remained unanswered. To help answer some of the remaining questions regarding the operation of the model another linear test freeway segment was introduced. However, this time a real life freeway corridor was used. The Santa Monica Freeway in Los Angeles, California was modelled in the eastbound direction to reach a better understanding of the operations of the CONTRAM model. For comparison purposes, the FREQ model was also applied.

6.2 Smart Corridor Freeway Modelling

The eastbound section of the twelve mile Santa Monica Freeway was the next segment used in the freeway calibration process. The network consists of 32 subsections with 16 on -ramps and 15 off-ramps. The demand data consists of 17 origins and 16 destinations over eight 30 minute time slices. The network and demand information is shown in Figures 6.6 and 6.7. The elements that were given special consideration in this process were; bottleneck location, queue length, and average speeds.

FIGURE 6.6
NETWORK FOR SANTA MONICA EASTBOUND

FIGURE 6.7

DEMAND INFORMATION - SANTA MONICA EB

GTOTAL VEHICLE FLON RATES FROM EACH ORIGIN DURING EACH TIME SLICE (VEH/H)
ORIGINS FLOWS

5001		1498	2854	3649	3856	4270	4409	3812	3656	0
5002	2274	3090	3283	2994	2980	3092	3262	3236	0	
5003	569	771	1009	1102	899	884	777	757	0	
5004	212	357	387	358	374	404	382	336	0	
5005	355	377	335	337	327	341	401	403	0	
5006	66	280	316	389	382	504	456	508	0	
5007	341	384	613	638	515	478	386	347	0	
5008	589	1031	976	899	800	768	863	812	0	
5009	426	479	427	359	324	398	415	450	0	
5010	803	833	849	694	627	665	594	500	0	
5011	854	940	1007	1027	936	891	798	773	0	
5012	715	748	798	1061	763	683	596	434	0	
5013	480	606	678	699	542	523	498	433	0	
5014	376	409	413	397	378	289	278	231	0	
5015	276	390	367	422	345	288	277	314	0	
5016	357	362	367	359	358	280	263	258	0	
5017	600	810	670	707	593	600	560	600	0	

iotal vehicle flow rates directed towards each destination durihg each time slice (veh/h) DESTIMATIONS FLOWS

9016	4505	6506	7039	6985	6180	6106	5052	4856	0
9003	52	101	130	129	128	134	151	171	0
9006	81	90	104	113	149	78	111	129	0
9008	150	165	265	267	253	236	312	346	0
9009	55	100	193	228	284	300	243	203	0
9010	157	172	185	182	165	148	184	235	0
9011	123	194	321	344	344	375	311	271	0
9012	260	356	526	545	604	627	596	587	0
9013	358	434	591	633	598	656	736	561	0
9001	468	529	710	872	947	1016	993	855	0
9002	448	530	577	864	926	1011	1003	911	0
9004	141	174	237	412	491	500	530	552	0
9005	150	176	252	251	302	321	373	353	0
9007	169	200	242	253	251	268	364	429	0
9014	1301	1399	1449	1330	1150	1086	1021	1013	0
9015	2353	3595	3323	2890	2841	2635	2628	2574	0

otal vehicle flow rates entering the hethork during each time slice (veh/h)

6.2.1 Bottleneck Location and Queue Length Pattern

Table 6.2 highlights the main freeway events as predicted by FREQ.

Table 6.2
FREQ Main Freeway Events

Time	Bottleneck Location	Queue Length (miles)
6:30-7:00	SS 29	1.9
$7: 00-7: 30$	SS 29	3.7
$7: 00-7: 30$	SS 13	1.4
7:30-8:00	SS 29	8.0
8:00-8:30	ss 29	3.6
$8: 00-8: 30$	ss 14	1
$8: 30-9: 00$	SS 29	2.2
$8: 30-9: 00$	SS 21	1.7
$8: 30-9: 00$	SS 14	0.8
$9: 00-9: 30$	ss 14	2.0

As seen in the table, the major bottlenecks were identified in subsections 14 and 29. Each freeway subsection was coded as an uncontrolled link in the CONTRAM network while the on-ramps were coded as signalized links with 100 percent green time. The first approach was to code the saturation flow of a link as the capacity of the downstream link. This technique is theoretically correct since the saturation flow of each link is measured as the throughput capacity of that link. The results obtained from this technique did not closely resemble the results provided by FREQ. A possible explanation for the discrepancies could be the ramp merge and diverge points and their influence on capacity.

The second approach was to input the capacity of each subsection from FREQ as the saturation flow. This technique led to the results shown in Table 6.3. As shown in the figure, the bottlenecks were usually identified one subsection downstream from those in the FREQ runs.

Table 6.3
CONTRAM Main Freeway Events

Time	Bottleneck Location	Queue Length (miles)
7:00-7:30	ss 30	1.4
7:00-7:30	SS 22	0.6
$7: 00-7: 30$	SS 14	1.7
$7: 30-8: 00$	SS 30	8.0
$8: 00-8: 30$	ss 30	1.6
8:00-8:30	ss 22	1.0
$8: 00-8: 30$	SS 14	2.1
$8: 30-9: 00$	SS 30	1.4
$8: 30-9: 00$	SS 22	0.7
$8: 30-9: 00$	SS 14	2.1
$9: 00-9: 30$	ss 14	0.2

The comparison between Tables 6.2 and 6.3 shows that CONTRAM typically identifies bottlenecks one subsection downstream from those of FREQ, and there does not seem to be a way of modifying CONTRAM to model it correctly.

The next objective was to obtain the queue patterns as produced by FREQ. Queue length patterns are directly affected by the storage capacities input in the CONTRAM network file. As mentioned previously, the minimum distance headway in CONTRAM determines the optimum densities that will be replicated on each link. For this particular application, the minimum distance headway which provided the queue pattern which most closely resembled those provided by FREQ was found to be 50 meters or a density of 32 vehicles per mile per lane. Figure 6.8 shows the queuing patterns from both FREQ and CONTRAM. While not perfect, this was the closest agreement based on modifying the minimum distanceheadway.

FIGURE 6.8
QUEUING PATTERN - FREQ, CONTRAM COMPARISON

Extele negay co
6ex Lem:


```
TMy,
S!5
&:%
```



``` - 气:



``` - \&
```



```
品
```






CONTRAM
Queue Length
Contour Map


### 6.2.2 Average Speeds

Figure 6.9 shows the speeds predicted by FREQ. When calibrating the speeds predicted by CONTRAM, two key elements must be considered: free-flow speeds and speed-flow relationships. A uniform freeway free-flow speed of $85 \mathrm{~km} / \mathrm{h}(53 \mathrm{mph})$ was adopted. Based on the conclusions of Section 6.1 and trial and error, speed-flow relationships were only used in the bottleneck subsections (14, 22 and 30 ) after the bottleneck locations were identified by a first run. As seen in Figure 6.9, once again CONTRAM predicts speeds within the congestion that are much too high. The speeds one subsection downstream from the bottleneck are too high. It is unclear just how much influence the freeway on-and off-ramps have on the speeds as determined by the model. Further analysis is required to determine the precise amount of influence on-and off-ramps have on average speeds.

### 6.2.3 Overall Summary Measures

Table 6.4 displays the overall network wide summary results from the FREQ run and the CONTRAM run.

Table 6.4
Overall Network Wide Summary Results Comparison

Network Summary Measure	FREQ	CONTRAM
Total Travel Time   (veh-hr)	$\mathbf{8 0 3 5}$	$\mathbf{7 5 4 6}$
Total Travel Distance   (veh-mi)	$\mathbf{2 9 0 9 7 5}$	$\mathbf{3 0 6 3 8 8}$
Overall Network Speed   $(\mathrm{mi} / \mathrm{hr})$	$\mathbf{3 6 . 2}$	$\mathbf{4 0 . 6}$

As seen in the table, from a system-wide perspective, the results are fairly comparable. Once again, the speed is higher in the CONTRAM model which is consistent with the previous freeway modelling effort.

FIGURE 6.9
SPEED PATTERN - FREQ, CONTRAM COMPARISON

Cumbe wisem 5"5




```
CONTRAM
contour Map
Speed
Time
Slice
\begin{tabular}{|c|}
\hline 1 & 5 & 5 & 5 & 5 & 5 & 6 & 5 & 5 & 5 & 5 & 5 & 5 & 6 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 3 & 5 & 5 & 5 \\
\hline 2 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 6 & 5 & 5 & 6 & 5 & 5 & 5 & 5 & 6 & 8 & 5 & 5 & 5 & 3 & 5 & 5 & 5 & 5 & 5 \\
\hline 3 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 6 & 5 & 5 & 5 & 3 & 3 & 5 & 6 & 5 & 5 & 6 & 3 & 4 & 3 & 5 & 4 & 6 & 6 & 4 & 5 & 1 & 3 & 5 & 5 \\
\hline 4 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 4 & 2 & 3 & 4 & 5 & 5 & 6 & 5 & 4 & 3 & 5 & 4 & 4 & 4 & 4 & 3 & 3 & 1 & 3 & 5 & 6 \\
\hline 6 & 5 & 5 & 5 & 5 & 6 & 6 & 4 & 4 & 4 & 4 & 5 & 4 & 2 & 12 & & 3 & 4 & & 4 & & 11 & 3 & 4 & 1 & 3 & 4 & 2 & 2 & 1 & 6 & 5 & 5 \\
\hline 6 & 5 & 6 & 5 & 5 & 6 & 5 & 4 & 4 & 4 & 4 & 5 & 5 & 2 & 3 & 6 & 6 & 5 & 5 & 4 & 1 & 1 & 3 & 6 & 2 & 4 & 6 & 2 & 2 & & 3 & 5 & 5 \\
\hline 7 & 5 & 5 & 5 & 5 & 6 & 6 & 6 & 4 & 4 & 5 & 5 & 5 & 3 & 3 & 6 & 5 & 5 & 5 & 6 & 6 & 3 & 5 & 6 & 6 & 5 & 6 & 4 & 4 & & 5 & 8 & 5 \\
\hline 8 & 5 & 6 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
\hline Sub & 1 & 2 & 3 & 4 & & 5 & 6 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 \\
\hline
\end{tabular}
```

The digit levels denote the first digit of the operating speed (ex 4 means 4049 mph )

### 6.2.4 Conclusions

The freeway calibration process focused on three major elements of freeway operations.

1) The first element consisted of identifying freeway bottlenecks in the appropriate subsection. It was determined that for a simple network with no on-and off-ramps to identify the bottleneck in the proper subsection, it was necessary to code the saturation flow of a link as the capacity of the downstream link. This technique is theoretically correct since the saturation flow of each link is measured as the throughput capacity of that link. However, for a freeway section with a number of on-and off-ramps this technique did not prove effective and the bottlenecks were identified one subsection downstream.
2) Once the bottlenecks were identified and located properly, queue lengths were evaluated to see whether or not CONTRAM had comparable queue lengths to those estimated by the manual calculations and determined by FREQ. The key input to calibrate queue lengths is the minimum distance headway. Since the CONTRAM model is designed for arterials, an estimated storage capacity is calculated by the program based on a minimum distance headway that is either provided by the program or input by the user. The default provided within the model for the minimum headway distance is 5.75 meters. The minimum distance headway directly determines the densities which in turn determine the storage capacity of each link. The storage capacity of each link directly influences the queue lengths found throughout the network. For the first linear test segment a value of 20 meters was used, while in the eastbound Santa Monica Test Segment, a value of 50 meters was used.
3) The third consideration in the freeway calibration process was that of freeway speeds. This is the area of most concern. In free flow conditions, the freeway speeds could be approximated through the use of the speed-flow curve and also as input by the cruise speed. However, for congested conditions, the speeds represented by the CONTRAM model are not realistic. The speeds within the queues are much too high and the speeds at the bottleneck can only be approximated at best through the use of the speed flow relationship.

### 7.0 DESIGN OF THE EXPERIMENT, REFERENCE BASE ASSIGNMENT, SIMULATION AND VALIDATION

This chapter describes the design of experiment as well as the steps undertaken to develop a reference base assignment. The first section outlines the experiment while the remainder of the chapter is devoted to the development of the base reference assignment.

### 7.1 Design of Experiment

After several months of attempting to model freeway congestion in a realistic fashion, it was decided that despite the limitations of the model with respect to freeway congestion, attention would be given to modelling the Smart Corridor with the CONTRAM model. With the goal of determination of the benefits of in-vehicle information systems, the experiment was designed as shown in Figure 7.1. The first step was to develop a reference base assignment and simulation that as closely as possible represented the Santa Monica Smart Corridor. The remainder of this chapter is devoted to discussion of this process. Since, from the previous study [3], the benefits for non-incident conditions were found to be relatively small, the next step was to model a freeway incident. Two incidents were created and are discussed in Chapter 8. Once the incidents were created, tests were begun to evaluate the benefits of in-vehicle information systems. Investigations were made with varying percentages of equipped vehicles from 0 to 100 percent. Chapter 9 describes the results of the experiments with varying percentages of equipped vehicles.

### 7.2 Network Description and Calibration

Figure 7.2 presents the network modelled and used in the analysis. Approximately nine miles of the SMART Corridor with two parallel arterials were coded into the model. The eastern boundary of the network is the Harbor Freeway, while the western boundary is LaCienega Boulevard. In addition to the Santa Monica Freeway, the two parallel arterials coded were Washington Boulevard and Adams Boulevard. Ten major north-south streets connecting Washington, Adams, and the Santa Monica Freeway were coded as well.

As previously mentioned, the previous project (PATH-ITS-UCB-PRR-88-2) provided a comprehensive data base for this analysis, in the form of FREQ and TRANSYT input files. All data provided by the previous project represents the year 1987. Some updated information regarding speed-flow relationships provided by Caltrans was used as well.

FIGURE 7.1
DESIGN OF EXPERIMENT


Percentage of Vehicles Equipped with In-Vehicle Information

FIGURE 7.2
MAP OF NETWORK MODELLED


The coded network is composed of approximately 200 arterial links. A uniform free-flow speed of 35 miles per hour was adopted for the arterials. The link throughput capacity was determined by the rules described in Section 5.1.1. The signal timing data were taken from the earlier study as well. Some minor modifications were made in the signal timings, especially at freeway ramp intersections, to improve the simulation of the network.

The freeway part of the corridor is composed of 51 uncontrolled links. The westbound direction is represented by 23 uncontrolled links, while the eastbound direction is made up of 26 uncontrolled links. Two additional links were used to represent the Harbor Freeway at the eastern boundary of the system. A uniform free-flow speed of 60 miles per hour was used on all freeway links. On the basis of the experiments described in Chapter 6, no speed-flow relationships were used and each link throughput capacity was input as the corresponding FREQ capacity. The storage capacity was determined by the standard default formula using the minimum distance headway of 20 meters which was found to be optimum after calibration as described in Chapter 6.

The freeway network includes 24 on-ramps ( 11 for the westbound direction and 13 for the eastbound direction). These links were coded in CONTRAM as signalized links with 100 percent green time. Thus, ramp metering was not modelled as a part of this project. A uniform free-flow speed of 30 miles per hour was used on freeway ramps.

### 7.3 Corridor Demand

To achieve a realistic demand level and pattern, a three step process was undertaken. The three steps consisted of the following:

1) creation of an origin-destination matrix;
2) using the COMEST program, the origin-destination estimator described in Chapter 4;
3) manipulation of the COMEST output to create a more realistic demand level

The third step, manipulation of the COMEST output, was necessary because of the crude nature of the original origin-destination matrix which was created in step one. The following paragraphs outline the procedures taken to reach a final origin-destination matrix with demand levels similar to those used in the previous study of the SMART Corridor.

### 7.3.1 Initial Origin-Destination Matrix Generation

As mentioned in Chapter 4, CONTRAM requires the user to input an origin-destination matrix. For this particular application there was not detailed enough origin-destination information available as mentioned in Chapter 5. Although the City of Los Angeles did provide origin-destination information for the vicinity in and around the SMART Corridor, due to the coarse nature of the data and the time and resource considerations, it was decided that the best option was to create a fictitious origin-destination matrix based on traffic counts provided in the previous study and then apply the COMEST program to reach a realistic representation of the demand throughout the corridor.

The first step in creating the fictitious origin-destination matrix was to determine where origins and destinations were to be located. The decision was made to create external origins and destinations as shown in Figure 7.3. This decision was made primarily because information regarding the total number of vehicles entering and exiting each newly created external origin-destination link was readily available for the time period from 7:00 a.m. to 8:00 a.m. No internal origins and destinations were created since the primary sinks and sources within the corridor were not well understood, and they were considered to be less important than the external sinks and sources.

Once the locations of the origins and destinations were decided, the total number of vehicles entering and exiting each link for the time period from 7:00 a.m. to 8:00 a.m. were entered into a spreadsheet as shown in Figure 7.4. Once the row and column sums of the matrix were fixed, the next step was to balance the entries in the matrix. This step was done mostly by trial and error with the assistance of the graph shown in Figure 7.5. The objective of the fictitious origin-destination matrix was to help lead the COMEST program in the proper direction through the use of the observed link counts. A final fictitious matrix was chosen and a CONTRAM run was made. The CONTRAM run provided the COMEST program with the necessary packet route file and an original origin destination matrix from which to work.

### 7.3.2 Use of the COMEST Program

The second step in the corridor demand analysis was to create an "observed traffic count" file from the data provided in the Al-Deek, Martello, Sanders and May study [3] on TRANSYT and FREQ runs for the time period from 7:00 a.m. to 8:00 a.m. For the initial application of COMEST every link in the network was input to the observed traffic count file. After many iterations of COMEST and CONTRAM it was discovered that there were too many links for COMEST to balance the traffic counts. The demand

FIGURE 7.3

## Location of Origins and Destinations



FIGURE 7.4
Origin/Destination Matrix

DestOrg	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	Sum	Obs Tadal
1	0																										0	6880
2		0																									0	2240
3			n																								0	713
4				0																							0	400
5					0																						0	1694
6						0																					,	1437
7							0																				0	972
8								0																			0	1214
9									0																		0	1084
10										0																	: 0	1450
11											0																0	1434
12												0															0	3500
13													0														0	1000
14														0													0	6613
15															0												0	1138
16																0											0	94
17																	0										0	1546
is																		,									0	329
19																			0								0	1231
20																				0							0	1193
21																					0						0	1190
22																						0					0	1033
23																							0				0	2168
24																								0			0	1967
2511		,				1	1	1	1		I														0		0	1414
\%		1							,		,															0	0	1046
Sum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	43970
Obs Tdad	8000	1368	741	696	1890	1847	1388	1269	13547	1395	1307	2300	2000	6716	1243	248	631	807	1006	727	761	5\%	1564	1968	1008	1349		43970

FIGURE 7.5
Origin-Destination Difference

$\square$ Dest Act-Total Diff ${ }^{\mathrm{m}}$ Org Act-Total Dii
pattern created by COMEST. was not very realistic due to the coarse nature of the original "fictitious" origin-destination information.

To achieve a demand pattern representative of those provided by reference [3], the best results were provided by COMEST when the only observed link counts input were those counts on the eastbound freeway and the corresponding ramp junctions. The relationship between CONTRAM and COMEST as explained in 'Chapter 4 was next used to generate a final origin-destination matrix. Four CONTRAMCOMEST iterations were conducted to obtain the final demand pattern for the 7:00 a.m. to 8:00 a.m. time period.

### 7.3.3 Final Origin-Destination Matrix

Once the demand pattern provided by the COMEST runs was satisfactory for the 7:00 a.m. to 8:00 a.m. time period, the next step in the process was to develop origin-destination information for the eight 30 minute time slices from 6:00 a.m. to 10:00 a.m. Based on information provided by the previous study [3] and information regarding the performance of the system, the demand was manipulated to create an origin-destination matrix for the eight time slices. Table 7.1 displays the time slices and corresponding level of demand factors.

Table 7.1
Corresponding Time Slice Demands

Time   Slice	Demand   Factor
$6: 00-6: 30$	$30 \%$
$6: 30-7: 00$	$80 \%$
$7: 00-7: 30$	$100 \%$
$7: 30-8: 00$	$100 \%$
$8: 00-8: 30$	$80 \%$
$8: 30-9: 00$	$60 \%$
$9: 00-9: 30$	$40 \%$
$9: 30-10: 00$	$30 \%$

Once the demand factors were applied, a final origin-destination matrix was completed. The resulting sums from each origin and destination per time slice are shown in Figure 7.6. This matrix was then used as the demand information for the base CONTRAM run.

### 7.4 Base' Run Validation

Three key areas were examined to validate the model's representation of the Smart Corridor. The first area was that of route choice and travel times/speeds. The second area of concern was that of bottleneck location on the freeway and the corresponding queuing pattern. The final validation process was in the overall network statistics. The following paragraphs describe the three major steps taken in the base run reference assignment validation.

### 7.4.1 Travel Times/Route Choice

A critical element to the successful modelling of the Smart Corridor is to achieve an equilibrium assignment whereby the travel times via different routes between various sets of origins and destinations are not significantly different. If the travel times differ by a large magnitude then not much diversion will be seen even with a very severe incident. From the work described in Chapter 6, it was recognized that the freeway travel times were slightly lower than real life due to the fact that the speeds within the congested portions of the network are too high. With that in mind, travel time comparisons were made between a route on each parallel arterial only and a route on the freeway only. Figure 7.7 shows the travel time comparisons from Origin 1 to Destination 14, which is a freeway Origin to a freeway Destination. The travel times on the parallel arterials (Adams and Washington) include times on the freeway at the beginning and end of the route as well as the times taken to enter and exit the freeway. Thus, a second comparison was drawn and is shown in Figure 7.8. This comparison is made from freeway link 11 to link 29, which represents the length of Adams and Washington from Fairfax to Hoover. As seen in the figure, travel times on the arterial are much closer to that of the freeway in the heaviest demand time slices. As the demand decreases the difference in travel times increases.

The second key element of travel time/speed is that of route choice. This was done primarily through the use of UFPASC (User Friendly Post Analysis System for CONTRAM) program. The UFPASC is an interactive program for examining the outputs fromCONTRAM runs. The UFPASC produces tabular and graphical outputs for selected parameters from the results file produced by CONTRAM. UFPASC uses a menu system to set up the analysis stages for producing the selected outputs. UFPASC allows selective investigations of the results file produced by CONTRAM.

FIGURE 7.6
FINAL DEMAND INFORMATION
ototal vehicleflonrate sfrcmea chorigin oúring Ẽach time slice(veh/w)
origins flows

5001	2721	7228	9000	9000	7228	5390	3610	2721	0
5002	56	146	185	185	146	113	74	56	0
5003	629	1657	2073	2073	1657	1247	83	629	0
5004	125	335	424	424	335	252	171	125	0
500 s	288	171	954	954	771	578	385	288	0
5006	540	1433	1782	1782	1433	1269	717	540	0
5007	48	128	158	158	123	97	60	48	0
5008	305	802	1004	1004	802	594	404	305	0
5009	159	420	519	519	420	311	207	159	0
5010	309	811	1013	1013	all	804	404	309	0
5011	7	23	26	26	23	14	9	7	0
5012	786	2039	2542	2542	2039	1523	1019	786	0
5013	786	2039	2542	2542	2039	1323	1019	766	0
5014	1801	4831	6016	6016	4831	3583	,2410	1801	0
5015	21	68	79	79	69	51	T6	21	0
5016	25	72	88	88	72	53	33	25	0
5017	5	14	15	15	14	8		5	0
5018	95	267	329	329	267	196	128	- 95	0
5019	58	151	192	192	151	112	73	57	0
5020	103	272	336	336	272	200	132	103	a
5021	199	519	651	651	519	385	261	199	0
5022	29	79	99	99	79	61	39	29	a
5023	338	933	1153	1153	933	696	462	350	a
5024	319	850	1060	1060	850	632	424	319	a
5025	343	903	1128	1128	903	674	456	343	0
5026	196	524	658	653	524	393	261	196	0

ototalyehicleflow rates directed towards each destimation durimg exck time slice (vea/a) destimatichs flows

9001	2984	7927	9875	9875	7927	5913	3951	2984	0
9014	1717	4715	5874	5874	4715	3523	2350	1777	0
9013	523	1387	1727	1727	1387	1030	- 693	523	a
9012	1143	3038	3791	3791	3038	2272	1522	1143	0
9017	132	355	450	450	355	267	177	132	0
9018	69	184	224	224	184	138	88	69	0
9019	37	108	128	128	108	74	47	37	a
9020	46	140	172	172	140	106	64	is	0
9021	98	256	321	321	256	1 ag	130	98	0
9022	18	51	60	60	51	32	25	18	0
9023	206	578	686	724	578	406	291	266	0
9024	121	314	394	39:	314	237	156	121	0
9025	45	130	159	159	130	97	59	45	0
9015	148	390	490	450	390	293	200	148	
9011	174	45a	575	575	458	346	234	174	0
9010	553	1471	1830	1830	1471	1102	738	553	0
9009	251	656	818	818	856	490	327	251	0
9008	a 2	223	274	274	223	163	108	82	0
9007	230	615	172	172	615	462	310	230	a
9006	17	216	265	265	216	161	103	71	0
9005	314	824	1028	1028	a24	615	415	314	0
9004	419	1112	1380	1380	1112	a 27	550	418	0
9003	327	aao	1095	1095	220	659	439	333	0
$9002 .-$	401	1088	1332	1332	1068	801	535	407	0
9026	43	125	154	154	125	90	59	43	0
9016	33	94	114	114	94	68	45	33	0

orotalvehicleflowratesentering the network during each time slice (verfh)

FIGURE 7.7
Travel Times from Org. 1 to Dest. 14 Base Run



FIGURE 7.8
Equal Distance Travel Times Base Run

$\rightarrow$ Freeway Only -+ Adams $\quad \rightarrow$ Washington

Thus, by using UFPASC a number of origin destination pairs were chosen and evaluated. An example of such an output is shown in Figure 7.9. As seen in the figure, the route chosen by most is that of the freeway. The average speeds and travel times shown in the figure represent averages over all time slices. The routes chosen from origin to destination were also examined to make sure they were reasonable.

### 7.4.2 Bottleneck Location/Queuing Pattern

A key validation measure was that of freeway bottleneck location and queue length. Bottlenecks were identified in subsections 14 and 29 which match the work reported in Chapter 6. While the bottlenecks were identified in the same subsections as before, the queuing pattern was not exactly the same. Since the demand pattern is much more complex, it was not possible to achieve the same queuing pattern as before. However, the pattern as shown in Figure 7.10 does closely match that of the work described in Chapter 6. The main difference between the previous freeway-only work and the corridor base simulation run is that the queues do not back up as far from subsection 29 as before. In the freeway-only work, the queues from subsections 14 and 29 collided. In the base reference assignment, the queuing is not as severe as that described in Chapter 6 where the freeway only is modelled. However, because the bottlenecks were properly identified and the demand patterns were reasonable it was felt that existing queuing pattern shown in Figure 7.10 was acceptable to continue with the experiment. Therefore, it was concluded that comparisons made to the base reference assignments would be acceptable for analysis.

### 7.4.3 Overall Corridor Wide Summary Information

From a system-wide perspective, the amount of free moving delay compared to the amount of flow delay and delay caused by queuing was examined for its reasonableness. The total distance travelled, the overall network speed, and the total final queues were all examined for reasonableness. Table 7.2 presents the overall network summary information for the base reference corridor assignment. As seen in the table, the overall network speed is approximately 30 miles per hour which is in a reasonable range. The total freemoving time as compared to the delay due to queuing is also in a reasonable range. Appendix E contains a condensed input and output of the base reference assignment.

## FIGURE 7.9

## UFPASC EXAMPLE OUTPUT

