
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
BUNTTERFLY: A Flexible Hardware Generator for the Number Theoretic Transform

Permalink
https://escholarship.org/uc/item/37t8364f

Author
Vranek, Jason Andrew

Publication Date
2020

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/37t8364f
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

Buntterfly: A Flexible Hardware Generator for the Number Theoretic
Transform

A thesis submitted in partial satisfaction of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE AND ENGINEERING

by

Jason Vranek

September 2020

The Thesis of Jason Vranek
is approved:

Scott Beamer, Chair

Heiner Litz

Owen Arden

Quentin Williams
Interim Vice Provost and Dean of Graduate Studies

Copyright © by

Jason Vranek

2020

Table of Contents

List of Figures v

List of Tables vii

Abstract viii

Dedication x

Acknowledgments xi

1 Introduction 1

2 Background 5
2.1 Chapter Overview . 5
2.2 Blockchain Primer . 5
2.3 PCP History . 7

2.3.1 Provers and Verifiers . 8
2.3.2 How PCPs Work . 9

2.4 History of FHE . 13
2.5 How FHE Works . 13
2.6 Prior FHE Work . 14
2.7 Number Theoretic Transform . 15

2.7.1 NTT Overview . 15
2.8 NTT Math . 16

2.8.1 Order of a Group . 17
2.8.2 Picking Primes . 18
2.8.3 Fourier Transform . 19
2.8.4 Speeding up the Fourier Transform 20
2.8.5 Chosen NTT Algorithms 21

iii

3 Buntterfly 24
3.1 System Overview . 24
3.2 Chisel . 24
3.3 Implementation Decisions . 26
3.4 NTT Algorithm Prior Work . 26
3.5 Architectural Overview . 27
3.6 Modular Multiplier . 28

3.6.1 Ozturk Modular Multiplier 29
3.7 Buntterfly Unit . 33
3.8 Inverse Buntterfly Unit . 37

3.8.1 Address Generator . 38
3.8.2 Twiddle Factor Generator 39
3.8.3 NTT Controller . 39

4 Results 42
4.1 Evaluation Baseline: libfqfft . 42
4.2 Evaluation Method . 43
4.3 Theoretical Results . 44

5 Conclusion 47
5.1 Contributions . 47
5.2 Future Work . 48

Bibliography 50

iv

List of Figures

2.1 The high-level transformations from a problem into a PCP. Note
that these graphs are shown over the familiar real numbers because
the idea of evaluating over a larger domain is visually more intuitive,
but in practice the polynomial values are modulo q. The Low-
Degree Extension evaluates the interpolated polynomial on a much
larger domain (i.e green vs purple dots). 9

2.2 NTT Algorithms used in Buntterfly from [33]. 21
2.3 The classic butterfly operation. The ordering of the operations in

this figure are for the forward NTT, corresponding to lines 13 and
14 in Figure 2.2. 22

2.4 An 8-point NTT has log2(8) = 3 levels. Each pair of two arrows
denotes a butterfly operation, the black arrows being the even plus
the odd times twiddle factor, and the purple arrows being the even
minus the odd times twiddle factor. 22

3.1 Buntterfly data and control paths. (Buntterfly is capable of instan-
tiating multiple parallel ButterflyUnits and ButterflyInverseUnits,
but this is omitted for succinctness). 28

3.2 The steps involved to multiply two k1d1 polynomials modulo a
prime number and return the product to k1d1 form. 32

3.3 BuntterflyUnit Chisel module. The Ozturk multiplier has been
adapted to include the addition and subtraction operations required
in the forward butterfly operation. 33

v

3.4 BuntterflyInverseUnit Chisel module. The inverse butterfly re-
quires different operations than the forward direction shown in Fig-
ure 2.2. 37

3.5 The states and state transitions to control the modules involved in
a NTT/INTT computation. 40

4.1 libfqfft NTT Benchmarks . 43
4.2 Theoretical Buntterfly Runtimes vs libfqfft Benchmarks 45

vi

List of Tables

3.1 Six control signals are generated by the FSM. nttEn, addrGenEn,
and writeBackEn control top level modules, and fillCntEn, steady-
CntEn, and drainCntEn control internal FSM counters for deter-
mining state transitions. 41

4.1 The number of cycles required for Buntterfly to compute an n-point
NTT given m-parallel butterfly units. 44

vii

Abstract

Buntterfly: A Flexible Hardware Generator for the Number Theoretic Transform

by

Jason Vranek

In the current era, many computations are being outsourced to third parties,

whether to large cloud providers or to nodes in decentralized blockchains. As

increasingly sensitive data is being operated on (e.g. financial and medical data),

it is imperative that the data be protected and that the integrity of an outsourced

computation is ensured.

The two cryptographic primitives Probabilistically Checkable Proofs and Fully

Homomorphic Encryption enable verifiable and privacy preserving computations

respectively, at the cost of high computational overhead.

Both primitives share common low level arithmetic operations, particularly

math over polynomial rings. The number theoretic version of the traditional Fast

Fourier Transform (FFT) for working over finite fields is called the Number The-

oretic Transform (NTT), and is especially suited for FHE [34], [3], [33], [26], [41],

[28], [37]. As far as we have seen in literature there has yet to be a paper demon-

strating a hardware accelerator for ZKPs, particularly the variants of interest:

ZK-STARKs [6] and ZK-SNARKs [10], however PCPs employ polynomial inter-

polation, evaluation, and Low-Degree Extensions, all of which are accelerated by

NTTs.

By utilizing the recent hardware programming language Chisel [4], we created

Buntterfly, an easily configurable open source NTT hardware generator that can

be parameterized according to the workload (ZK-PCP or FHE) and target plat-

form (Latency, Throughput, Area). Once the core modular arithmetic operators

viii

are in place, the flexibility of Chisel can allow different NTT architectures to be

generated according to the target metric and target FPGA model. We demon-

strate that instantiated NTT designs using Buntterfly on FPGAs can provide

64x speedup over optimized software NTTs. Buntterfly is flexible and can easily

be extended to perform expensive operations such as Low-Degree Extensions for

generating Reed-Solomon Codes [36] for PCPs, or large integer multiplication in

FHE.

ix

I’d like to dedicate this to my late grandfathers to whom I owe my passion for

building and learning.

x

Acknowledgments

Thank you to my parents, the reason I’ve made it to where I am. Thank you to

my advisor for all the guidance I have received, without which I would not have

been able to complete this work.

xi

Chapter 1

Introduction

The purpose of this thesis is to present my research exploring two very excit-

ing and relevant developments in cryptography, Zero Knowledge Probabilistically

Checkable Proofs (ZK-PCPs) and Fully Homomorphic Encryption (FHE), and

then to demonstrate Buntterfly, a hardware generator designed to accelerate their

computations.

ZK-PCPs and FHE are called cryptographic primitives, which are essentially

tools or components used to construct cryptographic systems. Similarly to how

arithmetic operations like addition and multiplication allow one to build up com-

plex equations, ZK-PCPs and FHE can be used to build trustworthy and privacy

preserving protocols.

ZK-PCPs are a pillar in the field verifiable computing, the goal being to verify

that a computation done by a potentially malicious third party is guaranteed to be

correct whilst keeping confidential data private [46]. This model removes the need

for any element of trust in the computation by relying on the provable security of

math and cryptography. In the current era of cloud computing, many expensive

computations are outsourced to large data centers that provide massive compute

power at low costs. Computations such as deep-learning or astronomical scientific

1

calculations would be impractical to run on consumer hardware as they would

potentially take years to complete. The extensive runtimes and non-negligible

costs mean it is imperative that the results from the third party are of high

integrity.

The question then is, how does one verify that a given output was correctly

computed? Cloud infrastructures (CI’s) are incentivized to behave honestly to

preserve their reputation, and so one could trust their output. However, one

could never rule out bad or compromised actors. There is always the possibility

that an adversarial CI will intentionally produce an incorrect output. To counter

this, a client could re-run the entire calculation and check for equivalent outputs,

but this is problematic if the computation was already large enough to necessitate

outsourcing.

Specialized hardware enclaves in the form of Trusted Execution Environments

(TEE) are used to ensure there was no meddling involved during the computation.

TEEs aim to provide a secure environment for running applications in isolation

which protects against these applications corrupting others or vice-versa, ensuring

correct program behavior. However, implementations in practice are susceptible

to attacks [23], and hardware solutions inherently have chains of trust involved,

from the often closed source designs all the way down the fabrication supply chain

[46].

Even more subtle but nonetheless inevitable are incorrect computations due

to minuscule bugs at the transistor level. Regardless of whether these outputs

come from honest CI’s or not, the end result is incorrect, and a method to verify

correctness is necessary.

ZK-PCPs provide a means to verify the correctness of a computation in expo-

nentially less time than it took to complete, regardless of whether the third party

2

is trustworthy or not. Thus ZK-PCPs provide a solution to the computational

integrity problem that does not rely on trust, but instead is rooted in math and

cryptography.

Another pressing issue deals with data privacy. The implication of relying on

CI’s for the bulk of our everyday software services is the inherent security risk

posed to our data, as ownership of the data must be relinquished to the CI for

them to do anything with it. Of course one can always encrypt their data to

prevent CI’s from reading it, but without access to the decryption key, the CI is

unable to perform useful work and acts as nothing more than external storage.

