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ABSTRACT: The advent of machine learning potentials (MLPs) provides a
unique opportunity to access simulation time scales and to directly compute
physicochemical properties that are typically intractable using density functional
theory (DFT). In this study, we use an active learning curriculum to train a
generalizable MLP using the DeepMD-kit architecture. By using sufficiently long
MLP-based molecular dynamics (MD) simulations, which provide DFT-level
accuracy, we investigate the diffusion of key surface-bound adsorbates on a
Ag(111) facet. Detailed analysis of the MLP/MD-calculated diffusivities sheds
light on the potential shortcomings of using DFT-based nudged elastic band to
estimate surface diffusion barriers. More generally, while this study is focused on a
specific system, we anticipate that the underlying workflows and the resulting
models can be extended to other adsorbates and other materials in the future.

■ INTRODUCTION
Pioneered by Prof. Jens Nørskov and co-workers in their early
works, descriptor-based analyses have now become an
indispensable tool used by researchers within the heterogeneous
catalysis community.1−5 This philosophy is based on the
hypothesis that appropriately identified descriptors, which are
often binding energies of key intermediates, can help in
rationalizing experimentally observed trends across catalyst
compositions, thereby accelerating the design of novel func-
tional materials for the target reaction. The continuing impact of
Prof. Nørskov’s contributions in this field is evidenced by several
recent reviews on these topics.6−10

A defining characteristic of this Nørskovian-philosophy is the
ability to describe the complexity of multistep reactions, often
involving several surface-bound intermediates, using just one or
two adsorption-based descriptors. Historically, this simplifica-
tion was necessary to alleviate the computational costs of
calculating hundreds of reaction barriers for every elementary
step, and then repeating this process for several different catalyst
compositions.11−15 Indeed, the concept of linear scaling
relationships, which is based on the well-known bond order
conservation principle, now forms the core vocabulary used
within this field.16,17

Although the calculation of reaction barriers remains
cumbersome, recent work by us and others has demonstrated
how machine learning potentials (MLPs) can be used to
overcome this bottleneck.18−22 For instance, using Cu-
exchanged zeolites as a prototypical example, we have explicitly
calculated the transition state geometries and reaction barriers of
methane activation for thousands of [CuOCu]2+sites across 52
zeolites. While most sites show linear trends between the C−H

activation barrier and the H binding energy, our analysis
identifies several important factors (e.g., confinement and
accessibility) that cause deviation from the expected universal
scaling behavior.23 Similarly, building upon the foundation
provided by scaling relationships, other groups have proposed
novel strategies to further improve the accuracy of these
approximations.24−27

Analogous to how the development of MLPs has simplified
the calculation of reaction barriers, in this study, we focus on the
related but less explored phenomena of surface diffusion.
Indeed, surface phenomena such as adsorption, diffusion, and
desorption of molecular and atomic adsorbates are of wide
interest in the field of catalysis.28,29 Several studies have shown
that slow diffusion processes can have a significant impact on the
overall rate of catalytic reactions.30,31 While the typical approach
within the field relies on using nudged elastic band calculations
and harmonic transition state theory (hTST) to estimate
diffusion barriers,20,32,33 here, we propose an alternative strategy
that uses sufficiently long MLP-based molecular dynamics
simulations to measure adsorbate diffusivities without making
any prior assumptions about the preferred diffusion pathway.
Specifically, we calculate temperature-dependent diffusivities of
8 commonly studied adsorbates using Ag(111) as an example of
an industrially relevant catalyst.34,35 We choose to focus on Ag
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because of its efficacy in catalyzing selective oxidation reactions.
We are particularly inspired by detailed molecular beam mass
spectroscopy studies reported by Zhou et al.36,37 for methanol
oxidation. We use a learning curriculum that combines ab initio
molecular dynamics (AIMD) simulations of gas-phase species
along with AIMD simulation of the bound adsorbates to obtain a
transferable DeepMD-Kit-based model.38−40 Importantly, we
also show that the resulting model is easily transferable to related
species that were not included in the original training data set.
Similar approaches have shown demonstrable success for
studying diverse materials including zeolites and MOFs, and
for investigating N2 adsorption on Fe surfaces.41−43 Taken
together, this study highlights the wide versatility and growing
relevance of MLP-based approaches in investigating phenomena
that are typically not possible using traditional DFT simulations.