```
ROUTE INFORMATION
**** Origin 5001 and Destination $015
```

TABLE Of ROUTES

Route Links on Route ---->
No.


TABLE OF FLOWS (Vehicles)

Route	Veh.	Ti me	terv												TOTAL	route	OVERALL O	VERALL
No.	Type	1	2	3	4	5	6	7	8	9	10	11	12	13	FLOH   (VEH)	DIST.   (H)	AVE.JOU.   TIME	AVE.   SPEED
1	c	22	59	74	38	19	44	30	22	0	0	0	0	0	308	10532	646	57.6
2	c	0	0	0	14	15	0	0	0	0	0	0	0	0	29	13390	836	57.6
3	C	0	0	0	8	0		0	0	0	0	0	0	0	8	12226	846	50.4
4	C	0	0	0	14	0	0	0	0	0	0	0	0	0	14	11951	1010	39.6
5	C	0	0	0	0	15	0	0	0	0	0	0	0	0	15	12169	843	50.4
TOTA		22	59	74	74	49	44	30	22	0	0	0	0	0				
0	0	0	0															

FIGURE 7.10
QUEUING PA'ITERN - REFERENCE BASE ASSIGNMENT

1
LINK-BY-LINK ALL-TIME-SLICES - MEAN FINAL QUEUES (VEH)
RUN ON 11/ 6/91

SHART CORRIDOR BASE RUN NETWORK and TIME DATA ( $6 / 11 / 91$ )
SHART CORRIDOR BASE DEMAND
SHART CORRIDOR COHTROL DATA
jteration number
3 time slices :


TOTAL
final Queues
402.
201.0
164.0
358.0
415.0
783.0
152.0
.0
.0
.0
.0
.0
105.0
342.0
232.0
275.0
384.0
608.0
307.0
547.0
.0
.0
.0
.0
.0

TABLE 7.2

## BASE REFERENCE ASSIGNMENT SUMMARY INFORMATION

SUMMARY INFORMATIOM
CONTRAM 5.14 (16. 4.91)
RUN ON 11/ 6/91

```
SMART CORR'IDOR BASE RUN NETWORK and tIME DATA (6/11/91)
SMART CORRIDOR bASE dEmAND
SMART CORRIDOR CONTROL DATA
 ITERATION NUMBER 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 2 & & 3 & & 4 & & 5 & & 6 & & 7 & & a & & 9 & \\
\hline 600 & 630 & & 700 & & 730 & & 800 & & a 30 & & 900 & & 930 & & 1000 & & 1300 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline OFREEMOVING & 456.8 & 1222.2 & 1560.4 & 1650.4 & 1494.7 & 1099.3 & 700.3 & 520.1 & 43.1 & 8747.3 \\
\hline FLOW DELAY & . 0 & . 0 & . 0 & . 0 & . 0 & . 0 & . 0 & . 0 & . 0 & , 0 \\
\hline QUEUEING & 33.8 & 140.3 & 543.3 & 1101.4 & 1144.8 & 465.2 & 65.4 & 37.4 & 1.2 & 3612.9 \\
\hline TOTAL & 490.7 & 1362.5 & 2103.6 & 2831.8 & 2639.5 & 1564.4 & 765.8 & 557.5 & 44.3 & 12360.1 \\
\hline
\end{tabular}
distance travelled (VEH-KM)
O 36981.5 98906.8 123665. 127436. 115655. 88215.8 56937.3 42310.3 3703.4 % 693810.9
O OVERALL NETUORK SPEED (KM/H)
\begin{tabular}{llllllllllll}
0 & 75.4 & 72.6 & 58.8 & 45.0 & 43.8 & 56.4 & 74.4 & 75.9 & 83.6
\end{tabular}\(\quad 56.1\)
O TOTAL FINAL QUEUES (VEH)
0 69.2 354.4 3425.9 5910.4 4720.9 832.2 109.3 76.7 0
O FUEL CONSUMPTION (LITRES)
OTRAVELLING 3952.4 10530.7 13255.3 13395.8 12199.2 9563.2 6140.1 4530.5 408.9 (
QUEUEING 14.3 144.8 702.3 1573.5 1528.3 597.2 49.0 17.6 4,0 0, 0
TOTAL 3966.7 10675.5 13957.6 14969.3 13727.5 10160.5 6189.1 4548.1 408.9 4, 4, 4, (1)
O TOTAL LINK COUNTS (VEH)
\begin{tabular}{lrrrrrrrrrrr}
\\
OARRIVALS & 78446 & 208733 & 257975 & 259595 & 234424 & 185418 & 121677 & 90337 & 8483 & \\
PCU FACTOR & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & \\
STOPS & 6046 & 17377 & 70741 & 77738 & 66095 & 36199 & 10008 & 6701 & 247 & 1.00 \\
\% STOPPED & 7.7 & 2.3 & 27.4 & 29.9 & 28.2 & 19.5 & 8.2 & 7.4 & 2.9 & 291152
\end{tabular}
OPACKET SIZE WITHIN EACH O.D MOVEMENT IS VARIABLE ROUTES AND ROUTE MEMORY:
TOTAL NUMBER OF PACKETS ENTERING THE NETWORK MEAN LINKS PER ROUTE 12735 16.32
TOTAL NUMBER OF VEHICLES WORDS AVAILABLE 88529 3806309(CUT OF 3808437)
TOTAL NUMBER OF PCUS USED PER ITERATION 88529 18927
MEAN PCU FACTOR 1 , 0 0 COOONS PER WORD 10
```


### 8.0 INCIDENT MODELLING

The purpose of this chapter is to describe the techniques applied within the CONTRAM model and to report the results of modelling an incident on the freeway. The incidents modelled, the techniques applied within CONTRAM, and the results of the efforts are discussed within this chapter. The modelling of an incident on the freeway in conjunction with the modelling of in-vehicle information systems illustrates the benefits to both the equipped vehicles and non-equipped vehicles as well as system-wide results which will be reported in Chapters 9 and 10.

### 8.1 Incident Scenario

Two likely incident scenarios were created to evaluate the potential benefits of in-vehicle information systems. The key elements which comprise the modelling of an incident are:

1) location;
2) severity;
3) duration.

### 8.1.1 Location

To determine an appropriate location for an incident, the first consideration used was whether or not the location of the incident caused the freeway congestion to back up out of the initial boundary of the freeway or extend beyond the last time slice. If the congestion were to back out of the first subsection on the freeway, the results would be inaccurate as the number of vehicles in the system would not be comparable across different simulation runs.

The second key consideration was to locate an incident in a subsection in such a manner as to cause a congestion pattern quite different from the normal congestion pattern. Thus, the subsections more towards the middle of the freeway section were given consideration as the location of an incident. Two different locations for two separate incident run scenarios were chosen to simulate. The first incident was located in subsection 20. The second run was made with an incident in subsection 22.

### 8.1.2 Incident Severity and Duration

Many different types of incidents can occur on a freeway section. An incident on the freeway typically reduces the capacity of the subsection where the incident occurred. This capacity reduction can be at various levels and extend over time in different patterns. The following paragraphs describe the two separate incidents modelled.

### 8.1.2.1 Slight Incident

The first incident (hereafter referred to as the slight incident scenario), was modelled as occurring in subsection 20. The incident began in time slice 4 and reduced the capacity from 10900 vph to 7500 vph for the 30 minutes in time slice 4 . The incident was modelled to last into time slice 5 . During time slice 5 , the capacity was reduced from 10900 vph to 8500 vph . This incident is the equivalent of having approximately one and a half lanes blocked in time slice 4 , while in time slice 5 , one-half lane is reopened.

### 8.1.2 2 Severe Incident

The second incident (hereafter referred to as the severe incident), was modelled as occurring in subsection 22. The incident began in time slice 3 and reduced the capacity from 12100 vph to 6900 vph for the one hour in time slices 3 and 4. This incident is the equivalent of having approximately two and a half lanes blocked.

### 8.2 Incident Modelling Within CONTRAM

The following sections outline the methodology and results of the slight and severe incident simulation runs. Along with results, conclusions are presented at the end of the chapter.

### 8.2.1 Methodology

The following procedures were used to model an incident within CONTRAM. The first step in the process was to make a base run in CONTRAM with the capacity reduced in the subsection where the incident has occurred. This was accomplished through the use of Card Type 12. Card Type 12 allows the user to override any capacities calculated by CONTRAM except smaller reduced capacities arising
from blocking back. The. link number is entered followed by the capacity of the link in each corresponding time slice.

A three-step process is conducted to model an incident within CONTRAM. The first step in the process is to make a base run (described in Chapter 7), whereby all drivers have 100 percent information and are taking their shortest routes. The second step involves the use of RODIN as described in Chapter 4. A RODIN run is conducted with no vehicles having information systems thereby being set to their fixed routes. The final step in the process is to make another CONTRAM run with the new network where the capacity of the subsection is reduced through the use of Card Type 12.

### 8.2.2 Results

Figure 8.1 presents the output queuing pattern on the eastbound Santa Monica for the slight incident scenario and the base run (described in Chapter 7). Based on a comparison of Figures 7.10 and 8.1 it can be concluded that the slight incident scenario does not change the queuing pattern substantially. It should also be noted that there is little increase in the amount of congestion as a result of the incident. Table 8.1 presents the network wide summary information for the slight incident as well.

Figure 8.2 presents the output queuing pattern on the eastbound Santa Monica for the severe incident and the base run. As a result of the incident, the more queuing occurs and the pattern changes. There is a significant increase in the amount of congestion as a result of the incident. Table 8.2 presents the network-wide summary information for severe incident as well.

As a result of the incident runs, questions began to arise as to both the severity and duration of the congestion as predicted by CONTRAM in both incident situations. Therefore, a FREQ analysis was conducted to compare the queuing pattern projected by FREQ to that provided by CONTRAM. Figure 8.3 presents the queuing pattern for both the slight and severe incident as predicted by FREQ. As seen in the figure, the congestion predicted by CONTRAM is not nearly as severe or as long lasting as that of FREQ.

Due to time constraints, a thorough investigation as to why the discrepancies occurred could not be conducted. Thus, it was concluded that despite the fact that congestion was much less severe in CONTRAM than as predicted by FREQ, an analysis would be conducted using the severe incident scenario since, as a result of the incident, there was a change in the queuing pattern and an increase in the amount of congestion on the freeway. This deficiency in CONTRAM will be discussed later. Since the slight incident scenario did not result in much change in the queuing pattern on the freeway and not

## FIGURE 8.1

QUEUING PATTERN - SLIGHT INCIDENT (EB SANTA MONICA)