FHE aims to remedy this scenario by allowing arbitrary computations to be done

on encrypted data, without revealing anything about what the underlying data

is. This will allow for CI’s to perform the same software services, whilst keeping

users’ data private.

The end-all solution of verifiable computing would be to build machines ca-

pable of performing computations fully homomorphically, while simultaneously

providing proofs attesting to the computation’s correctness. The result of such a

duo would eliminate any attempts at foul play when computations are outsourced

as this setup will provide privacy and correctness by construction. However, ZK-

PCPs and FHE each have massive computational overheads, meaning general

purpose computations are currently impractical to implement. Fortunately, the

gap between which computations are theoretically possible and which are actually

practical has been narrowing each year.

Buntterfly is an attempt to help bridge this gap by providing a flexible hard-

ware generator to produce circuits capable of outperforming current software li-

braries for core ZK-PCP and FHE operations. This is a first step towards practical

verifiable computing as Buntterfly can easily be customized depending on the use

3

case and then instantiated on commercial FPGAs to provide speedups at relatively

low cost.

Buntterfly targets the number theoretic transform (NTT) as its generated

hardware due to the NTT’s ability to efficiently perform polynomial math. Large

polynomial multiplication and Low-Degree Extensions constitute some of the most

expensive operations in FHE and PCPs respectively, and are typically performed

using NTTs. Thus Buntterfly can effectively be used to target either of these

workloads.

The contributions from this paper can be summarized as follows:

• Created a flexible hardware generator that produces NTT circuits parame-

terized by a prime modulus, and the number of NTT points.

• Built upon the state-of-the-art modular multiplier algorithm [31] to be com-

patible with the addition and subtraction operations needed during the

NTT, amortizing the cost of switching to the specialized redundant form.

• Yielded preliminary results showing potential speedups up to 64x when using

Buntterfly over optimized software NTT libraries.

4

Chapter 2

Background

2.1 Chapter Overview

This chapter covers the history of PCPs and FHE and then provides an

overview on how they work. Next, the number theoretic transform (NTT) is

introduced, its involvement with PCPs and FHE is explained, and the involved

math is explained in detail.

2.2 Blockchain Primer

It can be argued that in 2009, two parallel developments led to the revital-

ization of two previously stagnant fields of study that were once thought to be

too computationally expensive for practical use: Fully Homomorphic Encryption

(FHE) and Zero Knowledge Proofs (which will from now on be referred to as

Probabilistically Checkable Proofs (PCPs), as these are the constructions used in

practice and all PCPs can be made into Zero Knowledge PCPs).

First in 2009, the cryptocurrency Bitcoin [30]was released, and after a slow

beginning, cryptocurrencies ramped up in the public’s attention until its peak in

5

2017 and subsequent crash. This decade resulted in significant advances in the

field of cryptography, which can be argued was somewhat of niche field before this

point.

Cryptocurrencies ushered the term Blockchain into the public’s vocabulary,

which, in a nutshell, is a decentralized public database empowered through cryp-

tography and game theory that provides a fault tolerant, trustless escrow system

for transfers of digital assets, where such assets are anything from cryptocurren-

cies to crypto-kitties [43] to virtual real estate [24]. Notice that trustless is a

carefully chosen term articulating that no single entity is to be trusted. Instead,

the open source code running indisputable math is executed across millions of

independent computers. This ensures that the code will execute regardless of the

intentions of any individual actors. This is different than the centralized model

that is customary in most applications. The classic example is a centralized bank

that is trusted by the public, but has the ability to censor individual customers.

Blockchains like Ethereum [48] allow for more than just cryptocurrency trans-

actions, and are Turing complete. This means Ethereum can be thought of like a

global computer, where participants can run arbitrary code in the form of Smart

Contracts, and all the changes to the computer’s memory are permanently saved

as blocks that form a blockchain.

Decentralization comes at the cost of throughput (measured in transactions

per second), which has been one of the key bottlenecks preventing public adop-

tion of blockchain for applications beyond cryptocurrencies. As a result many

resources were devoted to develop scaling techniques, which led to an explosion

of cryptographic research. The most promising of these developments in provid-

ing scaling for blockchain are the many PCP constructions discovered in the past

decade.

6

2.3 PCP History

This spotlight on cryptography led to numerous breakthroughs over the years,

particularly for PCPs which were previously considered to be too computationally

expensive to be used in practice since their conception in 1986 [22].

Of particular importance is a PCP variant called non-interactive zero-knowledge

(NIZK) that was popularized in the blockchain community. Of these proofs, ZK-

SNARKs [10] (Zero-Knowledge Succinct Non-Interactive Argument of Knowledge)

is one of key importance because it became the basis of the Zcash protocol [42].

Enabled by ZK-SNARKs, Zcash allows for monetary transactions between two

parties to be publicly verified without revealing any information about the in-

volved members, ensuring confidentiality and computational integrity through

the use of ZK-PCPs.

While preserving privacy is a nice feature, one could argue that the S (succinct)

in ZK-SNARKs is more important than the ZK. Succinctness is the characteristic

that allows one to verify a proof in exponentially faster time than it takes to

generate it, which will be longer than running the original computation. This is an

extremely favorable characteristic in today’s era of third party cloud computing.

PCPs will allow for the integrity of a computation run by trusted or untrusted

third party to be verified very cheaply.

For computations that only need to be produced once and verified many times,

the extra proving overhead can be considered a fixed cost, and all subsequent ver-

ifiers will benefit from fast and cheap verifications, thereby saving compute cycles

and electricity. Computations like updating account balances after transferring

cryptocurrencies fit this bill. For this reason, PCPs are one of the most hopeful

contenders for producing the scalability desired by blockchains. Instead of each

node in the decentralized blockchain redundantly recomputing the account bal-

7

ances after a transaction to check for fraud, each node only needs to verify the

succinct proof attesting to the transaction’s correctness. Applications for succinct

verification are plentiful across domains beyond blockchain, with the goal being

to verify general purpose computations.

In 2018, the successor of ZK-SNARKs, ZK-STARKs [6] were published which

improved upon the security at the cost of an increased proof size. The main

contributions are two-fold. First, ZK-STARKs eliminated a required trusted setup

that was a single point of failure of ZK-SNARKs. Second, ZK-SNARKs depend

on the use of public key cryptography, relying on elliptic curve pairings. The

security behind this is rooted in the hardness of the discrete log problem (DLP),

as are most of the public key encryption algorithms that we use in our daily lives.

The idea is that as long as the DLP is hard to compute, meaning it is infeasible

regardless of one’s budget and compute power to try and crack it, the proof is

secure.

One criticism is that, although impractical now, when quantum computers

are more viable in the future, they can be used to break problems like the DLP

that the classical computers of today cannot [44]. As a result, for not only ZK-

SNARKs, but for much of the security underlying blockchain, it is important in the

future to look at post-quantum secure cryptographic assumptions. ZK-STARKs

are attractive because they rely only on the hardness of breaking hash functions,

which are not made easier by quantum computers, thus making ZK-STARKs

post-quantum secure.

2.3.1 Provers and Verifiers

PCPs are comprised of two parties, a prover and verifier. They are designed

to allow the verifier to verify the correctness of a computation in exponentially

8

Figure 2.1: The high-level transformations from a problem into a PCP. Note
that these graphs are shown over the familiar real numbers because the idea of
evaluating over a larger domain is visually more intuitive, but in practice the poly-
nomial values are modulo q. The Low-Degree Extension evaluates the interpolated
polynomial on a much larger domain (i.e green vs purple dots).

less time than it takes to run the the original computation, the caveat being that

the time for the prover to run the computation grows poly-logarithmically with

the size of the computation. More concretely, if a computation originally took

100 days on a supercomputer, it would take approximately 700 days to generate

a proof contesting to the computations correctness, and less than 7 days to verify

(where the proof only ever needs to be generated once).

Because the security of these constructions are built solely on cryptography

and math, there is no need to assume trusted hardware is used or that the prover is

acting honestly. This means that even if a known bad actor is the prover, a verifier

will accept the output if and only if the proof is correct, with only a negligible

probability of them generating a fraudulent but passing proof. The verifier is able

to achieve a sublinear verification time because the proofs are probabilistically

checkable, implying that there is some probability of a fake proof passing, but

this probability is a tunable system parameter chosen to be negligent, such as

2−128.

2.3.2 How PCPs Work

Since 2018, an explosion of new PCP constructions has developed under differ-

ent crypto-systems, but every construction depends on first converting the prob-

9

lem that is being proven into a problem based on polynomials. When the problem

is described in the language of polynomials, one can then apply the rules of poly-

nomials to construct efficient proofs.

Arithmetization

For example, to prove that after a certain number of steps the output of a

computation is correct, first convert each instruction of code into its respective

Boolean gates (AND, OR, NOT, etc). The behavior of a gate is a function of its

inputs and can thus be written as an equation. For example an AND gate can

be written as the function: AND(z1, z2) = z1 ∗ z2 for z1, z2 ∈ {0, 1}. We can

rewrite this function to encode a successful execution of the gate as whether the

function evaluates to 0 or not: FAND(z1, z2, z3) = z3 − AND(z1, z2), where z3 is

the output [46]. FAND(0, 0, 1) = 1 − 0 = 1, is an incorrect execution of the gate,

while FAND(1, 1, 1) = 1 − 1 = 0, is a correct execution.

