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Inhibition of the vascular endothelial growth factor (VEGF) pathway
has failed to improve overall survival of patients with glioblastoma
(GBM). We previously showed that angiopoietin-2 (Ang-2) overexpres-
sion compromised the benefit from anti-VEGF therapy in a preclinical
GBM model. Here we investigated whether dual Ang-2/VEGF in-
hibition could overcome resistance to anti-VEGF treatment. We treat-
ed mice bearing orthotopic syngeneic (Gl261) GBMs or human (MGG8)
GBM xenografts with antibodies inhibiting VEGF (B20), or Ang-2/VEGF
(CrossMab, A2V). We examined the effects of treatment on the tumor
vasculature, immune cell populations, tumor growth, and survival in
both the Gl261 and MGG8 tumor models. We found that in the Gl261
model, which displays a highly abnormal tumor vasculature, A2V
decreased vessel density, delayed tumor growth, and prolonged
survival compared with B20. In the MGG8 model, which displays a
low degree of vessel abnormality, A2V induced no significant changes
in the tumor vasculature but still prolonged survival. In both the
Gl261 and MGG8 models A2V reprogrammed protumor M2 macro-
phages toward the antitumor M1 phenotype. Our findings indicate
that A2V may prolong survival in mice with GBM by reprogramming
the tumor immune microenvironment and delaying tumor growth.

anti-angiogenic therapy | tumor microenvironment | anti-tumor immunity |
macrophage polarization | microglia reprogramming

Glioblastoma (GBM) is the most common primary malignant
brain tumor in adults. Even after maximal safe resection and

chemoradiation, most patients survive little more than 1 y (1, 2).
Bevacizumab, a humanized monoclonal antibody against vascu-
lar endothelial growth factor (VEGF), was conditionally approved
in 2009 in the United States for treatment of recurrent GBM
(rGBM) (2–5). Adding bevacizumab to the standard regimen of
radiotherapy and alkylating chemotherapy with temozolomide
confers an increase in progression-free survival (PFS) but does not
improve overall survival in newly diagnosed GBM (nGBM) patients
(6, 7). Similarly, cediranib, an oral pan-VEGF receptor tyrosine
kinase inhibitor, fails to improve overall survival in patients with
rGBM (8). Most recently a European Organization for the Re-
search and Treatment of Cancer randomized phase III trial
(EORTC 26101) showed that bevacizumab plus lomustine does
not improve survival in patients with progressive GBM, although it
prolongs progression-free survival (9). We previously have shown
that angiopoietin-2 (Ang-2) is a resistance pathway to anti-VEGF
therapy in a preclinical model of GBM (10). Ang-2 competes with
angiopoietin-1 (Ang-1) in binding to the TEK receptor tyrosine
kinase (Tie-2) receptor (11, 12). In physiological settings, Ang-1
activates Tie-2 and stabilizes blood vessels, whereas Ang-2 inhibits
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Tie-2 signaling, destabilizes blood vessels, and facilitates VEGF-
induced angiogenesis in a context-dependent manner (13). In tu-
mors, however, Ang-2 may act as a partial Tie-2 agonist, conferring
therapy resistance by protecting endothelial cells (EC) from ther-
apeutic VEGF withdrawal (14). The tumor growth-supportive role
of Ang-2 in GBMs is not confined to the vascular compartment.
Ang-2 also has been shown to mediate the homing of Tie-2+

macrophages to human GBMs (15, 16). In the tumor microen-
vironment, the macrophage population then is reprogrammed to
a protumor (17–19), proangiogenic phenotype (20–22) in an
Ang-2–dependent manner (22). Tumor-associated macrophages
(TAMs) have a broad phenotypic spectrum, and their polariza-
tion can change in response to their microenvironment. The two
extremes of the phenotypic spectrum of TAMs are defined as the
alternatively activated protumor (M2) versus classically activated
antitumor (M1) states (23–25). We previously have shown that
the degree of TAM infiltration in GBM patients treated with
anti-VEGF therapy is inversely correlated with survival (26).
These data point to the role of TAMs as potential mediators of
resistance to anti-VEGF therapy in GBM. Here we used a dual
Ang-2/VEGF-inhibiting antibody (A2V) in orthotopic syngeneic
(Gl261 graft) and patient-derived cell line (MGG8 xenograft)
models of GBM. We show that A2V treatment can reprogram
TAMs to the antitumor M1 state. Moreover, we further dissect
the reprogramming effects in the overall TAM population and
show that both recruited macrophages and resident microglia
can be therapeutically altered by dual Ang-2/VEGF inhibition.
Combined anti–Ang-2/VEGF therapy was shown to delay tumor
growth and prolong survival in a number of extracranial tumor
models (27–30). Although anti–Ang-2/VEGF therapy is being tested
in GBM patients (NCT01609790, NCT01248949, NCT01290263)
and in other solid malignancies (Table S1). The bispecific anti-
body A2V has been shown to be safe in a first-in-human study
(NCT01688206) in patients with locally advanced or metastatic
solid tumors (31). Here we show that the murinized Ang-2/VEGF–
neutralizing antibody A2V (CrossMab) is effective in two different
GBM models and delays tumor growth through vascular and/or
immunomodulatory effects.