```
SMART CORRIDOR INCIDENT RUN NETWORK and TIME DATA (6/10/91)
smArt corridor base D EmAND (0 % guided)
```




FIGURE 8.2
QUEUING PATTERN-SEVERE INCIDENT
(EB SANTA MONICA)

LInK-by-LINK all.time.slices - mean final oueues (veh)

RUN ON 8/ 6/91


CONTOUR DIAGRAM OF
Queue length
before entry control

## SLIGHT INCIDENT


blank denotes moving traffic. asterisk denotes pueueo vehicles due to mainline congestion. m denotes queued vehicles due to merging. B denotes pueueo vehicles due to mainline congestion and merging. (When both oueues exist, length of display represents mainline congestion.)

CONTOUR DIAGRAM OF
QUEUE LENGTH
before entry control

## SEVERE INCIDENT


blank denotes moving traffic. asterisk denotes queuedvehicles due fohainline congestion. mdenotes queued vehicles due to merging. B denotes queued vehicles due to mainline congestion and merging. (WHEN both queues exist, length of display represents mainline congestion.)

## TABLE 8.1

## SLIGHT INCIDENT ASSIGNMENT SUMMARY INFORMATION



TABLE 8.2

## SEVERE INCIDENT ASSIGNMENT SUMMARY INFORMATION


much increase in congestion, it was determined that the remaining analysis would focus on the results provided by the severe incident.

### 9.0 SIMULATION RESULTS UNDER SEVERE INCIDENT SCENARIO

The purpose of this chapter is to describe the methodology and analysis results of the investigation into the benefits derived from in-vehicle information systems under the severe incident scenario. The first part of the chapter describes the methodology and techniques used to obtain results from the modelling process. The results are then broken down into both system-wide performance measures and benefits for both guided and unguided vehicles.

### 9.1 Methodology: Modelling Guidance Systems in CONTRAM

In order to model guidance systems within the CONTRAM model the RODIN program as described in Chapter 4 was used. RODIN is external software program developed by Nick Taylor (TRRL) and is intended to simulate route guidance. This program converts a packet route file output produced by a standard CONTRAM into an origin-destination matrix and a set of routes which it embeds as fixed routes in a copy of the network file. The origin-destination movements are duplicated and each set is preceded by a percentage multiplying or split factor. The network and demand files are then rerun in RODIN. The first set of origins-destinations is assigned on the fixed routes (i.e. along the original routes, which are the minimum time path routes before the incident), while the second set is assigned to minimum cost routes. This provides a framework in which experiments involving two user classes (guided and unguided vehicles) can be performed.

RODIN is also designed to provide:

- a choice of methods for setting packet sizes;
- alternate vehicle class for the second set of 0-Ds;
- randomization of the output O-D counts.

An important point about this procedure is that the fixed and free routed trips are dynamically integrated so that each affects the routes of the others in an expected way.

Once a RODIN base run under the severe incident scenario with 0 percent equipped vehicles was complete, a series of CONTRAM runs with varying percentages of equipped vehicles was chosen to be evaluated under the severe incident scenario. The percentages of in-vehicle information equipped vehicles chosen for examination was $0,10,25,50,75,90$ and 100 . It was felt that a range of 0 to 100 with five points in-between would identify where the benefits would be the greatest and/or would describe any trends that may develop.

### 9.2 Analysis Results

An analysis of system-wide benefits and benefits to the users and non-users of the in-vehicle information system was conducted. The first step in the process was to evaluate the system wide results via the system-wide measures output from each CONTRAM run for the varying percentages of equipped vehicles under the severe incident scenario. The second phase of the evaluation was through the use of UFPASC as described in Chapter 7.

### 9.2.1 System-Wide Results

Table 9.1 displays the results from a system-wide perspective. As seen in the table, the results of the simulation under the severe incident situation indicate that 100 percent of the vehicles on the road equipped with in-vehicle information systems provides the greatest benefit to the system in terms of total system travel time, travel time per vehicle, and speed.

Total system travel time is perhaps one of the most important measures of system-wide performance. The total system travel was 12,360 vehicle-hours under the non-incident base run. Under the severe incident scenario but with all unguided vehicles, the total system travel time increased to 15,194 vehiclehours, a difference of 2,834 vehicle-hours. As the percentage of guided vehicles increased under the incident scenario, the total system travel time decreased from 15,194 to 13,101 vehicle-hours, a reduction of 2,093 vehicle-hours. This would indicate that the adverse effect of the incident was significantly reduced under guided vehicle situations.

In addition to the varying percentages of equipped vehicles under the severe incident scenario, the base run without the incident where all vehicles choose their fastest route is shown. As seen in the table, at 100 percent, equipped vehicles under severe incident conditions, the speeds are only slightly lower and the travel times are only slightly higher than those under the no-incident, 100 percent, guided base run. It also appears as though at either 50 percent equipped vehicles, or 75 percent equipped vehicles, a quirk in the data occurred. For all other percentages between 0 and 50 and 75 to 100 the findings were consistent in that the more equipped vehicles, the more benefit was accrued to the system. However, the data between 50 and 75 percent equipped did not follow that trend. The quirk in the data will be pursued in future research as was not possible in this project.

Table 9.1
System-Wide Results

Percent Vehicles Equipped	0	10	2	. 50	75	'90	$\begin{aligned} & 100 \cdots \\ & \text { Base } \\ & \text { I } \end{aligned}$	
Avg. Travel Time per Veh (min)	10.30	10.00	9.86	9.44	9.52	9.26	8.88	8.38
Avg. Travel Distance per Veh (mi)	12.53	12.48	12.43	12.48	12.45	12.52	12.59	12.54
Average Speed (mph)	28.5	29.2	29.6	31.0	30.7	31.7	33.3	35.1

Figure 9.1 displays the increase in average speed, network-wide under the severe incident scenario. As seen in the figure, an increase of approximately 17 percent is obtained for 100 percent information-system-equipped vehicles.

The average travel time per vehicle is displayed in Figure 9.2. The travel time per vehicle on average is network wide from each O-D pair. As seen in the figure, the average travel time per vehicle decreases from slightly more than 10 minutes to less than 9 minutes for 100 percent equipped. This represents a reduction of approximately 14 percent over the nine-mile-long, two-mile-wide corridor for each vehicle on average, as presented in Figure 9.3. It is difficult to make conclusive remarks regarding the time saved per vehicle because the average trip length is not very long. An average trip length of over 20 to 25 minutes is more desirable. However, the system-wide results provided by this analysis indicate that the greatest benefits are obtained when all vehicles are equipped with in-vehicle information systems. Assuming optimal data is given to all drivers and that all drivers follow their recommendations.

Figure 9.4 presents the percent decrease in total queues, network-wide under the severe incident scenario. As seen in the figure, a decrease of almost 35 percent is obtained with 100 percent of the vehicles having in-vehicle information. From the figure it can be concluded that the guided vehicles are diverting to avoid the major queues.

Whether or not travellers purchase the IVHS equipment and the various percentages of equipped vehicles occur, depends on two major factors. First, do "IVHS" guided vehicles benefit significantly enough to justify their expenditure of funds for such equipment, and second, will all users and the general public be supported by governmental-supported traffic control centers? In order to begin to address these

FIGURE 9.1

Percent Increase in Speed Severe Incident (Network-Wide)


## FIGURE 9.2

Travel Time Per Vehicle (Network-Wide) Severe Incident


FIGURE 9.3

## \% Travel Time Saved (Network-Wide) Severe Incident



FIGURE 9.4

questions, benefits to travellers in guided and unguided vehicles need to be assessed. This initial assessment is discussed in the next section. All benefits are also based on the availability of substantial un-used capacity on the parallel arterials.

### 9.2.2 Benefits to Guided and Unguided Vehicles

To properly evaluate the benefits to both the guided and non-guided vehicles in the system, a procedure was used whereby two classes of vehicles were set up. The first set of vehicles were those that were considered guided, which were free to be assigned on the fastest routes within CONTRAM. The second class of vehicles were the unguided vehicles, which were the vehicles assigned to the fixed routes that did not change regardless of the incident on the freeway. The primary source of information regarding the benefits that both guided and unguided vehicles obtained with the varying percentages of equipped vehicles under the severe incident scenario on the network came from the UFPASC. The UFPASC (User Friendly Post Analysis System for CONTRAM) is an interactive program for examining the outputs from CONTRAM runs. The UFPASC produces tabular and graphical outputs for selected parameters from the results file produced by CONTRAM. UFPASC uses a menu system to set up the analysis stages for producing the selected outputs. UFPASC allows selective investigations of the .RTE and .PAF files produced by CONTRAM.

Thus, by using the UFPASC, a number of origin-destination pairs were evaluated. The origin-destination pairs were chosen on the basis of three key considerations:

1) The O-D pair had to have a reasonably large demand level, at least enough to draw some reasonable conclusions;
2) The O-D pair had to have the incident on the freeway between the origin and destination. This is a requirement so that there is the opportunity for some significant diversion to occur;
3) Different O-D pairs would be chosen relative to one another so that a cross section of the different areas of the network would be examined and that both Adams Boulevard and Washington Boulevard would have the opportunity to be used.

On this basis three different O-D pairs were chosen. The three different O-D pairs are highlighted in Figure 9.5. The first O-D pair chosen for evaluation was that of origin 6 to destination 14. Origin 6 is off the arterial Washington Boulevard while destination 14 is at the end of the Santa Monica eastbound freeway, The second O-D pair chosen was origin 1 on the western boundary of the Santa Monica

## FIGURE 9.5

## O/D Pairs Chosen For Evaluation


freeway to destination 15 at the eastern end of Washington Boulevard off Figueroa. The third origindestination pair chosen for evaluation was origin 25 off Adams Boulevard to destination 14. Thus, in the three O-D pairs, two originate on the arterial with their final destination being the freeway, while the other pair originates on the freeway and ends on the arterial.

Table 9.2 presents the results for the three origin-destination pairs chosen for evaluation in terms of average speed ( mph ) and average travel time ( min ) for both guided and unguided vehicles with the varying percentages of in-vehicle information equipped vehicles. This information is an average over all time slices. Time slice by time slice information is only available for the routes selected, not for the route time, distance, and speed. Figures 9.6-11 present the information from Table 9.2 in graphical form.

As seen in the figures, the guided vehicles have a higher speed and shorter travel time to the destination than the unguided vehicles. Once again, as in the system-wide results, the highest benefits in terms of speed and travel time were found to occur with 100 percent in-vehicle information equipped vehicles.

The reliability of the total route distance for both types of vehicles was found to be questionable. It appeared that the same route did not have the same distance in different runs; therefore, the total route distance was not used as part of the analysis. However, analysis was conducted to investigate the routes chosen between different origin-destination pairs for varying percentages of equipped vehicles. Figure 9.12 presents the results of such analysis. The figure shows the two most popular routes chosen for the unguided vehicles and guided vehicles between origin 1 which is on the western boundary of the freeway, and destination 15 which is on the eastern boundary of the network at the end of Washington Boulevard. The figure represents the routes chosen when 75 percent of the vehicles are equipped with in-vehicle information systems under the severe incident scenario.

The two most popular routes for the unguided vehicles both travel through the incident on the eastbound Santa Monica Freeway, while for the guided vehicles, the second route of choice was to exit the freeway at the first possible alternative and use Washington to reach destination 15.

### 9.3 General Evaluation

The following assumptions need be noted again to cautiously view the results of this analysis:

FIGURE 9.6
Average Speed (mph)
Origin 5006 to Destination 9014


-     - Guided Vehicles - - Unguided Vehicles $\rightarrow$ Overall

FIGURE 9.7

## Average Travel Time (min) Origin 5006 to Destination 9014


$\rightarrow$ - Guided Vehicles -+ Unguided Vehicles *- Overall

FIGURE 9.8
Average Speed (mph)
Origin 5001 to Destination 9015


- Guided Vehicles -+ Unguided Vehicles $\rightarrow$ *- Overall

FIGURE 9.9
Average Travel Time (min)
Origin 5001 to Destination 9015

$\rightarrow$ - Guided Vehicles -+ Unguided Vehicles $\rightarrow$ - Overall

FIGURE 9.10
Average Speed (mph)
Origin 5025 to Destination 9014

-- Guided Vehicles $\quad+$ Unguided Vehicles $\rightarrow$ Overall

FIGURE 9.11

Average Travel Time (min)
Origin 5025 to Destination 9014


- Guided Vehicles -+ Unguided Vehicles $\rightarrow$ Overall

FIGURE 9.12
ROUTE CHOICE - GUIDED, UNGUIDED VEHICLES

## Top Two Route Choices - Unguided Vehicles Origin 1 to Destination 15



Top Two Route Choices - Guided Vehicles
Origin 1 to Destination 15


TABLE 9.2
AVERAGE SPEED AND TRAVEL TIME

Origin 5006								
Destination 9014								
0 10 25 50 75 90								
Guided  29.6 30.5 29.7   Angerage Speed (mph)       Unguide 258 27.2 29.1 27.8   Overall 25.8 27.4 29.5 28.7								


Origin 5006   Destination 9014			Average Travel Time (minutes)   Percent Equipped				
	0	10	25	50	75	90	100
Guided		11.7	127	123	122	121	11.5
Unguide	128	12.8	13.1	126	128	12.1	
Overall	12.8	12.7	13	124	123	121	11.5


Origin 5001   Destination 9015		Average Speed (mph)   Percent Equipped					
	0	10	25	50	75	90	100
Guided		302	29.4	31.7	30.3	30.9	31.6
Unguide	23.7	25.5	25.5	27.9	28.8	28.2	
Overail	237	26	26.5	29.8	29.9	30.6	31.6


Origin 5001							
Destination 9015							
Average Travel Time (minutes)        Guided 0 10 25 50 75 74 14.3 13.3 13.7 13.2 126   Unguide 17.4 16.1 16.1 14.8 14.4 14.4   Overall 17.4 15.9 15.6 14 139 13.4							


Origin 5025 Destination 9014		Average Speed (mph)   Percent Equipped					
	0	10	25	50	75	90	100
Guided		28.6	28.1	30.3	287	31.2	31.8
Unguide	26.2	27.4	27.9	29.2	28.6	323	
Overall	26.2	27.5	28	29.7	28.7	31.3	31.8

Origin $5025 \quad$ Average Travel Time (minutes)
Destination 9014

- Only two of the five parallel arterials within the Smart Corridor were modelled; additionally, three-quarters of the entire length of the Corridor was modelled. Thus, the travel times throughout the corridor are not as large as one would like to evaluate the benefits.
- The structure of the origin-destination pairings was set up so that all origins and destinations were external to the network. The origin and destination data were very coarse and from point to point, each origin and destination could be reached by either the freeway or the arterial, not both. For example, to get to destination 15, a vehicle must exit the freeway and use Washington Boulevard.
- Due to the weaknesses in freeway modelling and incident modelling as described in Chapters 6 and 8, the results presented from this analysis should be viewed with caution. The travel times on the freeway are too low during both incident and non-incident conditions thus, diversion to the arterial is not as attractive as it should be.
- Since this is the first application of RODIN, the results should be viewed with some caution as well.
- The simulation results in this analysis apply only to the morning peak period. Additionally, the type of incident modelled is atypical and extreme, since it is unlikely that two-and-a-half lanes would be blocked for longer than one-half hour. All analysis for guided versus unguided vehicles was conducted on the traffic heading eastbound toward downtown Los Angeles.


### 10.0 OVERALL ASSESSMENT AND FUTURE RESEARCH

This chapter describes the overall assessment of the completed research. First, the suitability of CONTRAM is described followed by a description of weaknesses of the study outside of the model; then the major findings of the study are presented. Finally, potential future directions regarding the application of a modelling process to evaluate the potential benefits of in-vehicle information systems are discussed.

### 10.1 Suitability of CONTRAM

The CONTRAM model has many features that are well suited to an application such as this. However, there still remain questions about some of its capabilities. This section outlines the strengths and weakness of the model for this particular application.

### 10.1.1 Strengths

1) When using the 386 version of CONTRAM 5 and DBOS memory management system, there was no problem in terms of network size limitations and running time for this particular application.
2) CONTRAM provided evidence of accurate representation of oversaturated conditions on arterials.
3) The use of COMEST in developing O-D matrices was very helpful. The difficulty of setting up a realistic time-sliced O-D matrix is traditionally one of the main problems encountered in an experiment such as this one.
4) RODIN provided the capability to distinguish between guided and unguided vehicles. The unguided vehicles were always assigned to the same fixed routes determined by the average daily conditions, without incident. These routes were usually no longer optimum under incident conditions. On the other hand, guided vehicles are assigned to their optimum routes, assuming perfect knowledge of current traffic conditions.

### 10.1.2 Weaknesses - Suggested Improvements

1) The weakness of CONTRAM in the area of representation of oversaturated conditions on freeways was identified as the most important problem with regard to this application. Although a lot of time was spent in trying to get acceptable results, as described in Chapter 6, many questions were not answered:

- What type of link (uncontrolled, give-way or signalized) is the most appropriate to code freeway links and on-ramps? As mentioned in Chapter 6, this decision has an effect on the queuing process.
- How does the concept of "throughput capacity" used by CONTRAM relate to the usual concept of freeway capacity?
- How can the speed-flow relationships of CONTRAM be used in simulating oversaturation conditions?
- Is it possible to do any weaving analysis?
- $\quad$ Some parameters, like the jam headway spacing and points on the speedflow curve can be calibrated on a simple freeway section. How can the calibration information be used when applying the model to a complex corridor network?

2) The CONTRAM standard assignment assumes that all vehicles take their optimum routes. The base run (no incident) should not be regarded as an accurate representation of average daily conditions. Some drivers do not choose the best route, and this should be accommodated by the model by introducing distortions to the perceived link costs.
3) Under incident conditions, it was assumed that unguided vehicles always take the same route that used to be optimum under non-incident conditions. It would be realistic to model the spontaneous diversion of unguided vehicles due to sources of information other than the guidance system, like radio information or the direct view of queues in front of them.
4) The use of RODIN for varying percentages of guided vehicles led to some discrepancies in the demand structure and the total number of vehicles in the system (in the range of $3 \%$ ). In order to have some comparable results, the demand should be exactly the same.
5) The truncation of link travel times led to some problems in speed calculations. For example, when using a link free-flow speed of $80 \mathrm{~km} / \mathrm{h}$ in undersaturated conditions, the resulting average speed is not necessarily $80 \mathrm{~km} / \mathrm{h}$, as expected.
6) Output information useful for this type of analysis which is not provided by CONTRAM such as:

- aggregate statistics per set of links (Freeway-Arterials);
- aggregate statistics per vehicle type (Guided-Unguided)

7) Although the use of UFPASC (described in Chapter 9) for routing analysis was very helpful, some weaknesses were identified:

- The run time for each O-D pair is a half hour to an hour on a 386 microcomputer;
- The reliability of the total route distance is questionable, as it appeared that the same route did not have the same distance in different runs;
- A time slice by time slice analysis would be a useful tool in comparing travel times and travel distances;
- A network plot showing the two most popular routes for a given O-D pair, vehicle type and time slice would be very useful as well.


### 10.2 Weaknesses of the Study

The improvement of modelling freeway congestion does not alone cure the weaknesses of the study. Weaknesses exist on both the supply and demand side of the modelling process as well. With respect to the supply side, as mentioned in Chapter 5, the Smart Corridor consists of five parallel arterials with approximately 15 cross streets, and is approximately 13 miles long. Due to time and resource limitations, approximately nine miles of the SMART Corridor with two parallel arterials was coded into the model instead of the entire 13 miles and five parallel arterials of the corridor. The eastern boundary of the network is the Harbor Freeway, while the western boundary is LaCienega Boulevard. The two parallel arterials coded were Washington Boulevard and Adams Boulevard. Ten of the 15 major north-south streets connecting Washington, Adams, and the Santa Monica Freeway were coded as well. Thus, with
only two parallel arterials the opportunity for diversion is not as great as it would normally be in the Smart Corridor. Additionally, since approximately nine miles of the 13 mile corridor were modelled, the travel times throughout the corridor were not as high as they would normally be due to the reduced travel distance, and diversion from the freeway to the arterial was not as attractive as it might be with a longer travel time.

From the demand side, problems exist with both the origin-destination matrix and the structure of the demand over time. The problems with the origin destination information and structure are described in Chapter 7. Only external sinks and sources were used; thus, any major internal sinks and sources within the corridor were neglected. Although using the origin-destinationestimator program, COMEST, assisted in creating a somewhat realistic origindestination matrix, it should be pointed out that the inputs to COMEST are the flows instead of the actual demands. Thus, the demand could be underestimated through use of this program. A second weakness in the demand structure is the variation over time. Based on information provided by the previous study [3] and information regarding the performance of the system, the demand was manipulated to create an origin-destination matrix for eight time slices. Information was only available for the time period of 7:00 a.m. to 8:00 a.m., and all information for the previous and remaining time slices was factored based on spot traffic counts. Thus, for the purposes of this study the highest demand was assumed to occur from 7:00 a.m. to 8:00 a.m. while the demand for the other time slices were factored based on information provided from the previous study. Once again, this is likely not the case and leaves the results of the study open to some question.

### 10.3 Major Findings

Based on the information provided in the previous two sections, the results of this study should be viewed with some caution. The results should be viewed in a somewhat qualitative manner, the findings being the more vehicles equipped, the better the system performance. As seen in Table 9.1, with a severe incident on the freeway, as the percentage of vehicles equipped with information increases, the performance of the system improves to where the system is at a level of performance that is only slightly less than that before the incident occurred. This degree of improvement is only possible because of the availability of underutilized capacity on the arterials parallel to the freeway. Chapter 9 describes in greater detail the results of the analysis.

### 10.4 Future Research

1) The representation of oversaturated conditions on freeways. As previously mentioned, some difficulties were encountered in the modelling of the freeway portion of the

SMART Corridor. Any further application of CONTRAM to this type of network will have to carefully address this question. The authors of the model reported that Southampton University has recently conducted research on modelling congestion on freeways by varying the randomness parameter in the queuing formula [23]. This is similar to the approach suggested some years ago by Davidson [24] and could be repeated using the current version of CONTRAM. However, it is not clear how relevant this method is.
2) The use of ROGUS. ROGUS is a program currently under development at TRRL to simulate route guidance based on the CONTRAM model. Because of time constraints it was not possible to use ROGUS in this phase of the study, though it could be used in an extension of the project. ROGUS consists of two main parts: Modified CONTRAM and ROGUS/Ada.
a) Modified CONTRAM is responsible for generating the base loading of unguided vehicles, and differs from standard CONTRAM5 only in its ability to distort drivers' perception of link costs to simulate their lack of perfect information, and
b) ROGUS/Ada reassigns a certain proportion of the unguided vehicles to simulate guided vehicles. The method of assignment is event-based using simulated beacon information which itself is based on the historical data and simulated real-time data from detectors and vehicle-to-beacon communications.
3) The application and simulation of different traffic management strategies. It would be interesting to compare the effects of guidance systems with some other corridor management strategies like signal optimization and coordination to determine how the benefits compare and if the benefits are cumulative.
4) The potential re-investigation of the INTEGRATION model. The model is now available for investigation. It might be worthwhile to reevaluate the application of the INTEGRATION model to the Smart Corridor.

## REFERENCES

1. King G.F., and Mast T.M., Excess Travel: Causes. Extents and Consequences, KLD Associates, January 1987.
2. Jeffery, D.J., Russain, K., and Roberston, D.I., Electronic Route Guidance bv AUTOGUIDE: The Research Background, Traffic Engineering and Control, Vol. 28, No. 10, October 1987.
3. Al-Deek, H.M., Martello, M., May, A.D., Sanders, W., Potential Benefits of In-Vehicle Information Svstems in a Real-Life Freewav Corridor under Recurring and Incident Induced Congestion, PATH Research Report UCB-ITS-PRR-89-1, 1989.
4. Kanafani, Adib, Towards a Technology Assessment of Automated Highwav Navigation and Route Guidance, PATH Working Paper, University of California, Berkeley, December 1987.
5. Gosling, G.D., A Research Agenda for Plan for Highway Vehicle Navigation Technology, Research Report, ITS, University of California, Berkeley, 1988.
6. May, A.D., Navigation/Communication Technology Assessment, Research Report, ITS, University of California Berkeley, May 1988.
7. Skabardonis, A., Control Strategies and Route Guidance, Research Report, ITS, University of California Berkeley, May 1988.
8. Gosling, G.D., Artificial Intelligence Techniques for Network Flow Management, Research Report, ITS, University of California, Berkeley, May 1988.
9. Sullivan, E., Wong, S., Development of a Dynamic Eauilibrium Assignment Procedure for Network Level Analvsis of New Technology, PATH Research Report, ITS, University of California, Berkeley, 1989.
10. Al-Deek, H., May, A.D., Potential Benefits of In-Vehicle Information Svstems (IVIS): Demand and Incident Sensitivitv Analvsis, PATH Research Report UCB-ITS-PRR-89-1, 1989.
11. May, A.D., The Highwav Congestion Problem and The Role of In-Vehicle Information Svstems, Submitted to General Motors Conference, April 1989.
12. Gardes, Y., May, A.D., Traffic modelling to Evaluate Potential Benefits of Advanced Traffic Management and In-Vehicle Information Svstems in a Freewav/Arterial Corridor, PATH Research Report UCB-ITS-PRR-90-3, 1990.
13. Taylor, N.B., CONTRAM 5: An Enhanced Traffic Assignment Model, TRRL Research Report 249, 1989.
14. CONTRAM, UserGuides, TRRL, December 1989.
15. Hall, M.D., Van Vliet, D., Willumsen, L.G., SATURN - A Simulation - Assignment Model for the Evaluation of Traffic Management Schemes, Traffic Engineering and Control, Vol. 21, No. 4, 1980.
16. SATURN - Mini Document. SATURN 7.1 - Introductory Users Manual. March 1987; Fundamental Requirements of Full Scale Dynamic Route Guidance, January 1990.
17. D. Van Vliet and al.. SATURN - A Simulation-Assignment Mode 1 for the Evaluation of Traffic Management Schemes. Traffic Engineering and Control, Vol. 21, No. 4, 1980.
18. D. Van Vliet, SATURN: A Modern Assignment Model. Traffic Engineering \& Control, Vol. 23, No. 12, 1982.
19. Van Aerde, Dr. M., INTEGRATION. Demonstration Package, May 1990.
20. Taylor, N.B., RODIN, User Guide, 1991.
21. 1985 Highwav Canacitv Manual. TRB Special Report 209, Washington D.C.
22. May, A.D., Freewav Simulation Models - Revisted, TRB Freeway Operations Committee Meeting, January 1987.
23. Breheret, L., Hounsell, N.B., McDonald, M., The Simulation of Route Guidance and Traffic Incidents, Transportation Research Group, University of Southampton, January 1990.
24. Davidson, K.B., The Theoretical Basis of a Flow-Travel Time Relationship for Use in Transnortation Planning, Australian Road Research, Volume 9, No. 1, March 1978.

## APPENDIX A

CONTRAM TEST NETWORK

1	1	700	730	800	815	830	845	900	930	1000	1100				
	5001	4440													
3	50025	5020													
3	5003	2240	4440												
3	5004	3010													
3	5005	2210													
4	301	3110	2220	0	0	0	40	500	1500	0	30				
4	303	2220	0	0	0	0	1	10	1600	2	30				
4	311	2110	5110	0	0	0	1	10	1600	2	31				
4	313	3030	2110	0	0	0	20	240	1600	0	31				
4	414	2040	4210	0	0	0	4	40	2500	0	41				
4	421	2140	4320	0	0	0	4	40	2500	0	42				
4	43290	0020	4430	0	0	0	4	40	2500	0	43				
4	443	2230	4140	0	0	0	4	40	2500	0	44				
4	502	2130	2120	0	0	0	60	600	4200	0	50				
4	511	5240	2010	0	0	0	20	240	1600	0	51				
4	513	3130	5240	0	0	0	20	200	1600	0	51				
4	5249	90030	0	0	0	0	4	30	1500	40	52				
5	304	3110					75	1000	600	180	303	301	25	30	
5	312	5110	3030	0	0	0	100	1300	600	200	311	313	25	31	
5	411	2040	4210	0	0	0	40	500	2000	0	414	0	70	41	
5	422	2140	4320	0	0	0	80	1000	1500	0	421	0	50	42	
5	4339	90020	4430	0	0	0	300	5000	3000	0	432	0	95	43	
5	444	2230	4140	0	0	0	80	1000	3000	0	443	0	95	44	
6	12	2024	0	0	0	0	75	900	1500	0	1	2	100	100	0
6	14	2154	0	0	0	0	4	50	1500	8	1	2	100	60	0
6	201	144	4220	0	0	0	20	200	1600	0	20	1	100	100	0
6	202	4220	5130	0	0	0	4	50	1600	8	20	2	100	100	0
6	204	5130	144	0	0	0	80	1000	1500	0	20	2	100	100	0
6	2119	90010	4330	124	0	0	100	1300	1800	0	21	1	100	100	0
6	212	3120	0	0	0	0	10	100	1500	0	21	2	50	100	0
6	213	4330	124	0	0	0	10	100	3000	0	21	2	100	100	0
6	214	124	312090	0010	0	0	300	5000	3000	0	21	1	100	100	0
6	215	31209	90010	4330	0	0	75	900	1600	0	21	2	50	70	0
6	221	3040	4110	0	0	0	40	500	1500	0	22	1	100	100	0
6	222	4110	0	0	0	0	75	1000	1800	0	22	2	100	100	0
6	223	3040	0	0	0	0	40	500	2000	0	22	1	100	100	0
6	224	3040	4110	0	0	0	90	1000	1500	0	22	2	100	100	0
7	1	25													
7	20	10													
7	21	10													
7	22	10													
9	10	22	18	140	120	0	0								
-10	1	164	240	200	150	107	340								
10	2	492	720	600	450	321	1020								
-10	4	492	720	600	450	321	1020								