If the function for every gate in the program evaluates to 0, then we know

that the computation was run correctly. This process of converting from a gate

to a function that evaluates to 0 if and only if it’s a correct execution is called

Arithmetization and the collection of gates is called a Boolean Circuit. In this

scenario the verifier must check every arithmetized gate for correctness, which in

practice may be more expensive than just running the original equation.

Error Correction Codes

In order to reduce the verifier’s load, polynomials and Error-Correcting Codes

(ECCs) are used. The gates are encoded in a polynomial, that will evaluate to

0 at all points only if the computation was correct. For example, the AND gate

execution can be encoded as a line (which is a degree-1 polynomial), over some

10

variable t: L(t) = (z3 − z1 ∗ z2) · t. This line will evaluate to 0 for all t if and only

if there is a correct execution of the AND gate. An incorrect execution will cause

the line to only pass through the origin once (i.e. evaluate to 0 only once). This

idea can be extended to polynomials of any degree and generalizes from individual

gates to entire circuits, where the polynomial will evaluate to 0 for all t, if and

only if the circuit is executed correctly [46].

To check a circuit’s correctness it requires checking that the polynomial evalu-

ates to 0 at all t. Checking every point is required because if the original polyno-

mial evaluated to 0 at all but a single point, the verifier will accept the incorrect

circuit execution if this point is not checked. However, testing every value of t is

too costly, taking the verifier as much time as the original computation. To avoid

this, the prover encodes the polynomial into a much larger polynomial. This op-

eration is called Low-Degree Extension, and it involves evaluating the polynomial

on a larger domain, such as 8-16x more evaluations of t.

The resulting extended polynomial is called a Reed-Solomon Codeword (RSC)

[36]. The RSC, amplifies errors in the original polynomial (i.e. points that do not

evaluate to 0). In exponentially less checks than all values of t, the RSC will reveal

whether any of the gates were executed incorrectly.

Each PCP construction follows the above steps, although there are far more

expressive languages than Boolean Circuits such as Arithmetic Circuits, R1CS,

QSP, QAP, SSP, TinyRAM, and RAM which also are efficient for Zero Knowledge

[8], [20], [7], [18], [9], [49].

Polynomial Commitments

The next step is polynomial commitment, and this is where each construction

differs in the math and cryptography used. A commitment scheme is where one

11

locks in a set of values so that they cannot be changed in the future, which helps

ensure provers to do not cheat during the protocol. STARKs use hash-based com-

mitments, SNARKs use pairing groups, DARKs [13] use groups of unknown order,

and Bulletproofs [12] rely on the discrete log assumption (i.e. there is no known

algorithm besides brute force to solve for x in rx ≡ a mod m). Each commitment

scheme has different tradeoffs in a variety of metrics like the size of the proof, the

cryptographic assumptions used, the transparency, post-quantum resistance, and

whether a trusted setup is necessary. It is the verifier’s job to query points on

the extended polynomial for consistency, and if the prover were to know those

points in advance, or be able to reply with consistent answers generated on the

fly, then the prover would be able to deceive the verifier. Therefore, randomness

is used to avoid the prover knowing the points in advance, and a commitment

scheme is necessary to prevent the prover from changing their polynomial during

the verification process.

PCP Summary

The above can be broadly summarized into three steps: problem encoding,

RSC formation, and polynomial commitment. The problem encoding will be

different depending on the expressiveness of what one is trying to prove, like

whether the program can use memory or control flow or whether it is restricted to

only arithmetic operations. And as mentioned previously, the polynomial commit-

ment scheme will vary depending on what construction is used, whether STARKs,

SNARKs, DARKs, or Bulletproofs, all of which have different tradeoffs. An im-

portant insight, however, is that the intermediate step of forming the RSC will be

uniform across different problems and commitment schemes. The computations

involved in this step lend extremely well to hardware and thus is the main target

12

for Buntterfly.

2.4 History of FHE

Second in this, beginning in 2009, Craig Gentry published a paper [21] de-

scribing the first practical solution to the fully homomorphic encryption problem

which was first proposed in 1978 [39]. FHE allows one to perform computations

on encrypted ciphertext, which when decrypted, contains the same result as if

the computations were applied to the underlying plaintext. Applications include

genomics research on medical data that cannot be viewed due to privacy, and put

more generally, data analysis on private data. If encrypted data could be ana-

lyzed, useful medical predictions can be extrapolated without the risks involved

with compiling private unencrypted data where it can be hacked.

A key component to Gentry’s work is that it focuses on lattice-based cryptog-

raphy, and problems based on lattices are contenders to be post-quantum hard

problems. Thus while the attention that cryptocurrencies brought to cryptog-

raphy resulted in more pressure for post-quantum assurances, in parallel, work

started by Gentry has propelled plausibly post-quantum lattice constructions into

the spotlight.

2.5 How FHE Works

Lattice-based cryptography, particularly the Ring Learning with Errors (Ring-

LWE) problem, involves multiplying together two large polynomials [27]. The data

being encrypted is mixed with the secret key and hidden across the coefficients of a

very large polynomial with large coefficients in the hundreds of bits. The sheer size

of the polynomial combined with added noise, makes it impractical to extract the

13

underlying data out of the polynomial without the secret key. The polynomial is

closed under addition and multiplication, and with those two operations, arbitrary

computations can be constructed. The party performing these additions and

multiplications cannot distinguish between the noise and the plaintext, but can

still perform meaningful changes. While addition of large polynomials is relatively

cheap, multiplication does not scale well.

The naive way polynomial multiplication is taught in schools requires a com-

plexity of O(n2) where n is the number of coefficients in a polynomial. This

complexity is prohibitive at the scale that FHE must operate. Instead, to multi-

ply the two polynomials, one can first perform the Number Theoretic Transform

(NTT) on each input polynomial to get them in the evaluation domain, point-wise

multiply each value, and then perform the inverse NTT to interpolate the result

back into the coefficient domain, resulting in the same output polynomial as if tra-

ditional multiplication were used, but with a much better runtime of O(nlog(n))

[34]. The use of the NTT algorithm allows for FHE to be practical, as FHE

computations may involve million-bit multiplications [19].

2.6 Prior FHE Work

While applications utilizing PCPs and FHE have started to become practical

because of the developments in the past decade, there are still many opportunities

to optimize the algorithms used in their construction. A key operation in both

cryptographic primitives is large polynomial interpolation and evaluation, and

thus the NTT is the algorithm of choice [34]. Prior work has focused on building

NTT hardware accelerators for polynomial multiplication for the R-LWE problem

with different target platforms in mind. For example in Poppelmann et al. [33],

latency is their priority and they resort to precomputing twiddle factors and stor-

14

ing them in RAM. Conversely in Roy et al. [41], the goal was a low area design,

and thus twiddle factors are computed on the fly. Most recently HEAX provides

an NTT architecture to accelerate the CKKS FHE scheme, which has promising

results for machine learning in a fully homomorphic environment [37].

2.7 Number Theoretic Transform

R-LWE and PCPs both work with polynomials defined over finite fields. Fast

Fourier Transforms (FFT) have been around since 1965 and is used for convert-

ing signals between different domains with a low computational complexity of

O(nlog(n)) [17]. Most of the prior work on building FFTs for hardware has been

for FFTs in the complex plane.

When defined over finite fields, FFTs are called Number Theoretic Transforms

(NTTs) because they exploit primitive roots of unity in finite fields instead of com-

plex numbers to quickly perform number theoretic transforms. These terms will

be described in the following sections. NTTs allow one to quickly interpolate data

into a polynomial in the coefficient domain, or evaluate points on a polynomial

back into data in the evaluation domain.

2.7.1 NTT Overview

NTTs have two operations: evaluation and interpolation. Given a polynomial,

one could represent it as a list of coefficients (4x0 + 3x1 + 2x2 + 1x3 = [4, 3, 2, 1]).

Performing an n-point NTT in the forward direction (which is just referred to

as a NTT), one will evaluate the polynomial at n special points. Performing an

n-point inverse NTT (INTT) on these evaluations will interpolate the values back

into their original coefficients.

15

At first glance this may not seem very useful, but it has significant implications

for many kinds of computing. For example, the multiplication of two integers can

be performed using NTTs. By encoding the integers as two polynomials (i.e. 1234

can be encoded as 4 + 3x + 2x2 + 1x3 in base-10), the NTT operations can be

applied. Multiplication of two polynomials can be done by evaluating the poly-

nomials at n special points, point-wise multiplying the resulting n evaluations,

then interpolating the results. The result can then be decoded back to the integer

and the result is the same as if the two integers had been multiplied together

using typical multiplication. For very large integers this is faster than standard

multiplication techniques, despite the high overhead. This same sequence of op-

erations is how the NTT is used to perform polynomial multiplication for FHE in

the R-LWE setting.

PCPs use Reed-Solomon codes, which can be formed using NTTs as follows:

• INTT to interpolate n-data points into a polynomial p(x).