■ METHODS
DFTCalculations.Our MLP development protocol involves

several different types of DFT calculations. We use single-point
energy evaluations (DFT/SPE), geometry optimizations
(DFT/OPT) and ab initio molecular dynamics (AIMD)
simulations. All DFT calculations are performed using the
Vienna ab initio simulation package (VASP).44,45 We use the
RPBE functional46 with Grimme’s D3 dispersion corrections
using a Becke-Johnson damping scheme.47−49 We note that this
workflow uses DFT data obtained using the RBPE functional as
a reference as it has been shown to provide good accuracy-to-
cost trade-offs.50,51 However, we acknowledge that several
recent studies have demonstrated the potential shortcomings of
the Grimme’s D3 method.52,53 Although not explored here, we
emphasize that this workflow is generalizable and can also be
used with newer VdW-DF2 based functionals. A plane wave
energy cutoff of 500 eV is used. Ionic relaxation steps are
terminated when the forces on all atoms are less than 0.05 eV/Å.
Our AIMD simulations are performed within an NVT ensemble
using the Nose-Hoover thermostat.54

MLP Development. A 2-stage iterative approach is used for
MLP development. Stage A uses a series of short AIMD
simulations (298 K, 2,000 steps, 0.5 fs time step) of 678 gas-
phase adsorbates obtained as their SMILES notation from
Reuter et al.55 (27,000 configurations, Γ-point only) along with
AIMD simulations of these adsorbates bound to a constrained 1-
layer Ag(111) slab (27,000 configurations). All slab calculations
use 4 × 4 × 1 k-points with >10 Å vacuum spacing between
periodic images in the z-direction. These AIMD configurations
are sampled every 50 steps to obtain an initial DFT training data
set. RDKit56 and the Atomic Simulation Environment (ASE)57

are used to streamline the workflows. We emphasize that the 1-
layer slab model is physically unrealistic. However, the DFT data
from these simulations provides a useful preliminary MLP
model (denoted as DP0

prelim) to accelerate subsequent active
learning iterations in Stage B.
Model Parameters and Training. DeepPot-SE38,40 as

implemented within the DeepMD-kit framework is used as the
MLP architecture. Similar to our previous studies,23,58 we use 3-
layer embedding (i.e., 16/32/64) and fitting nets (i.e., 64/64/
64). The distance cutoff radius of 6.0 Å with smoothing
beginning at 5.5 Å is used. Our DP models are trained for 8 × 107

steps. The initial learning rate is set to 0.001, which
exponentially decays to 3.5 × 10−10. The prefactors for the
energy and force contributions to the loss function are pestart =
0.02, pelimit = 1, pfstart = 1000, and pflimit = 1. A standard test-train
split of 80% (training), 10% (validation) and 10% (test) is used.

We note that the model hyperparameters chosen here have not
been optimized. Further performance improvements, possible
with hyperparameter tuning, are beyond the scope of this study.

Additionally, we acknowledge that any of the several publicly
available MLP models, which have been pretrained on larger
DFT data sets, could have been used here instead of DeepMD-
kit.59−62 While these architectures may show better performance
in predicting energies and/or forces, previous work by Jaakkola
et al.63 emphasizes the importance of using predicted
physicochemical properties (e.g., diffusivity) as a metric of
model performance. Thus, we focus on the DeepMD-kit
architecture due to its simple LAMMPS interface and relatively
fast CPU-based model training iterations.
Active Learning Protocol. We use an active learning

approach for model refinement. For example, MD config-
urations obtained from the ith DP model (i.e., DPi/MD, 400 K, 2
ns, 0.5 fs time step, using LAMMPS) are down-selected based on
their estimated model uncertainties. Similar to previous work by
us23,58 and others,64,65 we use the ϵt metric to quantify model
uncertainty. Here, ϵt for a given configuration Rt is defined by eq
1