```
CONTRAM TEST CONTROL
 50 12
 53
 54
 55
 56
 57 1
 71
 71
 72 6 -110 4 6
71}
71
71}55\mp@code{110
77
77
77
77
```



CONTRAM TEST NETWORK
CONTRAM TEST DEMAND
CONTRAM TEST CONTROL
OTIME SLICE 3 START 800 FINISH 815 DURATION 15 MINUTES
ITERATION NUMBER 5



TOTAL DISTANCES
(VEH-KM)
TRAVELLING
2384.4
14.2
236.2
2634.7

CONTRAM TEST NETWORK
CONTRAM TEST DEMAND
CONTRAM TEST CONTROL
ITERATION NUMBER


```
CONTRAM TEST NETHORK
```

CONTRAM TEST DEMAND
CONTRAM TEST CONTROL
0 JUNCTION NUMBER 20 SIGNAL CONTROLLED ITERATION 5


OSIGNAL PLAN TYPES

	FCFS								
OCYCLE TIMES	(SECS)								
	110	110	110	110	110	110	110	110	110

OGREEN TIMES (SECS)
LINK

201	50	50	50	50	50	50	50	50	50
202	50	50	50	50	50	50	50	50	50
204	50	50	50	50	50	50	50	50	50
OALL -RED TIMES	(SECS)								
	10	10	10	10	10	10	10	10	10

```
CONTRAM TEST NETWORK
```

10	5001	46	1	10	9001	444	414	204	14	215	
5	127	131	240	249	369						
11	5002	57	1	10	9002	502	213	12	202	422	432
6	117	145	228	253	336	340					
10	5001	114	1	10	9003	444	414	204	513	524	
5	195	199	308	328	332						
10	5001	138	1	10	9001	444	414	204	14	215	
5	219	223	332	341	462						
11	5002	169	1	10	9002	502	213	12	202	422	432
6	229	257	340	365	448	452					
10	5001	172	3	4	9001	444	223	304	311	211	
5	269	334	435	436	573						
9	5005	180	1	10	9002	221	411	421	432		
4	238	280	284	288							
10	5001	229	1	10	9001	444	414	204	14	215	
5	310	314	423	432	554						
11	5002	282	1	10	9002	502	213	12	202	422	432
6	342	370	453	478	561	565					
10	5003	288	1	8	9003	224	304	311	511	524	
5	395	481	482	502	506						
10	5001	316	1	9	9001	444	414	204	14	215	
5	397	401	510	519	642						
10	5001	342	1	10	9003	444	414	204	513	524	
5	423	427	536	556	560						
12	5005	360	2	2	9001	221	304	311	511	201	14
7	434	550	551	579	623	633	787				
11	5002	394	1	10	9002	502	213	12	202	422	432
6	454	482	565	590	673	677					
10	5001	403	1	10	9001	444	414	204	14	215	
5	484	488	597	606	729						
10	5004	450	3	10	9002	301	222	411	421	432	
5	498	605	655	659	663						
10	5001	494	1	10	9001	444	414	204	14	215	
5	575	579	688	697	821						
11	5002	507	1	10	9002	502	213	12	202	422	432
6	567	595	678	703	786	790					
10	5001	515	3	4	9001	444	223	304	311	211	
5	612	677	778	779	916						
9	5005	540	1	10	9002	221	411	421	432		
4	598	640	644	648							
10	5001	570	1	10	9003	444	414	204	513	524	
5	651	655	764	784	788						
10	5001	585	1	10	9001	444	414	204	14	215	
5	666	670	779	788	912						
11	5002	619	1	10	9002	502	213	12	202	422	432
6	679	707	790	815	898	902					
10	5001	677	1	10	9001	444	414	204	14	215	
5	758	762	871	880	1004						
11	5002	732	1	10	9002	502	213	12	202	422	432
6	792	820	903	928	1011	1015					
10	5001	768	1	10	9001	444	414	204	14	215	
5	849	853	962	971	1096						
10	5001	787	1	9	9003	444	414	204	513	524	
5	868	872	981	1001	1005						
11	5002	844	1	10	9002	502	213	12	202	422	432
6	904	932	1015	1040	1123	1127					
10	5001	855	1	9	9001	444	414	204	14	215	
5	936	940	1049	1058	1183						

JMONSTRATION OF UFPASC (USER FRIENDLY POST ANALYSIS) COLUMNED OUTPUT OPTION

LINKS	FLOWS	DEG	FINAL	INIT.	AVE.	AVE.	BLOCK
		OF	QUEUE	QUEUE	SPEED	TIME	-ING
	(VEHS	SAT.			(KM/	DELAY	BACK
	$/ \mathrm{HR})$	$(\%)$	(VEH)	(VEH)	HR)	(SEC)	

Time Interval Number 3

12 S	284	23	0	0	39	1	0
14 S	92	9	0	0	16	0	0
201 S	124	27	1	1	15	20	0
202 S	284	40	2	3	5	22	0
204 S	552	83	6	4	28	40	0
211 S	104	19	1	0	33	18	0
212 S	0	0	0	0	0	0	0
$213 S$	804	57	5	3	10	22	0
214 S	980	72	8	4	78	27	0
215 S	92	44	1	1	24	45	0
$221 S$	172	28	1	1	29	20	0
222 S	88	17	0	0	32	14	0
223 S	132	22	1	0	25	17	0
224 S	180	37	1	1	32	21	0
	3888	478	27	18	366	267	0
JTALS	299	36	2	2	28	22	0
AVERAGES	0	0	0	0	0	0	0
MINIMUM	980	83	8	4	78	45	0

## APPENDIX B



Fकामat ：



```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Ө\％， & \(\because\) & \(=\) & －4nve & \(\cdots\) & \(\because\) & －\％＂ & \(=\) & F \\
\hline F！ram & \(=\) & F－ & H0\％\％ & \(=\) & \(\because\) & & \(=\) & \(F\) \\
\hline ध「ए？ & \(\because\) & T & Trem & \(=\) & \(=\) & FPTM & \(\cdots\) & T \\
\hline Tア\％ロ & \％ & T & T－TF & \(=\) & － & Fmet & \(=\) & F \\
\hline ，号，－ & \(=\) & － & HWUEOM & \％ & ＂＇ & ¢ヵ！ & \(\cdots\) & F \\
\hline F－\％ & & F－ & F & \(=\) & \(=\) & ¢\％： & \(=\) & F \\
\hline －\％ & & \(\cdots\) & & & & & & \\
\hline F & & \％ & Fe & & \％ & Fi & & \\
\hline Y：\(=\) & & 人 & ADサ & & \％ & & & \\
\hline Mat： & & E & 1m\％ & \(\because\) & 2 & T\％ & ＝ & ） \\
\hline TRme & \(=\) & － & Trat & \(\cdots\) & ， & अCT & \(=\) & 0 \\
\hline HTYP & \(\cdots\) & 3 & Fीnte & \(=\) & \(-1\) & Mcrab & \(=\) & － \\
\hline
\end{tabular}
```















$\because \square$

FRW TD


MOCET	$=$	$\pm$	MACL	$=$	1	ISTOF
$1 T F$	$=$	30				
		d	TET	$E$		- VI


LTST	$=$	T	FETHT	$=$	$F$	¢FEEDS	7	$F$
Altax	$=$	F	Autaz	$=$	$F$			
DUTEH	$=$	$F$	Matans	$=$	1	knoce	$\cdots$	\%
ramert	$=$	इओ	HIMSAT	$=$	FO	ECFF	$=$	3.
Mteram	$=$		IFCL	$\cdots$	2	IFFL	$=$	$\pm$.
FISFCU	$=$	3.0	FFHHTH	$=$	16	FFHHEX	$=$	160

$$
\mathrm{C} \text { - SATSIM EFECIFIC: }
$$

FFSFT	$=$	$F$	NGTUE	$=$	0	NOFT	$=$	0
HITS	$=$	3	LCY	$=$	75	MuC	$=$	15
LFTE	$=$	0						
CAF	$=$	5.0	CAFPH	$=$	E.0	CAFFE	$=$	4.6
TDEL.	$=$	5.0	CAFEIS		30.	ALEX	$=$	E.5

## D - SATAGS SFECTFIC:

FRIMTF	$=$	$F$	ESFEFT	$=$	T	Cumber	$=$	$F$
HIFIDU	$=$	T	ElVIE	$\cdots$	F	GAUEIT	$=$	$T$
CUABTA	$=$	T	Aty	$=$	F			
FFt:	$=$	1.0	FFG	$=$	O.	SuT	$=$	9.e\%
WGTH	$=$	1.6	Eunzo	$=$	1. .			
HTTA	$=$	5						




```
 FOUHDAROUT HODE SL: EOQQ EXCEESE THE IHQT
 FAMIAEQLT CAFACMTY, E. THE GFFMCITY IS TMEMETGFE
 FE-GET TG bOQ
```




```
 HAS EEEN GIVEN EEFD SATUFATION FLOU
 EIIT IS CODED AS GREEN DUFITNG STAME 1
```



```
*** - HिएITNG - **** TMFN &G TO 45 TO 4,
 HAS EEEH GIVEN EEFG SATUFATIMH FI.PH
 EUT IS CQNED AS GFEEH DUPTUG STAGE E
```




```
*** - WFFHDG - **** MMEE &E THE TMTML TMES DEFMME
 FMF STACES AHD INTEF-GFEFHS - 70 -
 QIFFEFS FFOH HHE TOTAL CYCIE TTHE TF EO
 ALL (CREEN'S STAOE LENGTHS AFE THEREPDFE FARTMFEN EY O.GZI
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 46 & 4 & 1 & O & 0 & 0 & & 0 & 0 & & 0 & & \\
\hline & 45 & 0 & 2e & 129 & 0 & O & 0 & 0 & 0 & 0 & 0 & 00 \\
\hline & 17 & P & 36 & EOO & 1700 & 1 & 1 & 320\% & 1 & E & \(1500 \%\) & 2 e \\
\hline & 47 & E & 6 & 65 & 13006 & 1 & 1 & Eف00\% & 1 & 1 & 1 פ007 & E \\
\hline & 51. & 3 & 18 & 100 & 1300 & 1 & 1 & 369 & 1. & 3 & 1500\% & 33 \\
\hline 47 & 4 & 1 & 0 & \% & 0 & & 0 & 58 & & 0 & & \\
\hline & 4: & 1. & 6 & 65 & 0 & 0 & 0 & E00 & 1. & 1 & \(1400 x\) & 11 \\
\hline
\end{tabular}
```



## LIVNET. LPA 6/12/90



THE THFMT GATMFU MAG TAFE FILE IG FEAD FFGA EHAMNEL 1

```
HEADEF MATG FFQH TIE HAG TAFE FIGE FEGT FFDA CHANMEL I
```



```
 CFEATED EY FFOGRAM S!
```




HFANEF MATA FEQH THE HAG TAEE FILE FEAG FROH EHATHEL $G$
FH NAGE EUTAD THE LTVEFQQL TFIF MATFIX

CFEATED EY FFOORGH FI



```
HATFIX SIEE - && FCME F& ECHMHE
TYFE OE EIEHEHTS \TTYF\ = a
E: EFENT DREMGICMG - TRTES
```



```
FILE EIENENTE AFE WFITTEN AS FFAL
```


L.ISTING TGF THE FLOHS ASSIGNED TG THE SELECTED LIMES



CMUFARISMA OF THE AGSIGNED (SET 1) AHD TAFGET FLOWE (EET E):

TOTAL MMMEF OF ELEMENTS COBEIDERED
statistic
NUMEEF OF EFFOS OF NEGTIUES
EIH: CIF ELEHENTS
GUEFRGE EIEHEMT
ETAHAED DEVIATIOH:
COEFFICTFMT OF VAFIATTOH

11

$$
776 \mathrm{e}
$$

$$
706.19
$$

$$
47+.6=
$$

$$
0.7607
$$

## get e miffererme

$$
\begin{array}{rr}
0 & \\
935 \% & -1509 \\
950.64 & -14.40 \\
46.90 & 0.1504
\end{array}
$$

```
FEGRESEIOH OF EET Z EIEMENG (Y AGATMET GET I (X)
```

EDIATTH	A	E	F-EDJARED
$Y=: A+B X$	312.ect	0.733	0.6515
STADMAD EFRGFS -	327.435	0.300	
$Y=H X$		1.059	0.5123
$Y=X$			0.5003

THE GMTMFM BUTTE OF FTORFAIS


DATE 12/ 6:9Q TIME 19:5E:EQ

```
THE IUPUT SATHFN FILE IS FEAD FFOH CHAMNEL 1
```

```
HEAMPE DATA FFGH THE MRD TAFE FILE REMD PRGH CHAbHEL I.
```



```
 GFEATED EY FFOGFAD EE
 MNTE AWD TINE OF RFEATION 1EF 6/GM 13/5%/1B
I.MTINE DF THE FGFMHETEFE VEFA
```



DUTFUIT FFOH SATSIH (SATUFH SIMIIATION)
SIMUAATION FUH MUTEEF 1

TTERATIM 1 - AUEF. ARS. CHAHEE = $13.7 Q E 14$ FUUHF MO LTHE EHCEING EATK


ELOAEAG EACK CQNEEFGHE STATIGTYEG:

क 1 THE UTH QUEUE LT STACG - TOTAL FFAEE FCUS OQ





EI TALING FATK CORUEFTENCE STATISTICS:
E IMHS WTTH QUEHE FT STACK - TOTAL EXCESS FCUS JE. $3 E$
0 LIHHS UITH DUEUE LT STAOK - TUTAL EFAFE FCUS O.OO
G IMHS UJTH GLEIE EQ STACK (TO +- O. 1 FCU)
E ITHSS WITH ELCKKTHE BACK EIHA OF


APPENDIX C

Crigin Zone	Destinction Zone	Number of Arrivats	Average Trio iime (minutes)	Tora: Prip ilme (minutes)
1	2	150.	14.8	22223
1	3	450	12.6	1890.7
1	4	450	4.9	738.6
1	5	150	0.4	951.3
4	-	150	9.4	1369.6
1	7	150	11.9	1781.7
2	1	150	14.0	2403.4
2	3	150	5.4	764.4
2	4	1601	11.4	1/92.0
2	5	150	11.4	4604.9
2	6	150	8.6	1286.4
2	7	150	0.1	940.6
3	1	150	11.3	1701.2
3	2	150	4.7	097.9
3	4	075	3.3	59+5.0
3	5	450	8.5	1260.3
3	5	150	0.3	944.5
3	7	150	5.2	774.6
4	4	150	4.8	7421
4	2	150	12.3	1846.3
4	3	1350	9.8	13229.4
5	3	150	3.3	1317.9
5	4	150	4.7	701.7
0	3	450	5.7	998.7
$0$	4	450	6.2	931.7
7	3	150	3.0	745.2
7	4	450	7.9	1185.
			Sum of lotal trip time $=50364.6$   (839.44 hours)	
			```Total demand to enter network = 5775 Venic:es entered network = 5775 Vehic!es who completed trip = 5775 Venic:es left on network =```	
Computer time for simulation run $=00: 31: 50$				

Table 2. System-Oriented Summary Statistics from Integration-1 Model

Link Summertes at inme: ^0 minutes													
Link								Noce		$\begin{aligned} & \text { Link } \\ & \text { Fiow } \\ & \text { fenens } \end{aligned}$	v/C retio (\#)	Toicı ime (min)	$\begin{aligned} & A 1 \\ & \text { Air } \\ & \text { (} \pi \end{aligned}$
Num	Name		P	Sceed (kon)	Sctur (vong)	$\begin{aligned} & \operatorname{Ln} \\ & (\#) \end{aligned}$	$\begin{aligned} & L_{\text {Lgth }} \\ & (\mathrm{m}) \end{aligned}$	$\begin{gathered} \text { from } \\ (\#) \end{gathered}$	$\begin{aligned} & \text { to } \\ & \{\# ; \end{aligned}$				
1	To-żone !	104	1	70.0	2000	2	4414	10	4	17	0.03	27	1
2	To-Lone 2	101	1	70.0	2000	2	4414	14	2	17	0.03	27	1
3	To-Zone 3	101	1	70.0	2000	2	1000	49	3	108	0.46	100	1
4	To-zone 4	104	1	70.0	2000	2	1000	15	4	82	0.12	101	1
5	To-Zone 5	404	1	70.0	2000	2	1000	14	5	20	0.03	24	1
6	To-zone 6	101	1	70.0	2000	2	1000	12	6	24	0.03	28	1
7	To-Zone 7	101	1	70.0	2000	2	1000	13	7	27	0.04	30	1
8	Fr -Lione 4	1	1	70.0	2000	2	1414	1	40	144	0.22	253	1
9	Kingston Ra wb	1	1	60.0	1600	1	2236	11	10	4	0.01	16	4
10	1st Avenue NB	1	2	50.0	1400	2	1500	15.	10	19	0.04	46	2
11	Fr-Zone 5	2	2	70.0	2000	2	1000	5	11	54	0.08	62	1
12	Kingston RdeB	2	1	60.0	1600	1	2230	10	11	45	0.16	163	3
13	Kingston Ra WB	2	4	60.0	1600	1	2000	12	11	0	0.00	0	0
14	2d Avenue NB	2	2	50.0	4400	1	500	10	11	25	0.14	30	1
15	Fr-Zone 6	3	2	70.0	2000	2	1000	6	12	54	0.08	61	1
16	Kingston Rdes	3	1	60.0	1600	4	2000	11	12	10	0.04	20	2
17	Kingstan Rd WB	3	1	60.0	1600	1	2000	13	12	9	0.03	23	2
18	3dAvenue NB	3	2	50.0	1400	1	500	17	12	14	0.06	13	0
49	Fr-Zone 7	4	2	70.0	2000	2	1000	7	13	54	0.08	62	1
20	Kingston RdeB	4	1	60.0	1600	1	2000	12	13	0	0.00	4	0

APPENDIX D

SLAPE OF BE

$$
\text { slope }=\frac{55-35}{12 \Delta 0-2000}=-\frac{20}{103}=-0.2 \mathrm{~m}, 1 \sqrt{2 H}
$$

FLOW A U

$$
\begin{aligned}
& s h_{\text {P }}= \frac{35-20}{2000-9}=-0.2 \\
& 20 \Delta 0-P_{m}=\frac{15}{-0.2} \\
& Q_{m}=2000+\frac{15}{0.2}=2000+75 \\
& Q_{m}=2075
\end{aligned}
$$

$$
\begin{aligned}
& R_{B}=\frac{1900}{55} \cdot 325 \text { uprogal } \\
& \left.L_{C}=\frac{2000}{35}=5 \% \right\rvert\, \text { maxy } \\
& B_{q}=\frac{2 D P}{20}=103.75 \text {,17a, }
\end{aligned}
$$