• NTT to evaluate p(x) at (n∗m)-points where m is referred to as the blowup

factor.

• Now any n random points from (0, n*m) should be able to recover p(x)

2.8 NTT Math

All computations will be done in the realm of finite fields. We will be using

modular arithmetic or clock arithmetic, where every value is bounded by a prime

integer q, and values larger than q will wrap around. Let q = 5:

• 0 mod 5 = 0

• 1 mod 5 = 1

16

• 2 mod 5 = 2

• 3 mod 5 = 3

• 4 mod 5 = 4

• 5 mod 5 = 0

• 6 mod 5 = 1

2.8.1 Order of a Group

The modulus q forms a field with elements [0, q-1]. A multiplicative group

excludes the 0 element because it is non-invertible, so the number of unique

elements is denoted as the order of a group q: |q| = q − 1. NTTs rely on special

primes that are composed of high powers of 2. For example, a Fermat Prime,

which is a very special case, is of the form 2m + 1 [35].

An example is q = 257 = 28 + 1. Such a prime is chosen because |q| = 256, a

power of 2. Lagrange’s Theorem [40] tell us that for any random integer ω that

we choose within the field, the order of the multiplicative subgroup |G| generated

from ω will divide |q|. Since |q| = 256, |G| ∈ {1, 2, 4, 16, 32, 64, 128, 256},

because all of these values divide 256.

A multiplicative subgroup is the set of unique elements that are generated from

any random integer in the field, ω, called the generator. The way these elements

are generated is by computing ωi mod q for i ∈ [0, |G|].

For example: let ω = 193. This generator will produce a multiplicative sub-

group that cycles between 8 unique elements:

• 1930 mod 257 = 1

• 1931 mod 257 = 193

17

• 1932 mod 257 = 241

• 1933 mod 257 = 253

• 1934 mod 257 = 256

• 1935 mod 257 = 64

• 1936 mod 257 = 16

• 1937 mod 257 = 4

• 1938 mod 257 = 1

Notice raising ω to the 8’th power causes the generated value to cycle back to

1. This will repeat for all subsequent powers of ω . In this example, n = |G| =

8, and ω is a primitive n’th or 8’th root of unity because it generates 8 unique

elements.

2.8.2 Picking Primes

NTTs require n to be a power of 2 due to the nice symmetries that it provides.

This means q must be restricted to have certain qualities, namely high-2-adicity.

The Fermat Primes, like 257, are ideal because they are composed only of powers

of 2, but the highest known Fermat Prime is 216 + 1, which is too small for many

problems. However, other composite primes are good candidates. For example

q = 3 ∗ 230 + 1 is a prime such that following Lagrange’s Theorem, will guarantee

generators that produce multiplicative subgroups with orders 2i : i ∈ {0, 30}, and

thus is suitable for NTTs up to n = 230.

18

2.8.3 Fourier Transform

Polynomial evaluation, in middle school algebra, solves for y by plugging in a

value for x: y(x) = 4x0 +3x1 +2x2 +1x3 ⇒ y(2) = 4+6+8+8 = 26). Multi-point

polynomial evaluation, the operation performed by the forward NTT, is the same

operation, just performed over a sequence of x-values: [y(0), y(1), y(2), y(3)] =

[4, 10, 26, 58]. The only caveat is that the x-values are the n elements in our

multiplicative subgroup, and our math is all done modulo q:

For example, let q = 257 and ω = 241. ⟨ω⟩ = G ∈ {1, 241, 256, 16} → |G| =

n = 4.

Let y(x) = 4x0 + 3x1 + 2x2 + 1x3

• y(1) = 10

• y(241) = 4∗2410+3∗2411+3∗2412+1∗2413 = 4+723+116162+13997521 =

14114410 mod 257 ≡ 227 mod q

• y(256) ≡ 2 mod q

• y(16) = 34 mod q

Thus the results in the evaluation domain are [y(1), y(241), y(256), y(16)] =

[10, 227, 2, 34]

Notice the evaluation points are essentially random values in the field. This

might not appear to be very useful, but it should be remembered that the goal

of this operation is to transform from the polynomial domain into the evaluation

domain, so operations like multiplication can easily be performed. Also, while

seemingly random, these powers of ω have useful symmetry that allows for a more

efficient algorithm to transform between domains.

19

The way of evaluating in this example requires multiplying all n coefficients

by all n powers of ω. This O(n2) complexity is a hindrance for large values of n,

and so a faster algorithm to achieve multipoint evaluation is required.

2.8.4 Speeding up the Fourier Transform

To borrow from the terminology from the original FFT paper [17], from now

on the n powers of the n’th root of unity will be referred to as the twiddle factors.

Because |G| is a power of 2, there is a symmetry between twiddle factors in the first

half and second half, namely the i’th twiddle factor is the negative of the i+n/2’th

twiddle factor. Borrowing the twiddle factors from the previous example, we can

see 1 ≡ −1 ∗ 256 mod 257, and 241 ≡ −1 ∗ 16 mod 257.

One can exploit this symmetry to construct an algorithm with less than n2

multiplications. A fact about polynomials is one can be evaluated by splitting it

into even and odd coefficients and evaluating as follows [14]:

y(x) = evens(x2) + x ∗ odds(x2) and y(−x) = evens(x2) − x ∗ odds(x2)

• Continuing the example: y(x) = 4x0 + 3x1 + 2x2 + 1x3 → evens(x) =

4x0 + 2x1 and odds(x) = 3x0 + 1x1.

• In reals: y(2) = evens(22) + 2 ∗ odds(22) = (4 + 8) + 2 ∗ (3 + 4) = 26

• In finite fields: y(241) = evens(2412) + 241 ∗ odds(2412) = (4 + 116162) +

241 ∗ (3 + 58081) = 14114410 mod 257 = 227 mod q

• Exploiting the symmetry: y(−241) = evens(−2412) − 241 ∗ odds(−2412) =

(4 + 116162) − 241 ∗ (3 + 58081) = 34

Notice evaluating y(−241) yields the same value as y(16) because these twiddle

factors are negatives of each other. Also notice that evens(2412) = evens(−2412),

20

Figure 2.2: NTT Algorithms used in Buntterfly from [33].

and similarly odds(2412) = odds(−2412). This implies there are many redundant

multiplications being performed, that only need to be performed once.

One could minimize the number of multiplication operations by efficiently

scheduling the order in which twiddle factors are multiplied by these coefficients.

In practice this is done using recursion, but for hardware NTTs, iterative algo-

rithms are required. The result is that multipoint evaluation can be done in

O(nlog(n)) multiplications (likewise for the inverse operation, polynomial inter-

polation).

2.8.5 Chosen NTT Algorithms

Figure 2.2 shows the NTT and INTT algorithms used in Buntterfly. The core

operation being performed is referred to as the butterfly operation in the original

FFT paper [17] because of the resemblance to a butterfly as shown in Figure

2.3. Figure 2.4 demonstrates the scheduling of an 8-point forward NTT using the

21

Figure 2.3: The classic butterfly operation. The ordering of the operations in
this figure are for the forward NTT, corresponding to lines 13 and 14 in Figure
2.2.

Figure 2.4: An 8-point NTT has log2(8) = 3 levels. Each pair of two arrows
denotes a butterfly operation, the black arrows being the even plus the odd times
twiddle factor, and the purple arrows being the even minus the odd times twiddle
factor.

22

algorithm shown in 2.2.

One caveat of these algorithms is that instead of ω, a new symbol is used for

the twiddle factors, ψ. The difference is that instead of ψ being an n’th root of

unity, it is a 2n’th root of unity, meaning the multiplicative subgroup generated

from ψ contains twice as many elements as ω. This is an important optimization

for applications like FHE, where the intended use of the NTT is for multiplication.

Using a 2n’th root of unity employs negative-wrapped convolution, which prevents

the number of coefficients from doubling during multiplication [47].

23

Chapter 3

Buntterfly

3.1 System Overview

Buntterfly is a flexible circuit generator capable of creating specialized hard-

ware optimized for accelerating the NTT algorithm, which can be deployed to

an ASIC or FPGA for use. Users can specify the prime modulus, the number of

NTT points, and the desired parallelism, and Buntterfly will generate a pipelined

NTT circuit that can compile down to synthesizable Verilog. The high-level fea-

tures of the hardware construction language Chisel allow for Buntterfly to easily

be extended to suit certain problems. Alternatively the reusability that hardware

generators provide means future projects can treat Buntterfly as a blackbox and

use it as a library component.

3.2 Chisel

Chisel is a relatively new hardware construction language for designing hard-

ware [4]. Embedded in the programming language Scala (a functional JVM lan-

guage), Chisel allows hardware engineers to leverage the high-level features that

24

allow software engineers to rapidly develop scalable code. Such features include

object-oriented programming, static-time compilation, strong typing, and access

to the variety of mature Java libraries that already exist. All of this lends well to

code reuse and Agile development, which allowed a graduate student to develop

an out of order processor using a fraction of the time and resources as an industrial

team in just three years [50].

Hardware description languages like Verilog describe the behavior of a circuit

over time. Chisel works differently by instantiating hardware components through

the use of Scala. The wiring between the components is then described using

Chisel. Thus at a high level, a hardware generator is simply a Scala function that

leverages Chisel internals to generate hardware components. These generators

provide an interface to instantiate different designs based on how the generator is

parameterized.

