
UNIVERSITY OF CALIFORNIA

Los Angeles

Computational methods for leveraging multiple biodata resources

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Dat Duong

2020

© Copyright by

Dat Duong

2020

ABSTRACT OF THE DISSERTATION

Computational methods for leveraging multiple biodata resources

by

Dat Duong

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2020

Professor Kai-Wei Chang, Co-chair

Professor Eleazar Eskin, Co-chair

With the advancement of biotechnology, there have been many datasets collected for bioin-

formatic research. These datasets capture different biological aspects but are closely related. For

example, the Genotype-Tissue Expression data and the Roadmap datasets are complementary. The

first provides the relationships between genes and genotypes in a tissue, and the latter identifies

important genomic regions. Together, both datasets allow us to better understand how genes are

regulated in a tissue.

This dissertation presents methods to jointly analyze different data resources. We aim to capture

holistic views of the biological problems. First, we study the problem of identifying genes having

significant expression levels with respect to the genotypes. We build a statistical model to combine

the information from the Genotype-Tissue Expression data and the Roadmap datasets. Second, we

study the problem of predicting protein functions. We design a deep learning model that leverages

the GeneOntology, key amino acidmotifs, the protein structures, and the protein-protein interaction

network.

ii

The dissertation of Dat Duong is approved.

Jingyi Jessica Li

Sriram Sankararaman

Jason Ernst

Kai-Wei Chang, Committee Co-chair

Eleazar Eskin, Committee Co-chair

University of California, Los Angeles

2020

iii

Dedicated to my mother, my wife, and my daughter.

iv

TABLE OF CONTENTS

List of Figures . ix

List of Tables . xii

Vita . xiv

1 Research scope and contribution . 1

1.1 Association study to discover eGenes . 4

1.2 Deep learning model to predict protein functions 8

1.3 Overview . 13

2 Model importance of SNPs to discover eGenes . 14

2.1 Introduction . 14

2.2 Association study for eQTLs . 16

2.3 Association study for eGenes . 17

2.4 Multi-threshold association study for GWAS . 17

2.5 Multi-threshold association study for eQTLs and eGenes 19

2.5.1 LD-corrected eGene p-value . 20

2.5.2 Estimate SNP prior information from data 21

2.6 The Genotype-Tissue Expression data . 23

2.7 False-positive rate simulation . 23

2.8 Statistical power simulation . 25

2.9 Model transcription start sites . 26

2.10 Model DNase hypersensitive sites . 30

v

2.11 Model histone modification sites . 32

2.12 Summary and discussion . 33

3 Meta-analysis model to discover eGenes . 35

3.1 Introduction . 35

3.2 Tissue-by-tissue analysis . 37

3.3 Random effects meta-analysis for multiple eQTL studies 38

3.4 RECOV: Random effects meta-analysis with covariance 40

3.5 Discover eGenes from meta-analyses of eQTL studies 41

3.5.1 LD-corrected eGene p-value in meta-analysis 43

3.5.2 Remove effect of overlapping samples among tissues 45

3.6 False-positive rate simulation . 48

3.7 Application to the GTEx data . 49

3.8 Case studies . 50

3.9 Summary and discussion . 53

4 Learning embeddings of Gene Ontology terms . 55

4.1 Introduction . 55

4.2 Information Content . 59

4.3 Training datasets and objective function . 59

4.4 Definition encoders . 60

4.4.1 Bidirectional Long-short Term Memory 61

4.4.2 Embeddings from Language Models . 61

4.4.3 Bidirectional Encoder Representations from Transformers 62

4.5 Entity encoders . 65

vi

4.5.1 Graph Convolution Network . 65

4.5.2 Onto2vec . 65

4.5.3 BERT as entity encoder . 66

4.6 Task 1: Similarity score for two GO terms . 67

4.7 Task 2: Compare gene and protein functions . 69

4.8 Task 3: Predict GO annotations for protein sequences 70

4.8.1 GO embeddings in supervised learning 71

4.8.2 GO embeddings in zeroshot learning . 73

4.9 Summary and discussion . 76

5 Deep learning model to predict protein functions . 79

5.1 Introduction . 79

5.2 BLAST and PSI-BLAST . 81

5.3 Convolutional neural network . 82

5.4 GOAT: GO annotation method with Transformer 83

5.5 Uniprot data and evaluation metrics . 86

5.6 GOAT base implementation . 87

5.7 Motifs in amino acid sequences as features . 90

5.8 Other protein metadata as features . 94

5.8.1 High-level 3D structures of proteins . 95

5.8.2 Protein-protein interaction network . 97

5.9 Evaluation on sparse GO labels . 98

5.10 Summary and discussion . 101

6 Conclusion . 103

vii

7 Future Work . 105

viii

LIST OF FIGURES

1.1 GO:0075295 and its ancestors. 10

2.1 Permutation test and eGene-Mvn runtime to compute eGene p-values. 21

2.2 Prior on the TSS150kb region is applied to multi-threshold association study for eGenes.

100/1 indicates that relative weights are ci = 100cj for i ∈ TSS150kb and j /∈ TSS150kb.

Number 1/1 indicates a uniform prior for cis-SNPs of a gene. (a) Quantiles of uniform

density versus quantiles of many eGene p-values simulated under null hypothesis. (b)

Simulated statistical power under alternative hypothesis. 26

2.3 Histograms for eGene p-values of all the genes in Liver data computed by (a) permu-

tation test and (b) eGene-Mvn. Assumption for valid q-values is that eGene p-value

distribution should have flat right end. Both ways to compute eGene p-values satisfy

this condition. 28

2.4 Visual comparison for (a) eGene p-values and (c) their q-values computed via permu-

tation test and eGene-Mvn. Numerical comparison for the differences of (b) eGene

p-values and (d) their q-values computed via permutation test and eGene-Mvn. eGene-

Mvn overestimates large q-values in the permutation test, but this problem does not

affect our result because large q-values will not be significant. 29

2.5 TSS prior is applied to multi-threshold association study for eGenes. 60/1 indicates

that relative weights are ci = 60cj for i ∈ TSS150kb and j /∈ TSS150kb. Same logic

applies for 100/1. (a) Quantiles of uniform density versus quantiles of many eGene

p-values simulated under null hypothesis. (b) Simulated statistical power where the

eGene p-values are computed by Mvn-sampling at two different prior options. 32

ix

3.1 cor(`ug, `vg) for two SNPs u, v versus their LD. We select many SNP pairs that co-

occur as cis-SNPs in at least two genes. Different pairs are grouped into bins by their

LD (bin-width 0.05). We compute `ug, `vg for each SNP pair in every gene g for which

they are cis-SNPs. Next, we estimate cor(`ug, `vg) for each pair u, v, and then average

cor(`ug, `vg) for all pairs u, v in each LD bin. We plot the absolute value of this average

against the LD bin. In RECOV and RE2, cor(`ug, `vg) for two SNPs aligns well with

their LD. 44

3.2 Fraction of samples coming from the same donors for two tissue datasets. Brain tissues

contain many samples from the same donors (red box). 45

3.3 Under the null hypothesis, (a) RECOV and (b) RE2 meta-analysis are applied to

multiple tissue datasets where no two datasets contain samples from same individuals.

Histograms of p-values of `sg are uniformly distributed, indicating equal chance of

observing any p-value in the range [0,1]. (c) RECOV and (d) RE2 meta-analysis

applied to multiple tissue datasets where samples in two tissue datasets may come

from the same individuals (fraction shared are taken from GTEx data). Histograms of

p-values of `sg under the null hypothesis shift toward the left side, showing that we are

more likely to see significant p-values. 47

3.4 Venn diagram of the numbers of eGenes found by TBT method, RE2 and RECOV

meta-analysis. 49

3.5 Correlations of SNP effects for the expressions of (a) CABLES1 (b) GALNT11 and

(c) RP11-34P13.16 in 44 tissues (tissue names omitted). Correlation is computed by

BgBᵀ
g, similar to how genetic kinship is computed. We indicate correlation values for

the brain tissues in red. 51

4.1 A neural network encoder’s ability to accurately classify child-parent terms is correlated

to the IC values of these terms. 68

x

5.1 T-SNE plot of (a) input GO embeddings and (b) their transformed values created by

Transformer layer 12. Red and blue nodes are the ancestors of the term GO:0008376

and GO:0030291 respectively. 89

5.2 Heatmap of the attention values αjk in each layer when analyzing the protein kinase

TBK1 (UniProtKBQ9UHD2). The three key regions of this sequence (separated by red

lines) are explicitly given as inputs to the Transformer model. The first quadrant shows

the interactions among the GO labels, the second shows contribution of amino acids

toward the GO labels, the third shows interactions of amino acids among themselves,

and the fourth shows contribution of GO labels toward the amino acids. 93

5.3 Heatmap of the attention values αjk in each layer. Motifs of the sequences are not

explicitly given as inputs to this Transformer model. 94

xi

LIST OF TABLES

2.1 Number of eGenes (out of 21,868 genes in the Liver) for each option of uniform versus

TSS prior and permutation test versus eGene-Mvn. is_eGene is an indicator for eGene.

Conditioned on an option to compute eGene p-values, overlap1 indicates the number

of eGenes (or not) found by uniform and TSS prior data. Conditioned on a type of

SNP location information, overlap2 indicates the number of eGenes (or not) found by

permutation test and eGene-Mvn. Permutation test is the gold-standard, and we do not

observe significant differences for our eGene-Mvn implementation. 28

2.2 Number of eGenes for the best 19 choices of w found via our estimation in Section

2.5.2. Subscripts are numbers computed via full grid-search to judge the approximation

accuracy. Typically, downweighing SNPs located in TSS150kb reduces the number of

discovered eGenes compared to the traditional eQTL study without any SNP prior

information (italicized number). 31

2.3 Number of eGenes in the liver tissues (21,868 genes in total) for each SNP information

type, in decreasing order. Weight w = [win site, wnot in] is found via grid search in

the range [1, 100] with increment of 10. Superscript a or s indicates that a histone

modification is associated with gene activation or suppression. Upweighing SNPs in

sites of histone modifications associated with gene activation increases the number of

candidate eGenes. Ave. freq. is the fraction of cis-SNPs located in the annotation

averaged over all the genes. 33

4.1 AUC for classifying true orthologous genes in Human, Mouse and Fly, and interacting

proteins in Human and Yeast. 70

xii

4.2 Models are trained and tested on the same original DeepGO datasets. DeepGoSeq

indicates most basic DeepGO version that analyzes only amino acid sequences of pro-

teins. GO embeddings produced by different types of GO encoders are then integrated

into the DeepGoSeq. We do not observe significant differences among the encoders,

except for GCN in the BP ontology. Italicized numbers are the best baseline values,

and bold numbers are the best values for the GO encoders. 73

4.3 We add 2048 BP, 1108 MF and 550 CC labels to the original DeepGO datasets, and

keep the same number of proteins. Our improved DeepGO baseline +ExtraLayer is

trained and tested on the entire larger dataset, and acts as an upper bound for the other

models. Different types of GO embeddings are then integrated into DeepGOZero.

Models are trained on the original DeepGO datasets, but tested on the added 2048 BP,

1108 MF and 550 CC labels in our own larger datasets. These added labels are unseen

by models during training. Italicized numbers are the upper bound, and bold numbers

are the best values for the GO encoders. 75

5.1 Evaluation on the preprocessed Uniprot data, containing 932 BP, 589 MF, and 439 CC

labels for 9095, 6294, and 8886 testing proteins in BP, MF and CC data. 95

5.2 We increase the label sets in the preprocessed Uniprot data from 932 BP, 589 MF, and

439 CC labels to 2980 BP, 1697 MF and 989 CC labels. Models are trained on the

entire expanded label sets. 99

xiii

VITA

2006 – 2010 B.S Molecular Cell Developmental Biology & B.S Applied Mathematics, Uni-

versity of California, Los Angeles, USA

2010 – 2011 Undergraduate Research Assistant, Computer Science, University of California,

Los Angeles, USA

2011 – 2013 M.S. Statistics, University of California, Berkeley, USA

2013 – 2014 Statistician, Affinnova Inc., Waltham, Massachusetts, USA

2017 Research Intern, Supply Chain Optimization Amazon Inc., Seattle, Washington,

USA

2018 Research Intern, Supply Chain Optimization Amazon Inc., Seattle, Washington,

USA

2014 – present Graduate Student, Computer Science, University of California, Los Angeles,

USA

PUBLICATIONS

Dat Duong, Lisa Gai, Ankith Uppunda, Don Le, Eleazar Eskin, Jingyi Jessica Li, Kai-Wei Chang.

Annotating Gene Ontology terms for protein sequences with the Transformer model. bioRxiv,

2020. pre-print.

Dat Duong, Ankith Uppunda, Lisa Gai, Chelsea Jui-Ting Ju, James Zhang, Muhao Chen, Eleazar

Eskin, Jingyi Jessica Li, Kai-Wei Chang. Evaluating Representations for Gene Ontology Terms.

xiv

bioRxiv, 2020. pre-print.

Serghei Mangul, Thiago Mosqueiro, Richard J. Abdill, Dat Duong, Keith Mitchell, Varuni Sar-

wal, Brian Hill, Jaqueline Brito, Russell Jared Littman, Benjamin Statz, Angela Ka-Mei Lam,

Gargi Dayama, Laura Grieneisen, Lana S. Martin, Jonathan Flint, Eleazar Eskin, Ran Blekhman.

Challenges and recommendations to improve the installability and archival stability of omics com-

putational tools. PLoS biology. 2019 Jun 20;17(6):e3000333.

Dat Duong, Wasi Uddin Ahmad, Eleazar Eskin, Kai-Wei Chang, Jingyi Jessica Li. Word and

sentence embedding tools tomeasure semantic similarity of gene ontology terms by their definitions.

Journal of Computational Biology. 2019 Jan 1;26(1):38-52.

Dat Duong, Lisa Gai, Sagi Snir, Eun Yong Kang, Buhm Han, Jae Hoon Sul, Eleazar Eskin.

Applying meta-analysis to genotype-tissue expression data from multiple tissues to identify eQTLs

and increase the number of eGenes. Bioinformatics. 2017 Jul 15;33(14):i67-74.

Dat Duong, Jennifer Zou, Farhad Hormozdiari, Jae Hoon Sul, Jason Ernst, Buhm Han, Eleazar

Eskin. Using genomic annotations increases statistical power to detect eGenes. Bioinformatics.

2016 Jun 15;32(12):i156-63.

BuhmHan,Dat Duong, Jae Hoon Sul, Paul I. W. de Bakker, Eleazar Eskin, Soumya Raychaudhuri.

A general framework for meta-analyzing dependent studies with overlapping subjects in association

mapping. Human molecular genetics. 2016 May 1;25(9):1857-66.