MAR TTDRADE

$$
N_{0}=\frac{5280}{32808 \pi_{d}}=\frac{5280}{3250820}=\frac{5280}{6510}=80
$$

APPENDIX E

1CONTINUOUS TRAFFIC AS SIGNMENTMODELVERSION 5 CONTRAM 5.14 (16. 4.91) RUN ON 11/6/91 TRANSPORT AND ROAD RESEARCH LABORATORY (DTP) CROUTHORNE, RG116AU, ENGLAND = TRAFFIC GROUP, 0344-770494 = CROWN COPYRIGHT 1990
network and time data

SMART CORRIDOR BASE RUN NETWORK and TIME DATA (6/11/91)

$\begin{aligned} & \text { CARD } \\ & \text { TYPE } \end{aligned}$	ORIGIN NUMBER	FEEDS UP TO 5 LINKS : (LETTERS DENOTE BANNED MOVEMENTS)				
3	5001	7	0	0	0	0
3	5002	5303	5304	158	128	0
3	5003	4803	4804	4603	157	0
3	5004	4607	4105	4106	0	0
3	5005	4203	7607	3505	3506	0
3	5006	3603	3610	4107	3005	3011
3	5007	3103	3110	3507	3508	2505
3	5008	2603	2610	3007	2005	2006
3	5009	2103	2110	2507	2508	1505
3	5010	1603	2007	2008	905	0
3	5011	1003	1010	1507	205	211
3	5012	80	82	83	0	0
3	5013	81	84	0	0	0
3	5014	50	0	0	-	0
3	5015	907	908	303	304	0
3	5016	202	209	703	704	0
3	5017	301	309	1307	1308	0
3	5018	8001	705	1807	1808	0
3	5019	1701	1305	1306	2307	0
3	5020	2201	2209	1805	1806	2807
3	5021	2701	2709	2305	2306	3307
3	5022	3201	2805	2806	3807	0
3	5023	3701	3709	3305	3306	4407
3	5024	4201	3805	3806	4907	0
3	5025	4405	4406	5307	4801	4809
3	5026	4905	128	0	0	0

UNCONTRO	LED .	FEEDS UP TO	5	LINKS	OR	CRUISE	LENGTH	SAT/N		STORE J	JUNCTION	\% DELAY
CARD SET	LINK	DESTINATIONS				time		FLOW		CAP.	NUMBER	
TYPE	NUMBER	(LETTERS DENOT	B	NNED M	VEMENTS)	(SECS)	(METRS)	(PCU/H)		CUS)		

4	1	50	51	0	0	0	0	86 V	732	10500	139	136
4	1	51	52	0	0	0	0	86 V	387	10300	100	137
4	1	52	53	1101	0	0	0	86 V	320	12000	96	138
4	1	53	54	0	0	0	0	86 V	335	11400	95	139
4	1	54	55	1607	0	0	0	86 V	122	10900	33	140
4	1	55	56	0	0	0	0	86 V	518	12500	162	141
4	1	56	57	2107	0	0	0	86 V	290	11300	82	142
4	1	57	58	0	0	0	0	86 V	488	10300	126	143
4	1	58	59	2607	0	0	0	86 V	183	9800	45	144
4	1	59	60	0	0	0	0	86 V	671	10600	178	145

4	1	60	61	3107	0	0	0	86 V	183	9900	45	146
4	1	61	62	0	0	0	0	86 V	579	9450	137	147
4	1	62	63	3607	0	0	0	86 V	899	11550	260	148
4	1	63	64	0	0	0	0	86 V	655	9500	156	149
4		64	65	4207	0	0	0	86 V	930	8800	205	150
4		65	66	0	0	0	0	86 V	198	9100	45	151
4		66	67	0	0	0	0	86 V	101	9600	24	152
4	1	67	68	0	0	0	0	86 V	472	9100	107	153
4	1	68	69	4601	0	0	0	86 V	899	9150	206	154
4	1	69	70	0	0	0	0	86 V	290	9100	66	155
4	1	70	71	0	0	0	0	86 V	732	7600	139	156
4	1	71	72	0	0	0	0	86 V	533	7550	101	157
4	1	72	9001	0	0	0	0	86 V	101	9500	166	158
4	1	7	a	5305	5311	0	0	86 V	853	15000	469	107
4	1	8	9	0	0	0	0	86 V	335	8700	3500	108
4	1	9	10	5205	0	0	0	86 V	122	9200	28	109
4	1	10	11	4805	0	0	0	86 V	152	8600	33	110
4	1	11	12	0	0	0	0	86 V	457	9000	103	111
4	1	12	13	0	0	0	0	86 V	518	9300	120	112
4	1	13	14	4305	0	0	0	86 V	1204	8000	241	113
4	1	14	15	0	0	0	0	86 V	183	8100	37	114
4	1	15	16	4205	0	0	0	86 V	122	9000	27	115
4	1	16	17	0	0	0	0	86 V	442	8500	94	116
4	1	17	18	3705	0	0	0	86 V	671	9500	159	117
4	1	18	19	0	0	0	0	86 V	101	9450	166	118
4	1	19	20	3205	0	0	0	86 V	884	10900	241	119
4	1	20	21	0	0	0	0	86 V	366	9500	87	120
	1	21	22	2705	0	0	0	86 V	320	10100	81	121
4	1	22	23	0	0	0	0	86 V	655	12100	198	122
4	1	23	24	2205	0	0	0	86 V	335	12100	101	123
4	1	24	25	0	0	0	0	86 V	457	10300	118	124
4	1	25	26	1705	0	0	0	86 V	305	11900	91	125
4	1	26	27	0	0	0	0	86 V	579	12500	181	126
4	1	27	28	1205	0	0	0	86 V	213	11350	60	127
4	1	28	29	0	0	0	0	86 V	472	8500	120	128
4	1	29	30	85	0	0	0	86 V	213	9850	52	129
4	1	30	31	86	0	0	0	86 V	290	9000	65	130
4	1	31	32	0	0	0	0	86 V	274	7500	51	131
4	1	32	9014	0	0	0	0	86 V	213	9300	50	132
4	1	80	9013	0	0	0	0	86 V	700	7600	462 E	160
4	1	81	9012	0	0	0	0	86 V	700	7600	462 E	161

SIGNaLISED		feeds up	T0	5	LINKS	OR	CRUISE	Length	SAT/N	Store	SI GNal/	Stages	\% GREEN	\% delay
CARD SET	LI NK	DESTI NATI	ONS				TIME		FLOW	CAP.	J UNCTION	UHEN		
type	number	(letters	denote		NNED	movements)	(SECS)	(METRS)	(PCU/H)	(PCUS)	number	green		

6	2	705	301	309	9017	0	0	55 v	837	2778	202 E	7	1
6	2	1305	705	0	0	0	0	55 v	732	5100	324 E	13	1
6	2	1306	8001	0	0	0	0	55 v	732	900	57 E	13	1
6	2	1307	1807	1808	0	0	0	55v	837	5100	371 E	13	1
6	2	1308	9018	0	0	0	0	55 v	837	1000	12E	13	1
6	2	1805	1305	1306	9019	0	0	55 v	804	3400	237E	18	1
6	2	1806	1701	0	0	0	0	55 v	804	900	62 E	18	1
6	2	1807	2307	2308	0	0	0	55 v	119	3400	212 E	18	1
6	2	1808	9019	0	0	0	0	55 v	719	500	31 E	18	.
6	2	2305	1805	1806	9020	0	0	55 v	815	3400	240 E	23	1
6	2	2306	2201	2209	0	0	0	55 v	815	875	62 E	23	1
6	2	2307	2807	2808	0	0	0	55 v	658	3400	194 E	23	1
6	2	2308	9020	0	0	0	0	55 v	658	675	38 E	23	1

6	2	2805	2305	2306	0	0	0	55v	802	3400	2378	28	2
6	2	2806	2701	2709	0	0	0	55v	802	700	48E	28	2
6	2	2807	3307	3308	0	0	0	55 v	815	3400	240 E	28	2
6	2	2808	9021	0	0	0	0	55v	815	600	42 E	28	2
6	2	3305	2805	2806	9022	0	0	55 v	1591	3400	470 E	33	1
6	2	3306	3201	0	0	0	0	$55 v$	1591	955	132E	33	1
6	2	3307	3807	3808	0	0	0	55v	802	3400	237E	33	1
6	2	3308	9022	0	0	0	0	55 v	802	1140	79 E	33	1
6	2	3805	3305	3306	0	0	0	55 v	1478	3400	436E	38	2
6	2	3806	3701	3709	0	0	0	55 v	1478	600	17E	38	2
6	2	3807	4407	4408	0	0	0	55 v	1591	3400	470 E	38	2
6	2	3808	9023	0	0	0	0	55 v	1591	825	114 E	38	2
6	2	4405	3805	3806	9024	0	0	55 v	1829	3400	540 E	44	2
6	2	4406	4201	0	0	0	0	55 v	1829	600	95 E	44	2
6	2	4407	4907	4908	0	0	0	55 v	1478	3400	436E	44	2
6	2	4408	9024	0	0	0	0	55 v	1478	975	125 E	44	2
6	2	4907	5307	5308	0	0	0	55v	1829	3400	540 E	49	2
6	2	4908	9025	0	0	0	0	55 v	1829	1155	183 E	49	2
6	3	205	9015	0	0	0	0	55 v	1272	5100	564 E	2	1
6	3	206	9015	0	0	0	0	55 v	1272	500	55 E	2	1
6	3	211	303	304	0	0	0	55v	1272	1450	160 E	2	1
6	3	905	206	205	211	0	0	55v	692	5100	306 E	9	1
6	3	906	9011	0	0	0	0	55 v	692	825	49 E	9	1
6	3	907	1507	1508	0	0	0	55v	1201	5100	532 E	9	1
6	3	908	1003	1010	0	0	0	55v	1201	1600	167E	9	1
6	3	1505	906	905	0	0	0	55v	814	3400	240 E	15	2
6	3	1506	9010	0	0	0	0	55v	814	800	56 E	15	2
6	3	1507	2007	2008	0	0	0	55v	692	3400	204E	15	2
6	3	1508	1603	0	0	0	0	55v	692	1600	96 E	15	2
6	3	2005	1505	1506	0	0	0	55v	796	3400	235 E	20	1
6	3	2006	9009	0	0	0	0	55v	796	800	55 E	20	.
6	3	2007	2507	2508	9009	0	0	55v	814	3400	240 E	20	1
6	3	2008	2103	2110	0	0	0	55v	814	500	35 E	20	1
6	3	2505	2006	2005	0	0	0	55v	805	3400	238 E	25	2
6	3	2506	9008	0	0	0	0	55v	805	650	45 E	25	2
6	3	2507	3007	9008	0	0	0	55 v	196	3400	235 E	25	2
6	3	2508	2603	2610	0	0	0	55 v	796	500	34 E	25	2
6	3	3005	2506	2505	0	0	0	55v	1234	3400	364 E	30	1
6	3	3006	9007	0	0	0	0	55 v	1234	536	57 E	30	1
6	3	3007	3507	3508	0	0	0	56 V	805	2600	182E	30	1
6	3	3011	3103	3110	0	0	0	55v	1234	1450	155E	30	1
6	3	3505	3005	3006	3011	0	0	55v	1526	5100	676 E	35	2
6	3	3506	9006	0	0	0	0	55v	1526	500	66E	35	2
6	3	3507	4107	4108	9006	0	0	55v	1164	5100	516 E	35	2
6	3	3508	3603	3610	0	0	0	55v	1164	625	63 E	35	2
6	3	4105	3506	3505	0	0	0	55v	1280	3400	378 E	41	3
6	3	4106	9005	0	0	0	0	55v	1280	500	55 E	41	3
6	3	4107	7612	7607	0	0	0	55v	1303	3400	385E	41	3
6	3	4108	4203	0	0	0	0	55v	1303	875	99E	41	3
6	3	4605	7606	7605	0	0	0	55v	227	5100	100E	46	1
6	3	4606	4707	0	0	0	0	55v	227	575	11E	46	1
6	3	4607	4707	4807	4808	0	0	55v	192	5100	351 E	46	1
6	3	4805	4903	4904	4910	4601	0	55v	300	3400	2000	48	2
6	3	4807	4701	4702	0	0	0	55v	213	3400	62 E	48	2
6	3	4808	4903	4904	4910	0	0	55v	213	1600	29 E	48	2
6	3	7605	4106	4105	9004	0	0	55v	192	5100	351 E	76	1
6	3	7606	9004	0	0	0	0	55v	792	740	50 E	76	1
6	3	7607	4607	0	0	0	0	55v	1280	5100	567E	76	1
6	3	7612	9004	0	0	0	0	55v	1280	1450	161 E	76	1
6	4	1501	905	906	9010	0	0	55v	280	3400	82 E	15	1

6	4	1502	2007	2008	0	0	0	55 V	280	500	12 E	15	1
6	4	1601	1501	1502	0	0	0	55 V	50	5100	22 E	16	
6	4	1602	151	0	0	0	0	55v	50	3200	13 E	16	2
6	4	1603	1703	1704	151	0	0	55 V	280	5100	124E	16	1
6	4	1607	1501	1502	1703	- 1704	151	55 V	250	3400	2000	16	3
6	4	1701	1601	1602	121	0	0	55 V	1330	5100	589E	17	
6	4	1703	1803	1804	0	0	0	55 V	165	5100	73E	17	1
6	4	1704	121	0	0	0	0	55 V	165	1600	22 E	17	2
6	4	1705	1803	1804	1601	1602	121	55 V	250	3400	2000	17	3
6	4	1803	2307	2308	9019	0	0	55V	1330	3400	393 E	18	2
6	4	1804	1305	1306	0	0	0	55 V	1330	500	57E	18	2
6	4	2001	9009	0	0	0	0	55 V	860	3400	254 E	20	2
6	4	2002	2507	2508	0	0	0	55 V	860	500	37 E	20	2
6	4	2009	1505	1506	0	0	0	55 V	860	1450	108E	20	2
6	4	2101	2001	2002	2009	0	0	55 V	360	3400	106E	21	2
6	4	2102	152	0	0	0	0	55 V	360	1600	50E	21	1
6	4	2103	2203	2204	0	0	0	55 V	860	3400	254 E	21	2
6	4	2107	2203	2204	2001	2002	2009	55 V	240	3400	2000	21	3
6	4	2110	152	0	0	0	0	55 V	860	1450	108E	21	2
6	4	2201	2101	2102	0	0	0	55 V	1390	3400	410E	22	2
6	4	2203	2303	2304	0	0	0	55 V	360	3400	106 E	22	2
6	4	2204	122	0	0	0	0	55 V	360	1800	56E	22	1
6	4	2205	2303	2304	2101	2102	122	55V	240	3400	2000	22	3
6	4	2209	122	0	0	0	0	55v	1390	1450	175E	22	2
6	4	2303	2807	2808	9020	0	0	55 V	1390	3400	410 E	23	2
6	4	2304	1805	1806	0	0	0	55 V	1390	500	60 E	23	2
6	4	2501	2005	2006	9008	0	0	55 V	820	3400	242E	25	1
6	4	2502	3007	0	0	0	0	55 V	820	500	35 E	25	
6	4	2601	2501	2502	0	0	0	55 V	400	3400	118 E	26	
6	4	2602	153	0	0	0	0	55 V	400	1600	55E	26	3
6	4	2603	2703	2704	0	0	0	55 V	820	3400	242 E	26	1
6	4	2607	2703	2704	2501	2502	153	55 V	330	3400	2000	26	2
6	4	2610	153	0	0	0	0	55 V	820	1450	103E	26	1
6	4	2701	2601	2602	0	0	0	55 V	1400	5100	620 E	27	1
6	4	2703	2803	2804	2810	0	0	55 V	400	3400	118E	27	1
6	4	2704	123	0	0	0	0	55 V	400	1600	55E	27	3
6	4	2705	2803	2804	2810	2601	2602	55 V	330	3400	2000	27	2
6	4	2709	123	0	0	0	0	55 V	1400	1450	176E	27	
6	4	2803	9021	0	0	0	0	55 V	1400	3400	413 E	28	
6	4	2804	2305	2306	0	0	0	55 V	1400	500	60 E	28	
6	4	2810	3307	3308	0	0	0	55 V	427	1450	53 E	28	
6	4	3001	2505	2506	3507	3508	9007	55 V	1076	3400	318 E	30	2
6	4	3101	3001	0	0	0	0	55 V	300	3400	88 E	31	2
6	4	3102	154	0	0	0	0	55 V	300	1600	41 E	31	
6	4	3103	3203	3204	0	0	0	55 V	1076	3400	318 E	31	2
6	4	3107	3203	3204	3001	154	0	55 V	240	3400	2000	31	3
6	4	3110	154	0	0	0	0	55v	1076	1450	135 E	31	2
6	4	3201	3101	3102	124	0	0	55V	1280	3400	378 E	32	1
6	4	3203	3303	0	0	0	0	55v	300	3400	88E	32	
6	4	3204	124	0	0	0	0	55 V	300	1600	41E	32	1
6	4	3205	3303	3101	3102	124	0	55 V	240	3400	2000	32	3
6	4	3303	3807	3808	2805	2806	9022	55 V	1280	3215	357 E	33	2
6	4	3501	3005	3006	3011	9006	0	55 V	1750	5100	176 E	35	1
6	4	3502	4107	4108	0	0	0	55V	1750	500	76E	35	
6	4	3601	3501	3502	0	0	0	55V	360	5100	159 E	36	1
6	4	3602	155	0	0	0	0	55v	360	1600	50E	36	3
6	4	3603	3703	3704	0	0	0	55 V	1750	5100	176 E	36	
6	4	3607	3703	3704	3501	3502	155	55 V	300	4200	2000	36	2
6	4	3610	155	0	0	0	0	55v	1750	1450	220 E	36	1
6	4	3701	3601	3602	0	0	0	55 V	805	6800	476E	37	2

6	4	3703	3803	3804	0	0	0	55 v	360	5100	159E	37	2
6	4	3704	125	0	0	0	0	55 V	360	1800	56E	37	
6	4	3705	3601	3602	3803	3804	125	55v	300	3400	2000	37	3
6	4	3709	125	0	0	0	0	55 V	805	1600	112E	37	2
6	4	3803	4407	4408	9023	0	0	55 V	805	5100	357 E	38	1
6	4	3804	3305	3306	0	0	0	55 V	805	500	35 E	38	1
6	4	4101	3505	3506	9005	0	0	55 V	1733	5100	768E	41	1
6	4	4102	7607	7612	0	0	0	55 V	1733	1600	241 E	41	2
6	4	4201	4101	4102	156	0	0	55 V	595	5100	263 E	42	
6	4	4203	4303	156	a 7	0	0	55 V	1733	5100	768E	42	
6	4	4205	4101	4102	0	0	0	55 V	300	3400	2000	42	3
6	4	4207	4101	4102	4303	156	0	55 V	500	3400	2000	42	3
6	4	4303	4403	4404	126	0	0	55 V	490	6800	289E	43	1
6	4	4305	4403	4404	126	0	0	55 V	300	3400	2000	43	2
6	4	4403	4907	4908	9024	0	0	55 V	105	5100	46 E	44	1
6	4	4404	3805	3806	0	0	0	55 V	105	500	4 E	44	1
6	5	901	9011	0	0	0	0	55 V	212	3400	62 E	9	2
6	5	902	1507	1508	0	0	0	55 V	212	500	9 E	9	2
6	5	909	205	206	211	0	0	55 V	212	1700	31 E	9	2
6	5	1001	901	902	909	0	0	55 V	169	3400	49 E	10	2
6	5	1002	1108	0	0	0	0	55 V	169	1600	23 E	10	1
6	5	1003	1203	1204	0	0	0	55 V	212	3400	62 E	10	2
6	5	1005	1203	1204	901	902	909	55 V	165	3400	48 E	10	3
6	5	1010	1108	0	0	0	0	55 V	212	1450	26 E	10	2
6	5	1101	1005	150	0	0	0	55 V	200	3400	2000	11	2
6	5	1108	150	0	0	0	0	55V	165	1325	19 E	11	1
6	5	1201	1001	1002	120	0	0	55 V	151	5100	66 E	12	2
6	5	1203	7803	0	0	0	0	55 V	169	5100	74 E	12	1
6	5	1204	120	0	0	0	0	55 V	169	1600	23 E	12	1
6	5	1205	1001	1002	7803	0	0	55 V	220	3200	2000	12	3
6	5	1303	9018	0	0	0	0	55 V	298	3400	88E	13	2
6	5	1304	705	0	0	0	0	55 V	298	1050	27 E	13	2
6	5	1310	1807	1808	0	0	0	55 V	298	1450	37 E	13	2
6	5	7801	1201	0	0	0	0	55 V	97	3400	28 E	78	1
6	5	7803	8003	0	0	0	0	55 V	151	3400	44 E	78	1
6	5	8001	7801	0	0	0	0	55v	298	3400	88E	80	1
6	5	8003	1303	1304	1310	0	0	55 V	97	3400	28 E	80	1
6	6	4601	4807	4808	4707	7605	0	55 V	250	3400	2000	46	3
6	6	4603	7605	7606	4807	4808	0	55 V	152	3400	44 E	46	
6	6	4701	4603	9003	0	0	0	55 V	140	3400	41E	47	1
6	6	4702	157	0	0	0	0	55 V	140	660	8 E	47	1
6	6	4707	4803	4804	157	9003	0	55 V	152	3400	44 E	47	2
6	6	4801	4701	4702	0	0	0	55 V	213	3400	62E	48	4
6	6	4803	4903	4904	4910	0	0	55 V	140	3400	41 E	48	4
6	6	4804	4605	4606	127	0	0	55v	140	1600	19E	48	4
6	6	4809	4605	4606	127	0	0	55 V	213	1450	26 E	48	4
6	6	4903	9025	0	0	0	0	55v	213	3400	62 E	49	1
6	6	4904	4405	4406	0	0	0	55 V	213	500	9 E	49	1
6	6	4905	4801	4405	4406	9025	0	55v	427	3235	120E	49	2
6	6	4910	5307	5308	0	0	0	55v	213	1450	26 E	49	.
6	6	5201	9002	0	0	0	0	55 V	210	5100	93 E	52	3
6	6	5202	158	0	0	0	0	55 V	210	1600	29 E	52	3
6	6	5205	9002	0	0	0	0	55 V	500	3400	2000	52	3
6	6	5303	4.905	9026	0	0	0	55 V	210	5100	93 E	53	1
6	6	5304	128	0	0	0	0	55 V	210	500	9 E	53	1
6	6	5307	5201	5202	0	0	0	55V	427	5100	189E	53	3
6	6	5308	9026	0	0	0	0	55 V	427	1600	59 E	53	3
6	6	5305	5201	5202	4905	128	0	55 V	350	3400	2000	53	3
6	6	5311	9026	0	0	0	0	55v	350	1450	2000	53	3
6	7	202	907	908	0	0	0	55 V	457	3400	135E	2	2