For example, if one were to design an adder in Chisel, one would first describe

the behavior of the design in terms of wires and gates. This behavior can be

wrapped in a Scala function that parameterizes the Adder based on the bit-widths

of the adder inputs. This function can now generate any sized Adder depending on

the intended use. Perhaps multiple different Adder designs can be included in this

module, each with its own tradeoffs in performance, energy, and area. Depending

on the target platform, one could instantiate an adder by parameterizing according

to their target metric. All of these decisions happen during elaboration time. Once

the design is transformed to synthesizable Verilog to be placed on an FPGA or

ASIC, only the target adder is used, and none of the other adder designs are

generated in hardware.

Generators allow for more code reuse and smaller code bases. By providing

clean interfaces, components can easily be swapped, providing flexible designs and

25

is a step towards open source hardware designs.

When designing the NTT accelerator, Chisel made it easy to generate different

circuits by reparameterizing the modulus, bit-widths, and number of NTT points.

3.3 Implementation Decisions

The following are important decisions made while implementing Buntterfly in

Chisel and will be detailed throughout this chapter:

• Using Poppelmann’s algorithms for the NTT [33].

• Using the Ozturk Modular Multiplier as the core modular multiplier unit

[31].

• Keeping all of the intermediate values in k1d1 form.

• Pre-computing the coefficient addresses.

• Keeping negative numbers when in the inverse direction.

• Choosing a centralized control approach as opposed to a distributed ap-

proach.

3.4 NTT Algorithm Prior Work

Prior works on NTT hardware accelerators have implemented designs based

on a variety of algorithms. Aysu et al. [3] and Roy et al. [41] propose designs

with area in mind, choosing to compute the twiddle factors on the fly. The major

contribution from Roy et al. is this is the first mention of optimizing negative

wrapped convolution in the NTT setting as opposed to FFT. The insight is that

by using ψ as a 2n’th root of unity, one can remove the coefficient growth that

26

arises during polynomial multiplication, keeping the polynomial fixed at n-points.

The cost, however, is that the resulting coefficients will be scaled by ψ, requiring

n multiplications by ψ−1 to recover the correct coefficients. Roy et al. modified

the NTT algorithm in the forward direction by scaling each coefficient by ψ with

zero extra cost (replaced the round where each coefficient is multiplied by 1 with

ψ).

Poppelmann et al. built on the previous algorithm, allowing for a similar tech-

nique but in the inverse direction, requiring a decimation-in-frequency approach as

opposed to decimation-in-time [33]. Due to the access patterns of the algorithm,

pre-computed powers of ψ and ψ−1 are stored in hardware.

Longa et al. used the same algorithms from Poppelmann but contributed

their own modular reduction algorithms [26]. Similarly, in this work, Buntterfly

uses the same algorithms from Poppelmann et al., but uses the algorithm from

Ozturk et al. [31] to build the system’s core-multiplier, accelerating the modular

multiplication and reduction operations.

3.5 Architectural Overview

Figure 3.1 illustrates the full system integration for Buntterfly. The sequential

steps can be broken down as follows (assume all enable signals are high):

1. The AddrGenUnit produces address triplets: even addr, odd addr, and twid

addr.

2. odd coef and even coef are fetched from CoefMem and twiddle factor is

fetched from TwiddleFactorMem.

3. These values are concurrently pipelined through the DestAddrFIFO, But-

terflyUnit, and ButterflyInverseUnit respectively.

27

Figure 3.1: Buntterfly data and control paths. (Buntterfly is capable of in-
stantiating multiple parallel ButterflyUnits and ButterflyInverseUnits, but this is
omitted for succinctness).

4. The results left and right are mulitiplexed depending on whether the NTT

or INTT is being performed, and then written back to CoefMem at left addr

and right addr.

3.6 Modular Multiplier

Modular multiplication finds the product of two numbers and returns the

remainder after dividing by the modulus. An example being 3 ∗ 4 mod 7 = 5

since 12/7 = 1 with remainder 5. Previously we saw our twiddle factors in the

form ωi mod q, which is example of what is called modular exponentiation. This

operation is simply many repeated instances of modular multiplication, and is a

common operation in cryptography.

Modular multiplication is difficult for two reasons. First, there is the problem

28

of bit-growth. Any multiplication between two integers doubles the width of the

larger integer in the worst case. Since we must design around the worst case,

this is considered a rule of thumb when designing hardware. This means that

repeated multiplications will cause an exponential blowup in the number of bits,

which is impractical to consider in hardware. The solution to this is to perform the

modular reduction (modulus operation) after each step, which will truncate each

intermediate product to a maximum of the modulus width. The second problem,

however, is that division is hard in computers and should be avoided when possible.

Unfortunately this is unavoidable, but algorithms have been developed to address

this.

Prior techniques for modular multiplication classically include using Mont-

gomery Modular multipliers or Barrett reductions [29], [5]. Montgomery multipli-

ers employ a special Montgomery form where division is circumvented by repeated

additions and few subtractions. Thus Montgomery multipliers excel for modu-

lar exponentiation because the cost of converting to and from the Montgomery

form is amortized across many intermediate modular multiplications. The main

application for these works has been RSA crypto-systems [38], where modular

exponentiation is the most common operation.

3.6.1 Ozturk Modular Multiplier

In 2019 Ozturk et al, designed a low-latency modular multiplication algorithm

[31]. Intended applications for this multiplier are verifiable delay functions (VDF),

which are a promising cryptographic primitive with interesting implications for

blockchain [11]. The security behind VDFs involves performing modular exponen-

tiation as fast as possible, and thus low-latency modular multiplication algorithms

are necessary.

29

Ozturk’s design was used to break the LCS35 time-lock puzzle in only 60

days. This timelock was intended to take 35 years, even taking into account

Moore’s law; however, vast improvements in low-latency modular multipliers were

not taken into account [16]. While it is more expensive in terms of area, the

multiplier’s low-latency and ability to be pipelined made it a suitable choice to

use as the core modular multiplier in Buntterfly.

k1d1 Form

Just as the Montgomery multiplier uses a special form, the Ozturk multiplier

employs a redundant form during intermediate multiplications. In this paper, we

introduce the terminology "k1d1 form" to refer to this redundant form. The k in

k1d1 is the number of coefficients in a polynomial, and d is the bit-width of each

coefficient. Any n-bit integer can be encoded as a polynomial with k coefficients

that are each d-bits wide by first selecting a value for d. The radix r, such that

r = 2d is the maximal value that any single coefficient can be. Since the modulus

is the largest integer in the system, n = numBits(modulus). The number of

coefficients needed to encode the integer can be found as k = ⌈n/d⌉. Binary and

Hexadecimal encodings are everyday examples of such representations.

For example representing an integer as a base-16 polynomial would work as

follows: given a = 1532 and n = numBits(1532) = 11b. In Hex, each term is 4-b

wide, so let d = 4. The resulting radix r = 24 = 16 (each term is from [0,15]).

The number of coefficients k = ⌈11/4⌉ = 3 coefficients. Thus a can be encoded as

a degree 2 polynomial with 4-bit coefficients: pa(x) = 5x2 +15x+12. One can see

this is equivalent to the hex encoding of a: hex(a) = 0x5fc, when one substitutes

the radix: pa(radix = 16) = 5(162) + 15(161) + 12(160) = 1532.

Selecting different values for d allows for arbitrarily based polynomials besides

30

base-2 and base-16. When in this form, coefficients can accumulate numbers even

greater than the radix whilst still representing the same number. For example the

following are redundant representations of 1532: 1532 = 5(162) + 15(16) + 12 =

0(162) + 95(161) + 12(160) = 0(162) + 0(161) + 1532(160).

The k1d1 form deviates very slightly from this. The n-bit integers are still

broken down into k, d-bit coefficients; however, one additional coefficient and one

additional bit per coefficient are added for redundancy. The resulting polynomial

will still have radix r = 2d, but will contain (k + 1) coefficients, each (d+ 1)-bits

wide, hence k1d1. A valid k1d1 representation for a would be: pa(radix = 16) =

5(162) + 14(161) + 28(160) = 1532. Notice the coefficients are ≤ d + 1 = 5-bits,

but the radix is still r = 2d. The largest k1d1 polynomial with k = 3 and d = 4

would be: p(radix = 16) = 31(163) + 31(162) + 31(161) + 31(160) = 135439

The reason for choosing such an encoding is further explained in [31], but can

be summarized at a high-level: With the goal being modular multiplication of two

integers, one can first encode the integers as k1d1 polynomials. Multiplying the

two polynomials can be done using a variety of techniques such as (Schoolbook,

Comba, Karatsuba, Strassen, NTTs, and hybrids of these [15], [25], [45],[34]). The

Ozturk multiplier employs standard O(n2) schoolbook multiplication because all

(k+1)2 partial products can be computed in parallel (although exploring different

multiplication algorithms with better asymptotic runtimes combined with the

k1d1 form is something we wish to try in the future). Accumulating all (k + 1)2

partial products results in bit-growth for the resulting polynomial, but by carrying,

reducing via Look Up Tables (LUTs), accumulating, and finally carrying again,

the resulting product is returned to the same k1d1 form and can be used for

another round of modular multiplication without any expensive reductions using

division. Without this k1d1 form, intermediate polynomial products would grow

31

Figure 3.2: The steps involved to multiply two k1d1 polynomials modulo a prime
number and return the product to k1d1 form.

between rounds or need more reductions, thereby lengthening the critical path of

the design.