Gregory Darnell∗, Dat Duong∗, Buhm Han, Eleazar Eskin. Incorporating prior information into

association studies. Bioinformatics. 2012 Jun 15;28(12):i147-53.

xv

CHAPTER 1

Research scope and contribution

Since 2010, there has been an ample amount of data collected for bioinformatic research. For

example, in 2010, we had the public release of the Encyclopedia of DNA Elements (ENCODE),

a database of all functional elements in the human genome [18]. In 2015, we had the first pilot

analysis of the Genotype-Tissue Expression (GTEx) data [98]. In 2018, the Uniprot database

contained 30% more manually annotated protein functions in Human compared to 2016 [96]. As

the rates of data generation and annotation are rapidly growing, there is a dire need for statistical and

deep learning models that will aid biologists in mining useful information and in many instances,

predicting future outcomes from the collected datasets (e.g. inferring functions of new proteins).

Because biological datasets are often related in many ways, we can jointly analyze them to deduce

more holistic explanation or to obtain better prediction.

Consider this long-standing problem in biology: the study of how genes affect a phenotype.

In the early 2000s, to study this problem, we could only collect genetic data and perform genome

wide association study (GWAS) to find the genetic variants (SNPs) correlated with this phenotype.

GWAS usually find significant SNPs located in non-coding regions of the genome, and so GWAS

could not always infer the candidate genes for the phenotype [33, 39]. Today thanks to the GTEx

data, we can retrieve genes whose expressions are correlated with some genetic variants. Suppose

these variants are also GWAS significant SNPs, then the retrieved genes are likely to be the

determinants of the phenotype of interest.

The problem of inferring protein functions is another key bioinformatic problem that has been

greatly benefited from the recent technological advancement. In the early 2000s, many approaches

rely on string-matching tools to compare the unknown protein against the database of labeled

1

sequences [54]. In the recent years, we can leverage other datasets like the 3D protein structures

and protein-protein interaction network which have greatly accrued since their introductions in the

early 2000s [10, 95]. Previous works have presented ensemble models where each protein function

classifier was built using separate data resources [107]. Recently, we can develop large deep

learning models to capture all the complex interactions of all the various data resources [29, 59].

Also, there are useful information in the labels used to annotate the protein functions which can

be leveraged to improve the classification accuracy. For example, assume we can model how often

two similar labels should co-occur. If one of the labels occurs very rarely, then we can still make a

good prediction for it by leveraging the prediction accuracy of the other label.

This thesis presents methods for combining multiple data resources to solve sub-problems of

the two major bioinformatic problems, learning how genes affect phenotypes and predicting protein

functions. The key initial step for studying the effect of genes on phenotypes requires us to discover

which genes are expressed in which tissues, because the expression levels of the same gene often

vary for different tissues. For example, the gene Apolipoprotein E involved in fat metabolism is

expressed only in the adrenal gland, liver, and brain tissues [98]. Scientists can now measure the

expression levels of genes in many human body tissues, but a statistical metric is still needed to

specify which genes should be prioritized for further causal analysis of the phenotypes. Statistical

analyses on gene expression datasets are interested in associating the expression of a gene with

Single Nucleotide Polymorphisms (SNPs). SNPs are positions in the DNA that are different for each

person in a population. Because not everyone shares the same set of SNPs, genes having expressions

associated with the SNPs are possible determinants for the differential phenotypic expression in a

population. The literature uses the name eGenes to label the genes whose expressions are correlated

with at least one SNP [98].

In this thesis, we consider two key challenges in the problem of discovering eGenes. First, when

associating a gene expression with the SNPs, the locations of the SNPs can have strong impact

on the outcome. For example, SNPs near transcription start sites are likely to affect the binding

affinity of transcription factors which in turn influences the expression level [97, 99]. Yet, existing

methods have not yet modeled this effect. Second, despite the declining cost of gene sequencing,

2

it is still difficult to collect samples to measure gene expression in each tissue. At the time of our

work in 2016, the liver tissue in the Gene-Tissue Expression data had 97 individuals (in 2020, this

number is 226 which is low compared to other genome wide association studies) [36, 98]. There

was a need to develop a method that aggregates data from many tissues to enhance the statistical

power for discovering eGenes [94]. In this case, we can not classify the tissues in which the genes

are eGenes. However, we still can determine which genes are eGenes for the entire dataset, so that

we do not miss possible causal genes when studying the phenotypes. Section 1.1 further describes

our search scope and innovation.

To discover protein functions, laboratory experiments are needed to view the protein 3D struc-

tures, locate the proteins in the cell, and identify the biological pathways involving the proteins.

The discovered protein functions are then written down according to the Gene Ontology (GO)

guideline which is a standardized language designed to describe biological functions. For exam-

ple, the GO label GO:0008218 with the definition bioluminescence describes the function for the

protein Aequorin-2 in jellyfish. With the decline of sequencing cost, the gap between the numbers

of labeled and unlabeled proteins is expected to grow [107]. In the past decade, many automated

annotation methods have been introduced to aid the manual validation. In these classifiers, the

training data is the Uniprot database which contains protein amino acid sequences and their curated

GO labels [96].

Publications from other fields like natural language processing, image recognition, social net-

work analysis, and product recommendation have found that including metadata about the labels

into the classifier often improve the prediction accuracy [34, 56, 103]. Very few annotation

methods are using metadata about the GO labels. These methods either apply the hierarchical

relationships of the labels as a post-processing step [73], or model these relationships together with

the protein-protein interaction network [102] (ignoring the sequence information). Using a well

established protein-protein interaction network to build an annotation model for new proteins is

circular-reasoning, because we will not know the interacting partners of a new protein without the

laboratory work. In the current literature, it is unclear how to design a classifier that takes just the

protein sequences and the metadata of the GO labels such as their definitions, hierarchy relations,

3

and co-occurrence frequencies. In this thesis, we introduce and evaluate various ways to create

feature vectors for the GO label metadata. Next, we build a deep learning classifier that takes the

protein amino acid sequences, the feature vectors of the GO labels, and other information such

as motif data, protein 3D structures and protein-protein interaction network. Section 1.2 further

explains our research scope and contribution.

1.1 Association study to discover eGenes

The transition from genetic information to a phenotype starts with the DNA, to RNA, and then to

proteins. These proteinswill then involve in complex biological processes that induce the phenotype

of interest. For this reason, the differential phenotypic expression in a population is assumed to

start with the variations in the genetic materials. Single Nucleotide Polymorphisms (SNPs) are the

locations in the DNA where people in a population have different nucleotides. In an individual,

the expression level of a gene is measured by the RNA amount being transcribed. Values of SNPs

can affect the production of RNA, by altering the binding affinity of transcription factors and the

compactness of the DNA strand [74, 97, 99]. Having very low amount of RNA implies having

almost none of the protein produced from this gene. Because proteins interact with each other in

complex chemical reactions to produce the observed traits, having too much or not enough of a

specific protein can cause the differential expression for the phenotype of interest. In the early days

of GWAS, the objective was to identify which SNPs in the genome are strongly associated with

the phenotypes (e.g. disease status encoded as 0 and 1). GWAS experiments cannot identify the

mechanisms (e.g. possible causal genes) for the phenotypes, because its approach bypasses all the

intermediate phases that connect the SNPs to the phenotypes (e.g. transcription and translation).

For this reason, heuristically, genomic regions containing these SNPs are assumed to contain

key targets for further causal analysis of the phenotypes. Often times, genes located near these

significant regions are prioritized to be analyzed first [14].

Within the past 5 years, it has became more affordable and easier to measure the expression

level of a gene in specific body tissues. These gene-tissue expression datasets let us identify

4

genes having expressions associated with the SNPs, and thus provide finer lists of genes to be

prioritized than traditional GWAS results [50, 91, 98]. SNPs associated with gene expressions are

known as expression quantitative trait loci (eQTLs), and the association experiments to discover

these SNPs are called eQTL studies. eQTL studies follow the same principle of GWAS (and

conceptually they are the same as GWAS), except that we have gene expression level as the

observed dependent variables instead of phenotypes. As byproducts, eQTL studies also discover

genes whose expressions in a tissue are associated with at least one SNP. In other words, this type

of genes are the genes that have at least one eQTL, and the name eGenes are used to label this

specific type of genes [98]. Because everyone has an unique set of SNPs, the eGenes are likely

to be the key factors causing the differential phenotypic expression in a population. Importantly,

with successful experiments involving CRISPR/Cas9 gene editing in the past decade, today it is

essential to discover all the eGenes in each body tissue so that we can target all the possible genes

affecting a wide variety of traits [52, 63]. Since 2015, the GTEx consortium has been maintaining

an eGene database for every human body tissue [98]. Below we outline our contributions on the

discovery of eGenes.

• Model importance of SNPs to discover eGenes. During the pilot analysis phase in 2015,

the GTEx consortium started a database classifying the eGenes in each of the human body

tissues. The method employed are the eQTL studies that follow the same principle as GWAS

experiments. Conditioned on a tissue, the expression of a gene is tested against each SNP in

the genome. If the gene expression is associated with any SNP, then the gene is considered

to be an eGene in this tissue. eGenes are then prioritized for further experiments involving

the phenotypes observed in the tissue. Because there are about 4 to 5 million SNPs in the

genome, the GTEx consortium tested only cis-SNPs which are SNPs located near a gene [98].

There are other reasons to consider only the cis-SNPs of a given gene. Cis-SNPs are likely

to be found near gene transcription start site or other functionally important regions such as

DNase hypersensitive sites and histone modification sites1. In both instances, cis-SNPs may

1We are referring to locations in the gene where certain modifications are likely to happen to the histones found at
those locations.

5

affect the functions of transcription factors or the compactness of the DNA, and therefore

will affect the gene expression.

Although the GTEx consortium focused on the cis-SNPs for their eQTL studies, the con-

sortium did not model the specific locations of these SNPs; for example, cis-SNPs in a

transcription start site were treated the same as those outside of this site. Our previous

GWAS experiments indicated that weighing the SNPs based on their locations increases the

statistical power for discovering significant SNPs of a phenotype [20, 33]. For eQTL studies,

we reason that if we apply external genomic annotations to assess the importance of cis-SNPs,

then we can also increase the statistical power for finding eQTLs of genes.

Because discovering eGenes requires us to find the eQTLs of the genes, increasing statistical

power of eQTL studies will improve the power of discovering eGenes. This outcome will

retrieve more possible causal genes for a specific phenotype. In our work, we consider

the most intuitive region type which is the gene transcription start site, and then two more

important region types which are the DNase and histone binding sites. Integrating these

region types into the standard eQTL studies discovers at least 16% more eGenes in the GTEx

data of the liver tissue. Chapter 2 further explains a few other key challenges that we improve

over the traditional eQTL studies.

• Meta-analysis model to discover eGenes. A gene does not always have the same expression

level in every tissue, and thus the definition of an eGene makes the most sense when we

condition the gene expression on a specific tissue. In an effort to identify all the eGenes, in

2015 the GTEx consortium applied eQTL studies on the expression of every gene in each of

the 44 human body tissues in their datasets. At the time, many tissues contain only a few

samples; for example, the median number of samples per tissue was 126 individuals, with the

highest and lowest beingSkeletalMuscle (361 people) andUterus (70 people). When there are

not enough samples in a tissue, the eQTL studies may not accurately estimate the association

strengths between the cis-SNPs and the gene expression. The reduced performance of the

eQTL studies can lead to a loss of statistical power for discovering eGenes.

Previous GWAS meta-analyses have indicated that combining many data resources can more

6

accurately measure the association strengths between the SNPs and a phenotype [41, 42, 45].

Intuitively, by joining many datasets and then building a statistical model on this combined

dataset, we are analyzing a new data source that has a much larger sample size which will

in turn improve the statistical power. Because eQTL studies follow the same principle as

GWAS, we hypothesize that a joint analysis of many tissue datasets would provide a higher

statistical power to identify eQTLs. This joint analysis can only conclude that a SNP is an

eQTL for a gene in at least one tissue of the entire GTEx dataset. In this case, the definition

of an eGene makes sense only with respect to the entire datasets, and not for one single tissue.

In other words, we can only determine that a gene is an eGene for at least one tissue in the

whole GTEx data. Despite not knowing the specific tissues in which a gene is an eGene, at

the very least, we can still discover many genes that might be responsible for a phenotype.

For example, in 2016, our method detected the CABLES1 gene to be an eGene in the GTEx

data. In 2017, CABLES1 was found to be an important gene for Cushing’s disease, which

is a condition affecting the anterior pituitary in the brain [46]. Suppose we had not used our

approach, then we would have missed that CABLES1 is an important gene and would not

have suggested CABLES1 for causal analyses of any diseases.

There are a fewways to combine small datasets into a larger dataset. Themost computationally

efficient approach is meta-analysis which averages the outcome of each smaller dataset. In the

context of eQTLs, meta-analysis averages the effect size of the same SNP on the expression

of the same gene in each tissue data. Suppose this average is statistically different from zero,

then the SNP is an eQTL for the gene in at least one tissue. When we evaluate just one SNP

against the gene expression, then themeta-analysis outcome of this SNP allows us to conclude

that the gene is an eGene in at least one tissue. The traditional meta-analysis described here

does not consider one key biological evidence: the GTEx pilot study reported a high number

of shared eQTLs for every pair of tissues, for instance, more than 50% of eQTLs are common

for the thyroid, nerve, skin, adipose, heart, artery, lung, blood, and muscles tissue [98].

Based on this observation, we design an new meta-analysis for the GTEx data. We model

the fact that the same SNP can be eQTL for the same gene in several tissues; statistically

7

speaking, we introduce a new parameter into the meta-analysis that captures the correlations

of effect sizes for the same SNP on the expression of the same gene in different tissues.

We also observe that the GTEx consortium collect many tissue samples from a same donor;

thus, many tissue datasets share the same information that came from the same donors.

Our previous work in GWAS meta-analysis have indicated that sample sharing among the

datasets inflates the false-positive rate of the study [45]. For this reason, in our eQTL meta-

analyses, we also design a heuristic correction method to remove the unwanted effect of

sample sharing among the tissues in the GTEx data. Next, we explain how to combine the

eQTL meta-analyses of the cis-SNP for a gene over all the tissues and determine whether this

gene is an eGene for at least one of the tissue in the GTEx data. Chapter 3 further explains

other challenges that must be overcome, and our solution.

1.2 Deep learning model to predict protein functions

Laboratory experiments are required to learn the functions of a new protein. The functions of this

new protein are written down based on the rules provided by the Gene Ontology (GO) which is a

database of standardized language designed to explain the protein’s biological processes, molecular

functions, and cellular components [38]. Then, the amino acid sequence and the GO labels of

this new protein are submitted to the Uniprot database which, as of March 2020, contains 561,911

proteins with their manually reviewed GO terms. The GO database acts like a dictionary, in

the sense that it contains many GO terms, and each term has a few sentences describing some

biological events. For example, the terms GO:0035556, GO:0004672, and GO:0005634 have the

following descriptions intracellular signal transduction, protein kinase activity and nucleus, which

are used to describe the biological process, molecular function, and cellular component of the

protein Mapkapk5 [12].