Results
Ang-2/VEGF Inhibition Delays Tumor Growth and Prolongs Survival.
We first validated Ang-2 as a potential target in GBM patients by
analyzing publicly available data portals, i.e., The Cancer Ge-
nome Atlas (TCGA) and Gene Expression Omnibus (32–34).
We found that Ang-2 is expressed in newly diagnosed GBM
[nGBM] and rGBM (Fig. S1A) across molecular subtypes (Fig.
S1B), significantly correlates with VEGF expression (Fig. S1E),
and is predominantly expressed in GBM blood vessels in patients
(Fig. S1 C and D). Next we investigated the effects of blocking
Ang-2 and VEGF alone or in combination with Ang-2 in an
orthotopic syngeneic murine GBMmodel (Gl261 in C57BL/6 mice).
The Gl261 model recapitulates abnormal GBM tumor vessels and
the presence of intratumoral foci of necrosis and displays a moderate
degree of invasion into the surrounding brain. We treated Gl261-
bearing animals with IgG control or with antibodies inhibiting Ang-2
(LC06), VEGF (B20), or Ang-2/VEGF (A2V) and found that all
experimental therapies increased survival compared with IgG con-
trol (Fig. 1A). In addition, we found that A2V treatment significantly
extended median survival compared with either LC06 or B20 alone
(Fig. 1A). Next we tested if the effects we observed in the Gl261
model were conserved in the MGG8 model. The MGG8 model is
characterized by extensive single-cell invasion but a tumor vascula-
ture that is less abnormal than seen with Gl261. In the MGG8
model, both LC06 and B20 failed to confer a survival benefit com-
pared with IgG, but A2V prolonged survival compared with all
treatment groups (Fig. 1B). To assess the antiangiogenic potential of
LC06, B20, and A2V, we next measured the effects of these anti-
bodies on primary ECs (human umbilical vein ECs, HUVECs) in a
microfluidic chamber assay (Fig. S2). We found that the combination

of recombinant VEGF (rVEGF) plus recombinant Ang-2 (rAng-2)
strongly induced sprouting in HUVECs. HUVEC sprouting in-
duced by exogenous rVEGF alone was significantly inhibited by
B20 but not by LC06 (Fig. S2 A–F). HUVEC sprouting induced
by rVEGF plus rAng-2 (Fig. S2J) also was significantly inhibited
by B20 (Fig. S2 K and L) but was not decreased by LC06 and was
completely abrogated by A2V (Fig. S2M). Importantly, exoge-
nous rAng2-induced EC sprouting was completely abolished not
only by LC06 but also by B20 in the absence of exogenous rVEGF
(Fig. S2 G–I). The angiogenic effect of Ang-2 appears to be
dependent on VEGF signaling, which may contribute to the context-
dependent functions of Ang-2. Based on these data and our obser-
vation that LC06 did not confer a survival benefit in the MGG8
model, we determined that Ang-2 blockade requires additional
VEGF inhibition to inhibit angiogenesis effectively. Therefore we
focused all further analyses on B20 and A2V compared with control.
In additional animal experiments we harvested GBM specimens

for histological analyses in a time-matched fashion at a time point
when viable tumor burden—as a surrogate of viable tumor burden
(Fig. S3 A and D)—was significantly different from control: Gl261
tumors were harvested on day 5, and MGG8 tumors at day 10 after
treatment initiation. To determine if antiangiogenic treatments
with B20 and A2V decrease tumor burden, we monitored blood
Gaussia luciferase (Gluc) activity (35–37) daily in Gl261-GFP-
Gluc–bearing mice treated with IgG, B20, or A2V. Reduced blood
Gluc activity in A2V-treated animals suggested lower tumor burden
as compared with IgG or B20 treatment (Fig. S3B). Moreover,
using the 5-ethynyl-2′-deoxyuridine (EdU) incorporation assay, we
found that Gl261 tumors of A2V-treated animals exhibited reduced
proliferation compared with IgG control or B20 therapy (Fig. S3C).
In the MGG8 model, levels of blood Gluc activity were lower