6	1	209	9015	0	0	0	0	55v	457	1450	57 E	2	2	
6	1	301	202	209	0	0	0	55v	334	5100	148E	3	1	
6	7	303	703	104	0	0	0	55v	457	5100	202E	3	1	
6	7	304	9016	0	0	0	0	55v	457	500	19E	3		
6	7	309	9016	0	0	0	0	55v	334	1450	42E	3		
6	7	703	1307	1308	9017	0	0	55v	334	5100	148E	7	2	
6	7	704	9017	0	0	0	0	55v	334	500	14 E	7	2	
4	8	82	51	0	0	0	0	86 V	300	9000	234 E	136		
4	8	83	32	0	0	0	0	86 V	500	9000	391 E	131		
4	8	84	52	0	0	0	0	86 V	500	9000	3911	137		
4	8	85	9013	0	0	0	0	86 V	300	9000	2000	160		
4	8	86	9012	0	0	0	0	86 V	500	9000	2000	161		
4	8	87	15	0	0	0	0	86 V	200	9000	156E	114		
6	8	120	29	0	0	0	0	50 V	200	3400	59 E	128		
6	8	121	27	0	0	0	0	50 V	250	3400	73 E	126		
6	8	122	25	0	0	0	0	50 V	250	3400	73 E	124	1	
6	8	123	23	0	0	0	0	50 V	300	3400	88E	122		
6	8	124	21	0	0	0	0	50 V	250	3400	73 E	120	1	
6	8	125	19	0	0	0	0	50 V	300	3400	88E	118	1	
6	8	126	17	0	0	0	0	50 V	300	3400	88E	116	1	
6	8	127	13	0	0	0	0	50 V	400	3400	118E	112	1	
6	8	128	9	0	0	0	0	50 V	400	3400	118E	108		
6	8	150	54	0	0	0	0	50 V	200	3400	59 E	139		
6	8	151	56	0	0	0	0	50 V	250	3400	73E	141		
6	8	152	58	0	0	0	0	50 V	250	3400	73 E	143	1	
6	8	153	60	0	0	0	0	50 V	300	3400	88E	145		
6	8	154	62	0	0	0	0	50 V	250	3400	73E	147	1	
6	8	155	64	0	0	0	0	50 V	300	3400	88E	149	1	
6	8	156	68	0	0	0	0	50 V	300	3400	88E	153		
6	8	157	71	0	0	0	0	50 V	350	3400	103 E	156		
6	8	158	72	0	0	0	0	50 V	300	3400	88 E	157	1	
OFLAGS:-		SPEED	IN Km/h,	SF	LANES	SP	ow	MBER,	$\mathrm{E}=\mathrm{E}$	Imated	Storage	APACITY,	D = DEPARTURES,	$A=A R R I V A L$

CARD	VEH	FUEL COEFFICIENTS					
TYPE	CLASS	CRUISE			WEIGHT	EFFICIENCY	
		$\begin{gathered} A \\ (M L / M) \end{gathered}$	$\begin{gathered} B \\ (M L / S \end{gathered}$	$\begin{gathered} C \\ \left(M L / M V^{* * 2}\right) \end{gathered}$	$\begin{gathered} M \\ (T) \end{gathered}$	El	$\begin{array}{r} \text { E2 } \\ \text { KJ.. } \end{array}$
D/F	C	0.024	0.361	0.000057	1.080	0.087	0.025
D/F	B	. 0.040	2.272	0.000334	8.000	0.074	0.025
D/F	.	. 0.040	2.272	0.000334	5.000	0.074	0.025

CARD	PCUS		PER CLASS		CRUISE TIMES (\% CAR VA			
TYPE	CAR	B	L	CAR	B	L		
DIF	1.0	2.0	1.5	100	100	100		

NETWORK COMPOSITION DEDUCED FROM DATA:

57	UNCONTROLLED LINKS)		
0	GIVE-WAY LINKS	,	TOTAL OF	275 LINKS OF ALL TYPES
218	SIGNALISED LINKS)		
41	SIGNAL JUNCTIONS		TOTAL OF	92 JUNCTIONS OF ALL TYPES

OTOTAL VEHICLE FLOW RATES FROH EACH ORIGIN DURING EALH TIME SLICE (VEH/H)
origins
fLows

5001	2738	7242	9006	9006	6836	5368	3628	2738	0
5002	62	150	190	190	130	116	78	62	0
5003	644	1666	2086	2086	1640	1250	844	644	0
5004	136	348	438	438	336	254	180	136	0
5005	300	782	962	962	766	594	398	300	0
5006	556	1446	1796	1796	1380	1048	726	556	0
5007	52	134	162	162	118	$a 4$	66	52	0
5008	320	816	1018	1018	762	598	412	320	0
5009	168	428	528	528	402	304	216	168	0
5010	324	822	1024	1024	742	552	420	324	0
5011	12	30	32	32	26	18	14	12	0
5012	178	2048	2554	2554	1948	1430	1026	178	0
5013	178	2048	2554	2554	1992	1332	1026	718	0
5014	1808	4844	5990	6028	4810	3232	2376	1808	0
5015	28	80	92	92	80	58	32	28	0
5016	38	86	106	106	86	58	46	38	0
5017	a	18	18	18	18	12	8	a	0
5018	108	286	346	346	286	186	142	108	0
	72	166	204	204	160	120	80	\ldots	70
0									
5019	114	280	346	346	276	206	142	114	0
5020	214	532	662	662	510	390	270	214	0
5021	34	90	110	110	78	68	44	34	0
5022	354	944	1170	1170	916	656	476	366	0
5023	324	862	1066	1066	726	630	432	324	0
5024	358	914	1138	1138	834	654	464	358	0
5025	214	540	670	670	496	400	270	214	0

ototal vehicle flow rates directed towards each destination during each time slice (veh/h)
destinations flows

9001	2996	7934	9884	9884	7612	5120	3970	2996	0
9014	1792	4728	5888	5888	4356	3498	2362	1792	0
9013	536	1398	1736	1736	1238	1042	684	536	0
9012	1160	3048	3804	3804	2896	2282	1512	1160	0
9017	146	364	460	460	354	248	178	146	0
9018	78	194	234	234	188	146	98	78	0
9019	46	122	142	142	112	80	56	46	0
9020	50	152	182	182	148	118	68	50	0
9021	112	266	328	328	264	198	142	112	0
9022	26	58	64	64	50	40	34	26	0
9023	218	592	700	738	578	422	300	218	0
9024	132	324	400	400	324	244	162	132	0
9025	48	140	170	170	132	104	66	48	0
9015	162	394	498	498	370	304	210	162	0
9011	186	470	588	588	442	352	244	186	0
9010	564	1486	1844	1844	1472	1058	748	564	0
9009	262	666	830	830	658	500	334	262	0
9008	90	236	284	284	234	176	116	90	0
9007	244	628	784	784	620	476	316	244	0
9006	86	228	274	274	228	178	120	$a 6$	0
9005	328	842	1042	1042	810	622	426	328	0
9004	430	1120	1390	1390	1120	832	560	428	0
9003	340	890	1108	1108	852	604	448	346	0
9002	416	1078	1346	1346	1072	800	544	422	0
9026	50	134	164	164	126	104	64	50	0
9016	44	110	124	124	98	70	54	44	0

ototal vehicle flow rates entering the network during each time slice (Veh/h)
$\begin{array}{lllllllll}10542 & 27602 & 34268 & 34306 & 26354 & 19618 & 13816 & 10552 & 0\end{array}$
ONUMBER OF ORIGIN-DESTINATION (O-D) CARDS 2420
LASt time slice with non-Zero o-d demand 8
$\begin{array}{lr}\text { LENGTH OF "BUSY PERIOD" IN MINUTES } & 240 \\ \text { ESTIMATED TOTAL DEMAND (VEHICLES) } & 88529\end{array}$

```
SMART CORRIDOR BASE RUN NETWORK and TIME DATA (6/11/91)
SMART CORRIDOR BASE DEMAND
```

SMART CORRIDOR CONTROL DATA

204	15	15	15	15	15	15	15	15	15	15
214	13	13	27	14	14	13	13	13	13	16
220	27	27	27	31	33	29	27	27	27	29
230	14	14	14	19	18	15	14	14	14	16
24 V	19	19	19	25	29	21	19	19	19	22
25 V	12	12	13	23	23	14	12	12	12	16
264	24	24	31	44	43	27	24	24	24	32
270	8	8	10	12	19	11	8	8	8	11
280	19	19	44	84	86	15	21	19	19	53
290	8	8	8	8	8	8	8	8	8	8
300	12	12	12	12	12	12	12	12	12	12
31u	11	11	11	11	11	11	11	11	11	11
32 V	8	8	8	8	8	8	8	8	8	8
50 u	30	30	30	30	30	30	30	30	0	30
51u	16	16	16	16	16	16	16	16	0	16
520	13	13	13	13	13	13	13	13	0	13
53u	14	14	14	14	14	14	14	14	14	14
54u	5	5	5	5	5	5	5	5	5	5
$55 u$	21	21	21	21	21	21	21	21	21	21
561	12	12	12	12	12	12	12	12	12	12
570	20	20	20	22	22	20	20	20	20	21
584	7	7	17	25	8	7	7	1	7	13
594	28	28	28	29	28	28	28	28	28	28
600	7	7	15	26	8	7	7	7	7	12
61 V	24	24	29	33	29	24	24	24	24	27
62 V	37	37	37	52	48	40	37	37	37	42
63 V	27	27	32	42	39	30	27	27	27	33
$64 \cup$	38	38	80	119	93	49	38	38	38	69
65 V	8	8	8	8	14	8	8	8	8	9
664	4	4	4	4	12	4	4	4	4	5
670	19	19	19	30	34	21	19	19	19	23
68 u	37	37	38	61	91	59	37	37	37	52
69 V	12	12	14	20	24	12	12	12	12	15
701	30	30	37	62	15	54	32	30	30	47
114	22	22	51	90	102	93	27	22	22	62
12 V	29	29	29	29	29	29	29	29	29	29
80 U	29	29	29	29	29	29	29	29	0	29
814	29	29	29	29	29	29	29	29	0	29
820	12	12	12	12	12	12	12	12	0	12
830	20	20	20	20	20	20	20	20	0	20
840	20	20	20	20	20	20	20	20	0	20
85 U	12	12	12	12	12	12	12	12	12	12
86 U	20	20	20	20	20	20	20	20	20	20
870	8	8	8	8	8	8	8	8	0	8
120 s	14	14	14	14	14	14	14	14	0	14
1215	18	18	30	88	98	18	18	18	0	41
1225	18	18	20	59	54	21	18	18	0	35
123 s	21	21	21	30	34	21	21	21	0	25
124 S	18	18	18	18	18	18	18	18	18	18
125s	21	21	21	21	21	21	21	21	21	21
126 S	0	21	21	21	21	0	0	0	0	21
127s	28	28	28	32	37	28	28	28	0	30
1285	28	28	32	82	55	28	28	28	0	49
150s	14	14	14	14	14	14	14	14	0	14
151 s	18	18	18	18	18	18	18	18	0	18
152S	18	18	18	18	18	18	18	18	0	18
153s	21	21	21	22	21	21	21	21	0	21
154s	18	18	18	37	20	18	18	18	0	23
155 s	21	21	41	41	41	24	21	21	0	33
156S	21	21	21	73	95	33	21	21	0	61

157s	25	25	85	230	292	79	27	25	0
1585	21	21	21	21	21	21	21	21	0
2025	38	38	38	40	40	38	38	38	0
2055	92	92	93	93	92	92	92	92	92
2065	0	0	87	92	90	0	0	0	0
2095	38	38	38	38	38	38	38	38	0
2115	92	93	94	97	97	93	92	92	0
3015	26	26	26	26	26	26	26	26	0
3035	34	34	34	34	34	34	34	34	0
3045	34	35	35	37	37	34	34	34	0
309 s	26	26	26	26	26	26	26	26	26
703 s	28	28	28	28	28	28	28	28	0
7045	0	0	0	21	25	0	0	0	0
705 s	66	67	69	11	73	67	66	66	65
9015	22	23	23	23	22	23	22	22	22
9025	22	22	23	24	22	22	22	22	0
9055	54	54	54	55	55	54	54	54	0
9065	54	57	61	11	100	62	55	54	0
9075	87	87	87	87	87	87	87	87	0
9085	87	88	88	95	100	89	87	87	0
9095	23	24	24	24	23	23	23	23	22
1001s	18	19	19	18	18	19	18	18	18
1002 s	31	39	42	43	42	39	32	31	0
1003s	20	20	20	21	21	20	20	20	0
1005s	52	123	207	228	117	83	62	52	0
1010s	20	21	21	20	20	20	20	20	0
1101 s	35	37	37	36	35	35	35	35	0
9108 s	13	14	15	14	15	14	13	13	0
1201 s	27	28	30	32	31	28	27	27	0
12035	24	24	24	24	24	24	24	24	0
12045	25	26	26	37	83	60	24	25	0
1205 s	29	33	37	31	30	33	30	29	27
1303s	28	28	28	28	28	28	28	28	0
13045	30	34	37	32	30	32	31	30	28
1305 s	56	56	56	57	57	56	56	56	0
13065	56	57	132	195	211	76	56	56	0
1307 s	63	63	63	63	63	63	63	63	0
1308s	63	63	63	64	64	63	63	63	0
1310s	0	28	28	28	28	28	0	0	0
15015	24	28	29	30	30	28	25	25	23
1502 s	23	23	24	24	23	23	23	23	0
1505 s	68	68	11	82	79	69	68	68	0
15065	73	91	214	509	539	296	82	74	0
1507 s	59	59	60	60	60	59	59	59	0
15085	0	59	59	0	0	59	0	0	0
16015	15	16	17	17	17	16	15	15	14
1602 s	16	16	16	16	16	16	16	16	0
1603 s	30	32	32	32	31	31	30	30	0
1607s	39	116	199	369	307	128	40	39	0
1701s	97	98	98	98	98	98	97	97	0
1703s	20	20	21	21	21	20	20	20	0
1704 s	25	33	29	28	27	28	26	25	0
1705 s	42	98	180	300	407	146	55	46	36
1803 s	92	92	92	92	92	92	92	92	0
18045	0	0	95	96	95	92	0	0	0
1805 s	66	66	70	85	88	67	66	66	0
1806S	66	69	98	167	284	204	66	66	0
1807s	61	61	61	61	61	61	61	61	0
1808s	0	62	67	66	67	62	0	0	0
2001s	63	63	64	64	63	63	63	63	62

20025	62	62	63	63	64	62	62	62	0
2005 s	64	65	67	68	68	65	64	64	0
2006s	65	70	80	95	105	11	67	65	0
2007s	65	65	66	66	66	65	65	65	0
20085	0	0	0	0	0	0	0	0	0
2009 s	0	0	65	68	65	62	0	0	0
2101 s	34	35	35	36	36	35	35	34	34
21025	45	50	50	53	47	47	45	45	0
21035	67	68	68	68	68	67	67	67	0
2107s	31	34	50	53	39	33	31	31	0
2110 s	68	11	72	70	70	69	69	68	0
2201s	104	104	105	105	104	104	104	104	0
22035	37	37	37	37	37	37	37	37	0
22045	41	50	58	59	55	48	41	41	0
22059	31	33	34	37	35	34	31	31	30
22095	104	106	106	107	115	105	104	104	0
23035	95	95	95	95	95	95	95	95	0
23046	95	96	104	131	118	96	95	95	0
23055	67	68	73	94	92	69	67	67	0
23065	0	0	68	120	103	67	0	0	0
23078	57	57	57	57	57	57	57	57	0
23085	57	58	58	58	58	57	57	57	0
25015	58	58	58	58	58	58	58	58	0
25026	58	58	60	74	68	58	58	58	0
2505 s	66	68	70	74	74	68	67	66	0
25065	66	69	70	73	74	69	67	66	0
25076	66	66	67	67	67	66	66	66	0
2508s	0	0	67	68	0	0	0	0	0
2601s	37	37	38	38	38	37	37	37	0
2602s	45	53	53	56	48	48	46	45	0
2603 s	64	65	66	66	65	65	65	64	0
2607s	38	39	41	47	40	38	38	38	0
2610s	66	75	75	74	73	70	67	66	0
2701s	104	104	104	104	104	104	104	104	0
2703 s	38	39	40	42	40	39	38	38	0
2704s	42	47	48	45	44	45	43	42	0
2705 s	41	42	43	44	45	42	41	41	0
2709s	104	107	115	116	120	107	106	104	0
2803s	100	100	101	101	101	100	100	100	0
28049	0	100	105	116	107	102	0	0	0
2805s	61	61	63	66	66	61	61	61	0
28068	0	62	85	89	114	63	58	0	0
2807s	62	62	62	62	62	62	62	62	0
28088	62	63	64	64	63	63	62	62	0
2810s	36	36	36	41	37	36	36	36	0
3001s	76	11	79	80	79	17	17	76	76
3005 s	95	97	101	108	106	97	96	95	0
30065	97	106	123	189	210	120	100	97	0
3007s	66	67	72	87	17	66	66	66	0
3011 s	102	129	253	320	235	117	108	102	0
3101s	31	31	32	32	32	31	31	31	31
31025	36	38	39	37	37	37	36	36	0
3103 s	83	84	85	84	85	84	83	83	0
3107s	32	35	39	65	60	34	32	32	0
3110 s	82	83	82	82	82	82	82	82	0
3201s	94	96	96	96	96	96	95	95	94
3203 s	30	30	30	30	30	30	30	30	0
3204s	34	43	52	43	43	41	36	34	30
3205 s	28	28	29	29	30	28	28	28	0
3303 s	91	91	91	91	91	91	91	91	0

3305 s	115	116	123	158	128	116	115	115	0	134
33065	116	148	164	215	201	147	122	117	0	169
3307 s	63	63	64	65	64	62	63	63	0	64
3308s	63	63	63	63	63	63	63	63	0	63
35015	121	121	121	121	121	121	121	121	0	121
3502s	0	0	123	127	134	0	0	0	0	130
35055	111	112	113	115	113	112	111	111	0	113
35065	113	114	119	125	123	116	115	113	0	119
3507s	88	88	90	91	92	88	88	88	0	90
35085	0	0	0	107	0	0	0	0	0	107
3601s	33	33	34	34	34	33	33	33	0	34
36028	44	57	56	56	45	46	46	44	0	52
3603 s	124	125	125	126	125	125	124	124	0	125
3607s	35	36	39	55	42	36	36	35	0	44
3610 s	127	135	131	142	143	131	128	127	0	135
3701s	60	60	60	61	60	60	60	60	0	60
3703 s	31	32	32	33	33	32	31	31	0	32
3704 s	47	81	193	258	214	11	47	47	0	165
37055	36	38	38	38	38	37	37	36	35	37
3709s	67	125	162	163	79	95	69	67	60	110
3803s	58	58	59	59	59	58	58	58	58	59
38043	0	58	61	70	62	0	0	0	0	66
3805 s	109	113	128	217	123	113	110	109	0	147
38065	165	171	170	258	249	171	162	180	0	194
3807s	117	117	118	119	119	118	117	117	0	118
3808s	117	118	118	121	124	118	118	117	0	121
4101s	122	123	124	124	124	123	122	122	122	123
4102s	0	0	141	147	198	140	0	0	0	170
4105s	97	98	101	113	102	98	97	97	0	104
41065	129	114	138	175	265	157	126	126	94	156
4107s	99	101	112	155	194	120	100	99	0	143
4108s	0	0	100	210	130	114	0	0	0	168
42015	49	49	49	50	62	53	49	49	0	53
4203 s	125	125	126	127	128	127	125	125	0	126
4205 s	31	33	33	33	33	32	32	28	0	33
42078	45	49	55	69	60	49	46	46	44	56
43035	33	33	34	34	34	34	33	33	0	34
4305 s	41	42	41	40	42	41	41	41	0	41
4403 s	14	14	15	14	15	14	14	14	0	14
4404s	0	0	0	0	0	0	0	0	0	0
4405 s	130	130	133	135	134	128	130	130	0	134
44065	0	0	132	247	283	0	0	0	0	256
4407s	107	107	109	109	110	108	107	107	0	109
4408s	0	107	108	110	111	108	0	0	0	110
4601s	29	58	70	94	42	45	32	31	25	54
4603s	18	20	24	27	22	19	19	18	0	23
4605s	30	0	0	0	30	0	30	30	0	30
46063	0	0	0	32	31	0	0	0	0	32
4607s	68	69	12	15	11	10	68	68	0	72
4701s	18	21	23	29	24	21	19	18	0	24
4702 s	20	25	64	96	110	63	26	20	0	68
4707s	27	35	48	65	99	43	29	28	24	50
4801S	27	30	38	67	47	32	28	27	0	43
4803 s	23	- 25	27	26	26	25	21	23	0	26
4804s	36	151	297	322	145	119	86	37	0	158
4805s	34	33	34	36	35	34	33	34	0	34
4807s	0	28	28	54	42	29	0	0	0	41
48085	32	58	51	54	65	53	43	35	27	51
4809 s	33	130	192	223	97	48	37	33	0	117
4903 s	20	20	20	20	20	20	20	20	0	20