= R RF Fmax ( ) ( )t
j

w j t w j t, ,
2

(1)

where Fw,j denotes the force on the atom with index j predicted
by the model w. This metric measures the maximum standard
deviation in force predictions obtained using an ensemble of
models.65 Here, we use an ensemble of 4 models differing in the
seed value used to initialize the weights of the neural nets. This
uncertainty quantification approach underpins our active
learning protocol.
Diffusivity Calculations. Molecular dynamics simulations

are used to calculate the self-diffusivities of several Ag-bound
adsorbates. LAMMPS66 is used as the MD simulation engine as
it interfaces smoothly with DeepMD-kit. Specifically, we
perform 2 ns NVT MD simulations (0.2 ns equilibration, 0.5
fs time step) at three different temperatures (300 K, 350 and 400
K). The resulting unwrapped coordinates are used to calculate a
windowed mean square displacement (MSD) as a function of all
possible lag-times using eq 2. Here, ri refers to the positions of
the atoms at time t, m is the lag-time (m <mmax, the length of the
MD trajectory), and N is the maximum number of possible lag
times. This averaging strategy mitigates the MSD fluctuations
that arise due to the small number of diffusing species in our
system.67,68 All MSD-based analyses use the open-source
MDAnalysis toolkit.69,70
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The self-diffusion coefficient for each adsorbate is obtained
using the slope of a linear fit to MSD vs lag time plot using eq 3.
As we focus on surface diffusion (i.e., in x and y directions), the
dimensionality parameter (d in eq 3) is set to 2 in our analysis.

=D
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d
d

( ( ))
t (3)

The self-diffusion coefficients obtained from MSD analyses
are used to calculate activation energies using the Arrhenius eq 4
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where Edapp is the apparent diffusion energy barrier, kB is the
Boltzmann constant and D0 is the pre-exponential factor. As
shown in 5, D0 includes the attempt frequency and entropic
effects associated with the diffusion process.71

=D
n l

d2
p

0
0

2

(5)

Here, np is the number of equivalent diffusion paths, l is the jump
length, and ν0 is the attempt/jump frequency of the adsorbate
that is related to their vibrational free energies.72,73

■ RESULTS AND DISCUSSION
Model Development. The DP0

prelim MLP obtained from
Stage A, which is trained using gas-phase and 1-layer Ag slab
data, serves as a starting point for subsequent model iterations.
First, we performed MLP-based molecular dynamics (i.e.,
DP0

prelim/MD) simulations (NVT ensemble, 400 K, 0.2 ns, 0.5
fs time step) for all 678 adsorbates using the 1-layer Ag slab.

Figure 1. Overview of the 2-stage model development and evaluation protocol. Stage A is trained on ∼54,000 configurations of gas phase and the
adsorbates on 1 layer; Stage B adds another ∼6,000 configurations to the stage A data set. The orange arrows show active learning loops. The blue
arrows show steps exclusively involving the DP0

prelim model.

Figure 2. Number of adsorbate configurations added at each step of the active learning protocol. The adsorbates are denoted using their SMILES
representation.
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These preliminary simulations are used to identify adsorbates
that desorb or disintegrate within our short simulation time
scales. Examples of this behavior are shown in the SI (Figure S1).
Since the overall goal of this work is to investigate surface
diffusion, we shortlisted 20 adsorbates with 3 or fewer C atoms
that stably diffuse over 0.2 ns (Table S1). Of these, we chose a
subset of 8 adsorbates (i.e., CH3, OH, CH3CH2, CH2, CH, O, C,
H), which are relevant for a wide class of reactions, for the
diffusion studies discussed below. We acknowledge using a 1-
layer slab model, which is helpful in quickly shortlisting a set of
adsorbate molecules for model refinement, open the possibility
that other adsorbates that are unstable on a single layer Ag slab
could be stable (i.e., remain intact) when using a traditional 4-
layer model. Although such adsorbates are not explored in more
detail, we anticipate that our final diffusion model can be

extended easily to other adsorbates of interest. This is
demonstrated for CHOH ads in the later sections of this work.

These 8 adsorbates are placed on an on-top site of a 4-layer
Ag(111) slab; the bottom 2 layers are constrained. These
structures are optimized using DFT, and similar to what is
described above, short AIMD simulations (298 K, 2,000 steps,
0.5 fs time step) are used to obtain 100 new configurations for
each adsorbate. These data are combined with the Stage A data
set to obtain the next iteration of the model. As shown in Figure
1, this process is repeated until the ϵt metric is smaller than a
threshold value. The final model obtained after 10 iterations
(i.e., DP10) of stage B shows an ϵt < 0.3 eV/Å.