in B20- and A2V-treated animals than in animals treated with
IgG, suggesting therapy-induced reduction of viable tumor burden
(Fig. S3E). Comparisons in the kinetics of tumor burden between
B20- and A2V-treated MGG8-bearing animals failed to reach
significance (Gluc assay). However, we measured significantly re-
duced tumor proliferation (EdU assay) in A2V- compared with B20-
treated tumors (Fig. S3F). We detected no significant difference in
apoptosis between the treatment groups in either Gl261 or MGG8
tumors (Fig. S4 A and B). Further in vitro experiments showed that
neither B20 nor A2V had a direct effect on GBM cell viability in
these models (Fig. S4 C and D), as is consistent with the absence of
Tie-2 expression on the tumor cells (Fig. S4 E and F). Taken to-
gether our results demonstrate that A2V prolongs the survival of
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Fig. 1. Treatment with A2V prolongs survival and delays tumor growth in the
orthotopic Gl261 and the MGG8 models. (A) In the Gl261 model, treatment
with A2V (n = 10) led to a survival benefit compared with IgG [hazard ratio
(HR) 3.93, 95% confidence interval (CI) 4.15–35.97, ***P = < 0.001, n = 10],
LC06 (HR 2.99, 95% CI 1.6–13.49, **P = 0.0098, n = 9), and B20 (HR 2.35, 95% CI,
1.31–9.12, *P = 0.03, n = 10) treatment. LC06 prolonged survival compared with
IgG treatment (HR 2.32, 95% CI 1.31–8.98, *P = 0.03, n = 9), and B20 increased
survival compared with IgG treatment (HR 2.68, 95% CI 2.03–14.58, **P = 0.005,
n = 10). (B) In the MGG8 model treatment with LC06 (n = 9) or B20 (n = 9) did
not prolong survival compared with IgG treatment (n = 10). Therapy with B20
significantly prolonged survival compared with LC06 therapy (HR 2.48, 95% CI
1.47–11.31, *P = 0.02, n = 9). Therapy with A2V (n = 10) prolonged survival
compared with IgG (HR 3.83, 95% CI 4.07–35.39, ***P < 0.001), LC06 (HR 4.14,
95% CI 4.76–49.81, ****P = < 0.001, n = 9), and B20 (HR 2.28, 95% CI 1.51–11.13,
*P = 0.03, n= 9) therapy. Time represents days post treatment initiation. Animals
were treated once weekly i.p. with 10 mg/kg of IgG control, B20, LC06, or A2V.
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mice bearing Gl261 and MGG8 tumors by reducing in vivo
tumor burden.

A2V Enhances Vessel Pruning as Compared with VEGF Inhibition Alone
in the Gl261 Model. To determine if vessel-modulating effects are
responsible for the prolonged survival and reduced tumor burden
in the A2V group, we studied the effects of A2V on Gl261 tumor
vessels (Fig. 2 A–G). The vasculature of Gl261 tumors is charac-
terized by lower microvessel density (MVD) (Fig. 2H) and larger
vessel diameters (Fig. 2I) than seen in the vasculature of the
normal brain (Fig. 2 H–K). Using immunohistochemistry in Gl261
tumor tissues, we found that A2V-treated tumors displayed a
lower MVD than IgG-treated tumors at day 5 after treatment
initiation (Fig. 2A). Perivascular cells stabilize tumor vessels and
can confer resistance to antiangiogenic treatment (38, 39). We
found that the MVD of immature vessels with low pericyte cov-
erage was significantly decreased (Fig. 2B). In contrast, the MVD
of mature vessels with high pericyte coverage was similar across
treatment groups (Fig. 2C). Interestingly, A2V treatment in the
Gl261 model further increased pericyte coverage of the remaining
pericyte-high vessels, as compared with IgG and B20 treatments
(Fig. 2 D–G). Collectively, our experiments show that in Gl261
tumors more potent antiangiogenic effects on immature pericyte-
low vessels are seen with A2V treatment than with B20 treatment.