With the cost of sequencing dropping, it is expected that the number of unlabeled protein

sequences will continue to rise much faster than the number of labeled sequences. In the last

decade, there has been great effort in building automated method to aid the discovery of protein

8

functions. Early annotation methods relied on BLAST, that is, they find the sequences in Uniprot

that are most similar to the unknown sequence and then assign the GO labels of these known

sequences to the unknown protein [54]. As data accrue over the last decade, along with the

protein sequences, many annotation methods also use other metadata about the proteins such as

their functional motifs, 3D structures and interaction network [107]. In the last 5 years, with

the advancement of computing power, GO annotation methods began to implement deep learning

architectures with the hope to capture complex interactions of the amino acids in the sequence

[59, 60]. Deep learning has the following intrinsic property; it transforms closely related sequences

into similar vector representations, so that these sequences would have equivalent sets of GO terms.

From the current research literature, three main questions arise. First, besides protein metadata,

is there useful information from the Gene Ontology that can improve the prediction accuracy? Sec-

ond, BLAST-based methods have proven to be very competitive against deep learning approaches

[29, 59]. We want to know: is there information in a protein sequence that BLAST captures but the

neural network cannot? Here, we will not build an ensemble method that averages the outcomes of

BLAST approaches and deep learning. Rather, we want to integrate the key information retrieved

by BLAST as feature inputs for deep learning. Third, despite the wish for deep learning to capture

long-range interactions of amino acids in the sequence, recent works found that recurrent neural

network, e.g. Long Short-term Memory (LSTM), fails to produce results better than the convolu-

tional neural network (CNN) which is designed to capture local interactions [59]. There has not

been any work exploring neural network with attention mechanism [59]. The third question is:

can we build an attention-based neural network classifier that captures the long-range interactions

of amino acids in a protein sequence? For example, can such model capture the interactions of

far-apart motifs within the same protein, and how does such model compare against BLAST and

CNN approaches? Below, we outline our contributions to these three research questions.

• Learning embeddings of GO labels. The Uniprot database acts as the training dataset

for many GO annotation methods. In Uniprot, each protein sequence is assigned a list of

GO labels, and so the problem of predicting protein functions is a multi-label classification

problem. The input is an amino acid sequence, and the output is a 1-hot label vector. Each

9

Figure 1.1: GO:0075295 and its ancestors.

ith entry of this vector is a 0 or 1 to indicate absence and presence of the ith GO label for

the input sequence. Because the labels are represented by numbers (e.g. 0 or 1), we lose

the information that each label entails. For example, in the 1-hot label vector, when we

represent the GO term GO:0035556 as a number, we no longer know that this label indicates

intracellular signal transduction or that the label is a subclass of GO:0050794 regulation of

cellular process. Othermachine learning literature involvingmulti-label prediction suggested

that metadata of the labels, such as the word descriptions and hierarchical relationships, can

improve the classification accuracy [7, 72, 81]. It is then important to ask: are there similar

types of information from the Gene Ontology that can improve the prediction accuracy for

protein functions?

We observe that the GO database contains the word descriptions for each term, and that

these terms are arranged in a hierarchy where terms describing very specific functions are

child nodes of broader terms (Fig. 1.1). Before we can integrate metadata of GO labels in

10

a deep learning model, we have to represent this information as numerical feature vectors.

For example, in Fig. 1.1, we would want that the vectors representing GO:0075295 (yellow

node) and its parent GO:0052371 to be similar, and that these two vectors to be different

from the vector for root node GO:0008150.

In the machine learning literature, representing entities as vectors is referred to as embedding

the entities, and the output vectors are known as embeddings. There are many machine

learning models to embed entities (e.g. documents in a database, people in social network)

into vectors, and these embedding techniques have been applied to a wide variety of resources

such as Wikipedia documents, social network, electronic health records, and Pubmed data

[15, 31, 51, 62, 75]. However, embedding approaches have not yet been designed for the GO

database and thoroughly compared.

We create different types of GO label embeddings from the following neural network archi-

tectures: Bidirectional Long-short Term Memory (BiLSTM), Embeddings from Language

Models (ELMo), Bidirectional Encoder Representations from Transformers (BERT), and

Graph Convolution Network (GCN) [17, 25, 55, 78]. We will describe these methods in

detail in Chapter 4. For now, we will just provide high-level descriptions for them. BiL-

STM, ELMo, and BERT transform the definitions of GO labels (e.g. intracellular signal

transduction) into vectors. BiLSTM is a bidirectional encoder that learns the relationship

of words in a sequential order, that is, the current word receives the information from the

word immediately before it and after it. In the example intracellular signal transduction,

the word signal will receive information from the word intracellular first and then the word

transduction second. ELMo has two layers of BiLSTMwhere the output of the first BiLSTM

is the input of the second BiLSTM, effectively ELMo builds a deeper network of BiLSTM.

BERT is an approach to train the Transformer neural network (to be explained later). Unlike

BiLSTM and ELMo, BERT models all the pairwise interactions for the words in a definition

of a GO term. In our running example, signal will receive information from intracellular

and transduction at the same time. GCN does not model definitions of GO terms, rather

it transforms the GO labels into vectors based on their topologies in the GO database (e.g.

11

parent-child nodes will have similar embeddings).

To compare the embedding methods, we design three tasks. Task 1 studies the edge cases

where the embeddings may fail to accurately resemble similarity for related GO labels (e.g.

parent-child nodes). Task 2 uses the embeddings to compare the functions of orthologous

genes and then interacting proteins. Orthologous genes are expected to have closely related

functions. Under a good embedding model, sets of GO labels annotating orthologs should

have higher similarity scores than the sets annotating unrelated genes (the same argument

applies to interacting proteins) [70]. Task 3 evaluates two scenarios in which the GO label

embeddings may affect the accuracy of an existing GO annotation method. First, we consider

the case where there are ample amounts of data for each GO label in the training and testing

datasets. Second, we consider the setting of zeroshot learning, where we predict GO labels

that are unobserved in the training data [87].

• GO annotation by the Transformer neural network. Many GO annotation methods based

on deep learning are recent and share one key idea. They treat each amino acid in the sequence

as a vector, and then model the interactions of these vectors by applying CNN or LSTM.

CNN captures local interactions, whereas LSTM is able to learn long-range interactions.

For protein sequences, long-range interactions among amino acids exist because proteins

are folded compactly and can have multiple functioning regions [58]. We would expect

that LSTM to outperform CNN. Surprisingly, LSTM is in fact worst than CNN for protein

sequences [59], and this same observation have been noticed in similar cases for DNA

sequences [5]. Moreover, BLAST-based methods have proven to be very competitive against

deep learning approaches [29, 59] In Chapter 5, we address the remaining two research

questions: (1) what information in the sequences are extracted by BLAST but the neural

network cannot capture, and (2) how to design a deep learning method that sufficiently

models the long-range interactions of amino acids in the protein sequences?

First, we build a new attention-based deep learning GO classifier based on the Transformer

neural network [101]. Transformer models all pairwise interactions of amino acids in a

sequence and can capture long-range relationships better than LSTM. LSTMmay not always

12

faithfully transmit information from one amino acid to another far way amino acid (a problem

known as vanishing gradient [47]). Unlike the other classifiers which treat the GO labels as

1-hot label vector, our classifier uses the GO label embeddings to make predictions, allowing

it to learn the label co-occurrences. Second, we observe that the main principle of all

BLAST-based models is applying BLAST as a way to identify sequences containing similar

amino acid patterns. To combine BLAST with deep learning, we model each type of motifs

found by BLAST as a vector feature input for our classifier. Unlike our approach, other works

combined BLAST with deep learning via ensemble idea, by averaging outcomes of many

independent models. Lastly, we also integrate in our classifier the protein metadata, such as

protein-protein interaction network and protein 3D structure information.

1.3 Overview

The dissertation is organized as follows. Chapter 2 explains how epigenetic data is used to increase

the detection power for eGenes in one tissue dataset of the GTEx data. Chapter 3 introduces a new

meta-analysis which pools multiple tissue datasets containing few samples to improve the power

for discovering eGenes in the GTEx data. Chapter 4 describes various ways to transform GO

labels into vectors, and our tasks to critically evaluate different types of embeddings for GO labels.

Chapter 5 explains our deep learning model to predict GO labels for proteins from their amino

acid sequences and other external datasets like the definitions of the GO labels, the protein motifs,

the protein 3D structures, and the protein-protein interaction network. Chapter 6 summarizes our

findings, and Chapter 7 discusses future research directions.

13

CHAPTER 2

Model importance of SNPs to discover eGenes

2.1 Introduction

A genome wide association study (GWAS) identifies single nucleotide polymorphisms (SNPs)

which are associated to a given phenotype. In GWAS, the phenotype value is either discrete (e.g.

1 or 0) to label whether a person has the phenotype or not, or continuous for traits like height and

weight. These traditional GWAS assume genes affecting the phenotypes to be the genes located

near the significant SNPs. However, because genes induce the phenotypes, understanding how

SNPs affect gene expressions in different body tissues will better explain the possible causal factors

of the phenotypes.

With the advancement of sequencing technology in the past decade, scientists can now readily

measure the expression level of a gene. Association studies can then be applied on these gene

expression datasets to find SNPs correlated with the expressions of the genes. These SNPs are

named expression quantitative trait loci (eQTLs), and these types of association studies are named

eQTL studies. Important products of eQTL studies are the eGenes, which are the genes having

expression levels associated with at least one eQTL. Because SNPs are unique for each person,

eGenes are important as they are likely to be responsible for the phenotypic variations in a population

and should be prioritized for causal analysis of the phenotypes.

eQTLs and eGenes are defined with respect to the tissue of interest because the same gene

does not have the same expression level in every tissue. Since 2015, thanks to the effort of the

Genotype-Tissue Expression (GTEx) consortium, gene expression datasets have become available

to determine the eGenes in each of the 44 common human tissues [98]. By the definition of eGenes,

14

we need to first find the SNPs which are eQTLs for the genes, and then we can determine whether

these genes are eGenes. In this work, we focus on SNPs located near a specific gene (cis-SNPs)

because these SNPs are more likely to affect the gene expression than the SNPs located farther

away (trans-SNPs).

The traditional method for eGene discovery requires the eQTL study to estimate the effect size

of each cis-SNP against the gene expression. Theses effect sizes are then transformed into p-values,

and the eGene test statistic for the gene is defined as the minimum of these p-values [98]. The next

step computes the eGene p-valuewhich is the p-value of the eGene test statistic (so eGene p-value is

the p-value of a p-value). Due to Linkage Disequilibrium (LD) of the cis-SNPs, the eGene p-value

is estimated by the permutation test to correct. Recent literature for eGene discovery have focused

on reducing the permutation test runtime.

No study has yet improved the statistical power for discovering eGenes by leveraging the

physical locations of the cis-SNPs or any other types of epigenetic annotation. Traditional eQTL

study assumes uniform weights for the cis-SNPs of a gene. However, cis-SNPs located near

transcription start sites (TSS), DNAse and histone binding regions are more likely to affect the

gene expression [99]. Modeling the location information of the cis-SNPs should enable us to more

accurately identify the SNPs affecting the gene expression. This outcome will result in a higher

statistical power for discovering eGenes, because finding the eQTLs is a prerequisite for finding the

eGenes.

We introduce a new eGene test statistic integrated with the SNP location information, and

estimate its p-value by adapting the method in Sul et al. [94]. We consider the following genomic

regions: transcription start sites, DNase hypersensitive sites and histone modification sites. We

estimate the prior weights for the SNPs located inside and outside these regions, so that SNPs in

important locations should contribute more to the eGene test statistic. Modeling each type of SNP

information increases the number of discovered eGenes by at least 16% more than the traditional

method, and that TSS appears to be the most important factor having up to 57% more discoveries.

Our software is at https://github.com/datduong/Find-eQTL-eGene.

15

https://github.com/datduong/Find-eQTL-eGene

2.2 Association study for eQTLs

We present the traditional association study for eQTLs. SNPs associated with the expression of a

gene are called eQTLs, and an association study to find eQTLs is called an eQTL study. Because

genes are expressed nonuniformly across tissues, an eQTL study for a gene g is conducted separately

for each tissue t and aims to detect all the SNPs associated with the expression of g in t. Suppose

we are given the expression level for g in a tissue t from N individuals, then we can represent this

information as a vector y ∈ RN. We now estimate the association strength of each SNP s in the

set S for the gene expression y. Let x ∈ RN denote the genotypes at the SNP s for N individuals

in the data. The eQTL study assumes the following relationship for the SNP s and the expression

of gene g in tissue t

y = βsgtx + εsgt (2.1)

where εsgt ∈ Rm are sampling errors having the distribution εsgt ∼ N(0, σ2
εsgt

I), and βsgt ∈ R

represents the true effect size of s toward y conditioned on the tissue t [33]. In Eq. 2.1, we

have excluded variables representing possible confounders because the GTEx consortium already

removed the confounder effects from their datasets.

The approximation β̂sgt of the true value βsgt in Eq. 2.1 is solved via the optimization

β̂sgt = arg minβsgt ||y − βsgtx||22, which has the solution β̂sgt = (xᵀx)−1xᵀy where β̂sgt ∼

N(βsgt, (xᵀx)−1σ2
εsgt

) [1]. We perform a hypothesis test with H0 : βsgt = 0 and H1 : βsgt 6= 0 to

confirm if s is associated with the expression of g. For this hypothesis test, we estimate σ̂2
εsgt

for

σ2
εsgt

as σ̂2
εsgt

= 1
m−1 ||y− β̂sgtx||22 and the variance of β̂sgt as v̂ar(β̂sgt) = (xᵀx)−1σ̂2

εsgt
. Then, we

compute the p-value psgt of β̂sgt based on the t-distribution N(0, (xᵀx)−1σ2
εsgt

) [1, 33]. Suppose

psgt is less than the given significance level α, then we reject the null hypothesis H0 : βsgt = 0 and

conclude that the SNP s is an eQTL for the expression of gene g conditioned on tissue t.

16

2.3 Association study for eGenes

The traditional method for finding the eGenes relies on the eQTL results explained above. Condi-

tioned on tissue t, from the eQTL result at each SNP s ∈ S on the expression of gene g, we have

a set of p-values {psgt}s∈S. The minimum of the set pgt = min {psgt}s∈S is the observed eGene

test statistic for g in tissue t. There is a p-value αpgt defined for this test statistic pgt [98]. This αpgt

is the eGene p-value and depends on two important factors: the number of SNPs |S| and the LD

of these SNPs. αpgt is estimated by the permutation test K times to correct for LD [26, 94]. In the

kth permutation, we permute the gene expression levels for the N individuals, and compute a new

p(k)gt = min {p(k)sgt}s∈S. The p-value αpgt is the rank of pgt with respect to the null density created

by the permutation values {p(k)gt }k∈K. If αpgt is less than some desired threshold, then we conclude

that g is an eGene in the tissue t. When |S| is large, the permutation test can be time-consuming.