4904s	20	26	54	11	56	25	20	20	0	55
4905 s	39	40	45	52	45	40	39	39	0	45
4907s	130	131	133	137	136	132	130	130	0	135
49085	130	130	130	131	132	130	130	130	0	131
4910 s	23	36	61	36	42	54	27	24	20	42
5201 s	29	32	35	33	33	35	31	30	28	33
5202 s	30	37	176	178	480	15	39	30	0	188
5205 s	47	48	49	49	49	48	47	47	0	48
5303 s	25	25	25	25	25	25	25	25	0	25
5304 s	0	0	0	0	0	0	0	0	0	0
5305 s	34	35	42	103	47	35	35	34	0	65
5307 s	41	43	55	144	267	102	42	41	39	111
53085	40	41	41	41	41	41	40	40	39	41
5311 s	34	35	35	35	35	35	34	34	0	35
7605 s	59	60	62	63	61	60	59	59	58	61
$7606 s$	58	59	61	62	60	59	58	58	0	60
7607s	90	91	91	92	92	91	90	90	0	91
7612 s	91	92	94	98	100	95	91	91	0	96
7801s	9	10	10	11	11	10	9	9	0	10
7803 s	13	13	13	13	13	13	13	12	0	13
80015	22	22	22	23	23	22	22	22	0	22
80035	9	9	9	9	9	9	9	9	9	9
		LINK-B	NK A	TIME-		total	LAY	-H)		RUN ON 11

SMART CORRIDOR BASE RUN NETWORK and TIME DATA (6/11/91)
SMART CORRIDOR BASE DEMAND
SMART CORRIDOR CONTROL DATA

TIME SLICES :

320	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
50 u	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
514	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
520	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
53u	. 00	. 00	. 00	00	. 00	. 00	. 00	. 00	. 00	. 00
54u	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
55U	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
56 V	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
570	. 00	. 00	. 22	2.44	2.30	. 00	. 00	. 00	. 00	4.96
58 U	. 00	. 00	13.48	25.00	1.52	. 00	. 00	. 00	. 00	39.99
59 U	. 00	. 00	. 08	1.25	. 81	. 00	. 00	. 00	. 00	2.15
600	. 00	. 00	10.86	25.98	. 89	. 00	. 00	. 00	. 00	37.73
614	. 00	. 00	6.04	9.38	7.48	. 00	. 00	. 00	. 00	22.91
624	. 00	. 00	. 59	14.01	16.25	3.48	. 00	. 00	. 00	34.34
630	. 00	. 00	3.72	16.34	12.18	4.95	. 00	. 00	. 00	37.19
640	. 00	. 00	53.34	99.72	59.50	14.40	. 00	. 00	. 00	226.96
65 V	. 00	. 00	. 00	. 00	5.24	. 31	. 00	. 00	. 00	5.56
66 V	. 00	. 00	.00	. 00	1.30	. 68	. 00	. 00	. 00	7.98
673	. 00	. 00	. 00	9.76	13.88	2.79	. 00	. 00	. 00	26.43
68 U	. 00	. 00	1.12	19.93	55.14	28.13	. 00	. 00	. 00	104.32
690	. 00	. 00	1.08	1. 51	10.80	. 54	. 00	. 00	. 00	19.93
700	. 00	. 00	4.37	28.51	40.27	22.34	2.99	. 00	. 00	98.48
714	. 00	. 00	30.96	72.63	83.10	74.82	3.07	. 00	. 00	264.57
120	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
800	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
810	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
820	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
830	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
840	. 00	. 00	.00	. 00	. 00	. 00	.00	. 00	. 00	. 00
850	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
864	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
870	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00	. 00	. 00
120 s	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
1215	. 00	. 00	. 39	2.27	2.43	. 33	. 00	. 00	. 00	5.43
122 s	. 00	. 00	. 10	2.05	3.92	1.14	. 00	. 00	. 00	7.21
123s	. 00	. 00	.00	. 47	1.04	. 13	. 00	. 00	. 00	1.64
1245	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
125s	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
126S	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
127s	. 00	. 00	. 00	. 32	. 98	. 24	. 00	. 00	. 00	1. 54
1285	. 00	. 00	. 39	4.12	4.94	. 00	. 00	. 00	. 00	9. 45
150 s	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
1515	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
1525	. 00	. 00	.00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
153s	. 00	. 00	. 00	. 08	. 04	. 00	. 00	. 00	. 00	. 12
154 s	. 00	. 00	. 00	. 36	. 17	. 00	. 00	. 00	. 00	. 52
1555	. 00	. 00	1.14	3.00	2.30	. 69	. 00	. 00	. 00	7.13
156S	. 00	. 00	. 00	2.25	6.69	2.60	. 00	. 00	. 00	11.54
157s	. 00	. 00	5.08	28.29	39.97	19.09	1.14	. 00	. 00	93.57
158s	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
2025	. 05	. 11	. 12	. 76	. 78	. 09	. 06	. 05	. 00	2.01
205s	. 17	. 35	. 53	. 63	. 44	. 40	. 28	. 19	. 02	3.01
206s	. 00	. 01	. 00	. 02	. 00	. 00	. 00	. 00	. 00	. 03
2095	. 02	. 04	. 07	. 06	. 04	. 04	. 04	. 02	. 00	. 31
211 s	. 04	. 15	. 24	. 63	. 53	. 14	. 07	. 06	. 00	1.86
3015	. 01	. 03	. 05	. 34	. 32	. 03	. 02	. 01	. 00	. 82
303 s	. 02	. 06	. 09	. 18	. 17	. 06	. 03	. 02	. 00	. 64
304 s	. 01	. 03	. 03	. 07	. 07	. 01	. 01	. 01	. 00	. 25
3095	. 02	. 05	. 05	. 04	. 03	. 04	. 03	. 02	. 01	. 28
703 s	. 03	. 09	. 15	. 26	. 24	. 10	. 05	. 04	. 00	. 96

7045	. 00	. 00	. 00	. 00	. 01	. 00	. 00	. 00	. 00	. 01
7055	. 24	. 60	. 91	2.52	1.92	. 51	. 35	. 27	. 03	7.35
9015	. 19	. 42	. 45	. 38	. 26	. 38	. 29	. 21	. 02	2.59
9025	. 00	. 01	. 03	. 08	. 02	. 01	. 00	. 00	. 00	. 15
9055	. 07	. 22	. 38	. 80	. 67	. 29	. 10	. 08	. 00	2.61
9065	. 03	. 18	. 42	1.34	2.40	. 28	. 06	. 03	. 00	4.73
9075	. 01	. 03	. 04	. 05	. 06	. 02	. 01	. 01	. 00	. 21
9085	. 08	. 19	. 20	1.07	1.62	. 30	. 09	. 08	. 00	3.60
9095	. 16	. 37	. 34	. 34	. 23	. 25	. 25	. 18	. 02	2.15
1001s	. 14	. 40	. 43	. 40	. 24	. 34	. 24	. 17	. 03	2.40
1002s	. 24	. 88	1.01	. 93	1.06	. 83	. 33	. 24	. 00	5.53
1003s	. 02	. 05	. 06	. 37	. 51	. 20	. 02	. 02	. 00	1. 25
1005s	1.43	5.58	9. 42	10.72	4.88	3.08	1.91	1.42	. 00	38.44
1010s	. 05	. 12	. 12	. 09	. 08	. 06	. 05	. 05	. 00	. 62
1101s	. 76	1.21	1.13	1.18	. 98	. 88	. 81	. 74	. 00	7.69
11085	. 06	. 18	. 23	. 18	. 21	. 16	. 07	. 06	. 00	1.15
1201s	. 30	. 83	1.69	2.27	2.29	1.17	. 39	. 30	. 00	9. 23
1203s	. 14	. 20	. 18	. 25	. 24	. 18	. 18	. 14	. 00	1.51
12045	. 14	. 20	. 25	1.19	5.16	2.31	. 05	. 13	. 00	9. 44
$1205 s$. 57	1.71	2.37	1.32	. 99	1.76	. 89	. 61	. 05	10.28
1303s	. 10	. 22	. 23	. 19	. 17	. 21	. 12	. 11	. 00	1.34
13045	. 18	. 46	. 72	. 37	. 23	. 33	. 26	. 19	. 02	2.75
$1305 s$. 04	. 11	. 20	. 81	. 80	. 12	. 05	. 04	. 00	2.18
13065	. 03	. 08	4.60	8.84	10.00	. 92	. 03	. 03	. 00	24.52
1307s	. 01	. 03	. 04	. 06	. 03	. 02	. 01	. 01	. 00	. 19
13085	. 00	. 01	. 02	. 08	. 10	. 01	. 00	. 00	. 00	. 23
1310s	. 00	. 00	. 05	. 03	. 04	. 01	. 00	. 00	. 00	. 13
1501s	. 36	1.61	2.15	2.59	2.30	1.78	. 68	. 51	. 04	12.02
1502s	. 00	. 01	. 02	. 03	. 01	. 01	. 00	. 00	. 00	. 07
1505s	. 11	. 38	1.16	3.47	2.46	. 60	. 17	. 13	. 00	8.49
15065	. 21	. 91	6.27	11.66	17.17	6.54	. 51	. 24	. 00	43.51
1507s	. 01	. 05	. 10	. 20	. 13	. 04	. 02	. 01	. 00	. 56
15085	. 00	. 01	. 01	. 00	. 00	. 01	. 00	. 00	. 00	. 03
1601 s	. 43	1.10	1.55	1.94	1.48	1.33	. 68	. 59	. 06	9.16
16025	. 07	. 12	. 12	. 11	. 11	. 09	. 07	. 06	. 00	. 75
1603 s	. 49	1.48	1.70	1.60	1.11	. 91	. 64	. 49	. 00	8.41
1607s	. 65	8.95	15.36	28.99	25.62	9.49	. 97	. 68	. 00	90.71
17015	. 07	. 24	. 50	. 67	. 61	. 43	. 08	. 07	. 00	2.67
1703s	. 03	. 08	. 19	. 19	. 18	. 07	. 04	. 03	. 00	. 81
17045	. 22	1.01	. 68	. 58	. 37	. 51	. 33	. 23	. 00	3.92
$1705 s$. 95	6.20	13.62	24.76	29.30	9.00	2.29	1.45	. 12	87.68
1803 s	. 03	. 04	. 04	. 03	. 02	. 03	. 04	. 04	. 00	. 26
18045	. 00	. 00	. 08	. 11	. 09	. 01	. 00	. 00	. 00	. 30
1805 s	. 07	. 31	1.51	4.26	4.85	. 56	. 11	. 08	. 00	11.75
18065	. 01	. 16	1.23	4.75	9.18	4.06	. 02	. 01	. 00	19.42
1807s	. 02	. 05	. 13	. 14	. 08	. 04	. 02	. 02	. 00	. 49
18085	. 00	. 02	. 12	. 09	. 13	. 03	. 00	. 00	. 00	. 39
2001s	. 17	. 43	. 59	. 59	. 42	. 38	. 27	. 19	. 03	3.07
2002s	. 00	. 01	. 02	. 03	. 03	. 00	. 00	. 00	. 00	. 09
2005 s	. 19	. 60	1.05	1.50	1.42	. 60	. 29	. 21	. 00	5.86
20065	. 07	. 27	. 69	1.48	1.67	. 52	. 15	. 07	. 00	4.92
2007s	. 04	. 11	. 33	. 50	. 27	. 09	. 06	. 04	. 00	1.46
20085	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
20095	. 00	. 00	. 35	. 69	. 26	. 02	. 00	. 00	. 00	1.31
21015	. 13	. 37	. 50	. 69	. 55	. 30	. 24	. 16	. 05	2.98
21025	. 15	. 47	. 46	. 56	. 32	. 30	. 20	. 15	. 00	2.61
21035	. 09	. 26	. 30	. 32	. 23	. 18	. 12	. 09	. 00	1.61
21075	. 24	1.19	4.04	4.58	2.21	1.03	. 32	. 24	. 00	13.85
2110 s	. 13	. 43	. 50	. 36	. 30	. 25	. 18	. 13	. 00	2.29
22015	. 11	. 27	. 35	. 38	. 27	. 21	. 14	. 11	. 00	1.84

22033	. 03	. 09	. 24	. 27	. 14	. 07	. 04	. 03	. 00	. 91
22043	. 15	1.04	1.65	1.72	1.57	. 94	. 20	. 15	. 00	7.42
22055	. 24	. 70	1.05	1.83	1.48	1.22	. 42	. 29	. 06	7.28
22093	. 07	. 20	. 22	. 48	1.20	. 10	. 09	. 07	. 00	2.42
23035	. 03	. 06	. 08	. 08	. 06	. 05	. 05	. 03	. 00	. 45
23045	. 00	. 03	. 25	1.32	. 97	. 02	.00	. 00	. 00	2.59
23055	. 06	. 43	1.92	5.56	5.04	. 78	. 10	. 07	. 00	13.95
23065	. 00	. 00	. 07	2.55	1.67	. 02	. 00	. 00	. 00	4.30
23078	. 04	. 11	. 21	. 22	. 14	. 07	. 05	. 04	. 00	. 88
23083	. 00	. 03	. 03	. 03	. 03	. 02	. 01	. 00	. 00	. 16
2501 s	. 05	. 12	. 12	. 16	. 13	. 08	. 07	. 06	. 00	. 78
25029	. 00	. 00	. 07	. 71	. 17	. 00	. 00	. 00	. 00	. 96
2505 s	. 19	. 77	1.47	2.28	2.24	. 77	. 36	. 22	. 00	8.32
2506 s	. 02	. 10	. 13	. 23	. 26	. 10	. 03	. 02	. 00	. 89
2507 s	. 05	. 14	. 46	. 76	. 47	. 11	. 07	. 05	. 00	2.11
2508 s	. 00	. 00	. 03	. 04	. 00	. 00	. 00	. 00	. 00	. 07
2601 s	. 06	. 13	. 22	. 37	. 25	. 08	. 08	. 08	. 00	1.28
26025	. 26	. 89	. 80	1.01	. 52	. 51	. 36	. 26	. 00	4.60
2603 s	. 15	. 42	. 64	. 69	. 35	. 31	. 21	. 15	. 00	2.93
26075	. 17	. 46	. 78	2.22	. 71	. 31	. 22	. 17	. 00	5.04
2610 s	. 26	1.16	1.13	1.00	. 84	. 63	. 37	. 26	. 00	5.64
2701 s	. 20	. 50	. 51	. 62	. 43	. 31	. 25	. 20	. 00	3.01
2703 s	. 08	. 21	. 44	1.20	. 50	. 15	. 10	. 08	. 00	2.75
27045	. 20	. 66	. 82	. 49	. 34	. 44	. 28	. 20	. 00	3.44
2705 s	. 26	. 55	. 70	. 85	1.15	. 43	. 34	. 32	. 00	4.60
27095	. 13	. 41	1.06	1.35	1.47	. 33	. 24	. 13	. 00	5.12
28035	. 12	. 26	. 34	. 37	. 38	. 23	. 16	. 14	. 00	1.99
28048	. 00	. 01	. 11	. 48	. 25	. 03	. 00	. 00	. 00	. 88
2805s	. 02	. 19	. 85	1.90	1.69	. 21	. 04	. 02	. 00	4.93
28065	. 00	. 05	1.16	1.26	2.50	. 12	. 00	. 00	. 00	5.09
28076	. 02	. 05	. 14	. 12	. 09	. 04	. 02	. 02	. 00	. 50
2808s	. 02	. 05	. 07	. 07	. 05	. 04	. 02	. 02	. 00	. 33
2810s	. 01	. 02	. 09	. 61	. 16	. 02	. 02	. 01	. 00	. 94
3001s	. 20	. 54	. 97	1.40	1.26	. 52	. 36	. 22	. 02	5.49
3005 s	. 23	. 95	1.85	3.25	2.83	. 93	. 41	. 26	. 00	10.71
30065	. 05	. 29	. 69	2.46	2.39	. 52	. 11	. 05	. 00	6.55
30075	. 10	. 32	1.20	3.53	1.81	. 23	. 14	. 10	. 00	7.42
3011 s	. 69	2.65	11.04	14.44	8.73	1.72	1.12	. 66	. 00	41.04
31015	. 14	. 35	. 43	. 39	. 47	. 26	. 21	. 18	. 03	2.44
3102 s	. 03	. 22	. 32	. 18	. 13	. 15	. 07	. 03	. 00	1.13
3103 s	. 44	. 83	1.05	. 91	1.02	. 76	. 54	. 46	. 00	6.01
3107 s	. 39	1.09	1.83	6.34	4.74	. 91	. 51	. 39	. 00	16.20
3110 s	. 04	. 12	. 06	. 07	. 06	. 06	. 05	. 04	. 00	. 50
32015	. 07	. 70	. 78	. 69	. 76	. 58	. 31	. 16	. 01	4.07
32033	. 00	. 00	. 00	. 04	. 06	. 01	. 01	. 00	. 00	. 12
32045	. 45	1.51	2.28	1.42	1.64	1.20	. 70	. 48	. 04	9.73
32053	. 20	. 36	. 48	. 68	. 54	. 31	. 26	. 24	. 00	3.06
3303 s	. 01	. 02	. 03	. 22	. 08	. 02	. 03	. 01	. 00	. 43
33055	. 03	. 34	2.34	8.00	3.57	. 40	. 06	. 03	. 00	14.71
33065	. 07	2.11	2.96	5.23	4.35	1.73	. 34	. 10	. 00	16.88
3307 s	. 05	. 13	. 42	. 75	. 38	. 13	. 06	. 05	. 00	1.96
33088	. 02	. 03	. 03	. 04	. 03	. 02	. 02	. 02	. 00	. 20
3501s	. 01	. 06	. 04	. 06	. 06	. 03	. 01	. 01	. 00	. 28
3502s	. 00	.. 00	. 06	. 15	. 34	. 00	. 00	. 00	. 00	. 55
3505s	. 11	. 67	1.09	2.20	1.39	. 62	. 22	. 12	. 00	6.43
35065	. 05	. 06	. 23	. 36	. 29	. 11	. 09	. 05	. 00	1.24
3507s	. 16	. 40	1.11	2.25	2.18	. 45	. 22	. 17	. 00	6.94
3508s	. 00	. 00	. 00	. 54	. 01	. 00	. 00	. 00	. 00	. 55
3601s	. 00	. 07	. 13	. 14	. 14	. 04	. 00	. 00	. 00	. 53
36025	. 25	1.12	. 98	. 97	. 35	. 38	. 38	. 27	. 00	4.70