A2V Reduces Tumor Burden in the MGG8 Model Without Vessel
Pruning. Next, we tested if the vascular effects observed in the
Gl261 model (Fig. 2 A–G) could also be observed in the MGG8
model (Fig. 3 A–H). The MGG8 vasculature showed a lower

degree of abnormality, with vessel architecture resembling the
normal mouse brain (Fig. 3 H–K). MGG8 tumors have a higher
MVD than the Gl261 model (Fig. 3H), and vessels are homoge-
neously distributed, less tortuous, and smaller in diameter (Fig. 3
I–K). Immunohistochemical analyses showed that, in contrast to
the Gl261 model, A2V treatment induced no significant changes
in MVD or pericyte coverage compared with B20- or IgG-treated
MGG8 tumors (Fig. 3 A–D). These results indicate that the re-
duction of tumor burden after A2V treatment in the MGG8
model is mediated by effects other than vessel modulation.

A2V Treatment Promotes an Antitumor Macrophage Phenotype.
Glioma-associated immune cell populations have the potential to
create and maintain tumor progression and immunosuppression.
To study the impact of antiangiogenic therapy on the tumor immune
microenvironment, we analyzed cellular compartments of Gl261
tumors. First, we measured the presence and activation status of
CD4+ and CD8+ T cells of Gl261 tumors treated for 10 d with IgG,
B20, or A2V (Fig. S5). Next, we analyzed the presence and quantity
of CD4+ and CD8+ T cells among lymphocytes and assessed their
state of activation. In further analyses we measured the presence of
the T-regulatory suppressive phenotype (Fig. S5) and the activation
and proliferation state of CD4+ and CD8+ cells (Fig. S6). Our data
indicate that treatment with B20 or A2V did not induce changes in
the number, proliferation, or activation state in T-cell subsets within
tumors. In further analyses, we measured the number and phenotype
of TAMs. Our data indicate no significant changes in the presence of
TAMs (as a percentage of total CD45+ cells) among the treatment
groups (Fig. 4). However, the percentage of M1-polarized antitumor
TAMs (defined as CD206low/CD11chigh and shown as a percentage
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ences in tumor vessel pericyte coverage (D). (E–G) Representative immuno-
fluorescence images of IgG- (E), B20- (F), and A2V- (G) treated tumors.
Shown are tumor vessels (red), pericytes (green), and DAPI-stained nuclei
(blue). (H) No significant difference in MVD was seen between IgG-treated
MGG8 tumors (at day 10 post treatment initiation, n = 4) and the normal
brain (nl brain) of 10-wk-old mice (n = 4). (I) Mean vessel diameter in IgG-
treated MGG8 tumor vessels (n = 4) is similar to that in the normal SCID brain
(n = 4). (J and K) MGG8 vessels are homogeneously distributed throughout
the tumor and display a regular shape, similar to normal brain vessels of SCID
mice. Shown are representative immunofluorescence images of MGG8 tu-
mor vessels stained for CD31 (red) and nuclei stained with DAPI (blue). MVD
represents vessels/mm2 tumor area; pericyte coverage represents desmin-
positive pixels per vessel perimeter (pixels). (Scale bars, 100 μm.)
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of total macrophages) was significantly higher in A2V-treated
tumors than in controls (Fig. 4 D and G–I). Moreover, the per-
centage of protumor M2 TAMs (defined as CD206high/CD11clow)
was decreased by both B20 and A2V treatment (Fig. 4 E andG–I).
The resulting ratio of M1/M2 TAMs was skewed toward the an-
titumor M1 phenotype (Fig. 4F). Within the total TAM pop-
ulation we distinguished between TAMs recruited from the blood
circulation versus resident microglia populations. Our data in-
dicate that changes in the overall TAM population were mediated
chiefly by a phenotypic shift in recruited TAMs (Figs. S7 and S8).
In agreement with these data, we found gene expression changes
in TAMs suggestive of enhanced M1 (Cxcl9, Il6) and reduced
M2 (CD206) polarization (Fig. S9). We observed no changes in
the percentage of CD45+/CD11b+/GR1+ myeloid-derived sup-
pressor cells (MDSCs) after treatment with B20 or A2V in the
tumors (Fig. S10 A–C). Consistent with the data from the Gl261
model, flow cytometric analyses of MGG8 tumors after 10 d of
treatment showed that therapy with IgG, B20, or A2V did not
change the percentage of TAMs (Fig. 5). Moreover, A2V therapy
and, to a lesser extent, B20 therapy also increased the percentage
of M1 TAMs in MGG8 tumors as compared with IgG treatment
(Fig. 5 D and G–I). Importantly, treatment with A2V reduced the
percentage of protumor M2 macrophages as compared with IgG
treatment. Treatment with B20 induced a similar reduction in M2
TAMs compared with IgG treatment (Fig. 5 E and G–I). The
M1/M2 TAM ratio was significantly increased by A2V therapy
(Fig. 5F). We observed significant reprogramming effects toward
the M1 phenotype in both the recruited TAMs and the microglia
after treatment with B20 and A2V (Figs. S11 and S12). As seen
in the Gl261 model, MDSC infiltration was not affected by treat-
ment with either B20 or A2V (Fig. S10 C–E).