Later, we will introduce an efficient approximation for the permutation test.

We present an important idea that will be a key factor in Section 2.5.1. The SNP effect

|β̂sgt| and its p-value psgt have a inverse one-to-one relationship, so that we can also use bgt =

max {|β̂sgt|}s∈S as the eGene test statistic instead of p(k)gt = min {p(k)sgt}s∈S. This observation

is particularly advantageous, because we will not need to compute the p-value psgt for each SNP

effect. In this case, the eGene p-value αbgt is also computed by doing a permutation test; however,

the null density is formed by the permutation values {b(k)gt }k∈K.

2.4 Multi-threshold association study for GWAS

The traditional method for discovering eGenes does not assume any prior information about the

SNPs. We develop a new strategy that emphasizes the SNP locations because SNPs located in

regulatory regions are more likely to affect the gene expression. Our strategy is based on the

multi-threshold association study developed by us [20, 32]. Our model Darnell et al. [20] was

designed for finding significant SNPs in a GWAS and not eQTLs for a gene expression. Because of

the similarity between GWAS and eQTL study, this model can be implemented to find eQTLs of

gene expression. Despite our GWAS model weighted each SNPs based on their own importance,

17

it assumed that these SNPs are independent. Applying our GWAS model without modifications

requires pruning cis-SNPs in high LD or expensive permutation test. It is however important to

understand how to adapt our previous model for the problem of finding eQTLs and then eGenes,

because this model serves as a foundation for the new method in this chapter.

From our work Darnell et al. [20], suppose that we are estimating the association of S SNPs

with respect to the expression of gene g in tissue t. From Section 2.3, we can compute the effects

{β̂sgt}s∈S of these SNPs against the gene expression. The statistical power of the association test

at one SNP s is the probability |β̂sgt| > F−1
H1

(1− αsgt/2) assuming that H1 : µi 6= 0 is true. FH1

is the cumulative distribution for β̂sgt under H1. αsgt is the significant threshold for SNP s; for

example, Bonferroni correction uses αsgt = 1/|S|. When the sample size N is large, Ps(αsgt, µi)

can be estimated with the cumulative normal distribution Φ.

Ps(αsgt) = P(|β̂sgt| ≥ F−1
H1

(1− αsgt/2)) (2.2)

= Φ(Φ−1(αsgt/2)− µi) + 1−Φ(Φ−1(1− αsgt/2)− µi) (2.3)

When the experiment involvesSSNPs, the statistical power is theweightedmeanP({αsgt}s∈S) =

∑S
s=1 ciPs(αsgt) where cs ≥ 0 for all s and ∑S

s=1 cs = 1 [32]. {cs}s∈S are numeric values rep-

resenting the relative importance of the SNPs with respect to the gene g. For example, SNPs in

regulatory regions are assigned larger cs than the other SNPs. For now, we assume that {cs}s∈S is

known beforehand. Later, we drop this assumption and estimate them from the data.

We now maximize P({αsgt}s∈S) with respect to {αsgt}s∈S. Intuitively, we are finding the best

set of nonuniform thresholds for the SNPs based on their relative importance. By maximizing the

power for detecting eQTLs of the gene g, we also increase the power for determining if g is an eGene.

To account for multiple testing, we constrain that αsgt ≥ 0 for all s and ∑M
i=1 αsgt = α, where α is

the overall significant threshold. We take the gradient of P({αsgt}s∈S) and the Lagrangian term

λ(1−∑S
s=1 αsgt) where λ is the Lagrangian. The optimal solution is obtained when the gradients

18

of any two SNP i and j in S are equal [20]

0.5 ci [φµi(Φ
−1(αigt/2)) + φ9µi(Φ

−1(αigt/2))]
φ0(Φ−1(αigt/2))

=

0.5 cj [φµj(Φ
−1(αjgt/2)) + φ9µj(Φ

−1(αjgt/2))]

φ0(Φ−1(αjgt/2))

(2.4)

φw represents the probability density for a normal distributionwithmeanw and variance 1. Φ−1(w)

represents the quantile with respect to w under a normal distribution with mean 0 and variance 1.

After we find {αsgt}s∈S satisfying Eq. 2.4, if the p-value psgt of β̂sgt is less than αsgt, then SNP

s is an eQTL for the gene g conditioned on the tissue t. If at least one SNP s ∈ S is an eQTL

then g is an eGene conditioned on tissue t. The method presented in this section accounts for SNP

locations; however there are two key problems. First, the formulation holds true only when SNPs

are independent. Second, solving for αsgt satisfying Eq. 2.4 can be time-consuming.

2.5 Multi-threshold association study for eQTLs and eGenes

We introduce a new eGene test statistic that accounts for the SNP locations but does not require the

solution for the αsgt. We also explain how the permutation test can be applied to correct for LD

of the SNPs. We interpret each gradient term in Eq. 2.4 as a likelihood ratio scaled by the SNP

relative importance cs, and define an equivalent form for the observe SNP effect β̂sgt.

gs(β̂sgt) =
0.5 cs [φµs(β̂sgt) + φ9µs(β̂sgt)]

φ0(β̂sgt)
(2.5)

Eq. 2.5 is the likelihood ratio evaluated at β̂sgt with the null hypothesis being H0 : βsgt = 0 and

the alternate hypothesis being the average of two hypotheses H1 : βsgt = µi and H1 : βsgt = 9µi.

We observe that gi(β̂sgt) is monotonic decreasing with respect to |β̂sgt|; that is, as |β̂sgt| gets

close to zero then gi(β̂sgt) gets larger. Suppose we test only a single SNP s against the gene g, then

instead of using β̂sgt or its p-value psgt, we can use the likelihood ratio gs(β̂sgt).

19

For many SNPs S, we define the new eGene test statistic based on the likelihood ratio to be

LRgt = max {gs(β̂sgt)}s∈S (2.6)

We use the name LRgt to indicate that our test statistic is based on the likelihood ratio formulation

and to differentiate it from the traditional value pgt. Here, SNPs with large cs values will contribute

more toward LRgt.

To compute the LD-corrected eGene p-value, we perform the traditional permutation test.

For each iteration k, we permute the gene expression levels for the N individuals but keep their

genotypes unchanged to account for the LD, and then compute the permutation test statistic LR(k)
gt .

The LD-corrected eGene p-value is αPt
LRgt

= 1
K ∑K

k=1 1(LRgt ≤ LR(k)
gt).

2.5.1 LD-corrected eGene p-value

Because there are thousands of genes in the GTEx data, the permutation test can take a very long

time. Sul et al. [94] introduced a sampling procedure, named eGene-Mvn, for computing the

eGene p-value that has lower runtime than the permutation test. Their model is designed for the

SNP effects {βsgt}s∈S but not the new test statistics {gs(β̂sgt)}s∈S. We adapt their approach to

estimate the p-value of our LRgt in the following way. Assuming the null hypothesis is true, in

the kth permutation iteration, we sample the SNP effects {β̂(k)
sgt}s∈S from the multivariate normal

distribution Mvn(0, Σ), and then calculate the eGene test statistic LR(k)
gt = max {β̂(k)

sgt}s∈S. The

covariance Σ ∈ RS×S is the LD for S SNPs and computed by 1
N XᵀX where X ∈ RN×S is the

genotype matrix.

The key assumption in eGene-Mvn is that cov(β̂ugt, β̂vgt) = Σuv for any SNP u, v ∈ S [43].

By default, the sampling process handles the correlations of SNPs. By sampling for {β̂(k)
sgt}s∈S, we

can also save time by avoiding to compute for these values by fitting Eq. 2.1. We define the eGene

p-value of this approximation to be αMvn
LRgt

= 1
K ∑K

k=1 1(LRgt ≤ LR(k)
gt).

The core of eGene-Mvn is the sampling from Mvn distribution which runs in O(S3) with

respect to the number of cis-SNPs. To avoid very high runtime, we divide the set S into smaller

20

subsets, and then take the maximum of the highest gs(β̂
(k)
sgt) in each subset to compute the eGene

test statistic LR(k)
gt . The permutation test has linear time with respect to the number of cis-SNPs.

Interestingly in practice, we observe that on average our approximation costs less time than the

permutation test. We compare the runtime of both approaches to compute the eGene p-values for

a subset of genes in the GTEx data of the liver tissue. In both cases, we have 97 individuals and

K = 1000 (e.g. the number of iterations in the permutation test or the number of samples from the

Mvn).

We observe that eGene-Mvn runs in polynomial time but grows at a lesser pace than the linear

time of permutation test for small S (Fig. 2.1). In the GTEx data of the liver tissues, 95% of the

genes have less than 6833 cis-SNPs. In practice, the polynomial runtime of eGene-Mvn does not

strictly invalidate its application. Because the permutation test is considered as the gold-standard,

we will later compare the permutation test and eGene-Mvn.

Figure 2.1: Permutation test and eGene-Mvn runtime to compute eGene p-values.

0

100

200

300

400

2000 4000 6000
Num. cis−variants per gene

T
im

e
(s

ec
on

ds
)

mvn
permutation

Computational time

2.5.2 Estimate SNP prior information from data

Despite knowing that SNPs should beweighted based on their locations, wewill not know the values

of the weights {cs}s∈S. We introduce a heuristic approach to estimate these values. Suppose there

are J types of regulatory regions (e.g. TSS, DNAse and histone binding sites). We assign each type

a weight wj, so that the contribution of a SNP s is us = ∑J
j=1 wj1(s ∈ j) and cs is computed as

21

cs = us/∑S
k=1 uk. We assume that the weights {wj}j∈J interact linearly, but it is possible to model

interaction among these annotations. We observe that cs scales the likelihood ratio in gs(β̂sgt)

which are then later used to find the test statistics LRgt. For a grid search on {wj}j∈J , we need to

compute the likelihood ratio at each SNP only once, which helps reducing runtime.

We apply grid search to find {wj}j∈J for a small subset of genes in the liver tissue, and use

the following heuristic strategy to reduce the computation time when there are many types J.

Conditioned on a guess w(k) = {w(k)
j }j∈J in the grid search, let LRgt(w(k)) be the test statistic

computed at the weights w(k). At a gene g there exists a value xg(w(k)) such that g is a an eGene

when LRgt(w(k)) > xg(w(k)). In a gene set G, with the choice w(k), the value xg(w(k)) for

g ∈ G will determine the number of discovered eGenes. From the value xg(w(k)), we aim to infer

the quantity computed at another set of weights xg(w(`)).

We pick a starting weight set w(0) and compute the value xg(w(0)) for all gene g ∈ G. Next

we apply grid search to a small subset G1 of G, and compute xg(w(k)) for every choice. Then we

estimate a linear relationship for xg(w(0)) and xg(w(k)) as

δ(w(k), w(0)) =
1
|G1| ∑

g∈G1

xg(w(k))

xg(w(0))
(2.7)

Now we can estimate the values xg(w(k)) = δ(w(k), w(0))xg(w(0)) for the rest of the genes

g ∈ G \G1, so that we do not perform the grid search on the entire set G. The best choice for w(k)

is the one that returns the most number of discovered eGenes on the set G.

Our strategy can be applied with the permutation test or eGene-Mvn. We emphasize that our

approximation is heuristic and finds an option for w(k) that is good enough. Because we determine

w(k) from the data, to avoid data reusing we divide the data into two subsets. We obtain best w(k)

in each set and then apply this solution to the other set.

22

2.6 The Genotype-Tissue Expression data

We briefly describe the Genotype-Tissue Expression (GTEx) Pilot Dataset version 6 released on

January 12, 2015 [98]. The GTEx consortium collected tissue samples from 544 donors for 44

body tissues, and measured the gene expression level in each sample by evaluating the amount of

RNA being expressed by each gene. The genotype of each person was imputed, with about 6.8

million SNPs of minor allele frequency above 5% after quality control. There were 40,490 genes

measured with respect to all the body tissues. For some tissues, it was difficult to collect samples,

resulting in few data points. For example, the nine brain tissue datasets had a median sample size of

90 people. There were more observations for the tissues which were easy to collect samples from;

for instance, whole blood and subcutaneous adipose tissue had 338 and 298 samples, respectively.

In 2015, the GTEx pilot analysis suggested a sufficient sample size ≥ 80 donors for single-tissue

eQTL study.

2.7 False-positive rate simulation

This simulation assumes the true hypothesis to be the null hypothesis which claims that gene g is

not an eGene in tissue t. We want to confirm that our eGene test statistic LRgt produces the correct

false-positive rate regardless of whether we implement the permutation test or eGene-Mvn. We

consider the simplest case and measure the false-positive rate for just one single gene, because this

single value will affect the overall false-positive rate when we jointly test many genes in a tissue.

We simulate many datasets under the null hypothesis. Each time, we apply the uniform and

nonuniform prior for the SNPs, and compute LRgt and its p-value with the permutation test and

eGene-Mvn (in total 4 experiments). Because we are testing one gene, a simulated eGene p-value

less than 0.05 is a false-positive. Regardless of the SNP prior information and the choice of

permutation test or eGene-Mvn, the distribution of the simulated p-values should align well with

the uniform distribution (and the fraction of times a simulated p-value is less than 0.05 should

be very close to 0.05). Also, the Mvn sampling method should display the same results as the

permutation test.

23

Figure 2.2a shows that these expectations are true for the simulated distributions of the permu-

tation test and eGene-Mvn p-values αPt
LRgt

and αMvn
LRgt

. In each experiment, the QQ plot with respect

to the uniform density shows that the simulated distribution aligns well with the uniform density.

When we apply the uniform prior, the permutation test and eGene-Mvn return false-positive rates

for LRgt of 0.046 and 0.044, respectively. For the nonuniform prior, the same two numbers are

0.051 and 0.052. Below, we explain how to generate the data and compute the results in Fig. 2.2a.

For a realistic simulated experiment where LD can affect the outcome, we use the gene TCEA3

in chromosome 1 that has 3872 cis-SNPs. We define the region 150 kilobases up and downstream

from the TSS as the TSS150 region. 431 of the cis-SNPs are within its this region. We evaluate

the permutation test and eGene-Mvn for two cases: the uniform prior where all SNPs are equally

weighted (e.g. cs = 1/|S|), and the nonuniform prior where SNPs inside TSS are weighted 100

times more (e.g. ci = 100cj for i ∈ TSS150 and j /∈ TSS150). We also try a different relative weight

option in Section 2.10. Next, we select the true SNP effect under the alternative µs = 3.5 for all

s ∈ S; this number is the mean of all the observed SNP effects in the entire gene expression data

of the liver tissue. We will propose other ways to select µs in the discussion section.