The computational efficiency of the above MLP development
protocol depends on the sampling strategy used to select
configurations for DFT/SPE calculations. In this work, we
employ a wider sampling range compared to previous

Figure 3. (A) Histogram of the energy differences (Model predicted energies − DFT energies) on the test data set. (B) Parity plot of the forces on the
test data set. (C) Histogram of the force differences on the test data set (Model predicted forces − DFT forces) within −1 to 1 eV/Å. (D) Schematic of
types of structures used in training the models. Red box: Selected gas phase adsorbates. Green box: Adsorbate on a single layer of Ag. Blue box:
Adsorbate on 4 layers of Ag. (E) Histogram of the energy residuals on the test data set consisting of only adsorbates on a 4 layer slab. (F) Histogram of
the force residuals on the data set consisting of only adsorbates on a 4 layer slab. (G) Averaged ϵt over 5 repeats of a 2 ns MD simulation at 400 K for all
adsorbates (denoted by their SMILES representation). The upper limit on the y-axis (0.3 ev/Å) is the termination criteria.
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studies.23,58,64 Specifically, we use 0.2 eV/Å and 0.7 eV/Å as the
lower and upper ϵt bounds for sampling, respectively. Within
these bounds, configurations from the MD trajectory are
randomly sampled to obtain a maximum of 100 possible
configurations for each adsorbate. If fewer than 100 config-
urations lie within the chosen ϵt bounds, then all available
configurations are used for DFT/SPE. To minimize sampling of
configurations that are already well described by the model, a
tighter sampling procedure (0.3−0.7 eV/Å) was used for the
final two iterations.

The number of configurations sampled for each adsorbate
during the training curriculum is shown in Figure 2. The first few
iterations of our active learning protocol result in uniform
sampling across different adsorbates. However, as expected, we
observe that the number of configurations sampled per iteration
decreases during model training. Ethyl requires the largest
number of iterations and sampled configurations to converge.
Taken together, the final DP10 model is trained on ∼27,000 gas-
phase, ∼ 27,000 1-layer and ∼6,000 4-layer DFT data points.
Although not used here, we note that analogous workflows can
now be implemented through the DPGen interface.65

Model Performance. Figures 3A-C show the performance
of the final DP10 model for the test data set. The MLP-predicted

energies and forces show good agreement with DFT; we observe
mean absolute errors (MAEs) of 0.3 eV (for energies) and 0.04
eV/Å (forces). To further test the predictive power of the
model, we ran 2 ns MD simulations for all 8 adsorbates at 3
different temperatures using LAMMPS (NVT ensemble, 0.5 fs
time step, 0.2 ns equilibration, 5 repeats). Our results, shown as
ϵt violin plots in Figure 3G for the 400 K run, show predicted
model uncertainties are well below the 0.3 eV/Å threshold.
Analogous analysis for the other temperatures is shown in the SI
(Figure S2). Furthermore, we selected 300 configurations for
each adsorbate from these repeats for evaluation with DFT and
used those data to evaluate the energy and force residuals of the
model on the adsorbate behavior on the 4-layer Ag system.
These results are shown as histograms in Figure 3E-F. The
model has an MAE of 0.07 eV (energies) and 0.09 eV/Å (forces)
on the adsorbate +4-layer Ag system. Taken together, this
analysis confirms the ability of the model to reliably access
simulation time scales (>2 ns) that are typically inaccessible with
DFT.
Adsorbate Surface Density Histograms. To further

emphasize the value of the above MD simulations, Figure 4
compares the adsorbate surface density histograms for all 8
diffusing species obtained from 2 ns MD simulations performed