One contribution from Buntterfly was noticing that the Ozturk multiplier can

be used to perform not just the core modular multiplications in the NTT’s but-

terfly operation, but all the arithmetic operations by keeping all intermediate

values in the k1d1 form. Thus the k1d1 form can be used for the entire NTT

computation, amortizing the cost of converting to and from this form.

Ozturk Multiplier Overview

Figure 3.2 demonstrates the bit-width and polynomial degree transformations

during each step of the Ozturk modular multiplication algorithm. The steps are

summarized briefly below and in more detail in the Buntterfly Unit section.

• Multiply - Compute (k + 1)2 partial products by multiplying the two k1d1

input polynomials.

• Accumulate - Accumulate each 2(d + 1)-bit partial product amongst three

coefficients by splitting partial product into [2:d:d] bits.

32

Figure 3.3: BuntterflyUnit Chisel module. The Ozturk multiplier has been
adapted to include the addition and subtraction operations required in the forward
butterfly operation.

• Carry - Carry the accumulated result, reducing bit-widths to (d + 1) but

growing one coefficient to (2k + 3).

• Reduce - Use lookup tables (LUTs) to reduce each of the upper (k+3) coef-

ficients. Finds each kd polynomial corresponding to an evaluated coefficient

modulo q.

• Accumulate - Accumulate each of the looked up kd polynomials with the

lower k coefficients not looked up in the previous step.

• Carry - Carry to return the result to k1d1 form. It has now undergone

a modular multiplication without the need for reduction via the modulus

operator.

3.7 Buntterfly Unit

The Ozturk multiplier is integrated into a ButterflyUnit and ButterflyInverse-

Unit Chisel modules. Figure 3.3 is a picture showing the pipeline stages for the

forward direction.

33

PolyMAC

The first step in a forward butterfly operation is to multiply an odd input

by a twiddle factor (power of ψ). All inputs and twiddle factors are stored in

k1d1 form. Using O(n2) schoolbook multiplication, (k+1)2 partial products (PP)

are computed in parallel. Since multiplication doubles bit-width, each PP will

have grown to 2(d+ 1)-bits. The PP’s need to be accumulated back into a single

polynomial, and the Ozturk algorithm does this in a unique way.

Instead of accumulating 2(d + 1)-bit PPs to their respective destination co-

efficient, each PP is broken into three pieces: the lower d-bits, the next d-bits,

and the upper 2-bits, and then is accumulated into three destination coefficients.

This is where the redundancy from polynomial representations is useful. The ac-

cumulation of PPs could just as well have been done as learned in school, but

by splitting it this way, an equivalent product is achieved, but one with smaller

coefficient bit-widths that is more suitable to be reduced.

The PolyMAC Chisel module performs the above steps by first multiplying

and saving PPs to registers. Chisel bit-manipulations are used to extract out the

lower, middle, and upper bits. Filtering, mapping, and folding are all functional

Scala operators that at compile-time are used to coordinate which PP-bits are

added together. The end result is that during runtime, the (k + 1)2 PPs are

accumulated into 2(k + 1) coefficients, each (2 ∗ d)-bits wide (The accumulated

partial products will be referred to as APP).

Addition then Carry

One may notice from Figure 3.3, that the even coefficient does nothing during

both cycles of the PolyMAC stage. Instead, a FIFO pipelines the even input for

the two cycles so that it can be added with the APP. In its current form, the

34

APP contains twice as many coefficients as the even input. One can safely add

the lower (k + 1) coefficients of the APP with the (k + 1) coefficients of the even

input. The result is equivalent to the unreduced product of an odd coefficient and

twiddle factor added with the even input, which is the desired left output of the

butterfly operation. However, all NTT operations are done modulo q, and this

output is not in the desired k1d1 form to be used for the next round of the NTT.

The CarryChain Chisel module is the first step in reducing back to k1d1. This

module brings each coefficient down to (d+ 1)-bits, but grows the polynomial by

one coefficient to a total of 2(k+ 1) + 1. The result, even plus odd times twiddle,

will be referred to as EPOTT.

Carry then Subtraction

The butterfly operation requires the APP from the PolyMAC to be subtracted

from the even coefficient. The 2(k + 1), (2 ∗ d)-bit coefficients are carried to form

a (2(k+ 1) + 1) coefficient polynomial with (d+ 1)-bit coefficients. Since the even

input will have the same width coefficients of the same sign, when subtracting

there is no bit-growth. The result (even minus odd times twiddle - EMOTT) will

be in the same form as the EPOTT.

Reduce and Accumulate

Both the EMOTT and EPOTT work in lockstep from this stage on. Ozturk

was able to achieve low-latency because of the techniques used for modular reduc-

tion. Instead of performing division or the modulus operator on the EMOTT and

EPOTT, precomputed values are stored in tables called lookup tables (LUTs),

and fetched from to perform the reduction.

The goal is to return the polynomials back into k1d1 form, but the polynomials

35

contain 2(k+ 1) + 1 coefficients. The upper (k+ 3) need to be truncated to bring

the polynomial back to k coefficients, so one more carry can bring the result to

k1d1.

Each of the upper (k + 3) coefficients precomputes its own LUT. This re-

quires computing 2d+1 possible values, each weighted by the LUT’s corresponding

coefficient’s degree.

For example, if d = 4, and this LUT is for the (k + 1)’th coefficient where

k = 3, the LUT precomputes radix = 2d = 16 values. Each value is scaled by the

radix raised to the coefficient’s position: 164, and then reduced mod q using the

standard remainder operation. This reduced value is then saved as a polynomial

with k coefficients, each d-bits wide. The overall operation is summarized as:

LUTcoefP os = i ∗ radixcoefP os mod q : i ∈ [0, radix)

One reduces each of the upper (k+3) coefficients in the EMOTT and EPOTT

by querying the respective LUTs with the contained coefficient values (each from

[0, radix)), and then accumulating the kd LUT outputs with the lower k coeffi-

cients in the EMOTT and EPOTT. The results of the reduction and accumulation

stages are k coefficients, each 2 ∗ d-bits wide.

Final Carry

To get the two reduced and accumulated polynomials into the final k1d1 form,

a final carry grows the polynomials by one coefficient, and reduces each coefficient

to (d + 1)-bits. At this point, the left and right outputs will be suitable for

another round of the NTT. One should note however, that the final result will

need to be reduced one more time after the completion of the NTT. The purpose of

using the k1d1 form is not complete modular reduction, but to keep intermediate

results from blowing up (solving the bit-explosion problem) whilst avoiding costly

36

Figure 3.4: BuntterflyInverseUnit Chisel module. The inverse butterfly requires
different operations than the forward direction shown in Figure 2.2.

division.

3.8 Inverse Buntterfly Unit

Figure 3.4 shows the pipeline stages for the butterfly operation in the inverse

direction. Many of the stages are identical to the forward Buntterfly Unit. How-

ever, in Poppelmann et al. [33], in order to merge powers of ψ in the inverse

direction, a decimation-in-frequency approach is taken. This results in a slightly

different ordering of the arithmetic operations. It is required to first subtract the

odd input from the even input before multiplying by the twiddle factor.

A lesson learned while implementing this is to keep any negative differences

in negative form. It is tempting to convert to a positive number by adding the

modulus. For example: −1 mod 257 = −1 + 257 mod 257 = 256. The problem

with this example is the result grew to the bit-width of the modulus. If all (k+ 1)

coefficients are negative after subtracting the odd input from the even input, the

resulting polynomial can potentially grow to (k1n1) which is impractical for large

n.

The even minus odd (EMO) input to the PolyMAC will contain a mix of posi-

tive and negative coefficients. Fortunately this is not a problem. The CarryChain

37

Module can handle both positive and negative coefficients. The only other dif-

ference between the forward and inverse butterfly units is during the reduction

phase. A positive and negative LUT are multiplexed depending on the sign of

the coefficient. This step corrects all coefficients to positive integers for the next

round of the INTT.

3.8.1 Address Generator

The AddrGenUnit is a necessary component that could easily be decoupled

from the rest of the NTT computation. There are log(n) sequential levels in a

NTT or INTT. Each level requires n/2 butterfly operations, where each operation

requires an even, odd, and twiddle factor input. The AddrGenUnit is responsible

for generating the addresses for each of these inputs to be fetched from memory.

As shown in 2.2, the triple nested for-loop is not conducive to being done in

hardware. This is where Chisel excels. Since the access patterns are known in

advance, all of the addresses are generated using Scala at compile-time. These

addresses are then saved to hardware read-only-memory (ROM) in the order they

are accessed.

Because the addresses are stored in the order they are consumed, no com-

plex control needs to be implemented to fetch them from ROM. Instead just two

counters are used, one indexes through the ROM to return address triplets, and

another tracks the current level.