The permutation test has 104 iterations (same as the original GTEx pilot study). Each time,

we permute TCEA3 expression levels in the liver tissue for the 97 individuals and keep their

genotype fixed, and then compute the eGene p-value. Because eGene-Mvn runs faster than the

permutation test, we can generate more than 104 samples. We draw 106 samples from the null

density Mvn(0, Σ), and compute the corresponding eGene p-value for each sample. Σ is computed

as the LD of the 3872 cis-SNPs. The false-positive rate is the fraction of times the eGene p-value

is less than 0.05. Because we generate more samples for eGene-Mvn, there is a higher chance to

observe a simulated p-value below 0.05. Despite being at a disadvantage compared to permutation

test, eGene-Mvn can obtain a good false-positive rate in our simulation.

24

2.8 Statistical power simulation

When provided with meaningful SNP prior information, our test statistic LRgt increases the power

to detect eGenes. The statistical power of finding one eQTL will affect the overall power of the

whole study which involved all the gene’s cis-SNPs. We consider this simple case and perform the

simulation for which there exists just one eQTL for the gene expression. We test both the uniform

and the nonuniform priors for the SNPs. The weights {cs}s∈S for each prior type are taken from the

false-positive rate simulation. Compared to the uniform prior, the nonuniform prior significantly

increases the statistical power (Fig. 2.2b). For each prior, the permutation test and eGene-Mvn are

the same, indicating that our eGene-Mvn adaptation works well. Below, we explain how the data

is generated to compute the results in Fig. 2.2b.

Each simulation study has 97 individuals, same as the true number of samples in the liver

tissue. The gene expression levels for these people are generated based on the equation y =

xeQTLβeQTL+ ε, where xeQTL ∈ R97 and βeQTL are the genotypes and true effect size of the eQTL.

ε ∈ R97 is the random noise drawn from Mvn(0, Iσ2) where I ∈ R97×97 is the identity matrix.

We vary σ from 0 to 1.5, and at each instance, perform the simulation study 200 times to evaluate

the statistical power. When σ is large, the randomness factor dominates the eQTL effect, and the

power for finding associations of the SNPs and gene expression should decrease. This specific case

serves as a sanity test for our result.

To consider LD, we generate the gene expressions based on the 3872 cis-SNPs of TCEA3. We

choose the eQTL as the SNP in the TSS150kb region of TCEA3 that has the highest observed |β̂sgt|

on the expression of TCEA3 in the liver tissue. Denote this effect size as βmax and the genotypes

for the corresponding SNP as xsmax . We generate the gene expression using y = xsmax βmax + ε.

We set xsmax as the real genotypes of the 97 individuals in the liver tissue. After simulating the

expression y, we perform the association test at each of the 3872 cis-SNPs and then compute the

eGene p-value using the permutation test and eGene-Mvn. Because we are testing only one single

gene, suppose the eGene p-value is less than 0.05 then we consider this gene to be an eGene.

25

Figure 2.2: Prior on the TSS150kb region is applied to multi-threshold association study for eGenes.
100/1 indicates that relative weights are ci = 100cj for i ∈ TSS150kb and j /∈ TSS150kb. Number 1/1
indicates a uniform prior for cis-SNPs of a gene. (a) Quantiles of uniform density versus quantiles
of many eGene p-values simulated under null hypothesis. (b) Simulated statistical power under
alternative hypothesis.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Uniform density

S
im

ul
at

ed
 e

G
en

e
p−

va
lu

e

permu 1/1
permu 100/1
mvn 1/1
mvn 100/1

Quantile−quantile plot

(a)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Noise σ

Tr
ue

 p
os

iti
ve

 r
at

e

permu 1/1
permu 100/1
mvn 1/1
mvn 100/1

Simulated statistical power

(b)

2.9 Model transcription start sites

For proof-of-concept, we apply our method to the pilot GTEx data of the liver, which has 97 samples

and expression measurements for 21,868 genes in 22 autosomal chromosomes [98]. Following the

GTEx consortium, we consider only the cis-SNPs of each gene which are SNPs located within

1 Megabase upstream and downstream of the TSS. The average number of cis-SNPs per gene is

4681. We define SNPs to be in the TSS150kb region if they are within 150 Kilobase upstream and

downstream of the TSS for a gene. The average fraction of SNPs inside this region is 14.74%.

For the simplicity sake, we use one single type of SNP location information and weigh the cis-

SNPs within the TSS150kb 100 times more than the other cis-SNPs (e.g. ci = 100cj for i ∈ TSS150kb

and j /∈ TSS150kb). Because there are two ways to compute the eGene p-values (permutation test

versus eGene-Mvn), we compute the test statistics LRgt and its eGene p-value with both approaches

(so that there are four experiments). An eGene p-value is computed with 106 iterations for eGene-

Mvn, and with 104 iterations for the permutation test (same iteration number in GTEx pilot study)

26

[98]. For eGene-Mvn, we divide the cis-SNPs into independent segments of length 500 Kilobase,

and perform the Mvn sampling to each block. The final eGene p-value for the gene is the minimum

p-value over taken all the segments. This strategy keeps the runtime of Mvn samplingO(S3) from

getting very high.

Following the GTEx pilot analysis, we control for the total false discovery rate on the entire

gene set G by transforming the set of eGene p-values {αLRgt}g∈G into q-values {qLRgt}g∈G. Genes

with q-values less than 0.05 are classified as eGenes [90, 98]. One key assumption for producing

valid q-values is that the distribution of the eGene p-values must have a relatively flat right tail [90],

and our p-value set {αLRgt}g∈G meet this condition (Fig. 2.3).

Table 2.1 shows the number of discovered eGenes increases by 57% when using just the TSS

as the SNP location formation. There are small differences between the permutation test and

eGene-Mvn for computing the eGene p-values (and thus the two methods also produce different

q-values). To quantify the differences, we compare {αMvn
LRgt
}g∈G and {αpt

LRgt
}g∈G. Visually, the two

sets are very similar (Fig. 2.4a), and the absolute difference |αMvn
LRgt
− α

pt
LRgt
| is less than 0.10 for

almost all g ∈ G (Fig. 2.4b). We also compare the q-values {qMvn
LRgt
}g∈G and {qptLRgt

}g∈G and do

not observe significant differences (Fig. 2.4c and 2.4d).

The permutation test and eGene-Mvn agree on 2379 eGenes in the GTEx liver tissue dataset.

Because the permutation test is considered as the gold-standard, we have that {qMvn
LRgt
}g∈G approx-

imate {qptLRgt
}g∈G. We analyze the false negative and false positive cases for the Mvn sampling

method. For the 66 false negative cases, their maximum and median q-value are 0.079 and 0.053.

For the 70 false positive cases, their minimum and median q-value are 0.028 and 0.045. We ob-

serve that these incorrect cases are genes having borderline q-values and are very hard to classify.

Because in practice eGene-Mvn method has lower runtime than permutation test, we will apply

only eGene-Mvn for estimating eGene p-values for the rest of this paper and accept that there are

small errors.

27

Figure 2.3: Histograms for eGene p-values of all the genes in Liver data computed by (a) permu-
tation test and (b) eGene-Mvn. Assumption for valid q-values is that eGene p-value distribution
should have flat right end. Both ways to compute eGene p-values satisfy this condition.

(a) (b)

Table 2.1: Number of eGenes (out of 21,868 genes in the Liver) for each option of uniform versus
TSS prior and permutation test versus eGene-Mvn. is_eGene is an indicator for eGene. Conditioned
on an option to compute eGene p-values, overlap1 indicates the number of eGenes (or not) found by
uniform and TSS prior data. Conditioned on a type of SNP location information, overlap2 indicates
the number of eGenes (or not) found by permutation test and eGene-Mvn. Permutation test is the
gold-standard, and we do not observe significant differences for our eGene-Mvn implementation.

permu. mvn overlap2

is_eGene yes no yes no yes no

uniform 1626 20,242 1582 20,286 1549 20,209
TSS150kb 2445 19,423 2449 19,419 2379 19,353

overlap1 1484 19,281 1457 19,294

28

Figure 2.4: Visual comparison for (a) eGene p-values and (c) their q-values computed via permu-
tation test and eGene-Mvn. Numerical comparison for the differences of (b) eGene p-values and
(d) their q-values computed via permutation test and eGene-Mvn. eGene-Mvn overestimates large
q-values in the permutation test, but this problem does not affect our result because large q-values
will not be significant.

(a) (b)

(c) (d)

29

2.10 Model DNase hypersensitive sites

For the liver tissue data, we integrate into the eGene test statistic the TSS150kb region and DNase

hypersensitive sites as the two types of prior information, and determine their weights {wj}j∈J from

the data, where J = {TSS150kb,DNase site, neither}. We define SNPs to be in the DNase sites if

they are within the DNase hypersensitivity narrow gapped peaks of the Roadmap data [99]. DNase

binding sites are usually indicators of accessible DNA regions. In these regions, SNPs which are

eQLTs were found to be more likely to affect gene expression [23]. For the 21,868 genes in the

GTEx data of the liver tissue, the average fraction of cis-SNPs in the TSS150kb regions, DNase

binding sites, and their intersection are 14.74%, 4.66%, and 0.88%, respectively.

We use w = [w1, w2, w3] to represent the weights for the annotation types: TSS150kb, DNase

site, and neither. Only the relative weights matter; for example, the values [1, 1, 1] and [10, 10, 10]

will result in the same set of {cs}s∈S for the SNPs. We constrain each of w1, w2, and w3 to

be between 100 times more and less than the other two, and then apply Section 2.5.2 to find the

supposedly best w.

We begin with the first guess w(0) = [1, 1, 1] and compute the eGene p-values for all the genes

in the data. w(0) is the uniform prior and we already have its result in Section 2.9. For each gene,

we save the quantile xg(w(0)) corresponding to the p-value threshold αsgt = 0.01 which is about

the largest eGene p-value that has q-value less than 0.05 for our data.

At another choice w(k), we compute the observed test statistic LRgt(w(k)) for each gene as

xg(w(k)) = δ(w(k), w(0))xg(w(0)) as explained in Section 2.5.2. We compute the number of

eGenes by counting the number of times LRgt(w(k)) > xg(w(k)) for all g ∈ G. For a few choices

of w(k), we apply eGene-Mvn without our approximation, and find the two results to be comparable

(Table 2.2). Modeling the SNP prior based on just the TSS150kb region yields the best results.

To validate the above conclusion, we estimate the effect of the TSS150kb or DNase binding sites

alone. We perform a complete grid search on w. Grid search is feasible because this step requires

solving for w1 in w while fixing w2 = w3 = 1. The same logic applies when we model just the

DNase sites, where we vary w2 and keep w1 = w3 = 1. We find that TSS150kb indeed has more

30

Table 2.2: Number of eGenes for the best 19 choices of w found via our estimation in Section
2.5.2. Subscripts are numbers computed via full grid-search to judge the approximation accuracy.
Typically, downweighing SNPs located in TSS150kb reduces the number of discovered eGenes
compared to the traditional eQTL study without any SNP prior information (italicized number).

TSS150kb DNase Other eGenes

100 1 1 2493 2449
100 10 1 2489 2449
100 1 10 2473 2413
10 1 1 2450
10 10 1 2331

100 100 1 2329
10 1 10 2060
1 10 1 2032

100 1 100 2014
10 100 1 1991

1 100 10 1904
1 100 1 1890 1834
1 10 10 1747
1 100 100 1673
1 1 1 1582

1 1 10 1579
10 1 100 1548
1 10 100 1391
1 1 100 1280

impact than DNase sites. For the liver tissue, it is best to upweigh the cis-SNPs inside TSS150kb by

60 times (Table 2.3).

For simplicity, in the following, we write one number for the weights w2 and w3; for example,

we write w = [100, 1] instead of w = [100, 1, 1]. As a sanity test, we simulate the false-positive

and statistical power using w = [60, 1] to specify the SNP prior in the TSS150kb region of the gene

TCEA3 in Section 2.7 and 2.8. TCEA3 may has its own optimal w which may be different from

w = [60, 1]. w = [60, 1] is best when evaluated on the entire liver data and not specifically for

gene TCEA3. For TCEA3, the false-positive rate at w = [60, 1] is not inflated, and the statistical

power is not worse than the guess w = [100, 1] in Section 2.8 (Fig. 2.5).

31

Figure 2.5: TSS prior is applied to multi-threshold association study for eGenes. 60/1 indicates
that relative weights are ci = 60cj for i ∈ TSS150kb and j /∈ TSS150kb. Same logic applies
for 100/1. (a) Quantiles of uniform density versus quantiles of many eGene p-values simulated
under null hypothesis. (b) Simulated statistical power where the eGene p-values are computed by
Mvn-sampling at two different prior options.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Uniform density

S
im

ul
at

ed
 e

G
en

e
p−

va
lu

e

permu 60/1
mvn 60/1

Quantile−quantile plot

(a)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Noise σ

Tr
ue

 p
os

iti
ve

 r
at

e

mvn 100/1
mvn 60/1

Power at dif. prior weights

(b)

2.11 Model histone modification sites

Histones are proteins which the DNA wraps around into compact form [53]. We consider the

same histone and six of its modifications: H3K27ac, H3K4me1, H3K4me3, H3K9ac, H3K27me3,

and H3K9me3. These modifications are of two major types, acetylation and methylation, and are

associated with different levels of gene expression. For example, trimethylation of the histone

H3 lysine 4 (H3K4me3) has been found to be correlated with promoter regions of active genes

[11, 40, 89]. Different genomic regions have their own affinity for each modification type [99]. For

eQTL studies, we want to nonuniformly weigh the effects of SNPs located inside and outside these

regions. We do not have the computational resources to evaluate all the combinations of these

annotation types. In this experiment, we separately measure the impact of each histone annotation

so that we can at least provide some overview of which type is the most useful for discovering

eGenes. Wemodel whether SNPs are in a histone annotation or not, and then apply grid search to get

the best weight w = [win site, wnot in] for this annotation (and not use any approximation strategy).

32

Modeling the importance of SNPs based on their presence in a histone annotation increases the

number of discovered eGenes (Table 2.3). However, the effect is less prominent compared to

modeling just the TSS150kb region.

Table 2.3: Number of eGenes in the liver tissues (21,868 genes in total) for each SNP information
type, in decreasing order. Weight w = [win site, wnot in] is found via grid search in the range [1, 100]
with increment of 10. Superscript a or s indicates that a histone modification is associated with
gene activation or suppression. Upweighing SNPs in sites of histone modifications associated with
gene activation increases the number of candidate eGenes. Ave. freq. is the fraction of cis-SNPs
located in the annotation averaged over all the genes.