Figure 4. Adsorbate surface density histograms of the diffusing adsorbates (denoted by SMILES in the titles). The red ×’s denote the positions of the
Ag atoms for the 111 facet.
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at 400 K. Here, the adsorbate surface density is calculated by
analyzing the MLP/MD trajectories and averaging the site
occupancy using a 0.57 Å × 0.57 Å grid. We observe that atomic
species such as C, H and O remain localized to the 3-fold sites,
with lower occupancy of the bridge sites, and an almost
complete exclusion of the on-top positions. In contrast, other
species (e.g., methyl, hydroxyl and ethyl) diffuse more freely
across the entire surface. These trends, which are correlated with
the denticity of the adsorbates, suggest that the diffusion of (say)
methyl on Ag(111) could follow several different pathways. As
shown in Figure S13, we find that the pathways for diffusion of
methyl on Ag each have relatively accessible barriers. These
observations are consistent with the surface density plots shown
in Figure 4. On the other hand, the diffusion of O and other
atomic adsorbates is largely limited to an activated hopping step
across the bridge sites. As hTST/NEB-based diffusivity
calculations have historically focused on studying specific
diffusion pathways, the results in Figure 4 could have important
implications on the accuracy of hTST/NEB estimates, especially
for weakly bound species such as methyl. In particular, as our
MLP/MD-based diffusivity calculations are not restricted to any
predefined diffusion paths and do not rely on the harmonic
approximation, we believe that the following MD-based
investigation provides a more realistic description of adsorbate
diffusion on metal surfaces.
Diffusivity Trends and Diffusion Barriers. Table 1 shows

the diffusion coefficients calculated using eq 3 at three different

temperatures for the 8 adsorbates considered here. An example
of the MSD fitting procedure is shown in Figure 5A. Consistent

with increased adsorbate mobility at higher temperatures, we
obtain larger diffusion coefficients at 400 K compared to 300 and
350 K. Comparing across different adsorbates, we observe that
methyl shows the highest diffusivity (2.38 × 10−7 m2/s at 400 K)
that is about 2 orders of magnitude higher than strongly bound
adsorbates such as C, O and CH.74 The diffusivity of other
species (i.e., H, OH, CH2, and ethyl) lies in between these two
extremes.

Using eq 4, the temperature-dependent diffusion coefficients
are used to obtain apparent activation energies for the overall
diffusion process. Consistent with the adsorbate surface density
histograms discussed previously, we observe near-perfect
Arrhenius behavior for the atomic adsorbates (Figure 5B.) As
shown in Figure S3, slightly larger deviations are observed for
molecular adsorbates. While deviation from Arrhenius behavior
is observed across multiple repeats, at this stage, the atomistic
origin of these trends remains unclear.

Consistent with previous DFT-based studies,74 we note that
the calculated diffusion barrier for CH3 (i.e., Edapp = 0.18 eV) is
higher than that for CH2 (0.08), CH (0.12) and C (0.08).
However, CH3 is the most mobile species, where the higher
diffusivity is due to a much larger pre-exponential factor for
methyl (i.e., e8.7)compared to other adsorbates, suggesting a
larger contribution arising from the entropic effects. Although
not explicitly included in the Arrhenius form, we hypothesize
that these trends can be rationalized based on the higher attempt
to diffuse frequency of CH3 as shown in eq 5.71,72

Specifically, eqs 4 and 5 show that the rate of surface diffusion
is correlated with the diffusion jump length and attempt
frequency. Thus, it is interesting to note that C shows low
diffusivity despite a small diffusion barrier. We hypothesize that
this behavior is likely due to a lower jump frequency for C as
evidenced by the lowest intercept across the 8 adsorbates
considered here. This suggests that carbon rarely jumps between
the stable sites and using an Arrhenius-type framework to
analyze the MLP/MD diffusivities results in a surprisingly low
value of the apparent diffusion barrier (i.e., Edapp). Similarly,
analogous arguments can be used to explain the higher Edapp for
CH compared to C. Here, CH shows a higher attempt to diffuse
frequency than C, as shown previously by Chen et al.74 this is
likely because of fewer valence electrons that are available to
interact with the Ag surface.