The interface for the AddrGenUnit allows it to be parameterized based on the

number of parallel NTT units that will be used in the overall system. Every clock

cycle it returns numNTTUnits number of address triplets to be fetched from

memory as input to the numNTTUnits number of parallel BuntterflyUnits and

BuntterflyInverseUnits.

38

3.8.2 Twiddle Factor Generator

The access pattern in 2.2 requires the input coefficients to be in standard order

and the twiddle factors in bit-reversed order. Bit-reversed implies reversing the

bit-value of the twiddle factor’s index.

For example, if n = 16, requiring 4-bits to index, the twiddle factor stored at

index 1: 0b0001 becomes 0b1000, or the 8’th element. If n = 32, requiring 5-bits

to index, 0b00011 becomes 0b11000, and certain indices can also stay the same:

0b00100 remains 0b00100.

Requiring bit-reversed twiddle factors makes calculating them on the fly dif-

ficult. Typically if one want’s to do that, they will use different NTT algorithms

with bit-reversed input coefficients and standard ordered twiddle factors, which is

more conducive to straightforward modular exponentiation. These designs are

flexible and more area efficient as vastly less storage is required for the pre-

computed twiddle factors, at the cost of energy and latency. For future work,

we wish to add this as an option when parameterizing the NTT to support area-

constrained, embedded devices. An Ozturk multiplier can easily be pipelined to

deliver twiddle factors in k1d1 form each cycle to be consumed by the butterfly

units.

Currently, Buntterfly requires all twiddle factors to be pre-computed and

stored in ROM. The n twiddle factors are calculated in Scala at compile time

and store in bit-reversed order to a Chisel Vec of Wire. They are accessed via the

address from the AddrGenUnit.

3.8.3 NTT Controller

Everything is coordinated via a finite-state-machine (FSM) controller. Fig-

ure 3.5 visually describes the transitions between the five FSM states: init, fill,

39

Figure 3.5: The states and state transitions to control the modules involved in
a NTT/INTT computation.

40

state addrGenEn nttEn writeBackEn fillCntEn steadyCntEn drainCntEn
reset 0 0 0 0 0 0
fill 1 1 0 1 0 0
steady 1 1 1 0 1 0
drain 0 1 1 0 0 1
done 0 0 0 0 0 0

Table 3.1: Six control signals are generated by the FSM. nttEn, addrGenEn,
and writeBackEn control top level modules, and fillCntEn, steadyCntEn, and
drainCntEn control internal FSM counters for determining state transitions.

steady, drain, and done. It uses three internal counters and an enable signal to

drive the FSM, producing enable signals for the NTT units, AddrGenUnit, and

memory write-back. The primary goal for the FSM was to deal with the edge

cases when filling and draining the pipeline.

• init: initialization, reset all signals, read in input coefficients to memory.

• fill: begin filling the pipeline without enabling write-back.

• steady: pipeline is fully utilized, NTT outputs are now valid, enable write-

back.

• drain: stop entering values into pipeline, disable AddrGenUnit, and wait

until it is full drained.

• done: finished the computation, disable all output control signals, enable

outReady signal.

41

Chapter 4

Results

4.1 Evaluation Baseline: libfqfft

In order to get a sense of the relative impact that Buntterfly would have over a

software based NTT library, the libfqfft [1] library was chosen as a baseline. This

software NTT library is a component in libsnark [2], a popular open-source ZK-

SNARK library developed by SCIPR Lab, an academic collaboration responsible

for many cutting edge PCP developments. Written in C++, libfqfft is designed

with performance in mind, to accelerate one of the most computationally expen-

sive operations in PCPs, polynomial evaluation and interpolation.

Figure 4.1 contains benchmarks for libfqfft. The x-axis contains the number

of NTT points, n from 215 to 220, and the y-axis is the NTT runtime in seconds.

This data was collected using a 2.40GHz, Intel Core i7-3630QM quad-core with

16GB RAM. The tests did not exceed 4 threads as performance decreased when

the number of threads exceeded the number of physical cores, requiring hyper-

threading.

42

Figure 4.1: libfqfft NTT Benchmarks

4.2 Evaluation Method

Evaluating the correctness of Buntterfly is done using Chisel’s built in tester:

PeekPokeTester. The hardware module is instantiated and values written in soft-

ware are used as input to the module. One can then step through in time, simu-

lating clock cycles, and test that the module’s outputs match expected software

values. We directly compare the module’s output with a Scala NTT implementa-

tion that we wrote first.

While Buntterfly successfully executes software simulations of the generated

designs, these results should only be used to validate the circuit’s correctness and

to judge performance in cycles. At this stage of development, Buntterfly has not

been run through the CAD toolchain and placed onto a FPGA, and so empirical

43

data for clock frequency and area is not currently available.

However, it is possible to determine a theoretical runtime by determining the

cycle count for a n-point NTT, and then multiplying it by a theoretical clock

period. Each NTT requires n/2 butterfly operations per level with log2(n) total

levels. The butterfly operations can be parallelized, so the number of operations

per level is (n/2)/m, where m is the number of parallel butterfly units.

The total pipeline has nine stages, one for fetching the addresses, one for

fetching data, six for the butterfly operation, and one for write-back. Thus the

total cycles per level is: cycleslevel = cyclesfill + cyclessteady + cyclesdrain = 9 +

((n/2)/m−9)+9. The total cycles per NTT is: cyclestotal = log2(n)∗cycleslevel =

log2(n) ∗ (9 + (n/2)/m).

cyclestotal

n m = 1 m = 2 m = 4 m = 8
216 524432 262288 131216 65680
217 1114265 557209 278681 139417
218 2359458 1179810 589986 295074
219 4980907 2490539 1245355 622763
220 10485940 5243060 2621620 1310900
221 22020285 11010237 5505213 2752701
222 46137542 23068870 11534534 5767366
223 96469199 48234703 24117455 12058831

Table 4.1: The number of cycles required for Buntterfly to compute an n-point
NTT given m-parallel butterfly units.

4.3 Theoretical Results

The theoretical runtime can be computed as Time = cyclestotal ∗ Tclk. Figure

4.2 compares the extrapolated runtimes for Buntterfly at two frequencies, 100MHz

(i.e. FPGA) and 1000MHz (i.e. ASIC), compared to the baseline libfqfft results.

44

Figure 4.2: Theoretical Buntterfly Runtimes vs libfqfft Benchmarks

These results are promising for two reasons: the practicality of these run-

times, and the ease of adding more parallelism. If the theoretical clock period

for the FPGA were at 100MHz, a single Buntterfly unit performs approximately

1.5x faster than the single threaded libfqfft NTT. When parallelism is considered,

Buntterfly with four parallel butterfly units outperforms the four-thread libfqfft

runtime by approximately 2.5x at 100MHz.

On the other extreme, at 1000MHz with no parallelism, Buntterfly outperforms

the benchmark by 16x. When four parallel units are used at 1000MHz, Buntterfly

outperforms the benchmark by 64x. These preliminary results are promising, as

achieving a clock period in this frequency range is practical, although the limiting

factor for the period will be when routing large designs with multiple parallel

45

units.

The second reason why these results are promising is due to the differences in

implementing parallelism in software and hardware. Adding additional butterfly

units in hardware is just a matter of changing the numNTTUnits parameter, and

letting the Chisel generator handle the rest. More area and power are required, but

in terms of added complexity, the additional parallelism comes for free. Although

impractical due to area and clock frequency constraints, one can keep scaling the

number of parallel units until n/2 units, resulting in maximum throughput.

For software NTT implementations, there may be diminishing returns when

using more threads. This was the reality when evaluating the libfqfft bench-

marks. The eight-threaded benchmark performed worse than the four-threaded

benchmark because OpenMP performs optimally when threaded across different

physical cores. Since this laptop only has four physical cores, OpenMP will run

two hyperthreads per core which can cause adversarial behavior due to thread

contention, hence the worse performance. Squeezing out more performance via

parallel programming techniques is a much harder challenge than using hardware

that is by nature parallel.

46

Chapter 5

Conclusion

5.1 Contributions

We made the following contributions:

• Created Buntterfly, a flexible hardware generator that produces NTT cir-

cuits parameterized by a prime modulus, and the number of NTT points.

• Built upon the state-of-the-art modular multiplier algorithm [22] to be com-

patible with the addition and subtraction operations needed during the

NTT, amortizing the cost of switching to the specialized redundant form.

• Yielded preliminary results showing potential speedups up to 64x when using

Buntterfly over optimized software NTT libraries.

The code for Buntterfly will be made open source and can be found at

https://github.com/ucsc-vama/fft-gen.

47

https://github.com/ucsc-vama/fft-gen

5.2 Future Work

Future work for Buntterfly falls under two categories: internal optimizations

and fully integrated designs. Potential changes to optimize the internal NTT

computation include:

• Leveraging the object-oriented features of Scala to make designs more mod-

ular so one can substitute core components for ones with tradeoffs better

suited for the target application. For example, one could replace the Ozturk

multiplier with a different one (i.e Montgomery multiplier) as long as there

are clean interfaces between the components.

• Exploring different underlying NTT algorithms besides Poppelmann’s (i.e.

generate twiddle factors on the fly for more area constrained devices).