Discussion
To date, targeting the VEGF pathway has failed to prolong overall
survival in GBM patients (2, 6, 7, 9). We and others have shown
previously that the elevation of Ang-2 levels may compromise the
benefits of anti-VEGF therapy in preclinical GBM models (10,
14). Here, we tested whether dual inhibition of VEGF (with B20)
and Ang-2 (with LC06) with a bispecific antibody (A2V) could
improve therapy outcome over antiangiogenic monotherapy. Our
study shows that A2V inhibits tumor growth and prolongs the
survival of mice bearing syngeneic or human xenograft tumors as
compared with anti–Ang-2 or VEGF therapy alone. These results
are consistent with the effects of anti–Ang-2/VEGF therapy in
extracranial tumor models (14, 27–30, 40). We further demon-
strate in the Gl261 model that A2V prunes pericyte-low immature
vessels, reducing microvascular density. In addition, A2V may
reduce microvessel density by inhibiting EC sprouting. HUVEC
sprouting was induced by rVEGF and by rAng-2, and sprouting
was abrogated by the neutralization of both factors with A2V.
Importantly, sprouting induced by rAng-2 plus rVEGF was
inhibited by B20 and was completely abrogated by A2V but not by
LC06 monotherapy. Surprisingly, B20-mediated neutralization of
VEGF abrogated the sprouting induced by VEGF as well as that
induced by Ang-2. The efficacy of B20 in reducing Ang-2–induced
sprouting is in line with the codependent function of Ang-2 and
VEGF in this angiogenic process (11, 14).
Although A2V delays tumor growth, it fails to achieve long-

term inhibition of Gl261 tumor growth. Our data suggest that
pericyte-high (mature) vessels are resistant to B20 and A2V
therapy and therefore may support sustained tumor growth
(39, 41, 42). These results are in line with the effects of VEGF
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pathway inhibition described in preclinical tumors in our com-
panion paper (43) and by others (42, 44), as well as our obser-
vations in breast cancer patients (45) that bevacizumab pruned
vessels and normalized the remaining vasculature.
Many of the effects of dual anti–Ang-2/VEGF therapy—

including the delay in tumor growth—were seen in a human
GBM xenograft model (MGG8). In the MGG8 model, however,
the benefits were more limited and occurred in the absence of any
apparent antivascular effects. The differential vascular response to
A2V in the Gl261 and the MGG8 models may be related to the
structural differences in their vasculature; although Gl261 vessels
are highly abnormal, MGG8 vessels are homogeneously distributed,
and their architecture more closely resembles that of the normal
mouse brain. Previously, it has been proposed that different blood
vessel phenotypes exhibit differential susceptibility to anti-VEGF
therapy (12, 46). Our results suggest that the tumor vessel pheno-
type also may be an important determinant of vascular response to
dual anti–Ang-2/VEGF blockade, with immature vessels being most
susceptible to therapy. Importantly, vascular phenotypes could be
studied by imaging in GBM patients. For example, we demon-
strated in clinical trials that vessel architectural imaging (VAI) could
characterize the vascular phenotype and identify GBM patients
who respond to anti-VEGF pathway inhibition (47, 48). Thus, VAI
potentially may identify patients likely to benefit from the vascular
component of dual anti–Ang-2/VEGF therapy.
In histological studies we detected no effects of either B20 or