More generally, this discussion highlights the advantages of
using MD simulations (rather than a hTST framework) for
investigating trends in surface diffusion across different
adsorbates. Specifically, since Edapp intrinsically includes a

Table 1. Diffusivites of Adsorbates at 400, 350, and 300 K,
Ed
app (Apparent Diffusion Barrier) Calculated from the

Arrhenius Relation, and the Intercept as Shown in eq 4

Adsorbatea

Diffusivity
(400 K) ×

10−9 (m2/s)

Diffusivity
(350 K) ×

10−9 (m2/s)

Diffusivity
(300 K) ×

10−9 (m2/s)
Edapp
(eV)

Intercept
(ln(D0))

[CH3] 238.63 149.57 46.34 0.18 8.70
[CH2] 30.25 17.63 13.68 0.08 3.35
[CH] 3.42 3.06 1.06 0.12 2.71
[C] 2.07 1.46 0.94 0.08 0.80
[O] 3.97 2.16 0.95 0.14 3.37
[H] 44.17 32.73 16.03 0.11 4.61
[OH] 27.51 16.94 13.85 0.07 2.94
[CH2]C 67.34 57.84 33.71 0.07 4.07
aAdsorbates are denoted using their SMILES representation.

Figure 5. (A) Window MSD computed over 2 ns for Oxygen on Ag (111) for 400, 350, and 300 K. The inset shows the linear fit (dashed red line) for
400 K with the hue indicating the average standard deviation of the squared distances. (B) Arrhenius plots for atomic adsorbates on Ag (111). △
represents 400 K; ○ represents 350 K; □ represents 300 K.
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measure of the diffusion attempt frequency and is not restricted
to a particular pathway as would be the case with an NEB, we
believe that the MLP/MD-derived values reported in Table 1
are more accurate than NEB-based estimates.

Furthermore, as a point of comparison with traditional NEB-
based studies, we used the DP10 model to run an NEB
calculation. Specifically, using O as a prototypical example, we
compare the apparent diffusion energy barrier obtained from the
MD simulation to the one that is obtained from a NEB
calculation. We studied the diffusion of O from the most stable
fcc site74 to the hcp site on Ag (111). As shown in Figure 6, we

observe a small energy mismatch between the DFT-predicted
barrier and ML-predicted barrier. This is likely due to the higher

total energy MAEs, and model training being more focused on
reproducing DFT-forces. Although not discussed here, we note
that the energy accuracy can be improved via hyperparameter
optimization.

These discrepancies however do not impact the overall
conclusions of this study as the xyz coordinates obtained from
MLP-based NEB are in excellent agreement with DFT
calculations. For instance, single point energy calculations on
MLP/NEB-derived geometries are almost identical with full
DFT/NEB optimization across the entire reaction coordinate
(Figure 6). We observe that the barrier predicted from MD
(from Table 1) is ∼0.11 eV lower than the barrier evaluated for
the fcc to hcp path explored using NEB. As previously
mentioned, this difference likely stems from the fact that our
calculated Edapp implicitly accounts for all possible diffusion
pathways while an NEB calculation does not. A more detailed
analysis of this result using the ensemble of DP10 models is
provided in the SI (Figure S12).
Model Convergence. All the above diffusion studies are

based on data obtained using the final DP10 model. However, the
active learning curriculum used for model training allows us to
compare the trends in model performance and reliability across
different training iterations.23 As shown in Figure 7 and the
violin plots in S4−11, we observe a general trend where the rate
of model convergence is correlated with the chemical complexity
of the adsorbate. For instance, Figure 7 compares the model
uncertainty (as measured by ϵt) over multiple training iterations
for O and OH. While the model learns to describe the dynamics
of atomic adsorbates such as O (Figure 7A) in a few iterations,
more complex behavior is observed for OH (Figure 7B).
Specifically, the MD simulation using the iteration 2 model (i.e.,

Figure 6. Comparison of DP10/NEBs, DP10/SPE NEBs, and DFT
NEBs for O diffusing from fcc to hcp via a bridge site on Ag (111).