• Use more sophisticated memory access schemes (i.e. store coefficients as

pairs in memory to reduce the number of memory accesss).

• More hardware reuse with forward and inverse butterfly units (i.e. unified

module that changes NTT direction based on runtime signal).

• More hardware reuse with LUTs, so one LUT can be used for many parallel

butterfly units.

Some glue logic is needed to extend Buntterfly to be used for operations like

polynomial multiplication. Potential additions to Buntterfly include:

• More control flow and arithmetic operations (i.e. scaling by n−1 and point-

wise multiplication) to build a polynomial multiplier out of a NTT and

INTT for use in FHE.

48

• Addition of modules besides polynomial multiplication to support a com-

plete hardware implementation of FHE.

• More complex twiddle factor generation, memory management, and hard-

ware reuse to perform Low-Degree Extensions for PCPs.

• Addition of modules for supporting different polynomial commitment schemes

(i.e. a hash module for accelerating Merkle Trees during ZK-STARK prov-

ing).

49

Bibliography

[1] libfqfft: https://github.com/scipr-lab/libfqfft.

[2] libsnark: https://github.com/scipr-lab/libsnark.

[3] Aydin Aysu, Cameron Patterson, and Patrick Schaumont. Low-cost and area-
efficient fpga implementations of lattice-based cryptography. In 2013 IEEE
international symposium on hardware-oriented security and trust (HOST),
pages 81–86. IEEE, 2013.

[4] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Water-
man, Rimas Avižienis, John Wawrzynek, and Krste Asanović. Chisel: con-
structing hardware in a scala embedded language. In DAC Design Automa-
tion Conference 2012, pages 1212–1221. IEEE, 2012.

[5] Paul Barrett. Implementing the rivest shamir and adleman public key en-
cryption algorithm on a standard digital signal processor. In Proceedings
on Advances in Cryptology—CRYPTO 86, page 311323, Berlin, Heidelberg,
1987. Springer-Verlag.

[6] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable,
transparent, and post-quantum secure computational integrity. 2018.

[7] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. Snarks for c: Verifying program executions succinctly and in zero
knowledge. In Annual cryptology conference, pages 90–108. Springer, 2013.

[8] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P Ward. Aurora: Transparent succinct argu-
ments for r1cs. In Annual international conference on the theory and appli-
cations of cryptographic techniques, pages 103–128. Springer, 2019.

[9] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Suc-
cinct non-interactive zero knowledge for a von neumann architecture. In 23rd
{USENIX} Security Symposium ({USENIX} Security 14), pages 781–796,
2014.

50

[10] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Omer Paneth, and Rafail Os-
trovsky. Succinct non-interactive arguments via linear interactive proofs. In
Theory of Cryptography Conference, pages 315–333. Springer, 2013.

[11] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable
delay functions. In Annual international cryptology conference, pages 757–
788. Springer, 2018.

[12] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential trans-
actions and more. In 2018 IEEE Symposium on Security and Privacy (SP),
pages 315–334. IEEE, 2018.

[13] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent snarks from
dark compilers. In Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, pages 677–706. Springer, 2020.

[14] Vitalik Buterin. Fast fourier transforms, May 2019.

[15] Paul G. Comba. Exponentiation cryptosystems on the IBM PC. IBM Syst.
J., 29(4):526–538, 1990.

[16] Adam Conner-Simons. Programmers solve mit’s 20-year-old cryptographic
puzzle.

[17] James W Cooley and John W Tukey. An algorithm for the machine calcula-
tion of complex fourier series. Mathematics of computation, 19(90):297–301,
1965.

[18] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square
span programs with applications to succinct nizk arguments. In International
Conference on the Theory and Application of Cryptology and Information
Security, pages 532–550. Springer, 2014.

[19] Yarkin Doröz, Erdinç Öztürk, and Berk Sunar. Evaluating the hardware
performance of a million-bit multiplier. In 2013 Euromicro Conference on
Digital System Design, pages 955–962. IEEE, 2013.

[20] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct nizks without pcps. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 626–645. Springer, 2013.

[21] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of the forty-first annual ACM symposium on Theory of computing,
pages 169–178, 2009.

51

[22] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof systems. SIAM Journal on computing, 18(1):186–
208, 1989.

[23] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller.
Cache attacks on intel sgx. In Proceedings of the 10th European Workshop
on Systems Security, pages 1–6, 2017.

[24] Ioannis Karamitsos, Maria Papadaki, and Nedaa Baker Al Barghuthi. Design
of the blockchain smart contract: A use case for real estate. Journal of
Information Security, 9(3):177–190, 2018.

[25] Anatolii Alekseevich Karatsuba and Yu P Ofman. Multiplication of many-
digital numbers by automatic computers. In Doklady Akademii Nauk, volume
145, pages 293–294. Russian Academy of Sciences, 1962.

[26] Patrick Longa and Michael Naehrig. Speeding up the number theoretic trans-
form for faster ideal lattice-based cryptography. In International Conference
on Cryptology and Network Security, pages 124–139. Springer, 2016.

[27] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 1–23. Springer,
2010.

[28] Ahmet Can Mert, Erdinç Öztürk, and Erkay Savaş. Design and implemen-
tation of a fast and scalable ntt-based polynomial multiplier architecture. In
2019 22nd Euromicro Conference on Digital System Design (DSD), pages
253–260. IEEE, 2019.

[29] Peter L Montgomery. Modular multiplication without trial division. Mathe-
matics of computation, 44(170):519–521, 1985.

[30] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical
report, Manubot, 2019.

[31] Erdinç Öztürk. Modular multiplication algorithm suitable for low-latency
circuit implementations. IACR Cryptol. ePrint Arch., 2019:826, 2019.

[32] Maksym Petkus. Why and how zk-snark works. arXiv preprint
arXiv:1906.07221, 2019.

[33] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. High-performance
ideal lattice-based cryptography on 8-bit atxmega microcontrollers. In Inter-
national Conference on Cryptology and Information Security in Latin Amer-
ica, pages 346–365. Springer, 2015.

52

[34] Ciara Rafferty, Máire ONeill, and Neil Hanley. Evaluation of large inte-
ger multiplication methods on hardware. IEEE Transactions on Computers,
66(8):1369–1382, 2017.

[35] I Reed, R Scholtz, Treiu-Kien Truong, and L Welch. The fast decoding of
reed-solomon codes using fermat theoretic transforms and continued frac-
tions. IEEE Transactions on Information Theory, 24(1):100–106, 1978.

[36] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite
fields. Journal of the society for industrial and applied mathematics, 8(2):300–
304, 1960.

[37] M Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. Heax: An architec-
ture for computing on encrypted data. In Proceedings of the Twenty-Fifth In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems, pages 1295–1309, 2020.

[38] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digi-
tal signatures and public-key cryptosystems. Commun. ACM, 21(2):120126,
February 1978.

[39] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data banks
and privacy homomorphisms. Foundations of secure computation, 4(11):169–
180, 1978.

[40] Richard L. Roth. A history of lagrange’s theorem on groups. Mathematics
Magazine, 74(2):99–108, 2001.

[41] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong
Chen, and Ingrid Verbauwhede. Compact ring-lwe cryptoprocessor. In Inter-
national Workshop on Cryptographic Hardware and Embedded Systems, pages
371–391. Springer, 2014.

[42] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous
payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy,
pages 459–474. IEEE, 2014.

[43] Alesja Serada, Tanja Sihvonen, and J Tuomas Harviainen. Cryptokitties
and the new ludic economy: how blockchain introduces value, ownership,
and scarcity in digital gaming. Games and Culture, page 1555412019898305,
2020.

[44] Peter W Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

53

[45] Volker Strassen. Gaussian elimination is not optimal. Numerische mathe-
matik, 13(4):354–356, 1969.

[46] Michael Walfish and Andrew J Blumberg. Verifying computations without
reexecuting them. Communications of the ACM, 58(2):74–84, 2015.

[47] Franz Winkler. Texts and Monographs in Symbolic Computation. 01 1996.

[48] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.

[49] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and
Charalampos Papamanthou. vram: Faster verifiable ram with program-
independent preprocessing. In 2018 IEEE Symposium on Security and Pri-
vacy (SP), pages 908–925. IEEE, 2018.

[50] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. Sonic-
boom: The 3rd generation berkeley out-of-order machine.

54

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Background
	Chapter Overview
	Blockchain Primer
	PCP History
	Provers and Verifiers
	How PCPs Work

	History of FHE
	How FHE Works
	Prior FHE Work
	Number Theoretic Transform
	NTT Overview

	NTT Math
	Order of a Group
	Picking Primes
	Fourier Transform
	Speeding up the Fourier Transform
	Chosen NTT Algorithms

	Buntterfly
	System Overview
	Chisel
	Implementation Decisions
	NTT Algorithm Prior Work
	Architectural Overview
	Modular Multiplier
	Ozturk Modular Multiplier

	Buntterfly Unit
	Inverse Buntterfly Unit
	Address Generator
	Twiddle Factor Generator
	NTT Controller

	Results
	Evaluation Baseline: libfqfft
	Evaluation Method
	Theoretical Results

	Conclusion
	Contributions
	Future Work

	Bibliography