Type Ave. freq. (%) win site wnot in eGenes

TSS150kb 14.74 60 1 2479
H3K27aca 12.25 40 1 1944
H3K4me3a 7.73 50 1 1917

H3K27me3s 7.26 1 70 1880
H3K9me3s 11.92 1 50 1879
H3K9aca 9.74 100 1 1861

H3K4me1a 16.38 80 1 1858
DNase 4.66 100 1 1834
None 100 1 1 1582

2.12 Summary and discussion

The flow of information from genetic diversity to phenotypic variations begins with the SNPs, to

gene expression, to protein functions, and then to the phenotype of interest. Traditional GWAS

focuses on the two endpoints, correlating the SNPs with the phenotype, and so cannot provide very

detail explanation about the causal mechanism (e.g. which genes are most likely to be responsible

for the trait). More importantly, significant SNPs from GWAS were found primarily in noncoding

regions of the genome, suggesting that these SNPs are involved in regulations of gene expressions.

In this chapter, we improve the traditional eQTL study that detects association for the cis-SNPs of

a gene and the expressions of that gene. Our objective is to discover a high number of eGenes.

eGenes are the genes that are not just statistically highly expressed but also possible candidates

for future causal analysis of phenotypic variations (because expression of eGenes are linked to the

33

SNPs which differ for each person).

To discover more eGenes, we leverage extra information about the cis-SNPs. We upweigh

SNPs in important regions so that these SNPs have higher chances of being found associated to

the gene expression. We evaluate three types of region: TSS150kb, DNase hypersensitive sites, and

histone modification sites. DNase sites and histone modification sites are parts of the epigenomic

information [99]. TSS150kb region is not a part of epigenomic data, but it is inherently important

because this is likely where the transcription factors begin transcribing the genes. For the liver

tissue, TSS150kb has the most impact versus DNase hypersensitive sites and histone modification

sites.

From the technical view, our new model is built on our previous works designed for GWAS

[20, 32]. We make two key changes in our new model. First, to reduce p-value computation time,

we replace the permutation test with eGene-Mvn. Second, our new model takes more than one type

of prior information on the SNPs. Currently, the SNP prior is modeled as a step-function, where

the effect is wj1SNP in type j. There can be more complex priors; for example, we can scale the SNP

importance according to its distance to the TSS (the same logic applies for DNase hypersensitivity

and histone modification sites).

We also want to discuss that, in all the experiments, we select the alternative SNP effect to be

µs = 3.5 in Eq. 2.5 for all the cis-SNPs. This number is the average of all the observed SNP effects

in the liver data. In our previous studies, we empirically showed that different choices of the SNP

effect size in the alternative hypothesis do not greatly affect the outcome [20, 32]. There is a way

to select the SNP effect µs in the alternative hypothesis: we can assume some continuous prior

density on µs and then integrate over its valid domain [8, 48, 49]. This idea is one interesting future

research plan. In any case, our choice of µs = 3.5 for the alternative hypothesis is not optimal, yet

we have already discovered many more eGenes compared to the traditional approach. We expect

that more sophisticated technique for solving Eq. 2.5 to perform even better.

From the application view, we are analyzing just one tissue dataset at a time, and still face the

problem of low sample sizes for many tissues. In Chapter 3, we explain ways to analyze datasets

with low sample sizes.

34

CHAPTER 3

Meta-analysis model to discover eGenes

3.1 Introduction

Chapter 2 explains how to discover eGenes in one tissue. In 2015, the GTEx data contains few

samples in many tissues, where the median is 126 samples/tissue. Low sample sizes make it very

hard to detect eQTLs, particularly eQTLs with low association strengths [33]. For this reason, it

is not always possible to find many eGenes in each tissue. By combining multiple tissue datasets,

we can increase the statistical power to identify eGenes in at least one tissues, which will provide

additional useful knowledge.

To recap, a gene is defined as an eGene in a tissue when its expression in this tissue is associated

with at least one of its cis-SNPs. To discover eGenes in each of the 44 tissues in the GTEx data, the

GTEx consortium applied the tissue-by-tissue (TBT) procedure which comprises of independent

eQTL studies performed for each gene in every tissue [98]. The type of eQTL study implemented

is the traditional association study in Section 2.3. The number of discovered eGenes by the TBT

procedure relies on how well the eQTL studies estimate the association strengths for the SNPs on

the gene expressions.

When the GTEx consortium first started collecting data, many tissues did not have enough

samples to reliably compute the SNP effects on the gene expressions. TBT method may fail to

find true eQTLs, and the statistical power for eGene discovery would also decrease. Since then,

there have been efforts in developing methods for finding the eQTLs by combining the expression

datasets of this gene from many tissues. Intuitively, when combing many datasets, we increase the

total sample size which should raise the statistical power for finding the eQTLs. This outcome in

35

turn will also improve the number of discovered eGenes for the whole GTEx data.

We first discuss the twomain strategies for combining datasets frommany tissues to find eQTLs.

The first one combines the individual-level data of each tissue into one single larger dataset, and then

measures the SNP effects for this larger dataset. The second idea applies meta-analysis to combine

SNP effects which were already independently estimated for each tissue. Below we discuss a few

methods for each approach, and explain the method that the GTEx consortium selected for their

analysis.

Meta-Tissue and eQtlBma are two methods adapting the first strategy [35, 93]. Meta-Tissue

combines individual-level data frommany tissues into one large dataset, and then estimates the SNP

effects on the expression level of a gene, by applying linear mixed model (LMM) with dependent

variables specifying the tissue in which an observation comes from. Because Meta-Tissue solves

for the LMM parameters for every SNP-gene pair, its runtime is not yet practical when there are

thousands of genes in many tissues as in the GTEx data [93]. eQtlBma models a binary vector

specifying the tissues in which a SNP is considered as an eQTL for a specific gene [35]. eQtlBma

requires computing the probabilities for the 2T possible configurations for all the cis-SNPs of a

gene, where T is the number of tissues, and is also not yet practical for the GTEx data which has

44 tissues.

Metasoft is a software that follows the second strategy, and implements both fixed and random

effects meta-analysis to combine the effects of the same SNP on the expression of the same gene

in many tissues [41, 42]. Meta-analysis does not require individual-level data and can be applied

to the SNP effects which the GTEx consortium has already computed for every SNP-gene pair in

each tissue. Metasoft requires much less computation power than Meta-Tissue and eQtlBma, and

can be applied to the 44 tissues in the GTEx data.

GTEx consortium has been using the random effects (RE) meta-analysis of Metasoft for dis-

covering whether a gene is an eGene with respect to a set of body tissues [98]. Metasoft cannot

determine the specific tissues in which a gene is classified as eGene. However, it is still meaningful

to identify all the eGenes in the GTEx data, so that we have a list of all possible candidate genes

affecting a specific disease. We will provide an example of this case in the result section.

36

Meta-Tissue, eQtlBma, and Metasoft assume that the same SNP has independent effect on

the expression of the same gene in each tissue. Yet, the GTEx consortium has found that, in

across tissues, the same SNP usually exhibits correlated effect sizes on the expression of the same

gene [98]. In this chapter, we introduce a novel meta-analysis method (RECOV) that models this

empirical evidence. RECOV is based on the RE meta-analysis, but the innovation is that RECOV

has a covariance matrix to capture the correlations among the effect sizes of the same SNP on the

expression of the same gene in many tissues.

Because the initial step for discovering eGenes requires us to find the eQTLs, we will first

explain how the traditional TBT method, the RE meta-analysis, and our model RECOV find the

eQTLs for a specific gene from datasets of many tissues. We then describe the subsequent steps

needed for these methods to classify eGenes. We apply the three methods on all 44 tissues of the

GTEx data, and analyze the cases for which one of these methods is more applicable than the other

two. Our software is at https://github.com/datduong/RECOV.

3.2 Tissue-by-tissue analysis

From the notations in Chapter 2, suppose we have G number of genes and T number of tissues. The

tissue-by-tissue (TBT) method applies the traditional eQTL study in Chapter 2.3 to the expression

data of every gene g ∈ G for each tissue t ∈ T [98]. In tissue t, if at least one cis-SNPs of g are

associated to its expression, then g is classified as an eGene in t. When gene g is expressed in T

tissues, then TBT would perform T number of eQTL studies, one study per tissue.

Three levels of multiple testing correction are required because TBT applies one eQTL study

per gene in each tissue in the whole GTEx data. The first layer is done within a tissue to correct

for the LD of the cis-SNPs of g. Here, the GTEx consortium used the permutation test to estimate

the eGene p-value of g in each tissue t. The second layer considers the fact that we test many

genes in a tissue, possibly thousand of genes in each tissue. The GTEx consortium transformed the

eGene p-values into eGene q-values to account for multiple testing across T total tissues [19, 98].

The third layer handles the fact that the same gene is tested T number of times, once per tissue

37

https://github.com/datduong/RECOV

[93]. We apply Bonferroni correction where the false-positive rate threshold for the q-values in a

tissue becomes α/T. There are other multiple testing correction strategies. However, evaluating

the effects of different multiple testing correction methods is beyond our scope, as we will focus on

developing meta-analysis method for eGene discovery.

3.3 Random effects meta-analysis for multiple eQTL studies

The statistical power for discovering eGenes depends on the statistical power for finding eQTLs of

the genes. When a tissue has large enough sample size so that the SNP effects can be well estimated,

then the TBT method works fine. The pilot GTEx data in 2015 however contains few samples for

many tissues. One idea for increasing the statistical power of finding eQTLs is to increase the

sample size, but collecting more samples is not always feasible. Instead, we can jointly analyze

results of the datasets from many tissues, so that we would increase the total sample size when

estimating the SNP effects on the gene expression. Meta-analysis provides the base solution for us

to perform this exact task. Below, we explain the meta-analysis baseline to combine the individual

eQTL results from many tissues, and then describe our new meta-analysis RECOV that models the

correlation of the effects of the same SNP on the same gene in all the tissues.

We define the notations used in this chapter, some of which follow directly from Chapter 2.

Suppose there are T number of eQTL studies (one per tissue) that measure the association of SNP

s on the gene g. Like before, denote the observed effect of SNP s on gene g in tissue t as β̂sgt

which is computed by Eq. 2.1. Let β̂sg ∈ RT be the vector that contains the observed effects

of the same SNP s on the same gene g in the T tissues, where β̂sg = [β̂sg1 . . . β̂sgT]
ᵀ. Let

V̂sg = diag(v̂ar(β̂sg1) . . . v̂ar(β̂sgT)) be the diagonal matrix containing the estimated variances

of {β̂sgt}t∈T.

The random effects (RE) meta-analysis assumes that the vector β̂sg is an instance of the random

variable βsg which has the following underlying generation [41, 100]

βsg = λsg + εsg (3.1)

38

The random variable εsg ∈ RT represents the random sampling error assumed to be εsg ∼

N(0, Vsg). The random variable λsg ∈ RT is known in the meta-analysis literature as the random

effect and has the following distribution λsg ∼ N(µsg1, τ2
sgI) with µsg ∈ R, τ2

sg ≥ 0, and

I ∈ RT×T is the identity matrix. µsg is the true shared value that the each effect of s on g in each

tissue t inherits. τ2
sg is the heterogeneity for the effects of the same SNP s on g in all T tissues.

When τ2
sg is near zero, the vector β̂sg will contain values closely centered at µsg. In this case,

all the values βsgt will be similar, indicating that there is low heterogeneity (assuming that Vsg

is also close to zero). The interpretation is reversed when τ2
sg is very large. Here, there is high

heterogeneity because all the βsgt will be distributed far from µsg. Based on this generation, β̂sg is

an instance of the random variable βsg that has the following the distribution

βsg ∼ N(µsg1, τ2
sgI + Vsg) (3.2)

Now Vsg can be estimated as V̂sg. There are two unknown parameters µsg and τ2
sg. The RE

model assumes that, under the null hypothesis the SNP s does not affect gene g in all T tissues,

so that we have µsg = 0. Han and Eskin [41] however showed that this hypothesis does not have

optimal power for finding eQTLs, and introduced a modification to the RE meta-analysis, named

RE2 in their software Metasoft. The RE2 null hypothesis states that suppose s does not affect g in

T tissues, then µsg = 0 and τ2
sg = 0. Under RE2 null hypothesis, the effect λsg is not a random

variable but is a fixed at zero, and the observed β̂sg is attributed by just the random sampling error

εsg [41, 42].

The null hypothesis in RE2 model is H0 : µsg = 0, τ2
sg = 0, and the log likelihood ratio to test

this hypothesis is

`sg = 2 log
supµsg,τ2

sg
L(β̂sg|µsg, τ2

sg)

L(β̂sg|µsg = 0, τ2
sg = 0)

(3.3)

The function L denotes the likelihood of β̂sg based on the multivariate normal distribution having

the parameter µsg and τ2
sg (Eq. 3.2). The numerator supµsg,τ2

sg
L(β̂sg|µsg, τ2

sg) can be estimated by

derivative-based methods or other heuristic approaches. We apply the Nelder-Mead method which

is a derivative-free heuristic approach. While finding the supremum, we need τ2
sg ≥ 0, and this

39

restricted parameter space makes the asymptotic density of the likelihood ratio `sg to be an average

of two chi-square distributions χ2
1 and χ2

2 (we will denote this mixed distribution as χ2
1+2) [41, 84].

When the number of tissues T is large, this asymptotic density estimates the p-value of the

likelihood ratio. Because GTEx pilot data in 2015 contains 44 tissues, we will use this asymptotic

distribution of the likelihood ratio. Otherwise, we need to compute the p-value by doing a

permutation test. For the kth permutation, we permute the gene expression levels of the individuals

in each tissue dataset, and then compute the test statistic `(k)sg . We repeat the permutation K total

times to get the set {`(k)sg }k∈K. The p-value of the observed `sg is its rank with respect to {`(k)sg }k∈K.

When this p-value is less than some significant threshold, then SNP s is an eQTL for the gene g in

at least one of the T tissue.

3.4 RECOV: Random effects meta-analysis with covariance

The RE2 alternative hypothesis assumes that the random effects λsg ∼ N(µsg1, τ2
sgI) has a diagonal

covariance matrix, specifying that the effects of SNP s on gene g in T tissues are independent.

The GTEx Consortium [98] however observed that the same SNPs are consistently found as eQTLs

for the same genes in many tissues. For instance, in their analysis, more than 50% of all detected

eQTLs are common in the adipose, tibial artery, left ventricle of heart, lung, muscle, tibial nerve,

skin, thyroid, and whole blood tissue. To capture this observation, our new model RECOV meta-

analysis specifies a different distribution for the random effects where λsg ∼ N(µsg1, Σsg) and Σsg

is non-diagonal. Σsg ∈ RT×T represents the covariance of the effect sizes of SNP s on gene g in all

T tissues. Due to symmetry, Σsg contains T2/2− T unknown parameters. We assume a simpler

form for Σsg and set Σsg = csgUsg. Usg ∈ RT×T is unknown but can be estimated from the data

without doing optimization. µsg and csg ≥ 0 are unknown parameters to be optimized.