Figure 7. Violin plot of ϵt over model training iterations for (A) O and (B) OH. The horizontal green lines represent ϵt = 0.3 eV/Å, which is used as the
model convergence criteria.
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DP2/MD) explores a wider configuration space resulting in a
higher ϵt than the previous iteration, which is then well described
in the subsequent DP3 model. This ability to self-correct is also
observed for ethyl (Figure S5) and is a major advantage of using
a curriculum-based training approach.23 Specifically, we observe
that ethyl requires the longest number of iterations to converge,
which is also reflected in the higher number of sampled
configurations across all training iterations (Figure 2). Similar
plots and trends for the other adsorbates can be found in the SI
(Figures S4−S11). While it is possible that graph-based MLP
architectures may require fewer training data,63,75 these
comparisons are beyond the scope of this work.
Model Transferability. To assess the efficacy and general-

izability of our training protocol, we now explore the
transferability of the model to an adsorbate that was not
included during Stage B training. We focus on [CHOH] as it is
an important surface intermediate for methanol partial oxidation
and CO2 reduction reactions.76−78 Furthermore, [CHOH] is
interesting as it includes several different types of bonds (i.e., C−
H, O−H, and C−O) and has a local bonding environment that is
similar to the 8 adsorbates considered above.

Figure 8 summarizes the model performance for [CHOH] as
measured by the ϵt metric across the various training iterations.

In contrast to progressive improvements (i.e., decreasing ϵt)
observed for the 8 adsorbates (Figures S4−S11 violinplots), the
ϵt metric for [CHOH] shows an oscillatory behavior.
Specifically, we observe consistent improvements until iteration
4, which is followed by slightly diminished performance after
iteration 5 and 6. These trends of improving (iteration 6 and 7)
and worsening (iteration 9 and 10) model uncertainty are
repeated over the subsequent iterations, which suggests the
inability of the model to consistently describe the dynamics of
[CHOH].

The above trends are not surprising since the model has not
been exposed to any DFT data for the [CHOH] adsorbate after
stage A. Thus, similar to the process used above, we
subsequently perform a single retraining step using DFT/SPEs
for 100 [CHOH] configurations obtained using DP10/MD. As
shown by iteration 11 in Figure 8, this leads to a drastic

improvement in the ϵt metric, thereby demonstrating the ability
to fine-tune this model to previously unseen adsorbates.
Although beyond the scope of this study, we anticipate that
the final DP10 model, which is available in the SI, can be
generalized to other adsorbates using small quantities of DFT-
training data.

■ CONCLUSIONS
In summary, this work demonstrates an active learning approach
for developing transferable machine learning-based potential
(MLP) that can be used to study surface diffusion phenomena at
ab initio accuracy. The active learning approach facilitates on-
the-fly identification of configurations for iterative model
refinement - a strategy that is particularly advantageous for
modeling the dynamics of complex adsorbates bound to metal
surfaces. To illustrate this workflow, we have investigated the
surface diffusion of 8 commonly studied adsorbates abound to a
prototypical Ag(111) facet. While the current version of the
MLP does not include adsorbate−adsorbate interactions, we
anticipate that this model can be further augmented to include
these important phenomena by using appropriate DFT data sets.
The resulting diffusivity trends, obtained from molecular
dynamics simulations and by fitting mean square displacements,
highlight the potential shortcomings of using traditional NEB-
based calculations to estimate diffusion barriers. Furthermore,
our resulting model demonstrates good transferability and can
be easily fine-tuned to study other unseen adsorbates by simply
including small amounts of additional DFT data. Thus, in the
future, we anticipate these workflows and the resulting models
can be easily generalized to other adsorbates, metals, and facets.
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The Supporting Information is available free of charge at
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Additional results and details; Figure S1, the tendency of
certain adsorbates to desorb/split rather than diffuse;
Figure S2, the variation of ϵt at 300 and 350 K; Figure S3,
the Arrhenius plot for molecular adsorbates; Figures S4−
S11, MSD, Arrhenius behavior, and variation of ϵt over AL
iterations for all adsorbates; Figure S12, calculated NEB
using ensemble of DP models for O diffusing from FCC to
HCP on Ag (111); Figure S13, calculated diffusion
barriers; Table S1, adsorbates denoted by their SMILES;
Table S2, diffusivites of adsorbates (PDF)
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VASP INCAR files for generating AIMD configurations,
LAMMPS inputs for calculating diffusivity (in.atoms, data.a-
toms) using DeepMD MLP, Training data (data), the trained
model (graph.pb), and the associated model parameters
(in.json) are available on github: https://github.com/kul-
group/Ag_diffusion_data
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