A2V on the rate of cancer cell apoptosis in either Gl261 or
MGG8 tumors. This finding is confirmed further by the viability
assays we conducted, showing no direct cytotoxic or cytostatic
effects of A2V, and by data showing that the inhibition of the Tie2
pathway alone does not have cytotoxic effects in multiple tumor
models (49). Indeed, neither Gl261 nor MGG8 express Tie2 (Fig.
S4). However, A2V therapy reduced tumor cell proliferation as
compared with B20 therapy both in Gl261 and MGG8 tumors,
despite the differences in antivascular effects in these tumors.
Resident and infiltrating immune cells comprise a major com-

ponent of the tumor microenvironment. Depending on the state of
the disease or treatment, the immune compartment can either
promote or inhibit tumor growth (50, 51). Among immune cells,
the ability of T cells to eradicate tumor cells has been studied
extensively (50). Treating tumors with mono (B20) or dual anti-
angiogenic therapy (A2V) did not alter the presence of T cells or
the specific functional T-cell phenotype (effector versus regula-
tory) in the tumors (Fig. S5). These CD4+ and CD8+ T cells were
highly proliferative and were in an activated state regardless of the
treatment (Fig. S6), suggesting that these T cells did not specifi-
cally differ in their exhaustion/anergy. It also should be noted that
natural killer (NK) cells can impart antitumor functions in-
dependent of CD8+ T-cell activation, although a previous report
documented that NK cells have a lesser antitumor effect than
CD8+ T cells in Gl261 tumors (52). In addition, we studied TAMs
as an abundant immune cell component in GBMs that may home
to tumors in an Ang-2–dependent manner (15, 16) and promote
tumor growth (18, 53, 54). Our finding that A2V treatment re-
programs TAMs along the M1–M2 continuum toward the M1
phenotype in both Gl261 and MGG8 tumors may explain the
survival benefit observed in these preclinical models, including the
benefits seen with anti–Ang-2 monotherapy. This finding could
have implications for the sequencing of potential combinatorial
regimens of antiangiogenic agents with immunotherapy, because
M1-polarized macrophages and microglia may hamper the efficacy
of oncolytic herpes simplex virus-1 GBM therapy (55). The role of

TAMs in GBM progression is highlighted further by the data pre-
sented in our companion paper (43), in which we demonstrate that
TAM depletion with anti–CSF-1 antibody compromises the survival
benefit of dual antiangiogenic therapy (Table S2).
Interestingly, reprogramming of the overall TAM population

by A2V was largely attributable to recruited TAMs in Gl261 tu-
mors and not to resident microglia. In contrast, we observed
reprogramming of resident microglia-derived TAMs in the MGG8
tumors in SCID mice. The reprogramming may be caused by the
large presence of microglia populations in SCID mice bearing
MGG8 tumors as compared with C57BL mice bearing Gl261 tu-
mors, in line with published data (56).
In summary, we show that dual Ang-2/VEGF blockade can in-

crease the survival of mice bearing GBM over anti-VEGF therapy
alone. This increased survival may be the result of the reprogramming
of GBM-associated TAMs from the protumor M2 phenotype toward
the antitumor M1 phenotype, as observed in both syngeneic murine
tumors and human tumor xenografts. In GBMs with a high degree of
vascular abnormality, this dual blockade approach also caused anti-
vascular effects. These data support the development of anti–Ang-
2/VEGF blockade for GBM alone or with immunotherapy (49, 57).

Materials and Methods
C57BL/6 mouse-syngeneic Gl261 cells (Frederick National Laboratory, National
Cancer Institute) and humanMGG8GBM cells (58) were stereotactically implanted
in the brains of male C57BL/6 mice and SCID mice, respectively. Tumor size was
assessed by measuring circulating Gluc (35) activity in the blood. Treatment was
initiated at a predefined Gluc blood activity (Fig. S3 A and D), and tumor burden
was measured over time by serial blood Gluc measurements. Animals were
treated with IgG, LC06 (Ang-2 antibody), B20 (VEGF antibody), or A2V (bispecific
Ang-2/VEGF, CrossMab;) once weekly i.p. at 10 mg/kg. Brains were harvested at
the described time points after injection of EdU and were paraffin embedded for
histological analyses. The tissues were assessed for cell proliferation (EdU),
microvessel density (CD31), and pericyte coverage (desmin). All animal procedures
followed Public Health Service Policy on Humane Care of Laboratory Animals
guidelines andwere approved by theMassachusetts General Hospital Institutional
Animal Care and Use Committee. The use of patient samples was approved by the
internal review board of Massachusetts General Hospital. Experimental proce-
dures and methods are described in detail in SI Materials and Methods.
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