3603s	. 04	. 41	. 53	. 75	. 56	. 23	. 06	. 04	. 00	2.61
3607 s	. 19	. 60	1.96	5.10	2.58	. 53	. 36	. 19	. 00	11.49
3610 s	. 29	1.16	. 60	1.71	1.61	. 60	. 40	. 29	. 00	6.72
3701 s	. 10	. 28	. 31	. 38	. 22	. 13	. 14	. 10	. 00	1.66
3703 s	. 10	. 37	. 77	1.16	. 85	. 28	. 22	. 10	. 00	3.86
3704 s	. 04	1.37	5.20	6.39	5.00	. 97	. 16	. 04	. 00	19.17
3705s	. 24	. 68	. 72	. 58	. 71	. 56	. 35	. 27	. 02	4.12
37095	. 91	7.76	11.29	10.62	2.30	4.12	1.25	. 88	. 00	39.14
3803 s	. 16	. 40	. 77	. 89	. 78	. 36	. 25	. 20	. 01	3.82
3804 s	. 00	. 01	. 08	. 41	. 09	. 00	. 00	. 00	. 00	. 60
3805s	. 12	1.27	4.58	18.97	3.78	1.13	. 30	. 13	. 00	30.26
3806s	1.72	1.85	2.00	4.74	4.02	1.65	1.65	1.93	. 00	19. 56
3807s	. 04	. 13	. 40	. 61	. 55	. 25	. 05	. 04	. 00	2.09
38085	. 03	. 04	. 06	. 19	. 28	. 03	. 05	. 03	. 00	. 71
4101 s	. 24	. 99	1.34	1.50	1.29	. 87	. 44	. 33	. 02	7.02
4102 s	. 00	. 00	. 07	. 23	. 92	. 06	. 00	. 00	. 00	1.29
4105 s	. 10	. 58	1.40	3.79	1.73	. 44	. 23	. 10	. 00	8.35
4106 s	. 72	. 35	. 97	2.18	2.87	1.25	. 59	. 65	. 01	9. 59
4107 s	. 25	. 68	3.40	10.49	16.21	2.54	. 35	. 25	. 00	34.17
4108s	. 00	. 00	. 14	4.71	1.63	. 03	. 00	. 00	. 00	6.57
42015	. 11	. 25	. 30	. 79	1.30	. 32	. 13	. 12	. 00	3.33
42033	. 34	. 75	1.27	1.43	1.85	1.05	. 45	. 34	. 00	7.48
4205 s	. 06	. 65	. 69	. 57	. 73	. 40	. 24	. 07	. 00	3.40
4207 s	. 39	1.42	2.79	5.43	3.93	1.63	. 65	. 48	. 03	16.75
4303 s	. 01	. 03	. 13	. 16	. 13	. 07	. 02	. 01	. 00	. 57
4305s	. 15	. 30	. 18	. 05	. 13	. 21	. 17	. 15	. 00	1.34
44035	. 14	. 36	. 64	. 56	. 58	. 43	. 22	. 14	. 00	3.06
4404 s	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
4405 s	. 01	. 13	1.09	1.56	1.20	. 09	. 02	. 01	. 00	4.12
4406s	. 00	. 00	. 05	4.08	5.18	. 00	. 00	. 00	. 00	9.32
4407 s	. 05	. 16	. 60	. 93	. 95	. 31	. 07	. 06	. 00	3.13
44085	. 00	. 00	. 09	. 25	. 23	. 04	. 00	. 00	. 00	. 60
4601 s	1.44	8.27	11.13	16.41	4.67	5.24	2.30	1.91	. 09	51.47
4603s	. 10	. 75	1.55	2.69	1.11	. 38	. 20	. 12	. 00	6.89
4605s	. 06	. 00	. 00	. 00	. 06	. 00	. 04	. 04	. 00	. 20
4606s	. 00	. 00	. 00	. 05	. 04	. 00	. 00	. 00	. 00	. 09
4607s	. 51	1.35	2.45	3.12	3.74	1.43	. 65	. 51	. 00	13.76
4701 s	. 10	. 72	1. 49	3.08	2.12	. 91	. 19	. 11	. 00	8.72
4702s	. 05	. 19	1.23	2.44	2.91	1.87	. 32	. 05	. 00	9.06
4707 s	. 95	3.13	4.86	5.93	7.60	5. 57	1.35	1.15	. 07	30.61
4801s	. 21	1.08	2.64	5.84	3.09	1.53	. 58	. 24	. 00	15.22
4803 s	. 12	. 76	1.39	. 79	1.05	. 82	. 17	. 12	. 00	5.20
48048	1.33	11.52	18.00	21.87	8.50	8.13	4.58	1.39	. 00	15.31
4805 s	. 44	. 23	. 69	1.24	. 83	. 36	. 34	. 41	. 00	4.54
4807 s	. 00	. 19	. 42	2.25	3.03	. 69	. 00	. 00	. 00	6.57
48085	. 61	2.73	2.52	2.40	3.49	2.44	1.50	. 85	. 06	16.62
4809 s	. 62	7.62	10.98	13.38	4.68	1.82	. 92	. 60	. 00	40.62
49035	. 03	. 06	. 15	. 10	. 06	. 05	. 04	. 03	. 00	. 53
49045	. 00	. 15	1.31	1.69	1.41	. 02	. 01	. 00	. 00	4.60
$4905 s$. 20	. 75	1.88	3.47	1.85	. 55	. 31	. 21	. 00	9.20
4907 s	. 06	. 26	1.23	2.22	1.85	. 93	. 09	. 07	. 00	6.70
49085	. 00	. 02	. 02	. 08	. 12	. 04	. 00	. 00	. 00	. 28
4910 s	. 36	2.01	4.84	1.87	2.71	4.21	. 77	. 49	. 03	17.31
5201 s	. 72	2.04	2.90	2.31	2.41	2.97	1.43	. 93	. 08	15.78
5202 s	. 22	. 80	9.07	12.33	33.74	3.45	1.23	. 22	. 00	61.06
5205s	. 11	. 35	. 60	. 66	. 55	. 40	. 15	. 11	. 00	2.93
5303 s	. 01	. 04	. 05	. 07	. 05	. 03	. 02	. 01	. 00	. 28
5304s	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
5305 s	. 09	. 40	2.17	12.71	2.45	. 21	. 20	. 09	. 00	18.33
5307s	. 75	2.12	5.30	16.71	40.89	25.15	1.47	. 88	. 05	93.33

SMART CORRIDOR BASE RUN NETWORK and TIME DATA (6/11/91)
SMART CORRIDOR BASE DEMAND
SMART CORRIDOR CONTROL DATA

TIME SLICES :

600	94.1	94.1	44.4	25.4	85.1	94.1	94.1	94.1	94.1	54.6
614	86.9	86.9	72.9	66.1	67.7	86.9	86.9	86.9	86.9	76.4
620	87.5	87.5	86.4	67.1	62.9	78.5	87.5	87.5	87.5	17.3
630	87.3	87.3	78.3	56.0	60.7	71.4	87.3	87.3	87.3	72.3
64 V	88.1	88.1	41.5	28.1	37.0	62.4	88.1	88.1	88.1	48.3
650	89.1	89.1	89.1	89.1	52.7	85.2	89.1	89.1	89.1	80.5
664	90.9	90.9	90.9	90.9	30.7	76.0	90.9	90.9	90.9	69.6
67	89.4	89.4	89.4	60.5	49.8	76.7	89.4	89.4	89.4	73.7
68 U	87.5	87.5	85.3	58.4	35.7	49.4	87.5	87.5	87.5	61.9
690	87.0	87.0	79.7	51.7	43.2	82.8	87.0	87.0	87.0	67.4
704	87.8	87.8	76.4	43.2	35.0	47.5	73.2	87.8	87.8	55.8
714	87.2	87.2	37.9	21.3	18.8	20.6	11.1	87.2	87.2	30.9
120	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0	87.0
804	86.9	86.9	86.9	86.9	86.9	86.9	86.9	86.9	. 0	86.9
814	86.9	86.9	86.9	86.9	86.9	86.9	86.9	86.9	. 0	86.9
820	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	. 0	90.0
830	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	. 0	90.0
84 U	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	. 0	90.0
85 V	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0
861	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0
870	90.0	90.0	90.0	90.0	90.0	90.0	90.0	90.0	. 0	90.0
120 s	51.4	51.4	51.4	51.4	51.4	51.4	51.4	51.4	. 0	51.4
1215	50.0	50.0	32.7	11.1	9.1	31.7	50.0	50.0	. 0	21.9
122 s	50.0	50.0	45.9	18.5	16.4	29.4	50.0	50.0	. 0	25.5
123s	51.4	51.4	51.4	39.9	30.2	45.7	51.4	51.4	. 0	43.2
1245	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0
125s	51.4	51.4	51.4	51.4	51.4	51.4	51.4	51.4	51.4	51.4
126s	. 0	51.4	51.4	51.4	51.4	. 0	. 0	. 0	. 0	51.4
1275	51.4	51.4	51.4	47.2	39.2	48.1	51.4	51.4	. 0	48.4
1285	51.4	51.4	44.5	21.6	17.6	51.4	51.4	51.4	. 0	29.3
150 s	51.4	51.4	51.4	51.4	51.4	51.4	51.4	51.4	. 0	51.4
151 s	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	. 0	50.0
152s	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	. 0	50.0
153s	51.4	51.4	51.4	49.1	50.2	51.4	51.4	51.4	. 0	50.8
1545	50.0	50.0	50.0	26.9	33.3	50.0	50.0	50.0	. 0	39.9
1555	51.4	51.4	30.0	26.6	26.3	33.7	51.4	51.4	. 0	32.9
1565	51.4	51.4	51.4	17.0	12.6	15.9	51.4	51.4	. 0	17.7
157s	50.4	50.4	20.0	6.7	4.3	7.6	32.5	50.4	. 0	9.7
158s	51.4	51.4	51.4	51.4	51.4	51.4	51.4	51.4	. 0	51.4
202 s	43.3	43.3	43.3	41.2	41.2	43.2	43.3	43.3	. 0	41.7
205s	49.8	49.8	49.2	49.2	49.8	49.8	49.8	49.8	49.8	49.6
206s	. 0	53.0	52.9	49.9	50.9	. 0	. 0	. 0	. 0	51.3
209 s	43.3	43.3	43.3	43.3	43.3	43.3	43.3	43.3	. 0	43.3
211 s	49.8	49.2	48.7	47.2	47.3	49.3	49.8	49.8	. 0	48.1
301 s	46.2	46.2	46.2	46.2	46.2	46.2	46.2	46.2	. 0	46.2
3035	48.4	48.4	48.4	48.4	48.4	48.4	48.4	48.4	. 0	48.4
304 s	48.4	47.0	47.0	44.9	44.7	48.1	48.4	48.4	. 0	46.2
3095	46.2	46.2	46.2	46.2	46.2	46.2	46.2	46.2	46.2	46.2
103s	42.9	42.9	42.9	42.9	42.9	42.9	42.9	42.9	. 0	42.9
704s	. 0	. 0	57.3	55.2	47.7	. 0	. 0	. 0	. 0	50.4
705 s	45.7	45.0	44.0	39.2	41.4	45.0	45.7	45.7	46.4	42.5
9015	34.7	33.2	33.2	33.2	34.7	33.2	34.7	34.7	34.7	33.8
9025	34.7	34.7	33.2	31.7	34.7	34.7	34.7	34.7	. 0	32.8
905 s	46.1	46.1	46.2	45.3	45.3	46.1	46.1	46.1	. 0	45.7
9065	46.1	43.8	40.7	32.3	24.9	40.5	45.3	46.1	. 0	33.0
9075	49.7	49.7	49.7	49.7	49.7	49.7	49.7	49.7	. 0	49.7
908 S	49.7	49.1	49.1	45.5	43.3	48.3	49.7	49.7	. 0	46.0
909s	33.2	31.8	31.7	31.8	33.2	33.1	33.2	33.2	34.7	32.5
1001 s	33.8	32.1	32.0	33.0	33.8	32.7	33.8	33.8	33.8	32.9
1002 s	19.6	15.5	14.5	14.1	14.6	15.7	19.0	19.6	. 0	15.6

2502 s	50.9	50.9	48.9	39.6	43.7	50.9	50.9	50.9	. 0	42.2
25058	43.9	42.6	41.4	39.2	39.4	42.6	43.3	43.9	. 0	40.9
25065	43.9	42.0	41.4	39.7	39.3	42.0	43.2	43.9	. 0	40.8
2507S	43.4	43.4	43.0	42.4	42.7	43.4	43.4	43.4	. 0	42.8
2508s	. 0	. 0	42.9	42.1	. 0	. 0	. 0	. 0	. 0	42.5
2601 s	38.9	38.9	37.9	37.9	37.9	38.9	38.9	38.9	. 0	38.3
2602 s	32.0	27.2	27.1	25.7	29.9	30.0	31.3	32.0	. 0	28.5
26035	46.1	45.4	44.7	44.7	45.4	45.4	45.4	46.1	. 0	45.2
2607s	31.3	30.5	29.2	25.3	29.4	30.9	31.3	31.3	. 0	28.2
2610 s	44.7	39.1	39.6	40.1	40.6	42.2	43.8	44.7	. 0	41.0
2701s	48.5	48.5	48.5	48.5	48.5	48.5	48.5	48.5	. 0	48.5
2703s	37.9	36.9	36.2	34.4	36.0	36.9	37.9	37.9	. 0	35.7
27043	34.3	30.6	29.9	32.0	33.1	32.3	33.5	34.3	. 0	31.9
2705s	29.0	28.3	27.6	27.3	26.3	28.3	29.0	29.0	. 0	27.7
2709 s	48.5	47.2	43.8	43.5	42.1	46.8	47.5	48.5	. 0	44.5
28035	50.4	50.4	49.9	50.0	49.9	50.4	50.4	50.4	. 0	50.2
2804 s	. 0	50.4	48.2	43.6	47.4	49.4	. 0	. 0	. 0	46.1
2805 s	47.3	47.4	45.9	43.6	43.8	47.3	47.3	47.3	. 0	44.6
2806S	. 0	46.9	34.2	32.5	25.4	46.7	49.8	. 0	. 0	31.5
28075	47.3	47.3	47.3	47.3	47.3	47.3	47.3	47.3	. 0	47.3
2808s	47.3	46.6	45.8	45.8	46.6	46.6	47.3	47.3	. 0	46.5
2810 s	42.7	42.7	42.4	37.4	41.5	42.7	42.7	42.7	. 0	39.3
30015	51.0	50.3	49.1	48.7	48.8	50.3	50.3	51.0	51.0	49.5
3005 s	46.8	45.8	44.0	41.3	42.0	45.7	46.3	46.8	. 0	43.5
3006s	45.8	41.8	36.0	23.3	21.1	37.0	44.4	45.8	. 0	29.3
3007s	43.9	43.3	40.5	33.2	37.7	44.0	43.9	43.9	. 0	37.5
30115	43.6	34.4	17.9	13.9	18.5	37.9	41.2	43.6	. 0	23.7
3101s	35.3	34.3	33.8	33.8	33.8	34.8	34.8	34.8	34.8	34.2
3102 s	30.0	28.8	27.7	29.2	29.2	29.2	30.0	30.0	. 0	28.8
3103 s	46.7	46.1	45.6	46.0	45.7	46.1	46.7	46.7	46.7	46.1
3107 s	27.0	24.7	22.0	13.3	14.4	25.4	27.0	27.0	. 0	17.9
3110 s	47.2	46.7	47.2	47.2	47.2	47.2	47.2	47.2	. 0	47.1
3201s	49.2	48.0	47.8	48.0	48.0	48.1	48.5	48.6	48.8	48.1
3203s	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	. 0	36.0
32043	31.8	25.0	20.7	25.0	24.9	26.4	30.2	31.8	36.0	25.6
32053	30.9	30.9	29.8	29.8	29.2	30.9	30.9	30.9	. 0	30.2
3303 s	50.6	50.8	50.8	50.6	50.6	50.6	50.6	50.6	. 0	50.7
3305 s	49.8	49.4	46.6	36.6	44.7	49.3	49.8	49.8	. 0	42.8
3306s	48.6	38.4	34.4	26.3	28.5	39.2	47.1	49.0	. 0	33.8
33075	45.8	45.8	45.3	44.5	45.6	45.9	45.8	45.8	. 0	45.2
3308s	45.8	45.8	45.8	45.8	45.8	45.8	45.8	45.8	. 0	45.8
3501s	52.1	52.1	52.1	52.1	52.1	52.1	52.1	52.1	. 0	52.1
3502s	. 0	. 0	51.3	49.4	47.0	. 0	. 0	. 0	. 0	48.5
3505 s	49.5	49.1	48.7	48.0	48.7	49.1	49.5	49.5	. 0	48.6
3506s	48.6	48.2	46.0	43.9	44.7	47.4	47.8	48.6	. 0	46.0
3507 s	47.6	47.8	46.7	45.8	45.5	47.6	47.6	47.6	. 0	46.3
3508 s	. 0	. 0	. 0	39.3	39.2	. 0	. 0	. 0	. 0	39.3
36015	39.3	39.3	38.1	38.4	38.1	39.3	39.3	39.3	. 0	38.5
3602S	29.5	22.7	23.0	23.0	28.5	28.2	28.2	29.5	. 0	25.2
36036	50.8	50.4	50.5	50.0	50.2	50.4	50.8	50.8	. 0	50.3
3607S	30.9	30.0	27.5	19.6	25.4	30.0	30.1	30.9	. 0	24.5
3610 S	49.6	46.7	48.1	44.5	44.3	48.1	49.2	49.6	. 0	46.7
3701s	48.3	48.3	48.3	47.5	48.3	48.3	48.3	48.3	. 0	48.1
3703s	41.8	40.5	40.2	39.3	39.3	40.5	41.8	41.8	. 0	40.0
3704 s	27.6	16.0	6.7	5.0	6.0	16.4	27.6	27.6	. 0	7.8
3705 s	30.0	28.4	28.4	28.5	28.4	29.2	29.2	30.0	30.9	28.8
3709 s	43.3	23.1	18.0	17.7	36.4	30.6	41.6	43.3	48.3	26.3
38033	50.0	50.0	49.1	49.1	49.1	50.0	50.0	50.0	50.0	49.5
3804 s	. 0	50.0	47.3	41.6	46.7	. 0	. 0	. 0	. 0	44.0
3805 s	48.8	47.1	41.5	24.5	40.9	47.2	48.4	48.8	. 0	36.1

38065	32.2	30.0	31.1	20.4	22.9	29.3	32.9	29.6	. 0	27.4
38075	49.0	49.0	48.5	48.2	48.1	48.5	49.0	49.0	0	48.4
3808s	49.0	48.5	48.6	47.4	46.2	48.5	48.5	49.0	. 0	47.5
41015	51.1	50.7	50.3	50.2	50.3	50.7	51.1	51.1	51.1	50.5
4102 s	. 0	. 0	44.2	42.5	31.5	44.7	. 0	. 0	. 0	36.7
4105 s	47.5	47.0	45.6	40.9	45.1	47.0	47.5	47.5	. 0	44.2
4106 s	35.7	40.3	33.4	25.9	17.1	29.4	36.7	37.4	49.0	29.5
4107s	47.4	46.5	41.8	30.0	24.3	37.7	46.9	47.4	. 0	32.8
4108 s	. 0	. 0	45.9	22.0	34.9	39.6	. 0	. 0	. 0	27.9
42015	43.7	43.7	43.9	42.5	35.0	38.3	43.7	43.7	. 0	40.4
4203 s	49.9	50.0	49.5	49.2	48.8	48.9	49.9	49.9	. 0	49.3
4205s	34.8	32.7	32.5	32.7	32.7	33.7	35.0	35.5	. 0	33.1
42075	40.0	36.8	32.7	25.9	30.2	36.5	39.2	39.1	40.9	32.2
4303 s	53.5	53.5	51.9	51.9	51.9	52.5	53.5	53.5	. 0	52.3
43055	26.3	25.7	26.3	27.0	25.7	26.3	26.3	26.3	. 0	26.2
4403 s	27.0	27.0	25.3	26.3	25.2	27.0	27.0	27.0	. 0	26.2
4404 s	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0
44055	50.6	50.6	49.5	48.7	49.5	50.7	50.6	50.6	. 0	49.3
44068	. 0	. 0	49.9	26.7	23.3	. 0	. 0	. 0	. 0	25.7
44075	49.7	49.8	49.2	48.6	48.4	49.3	49.7	49.7	. 0	48.9
44088	. 0	49.7	49.9	47.9	48.0	49.3	. 0	. 0	. 0	48.4
4601 s	30.7	15.6	12.9	9.6	21.2	20.1	28.0	29.0	36.0	16.7
4603 s	30.4	27.4	23.2	20.6	25.4	28.8	28.8	30.4	. 0	23.9
4605 s	27.2	. 0	. 0	. 0	27.2	. 0	27.2	27.2	. 0	27.2
46068	. 0	. 0	. 0	25.5	26.3	. 0	. 0	. 0	. 0	25.9
46075	41.9	41.2	39.8	38.3	37.0	40.8	41.9	41.9	. 0	39.4
4701 s	28.0	24.3	21.8	17.4	21.0	24.1	26.5	28.0	. 0	21.0
4702 s	25.2	20.5	8.8	5.4	4.7	6.8	19.4	25.2	. 0	7.4
4707s	20.3	15.6	11.6	9.1	6.4	8.5	18.8	19.5	22.6	11.0
4801s	28.4	25.6	20.2	12.3	15.3	20.4	27.2	28.4	. 0	17.8
4803 s	21.9	20.2	18.4	19.6	19.5	20.1	23.2	21.9	. 0	19.7
4804 s	14.0	3.3	1.7	1.6	3.4	4.3	5.6	13.6	. 0	3.2
4805s	31.8	32.7	31.6	30.2	31.1	31.8	32.4	31.8	. 0	31.3
4807s	. 0	27.8	27.3	16.9	16.0	23.6	. 0	. 0	. 0	18.5
48085	24.0	13.3	15.0	14.1	11.9	14.4	18.0	21.9	28.4	15.1
4809 s	23.2	5.9	4.0	3.5	6.8	15.8	20.7	23.2	. 0	6.5
49035	38.3	38.8	38.5	38.3	38.3	38.3	38.3	38.3	38.3	38.4
4904 s	38.3	29.1	14.2	10.7	13.8	30.7	38.3	38.3	. 0	13.9
4905 s	39.4	38.4	34.5	29.8	34.4	38.4	39.4	39.4	. 0	34.2
4907s	50.6	50.6	49.3	48.0	48.4	49.7	50.6	50.6	. 0	48.9
49085	50.6	50.6	50.6	50.3	49.9	50.6	50.6	50.6	. 0	50.2
4910 s	33.3	21.2	12.6	21.0	18.3	14.2	28.6	32.0	37.9	18.4
5201 s	26.1	23.7	21.8	22.9	22.9	21.6	24.5	25.2	27.0	23.1
5202 s	25.2	20.7	4.6	4.1	1.6	8.6	16.9	25.2	. 0	4.0
5205 s	38.3	37.5	36.7	36.7	36.7	37.5	38.3	38.3	. 0	37.1
5303 s	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	. 0	30.2
5304 s	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	. 0
5305 s	37.1	36.0	30.2	12.5	23.1	36.0	36.0	37.1	. 0	19.3
5307s	37.5	35.8	29.0	13.6	6.4	8.8	36.6	37.5	39.4	13.8
5308 s	38.4	37.9	37.6	37.6	37.5	37.7	38.4	38.4	39.4	37.8
5311 s	37.1	36.0	36.0	36.0	36.0	36.0	37.1	37.1	. 0	36.2
7605s	48.4	47.6	46.0	45.3	46.8	47.5	48.3	48.3	49.1	46.8
76065	49.2	48.3	46.7	46.0	47.5	48.3	49.2	49.2	. 0	47.3
7607 s	51.2	50.7	50.7	50.1	50.1	50.6	51.2	51.2	. 0	50.5
7612 s	50.6	50.1	49.0	46.8	46.1	48.5	50.6	50.6	. 0	48.0
7801s	38.8	34.9	34.9	32.7	32.2	34.9	38.8	38.8	. 0	34.1
7803 s	41.8	41.8	41.8	41.8	41.8	41.8	41.8	45.3	. 0	42.1
8001 s	48.8	48.8	48.8	46.9	46.7	48.8	48.8	48.8	. 0	47.8
8003 s	38.9	38.9	38.8	38.8	38.8	38.8	38.8	38.8	38.8	38.8
ooverall	75.4	72.6	58.8	45.0	43.8	56.4	74.4	75.9	83.6	56.1