From the data, we estimate Usg for each SNP-gene pair s, g as follows. Denote the matrix

Bg ∈ RT×S where Bg = [β̂1g . . . β̂Sg]. A column vector β̂sg in matrix Bg contains the observed

effects of SNP s on gene g in all T tissues. We aim to use Bg to estimate Usg. When analyzing a

SNP s, we need to remove its information from Bg to avoid circular reasoning. We partition the cis-

40

SNPs into ten separate continuous segments based on their physical locations on the chromosome,

and then compute Usg from the nine segments that do not contain s. Denote B9sg as the matrix

Bg without the columns corresponding to all the SNPs found in the same segment as the SNP s.

Usg is then computed by Usg = B9sgBᵀ
9sg after applying proper scaling to B9sg. This computation

follows the same principle for how a kinship matrix is estimated from the genotype data [33].

In RECOV, we still assume the SNP effects of s on g in T tissues to be βsg = λsg + εsg. Unlike

before, we now have λsg ∼ N(µsg1, csgUsg) and εsg ∼ N(0, Vsg). Based on this new generative

process, the observed β̂sg is an instance of the randomvariable βsg that has the following distribution

βsg ∼ N(µsg1, csgUsg + Vsg) (3.4)

Again, V̂sg estimates Vsg, and µsg and csg are unknown parameters. RECOV null hypothesis is

the same like in RE2 meta-analysis that is, H0 : µsg = 0, csg = 0 to imply that s does not affect

g in all T tissues (e.g. s is not an eQTL of g in all T tissues). The log likelihood ratio to test this

hypothesis becomes

`sg = 2 log
supµsg, csg

L(β̂sg|µsg, csg, Usg)

L(β̂sg|µsg = 0, csg = 0)
(3.5)

Similar to RE2 meta-analysis, to find the supremum in the numerator, we need csg ≥ 0. This

restricted parameter space makes the asymptotic density of `sg to be an average of the two chi-

square distributions χ2
1 and χ2

2. Otherwise, we can compute the empirical p-value of `sg with the

permutation test where in every permutation we would estimate a different Usg. Intuitively, the

numerator in Eq. 3.5 has three unknown parameters, and the permutation test accounts for all their

possible values. When the p-value of `sg is less than a specified significance threshold, then SNP

s is an eQTL of the gene g in at least one tissue.

3.5 Discover eGenes from meta-analyses of eQTL studies

So far, we have presented meta-analyses for finding eQTLs in multiple tissues. Now, for discovering

eGenes in multiple tissues, we explain the steps required after the meta-analyses. These steps are

41

applicable with both RE2 and RECOVmeta-analysis. In Chapter 2.3, conditioned on the expression

of gene g in a tissue t, the eGene test statistic is pgt = min{psgt}s∈S where psgt is the p-value of

the effect of SNP s on the expression of g.

Now, in meta-analysis we will define the eGene test statistic for g to be pg = min{psg}s∈S

where psg is the p-value of `sg. pg does not need the subscript t as our interpretation is with respect

to the entire set of T tissues. We interpret g to be an eGene in at least one of the T tissues when

its eGene test statistic pg is significant. Before testing whether pg is significant, we emphasize

that meta-analysis models need just two layers of multiple testing correction, whereas TBT method

requires three layers. In meta-analysis, the first layer is the same as TBT approach and corrects for

the LD of the cis-SNPs. The second correction is applied to the gene set G because there are many

genes in the GTEx datasets being tested at once.

To test whether pg is significant, we compute its eGene p-value αpg via a permutation test which

controls for first multiple testing correction, that is, the effect caused by LD of the cis-SNPs of g

[26, 94, 98]. In the permutation iteration k ∈ K, we permute the expression values of g for the

individuals in each of the T tissues so that there are T randomized datasets. This approach reflects

the hypothesis that g is not an eGene in any of the tissues. Next, we perform the meta-analysis

at each cis-SNP of g so that we have a new p(k)g = min{p(k)sg }s∈S. The eGene p-value αpg is the

fraction of times the observed pg is less than the permutation values {p(k)g }k∈K. The gene g is an

eGene in at least one tissue if its eGene p-value αpg is below some threshold.

Because there are G number of genes for each tissue, to control for the overall false-positive

rate α on the entire dataset, we apply the second layer of multiple testing correction on the set

of eGene p-values {αpg}g∈G. Here, we apply Bonferroni correction where a gene g ∈ G having

αpg < α/G is classified as an eGene in at least one of the T tissues. Bonferroni correction is easy

to implement, but the permutation test to handle LD of SNPs can have very high runtime. In the

next section, we discuss an efficient way to approximate this permutation test.

42

3.5.1 LD-corrected eGene p-value in meta-analysis

The permutation test must be performed K times for each cis-SNP of each gene g ∈ G in every

tissue t ∈ T and would require about KSGT permuted datasets which is very time consuming,

where S is the number of cis-SNPs per gene (for the sake of simplicity, in this section, we assume

each gene has the same number of cis-SNPs). Instead of the permutation test, we introduce an

another way to estimate the meta-analysis eGene p-value. Within the same set of cis-SNPs, the

permutation test is meant to remove the effects of LD. To approximate the permutation test, we

relate the LD of the cis-SNPs of g with their likelihood ratio p-values {psg}s∈S. At each SNP-gene

pair, we can work with either the likelihood ratio `sg or its corresponding p-value psg, because these

two entities have one-to-one and inverse relation. An eGene test statistic pg can then be defined

as max{`sg}s∈S or min{psg}s∈S. Importantly, having a null distribution of max{`sg}s∈S is the

same as having a null distribution of min{psg}s∈S. The eGene p-value will be the same in both

cases.

Suppose for now, we are using `sg instead of psg, so that pg = max{`sg}s∈S for the rest of

this section. We draw inspiration from Han et al. [44] who showed that the correlation of the SNP

effects at two SNPs on the same gene is about equal to their LD. Empirically, we also observe

that the correlation of the likelihood ratios at any two SNPs is about equal to their LD; that is, on

average cor(`ug, `vg) u LD(u, v) for any SNPs u, v ∈ S (Fig. 3.1).

The permutation test can be viewed as function that maps a test statistic to its p-value while

accounting for LD of SNPs. From the observations that pg is defined as max{`sg}s∈S or

min{psg}s∈S, and that cor(`ug, `sg) u LD(u, v) for any u, v ∈ S, suppose we can find a function

f that estimates the p-value of any entity am = max{as}s∈S and accounts for the correlation

cor(au, as) for any u, s ∈ S. Then, we can apply f to pg = max{`sg}s∈S to compute αpg instead

of the permutation test. We emphasize that {as}s∈S represents a set of any items; we do not care

what are these items, and are concerned with only the p-value of the maximum of this set. Each

gene g has its own LD structure based on its own cis-SNPs and will require its own function f . To

estimate f at a gene g, we apply eGene-Mvn in Section 2.5.1. eGene-Mvn determines whether a

gene is an eGene in just one tissue and does not have an extension for analyzing many tissues [94].

43

Figure 3.1: cor(`ug, `vg) for two SNPs u, v versus their LD. We select many SNP pairs that co-
occur as cis-SNPs in at least two genes. Different pairs are grouped into bins by their LD (bin-width
0.05). We compute `ug, `vg for each SNP pair in every gene g for which they are cis-SNPs. Next,
we estimate cor(`ug, `vg) for each pair u, v, and then average cor(`ug, `vg) for all pairs u, v in
each LD bin. We plot the absolute value of this average against the LD bin. In RECOV and RE2,
cor(`ug, `vg) for two SNPs aligns well with their LD.

● ● ●

● ● ●
●

● ●

●
●

●

●
●

●

● ●

●
●

●
●

0.0 0.5 1.0

0.
0

0.
5

1.
0 Correlation of llr vs LD

LD

M
ea

n
co

rr
el

at
io

n
of

 R
E

C
O

V
 ll

r

● ●
●

● ● ● ●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

0.0 0.5 1.0
0.

0
0.

5
1.

0 Correlation of llr vs LD

LD

M
ea

n
co

rr
el

at
io

n
of

 R
E

2
llr

Below, we explain how to estimate the function f with eGene-Mvn.

In eGene-Mvn, conditioned on tissue t, the test statistic of gene g is the most significant effect

size taken from all its S cis-SNPs. From Chapter 2, this test statistic is bgt = max{|β̂sgt|}s∈S.

The p-value of bgt depends on the LD of the cis-SNPs of g. Instead of doing a permutation test to

compute this p-value, in the iteration k, eGene-Mvn draws the vector of effect sizes [β̂(k)
1gt · · · β̂

(k)
Sgt]

for the cis-SNPs fromMvn(0, Gg)where Gg ∈ RS×S is the LD of the cis-SNPs. After K iterations,

{b(k)gt }k∈K will form a null distribution of bgt which is then used to compute the p-value of bgt.

Because the normal CDF maps β̂
(k)
sgt into its p-value p(k)sgt, the null distribution of bgt can be

transformed into the null distribution of pgt = min {psgt}s∈S. pgt null distribution handles the

LD of the SNPs and also specifies a null distribution for the minimum in a set of p-values. In this

case, the subscript t may bare little significance for the following reason. Many tissues in the GTEx

data contain samples from the same individuals, and many donors are of European ancestry. We

assume that the LD of cis-SNPs of a gene does not change very much from tissue to tissue. It is

44

not too important which tissue t is chosen; we only require that there are enough samples in that

tissue. We will use the subcutaneous adipose tissue that has 298 individuals.

For the meta-analysis eGene test statistic pg, we reason that the null distribution of pgt can

compute the p-value αpg (where t is the adipose tissue). Section 3.6 shows that our approximation

controls for the false-positive rate of the meta-analysis.

3.5.2 Remove effect of overlapping samples among tissues

Three main factors affecting the meta-analysis false positive rate are: batch effects in the datasets,

LD of SNPs, and shared individuals in multiple tissue datasets. Batch effects were already removed

from the GTEx data by applying PEER factors to each tissue dataset [98]. Section 3.5.1 explains

howwe handle LD of SNPs in ameta-analysis. TheGTEx consortium collected samples of different

body tissues from the same person, so that distinct tissue datasets are statistically related because

they share data from the same donors (Fig. 3.2). RE2 and RECOV meta-analysis have high false

positive rate when applied to the GTEx data (similar phenomena was seen for GWASmeta-analysis

[45]) (Fig. 3.3).

Figure 3.2: Fraction of samples coming from the same donors for two tissue datasets. Brain tissues
contain many samples from the same donors (red box).

45

We correct for this problem by computing a genomic control (GC) factor to scale the eGene

test statistics so that their null hypothesis p-values are not inflated [24]. We generate and compare

the behaviors of two kinds of dataset, named A and B. Type A is free of all confounders affecting

the meta-analysis false positive rate. Type B has just the effect due different tissue datasets sharing

samples from the same donors, where the number of samples shared by two datasets is the same as

the GTEx data. We simulate the genotypes and the gene expressions in both type A and B so that

these numbers are independent of the values in the GTEx data which helps reducing the problem

of reusing the data.

We simulate 1000 datasets of type A. In each simulation, the number of people per tissue is

taken from theGTEx data, but the tissue data do not have samples coming from the same individuals.

Each time, we simulate 1000 independent SNPs with different minor allele frequencies and the

expression values of a gene g for the people in each tissue. Next, we compute the meta-analysis

p-value of `sg at each SNP s. In this simulated data, SNPs and gene expressions are independent

so that the meta-analysis p-values of the 1000 SNPs should form a uniform distribution. Over the

1000 datasets, the histogram of the 1 million simulated p-values (1000 datasets, each having 1000

SNPs) confirms this expectation (Fig. 3.3a, 3.3b).

Next, we simulate 1000 datasets of type B, each having 1000 SNPs, to observe the effect caused

by distinct tissue datasets having samples from the same individuals. The genotypes and gene

expressions are simulated as in type A. Again, we compute the p-values of `sg for the SNPs to

obtain a total of 1 million simulated p-values. We observe that the meta-analysis false-positive rate

is much higher than expected, where histograms of the simulated p-values shift toward zero (Fig.

3.3c, 3.3d).

We now compute the GC factor to remove the effect caused by multiple tissues sharing samples

from the same donors. Following Devlin and Roeder [24], the median of the p-values simulated

from type B datasets are transformed into a random variable z having a chi-square distribution.

From Section 3.3, this chi-square distribution is the distribution χ2
1+2 which is a weighted average

of two chi-square distributions χ2
1 and χ2

2. Next, we calculate a scaling constant for z, converting

it into another random variable z̃ corresponding to the p-value at 0.50 under the distribution χ2
1+2.

46

The GC factors for the RE2 and RECOV meta-analysis are 1.1045 and 1.2947, respectively.

Figure 3.3: Under the null hypothesis, (a) RECOV and (b) RE2 meta-analysis are applied to
multiple tissue datasets where no two datasets contain samples from same individuals. Histograms
of p-values of `sg are uniformly distributed, indicating equal chance of observing any p-value in
the range [0,1]. (c) RECOV and (d) RE2 meta-analysis applied to multiple tissue datasets where
samples in two tissue datasets may come from the same individuals (fraction shared are taken from
GTEx data). Histograms of p-values of `sg under the null hypothesis shift toward the left side,
showing that we are more likely to see significant p-values.

0

0.5

1

0 0.5 1
Likelihood ratio p−values

D
en

si
ty

RECOV. No shared individuals in tissues.

(a)

0

0.5

1

0 0.5 1
Likelihood ratio p−values

D
en

si
ty

RE2. No shared individuals in tissues.

(b)

0

0.5

1

0 0.5 1
Likelihood ratio p−values

D
en

si
ty

RECOV. Shared individuals in tissues.

(c)

0

0.5

1

0 0.5 1
Likelihood ratio p−values

D
en

si
ty

RE2. Shared individuals in tissues.

(d)

47

3.6 False-positive rate simulation

We evaluate the meta-analysis false positive rate for just one SNP-gene pair s, g across T tissues.

The eGene test statistic is `sg. We test this simple case because the overall false positive rate for

the entire GTEx data depends on this simple case.

For one SNP s, we simulate 1000 datasets under the null hypothesis that s does not affect the

expression of g in all 44 tissues of the GTEx data. We first select a SNP s (any SNP will suffice)

from the GTEx data, and then use its minor allele frequency to generate the genotypes in each of

the 1000 datasets. Next, we assign for each tissue the same number of individuals as in the GTEx

data. Every two tissues will also contain samples coming from the same donors, where the numbers

are the same as in the GTEx data. Hence, most tissues will share the same genotypes for some

samples. To simulate the gene expression, we follow Sul et al. [93] and generate the expression of

the same gene in a person to be correlated in any two tissues, where the average correlation is 0.50.

Expression of the same gene in an individual can be correlated across tissues, because these tissues

are exposed to the same environmental factors.

In each of the 1000 datasets, we conduct eQTL study to measure the SNP effect β̂sgt and

its variance v̂ar(β̂sgt) in each tissue t. Then, we apply the meta-analysis on the eQTL results

[β̂sg1 · · · β̂sgT] and compute the meta-analysis p-value αpg . Here, αpg is computed by our approxi-

mation method and not the permutation test, because we want to see that our estimation producing

valid false positive rate. Also, we apply the GC factor to transform αpg in each simulation, so that

we remove side effects caused by tissue data sharing samples from the same donors. Over the 1000

datasets, the meta-analysis false positive rate is the fraction of times the simulated p-values are less

than the threshold α = 0.05.

We repeat the same analysis above but for 1000 different SNPs each having its own minor allele

frequency, so that we will have 1000 numbers of meta-analysis false positive rate (one number per

SNP). For each SNP, we generate the gene expression as described above. We run RE2 and RECOV

meta-analysis on all the simulated datasets. In both meta-analyses, the median false positive rate is

0.05. In RE2, the 75th and 95th quantiles for the 1000 numbers of meta-analysis false positive rate

48

are 0.07 and 0.10. In RECOV, the same numbers are 0.06 and 0.09. We do not expect our p-value

estimation to always return the false positive rate at 0.05. However, the simulation study shows that

most of the time our approach obtains correct false positive rates in realistic settings.

3.7 Application to the GTEx data

We apply the traditional TBT method, the RE2 meta-analysis of Metasoft, and our model RECOV

to the GTEx Dataset in Chapter 2. We analyze the 15,336 genes expressed in all the 44 tissues.

Batch effects on the gene expressions were removed by the the GTEx consortium [98]. We define

cis-SNPs of a gene as the SNPs located within 1 Megabases from its transcription start site [98].

We consider only cis-SNPs of genes where the genotypes are not missing in any of the tissues.

The median for number of genotyped cis-SNP per gene is 3744. The GTEx consortium already

computed the SNP effect β̂sgt and its variance v̂ar(β̂sgt) for each cis-SNP of a gene in each tissue t.

Figure 3.4: Venn diagram of the numbers of eGenes found by TBT method, RE2 and RECOV
meta-analysis.

RECOV RE2

TBT 2478

252

88

34

452

122

2825

9085

In TBT method, we apply eGene-Mvn to compute the p-value of the test statistic bgt =

max{|β̂sgt|}s∈S at each gene g. eGene-Mvn just removes the effect of LD of SNPs, so we

implement the other two layers of multiple testing correction: transforming the eGene p-values into

q-values, and using the Bonferroni significance threshold 0.05/15336 for each q-value.

Meta-analysis takes two inputs, the vector of SNP effect sizes β̂sg = [β̂sg1 . . . β̂sgT]
ᵀ and the

matrix Vsg = diag(v̂ar(β̂sg1) . . . v̂ar(β̂sgT)) where T = 44. At a cis-SNP s, we compute the

49

likelihood ratio `sg and its p-value psg by using the distribution χ2
1+2. Then, we transform this psg

with the GC factor to remove effects caused by tissues having samples from the same people. The

eGene test statistic for g is the minimum of the transformed psg taken across all its cis-SNPs. The

eGene p-value is approximated as described in Section 3.5.1. We use the Bonferroni significance

threshold 0.05/15336 for each eGene p-value. We do not transform the eGene p-values into q-values

because we jointly analyze the same gene in all the tissues rather than separately analyzing each

gene in each tissue.

In the entire GTEx data, many genes are predicted to be eGenes (at least 61.90%). This result

is somewhat expected, because we analyze many tissue datasets and, even with multiple testing

correction, it is possible that the same gene will have at least one eQTL in one of the 44 tissues.

RECOV and RE2 meta-analysis discover about 20% more than TBT baseline, indicating that there

is an advantage for meta-analysis over the simpler per-tissue approach (Fig. 3.4). RECOV meta-

analysis discovers the most number of eGenes, and we observe a modest improvement over the

RE2 method. From the 15336 genes expressed in the 44 tissues of the GTEx data, the fraction

discovered as eGenes by TBT, RE2 and RECOV are 61.90%, 78.45%, and 81.40% respectively.

3.8 Case studies

There are scenarios for which one of the TBT baseline and RE2 and RECOVmeta-analysis is more

advantageous than the other two. The TBT baseline independently analyzes each tissue data, and

we can know the tissues in which a gene is found as eGene. From the 252 eGenes discovered by

only the TBT approach, the numbers of genes which are eGenes in exactly 1, 2 and 3 tissues are 225,

25 and 2, respectively. We suspect that when a gene happens to be eGene in only very few tissues,

then the aggregated information from many other tissues may still indicate that the meta-analysis

effect size µsg should be about zero. In this case, the meta-analysis would not be able to discover

this type of eGenes.

Next, we analyze an example where RECOV meta-analysis is more applicable than RE2 meta-

analysis and the TBT baseline. We consider the gene CABLES1 that is expressed mostly in nine

50

of the brain tissues, where the median sample size is only 90 individuals. The GTEx pilot analysis

which implemented the TBT approach, did not detect eQTLs for this gene in any of the tissues. It

makes sense that meta-analysis would find CABLES1 to be eGene in at least one of the 44 tissues,

because meta-analysis aggregates samples from tissue datasets to enhance association strengths of

SNPs and gene expression, which in turn increases the power for discovering eGenes.

But why does RECOVmeta-analysis predict CABLES1 to be eGenes, and not RE2 model? We

observe that there are significant correlations of SNP effects for CABLES1 expression in all the

tissue datasets, especially in the brain tissues (Fig. 3.5a). RECOV meta-analysis models this exact

evidence and so is more applicable than RE2 meta-analysis. Or statistically speaking, RECOV

meta-analysis more accurately models the alternative hypothesis and then produces a lower p-value

for CABLES1 than the RE2 approach (the two eGene p-values are 4.94E913 and 5E95).

Figure 3.5: Correlations of SNP effects for the expressions of (a) CABLES1 (b) GALNT11 and
(c) RP11-34P13.16 in 44 tissues (tissue names omitted). Correlation is computed by BgBᵀ

g, similar
to how genetic kinship is computed. We indicate correlation values for the brain tissues in red.

CABLES1

(a)

GALNT11

(b)

RP11−34P13.16

(c)

We emphasize that we finished this work in Dec 2016. In Aug 2017, Hernández-Ramírez

et al. [46] discovered that loss-of-function mutations in the CABLES1 gene are a novel cause of

Cushing’s disease, which is a condition affecting the brain tissue anterior pituitary. Suppose we had

used TBT approach or RE2 meta-analysis instead of RECOV meta-analysis, then we would have

missed that CABLES1 is an important gene, which means that we would not have recommended

CABLES1 for any further causal analysis of any diseases.

51

There are cases for which RECOV meta-analysis is less applicable than the RE2 model. For

instance, we consider the gene GALNT11 whose correlation patterns for the effects of cis-SNPs

in the GTEx data are very similar to CABLES1, where the strongest correlation block happens for

the brain tissues. However, on average, all the correlation values are much lower than those for

CABLES1 (Fig. 3.5b). GALNT11 is expressed mostly in the frontal cortex and modestly in the

other brain tissues.

The TBT approach in the GTEx pilot analysis detected eQTLs for the GALNT11 expression

in only the frontal cortex, but these eQTL effects produced an eGene q-value of 0.0189 which is

much higher than the TBT overall significant threshold. We expect that a meta-analysis, which

combines information from other similar brain tissues as the frontal cortex, should increase the

association strengths for the SNPs and gene expression, and then find that GALNT11 is an eGene.

This is indeed the result for RE2 meta-analysis but not RECOV. Because the correlations of the

SNP effects on GALNT11 are low, the likelihood ratio `vg of GALNT11 possibly does not strictly

require csg > 0 in the term csgUsg (Fig. 3.5b). RE2 alternative hypothesis would be a better fit

than that of RECOV. The eGene p-values of GALNT11 by RECOV and RE2 meta-analysis are

3.50E94 and 7.08E98 respectively.

We now analyze the pseudogene RP11-34P13.16 which is an interesting case. RP11-34P13.16

is expressed highly in just a few tissues (highest in Whole Blood) and very weakly in many other

tissues in the GTEx data. In the tissues where RP11-34P13.16 is weakly expressed, the effects of

cis-SNPs on RP11-34P13.16 expression are near zero, and the TBT approach in the GTEx pilot

analysis did not find eQTLs for RP11-34P13.16. In the tissues where RP11-34P13.16 is highly

expressed, the TBT approach also did not find any eQTLs. RP11-34P13.16 is classified as an

eGene by just RE2 meta-analysis and not RECOV. The RECOV and RE2 meta-analysis eGene

p-values are 1.50E94 and 1.37E98 respectively. SNP effects on RP11-34P13.16 and CABLES1

have comparable correlation structures, except for the strong association pattern within the brain

tissues (Fig. 3.5c). It is likely that the term csgUsg in RECOV, which tries to model trends among

the correlations, fails to fit well for the SNP effects on RP11-34P13.16. Here, RE2 appears more

robust despite its simple assumption, which says that the same SNP does not have correlated effects

52

on the same gene expression in multiple tissues.

3.9 Summary and discussion

Meta-analysis increases the statistical power of a hypothesis test, by combining the results of

multiple independent studies [79]. Usually, each study has low sample sizes so that on its own, the

individual result may not be representative enough for the whole population. In the last decade,

meta-analysis has become popular in the GWAS and eQTL literature, because various research

groups may analyze the same phenotype with their own datasets, where each dataset may not have

a lot of samples [6, 22, 61, 64]. Meta-analysis is appealing because of its simplicity, as it requires

just the outcomes of different experiments and not the entire datasets at the individual-level.

In the context of GTEx data, meta-analysis combines the effects sizes of the same SNP on the

expression of the same gene in all the tissues. The joint outcome has higher statistical power than

each individual eQTL study for that SNP in each tissue, and more confidently determines whether

the SNP is an eQTL for that gene. Our application of meta-analysis can only classify that a gene is

an eGene in at least one tissue in the GTEx data. Although we may not know the particular tissues

in which the gene is an eGene, at least we will not miss a lot of candidate genes for a phenotype of

interest.

We introduce a new random effects meta-analysis (RECOV) that has a covariance parameter

to capture the relatedness of the SNP effects on the gene expressions in different tissues. This

covariance is the term Usg in the alternative likelihood of Eq. 3.5. Our formulation of Usg may

be suboptimal with respect to this likelihood function, yet we are able to discover the most number

of eGenes in the entire GTEx data compared to the RE2 meta-analysis and the TBT approach. We

expect more complex formulations to have even better outcomes. For future work on meta-analysis

of eQTL studies, the problem of selecting the most suitable Usg is one interesting topic.

At the time of our publication, the GTEx data contains very few samples for many tissues. Over

the last 5 years, more data has been collected, yet the number of samples remains low compared

to other association studies. For example, in late 2015 the liver tissue had 97 individuals, and this

53

number in April 2020 is just 226 (with 208 people genotyped so far). In contrast, the UK Biobank

data has 500,000 individuals genotyped [13]. We expect that meta-analysis will be applicable for

the GTEx data for some foreseeable future.

54

CHAPTER 4

Learning embeddings of Gene Ontology terms

4.1 Introduction

One way to study functions of a protein is through laboratory work to observe the protein 3D

structure, its location in the cell, the chemical reactions it participates in, and the other proteins

that it interacts with. The discovered functions are written down following the rules provided

by the Gene Ontology (GO) consortium which provides a database of standardized vocabularies

(like a dictionary), where each vocabulary has a definition explaining the biological events that it

represents [38]. These vocabularies formally known as GO terms have hierarchical relationships.

Terms describing more specific biological functions are child nodes of more generic terms (Fig.

1.1).

A typical protein is assigned with three types of GO terms: Biological Processes (BP) which

identify events that involve this protein (e.g. cell division), Molecular Functions (MF)which specify

the types of reactions the protein induces (e.g. kinase binding), and Cellular Components (CC)

which determine the protein’s location (e.g. mitochondria) [96]. To aid the manual annotation,

automatic GO classifiers have been introduced. Many of them have the primary input as the

protein amino acid sequence, and secondary inputs as the protein metadata, such as 3D structure

information and protein-protein interaction data (ideally inferred without laboratory experiment).

These annotation methods return the output as a set of GO labels (the canonical terminology is GO

terms, but we will use GO labels in the context of classification). Because each protein is assigned

many GO labels, predicting protein functions is a multi-label classification problem.

This multi-label classification problem is supervised learning and thus faces two issues. First,

55

supervised model works well when each GO label annotates a lot of samples. The model cannot

accurately predict labels occurring just a few times or only in the testing samples; for example, the

model may not accurately predict the label bioluminescence annotates just 99 proteins out of the

561,911 manually reviewed proteins in the Uniprot database [96]. Second, as new protein functions

are being discovered, the GO database is constantly being updated with terms being added and

removed. A supervised classifier will have to be retrained for each update in the ontology, which

can be time-consuming for many deep learning models. These two problems are not unique to

GO database; for example, for electronic health records, some diseases are rarely seen, and disease

catalogs are always being updated [72, 81].

To mitigate these two problems, literature on multi-label classification have suggested integrat-

ing metadata about the labels into the classifier [72, 81]. To use the GO label metadata, we need

to transform this data into vector representations based on the definitions or hierarchy relation of

the labels. For example, we would transform bioluminescence and its parent cellular metabolic

process into similar vectors. Next, we fit the model using these vectors as feature inputs. For a

new protein, we can estimate the likelihood of a rare or unseen label based on the predictions of

the other labels which have similar vector representations to the label of interest (assuming these

other labels are well predicted) [87].

In the context of GO database, there are two types of metadata, the definitions of the GO

terms and their hierarchical relationships in the database. The classification accuracy depends

on how well these types of metadata are transformed into vectors. Ideally, related terms (e.g.

having comparable definitions or parent-child nodes) should be encoded into similar vectors, and

vice versa. Below we present existing ways to map GO metadata into vectors, and introduce new

techniques based on recent advances in deep learning. Before going forward, we will define GO

embeddings as the vectors representing the GO terms, andGO encoder as the method that produces

the GO embeddings. Typically, GO encoders either embed the definition of a GO term, or the term

itself as one single entity (e.g. GO name) based on its topology in the GO hierarchy. We will refer

to these two types as GO definition encoders and GO entity encoders, respectively.

Embedding GO terms via neural networks is a recent research topic. Some of the earliest GO

56

encoders were introduced in mid 2018. In 2018, we designed a Bidirectional Long-short Term

Memory (BiLSTM) encoder to embed the definitions of GO terms [27]. In the same year, another

method Onto2vec was also introduced which applied Word2vec skip-gram model on axioms such

as “GO:0060611 is_subclass GO:0060612” to capture relatedness of the GO names [71, 86]. Our

BiLSTM encoder and the Onto2vec were not directly compared. More importantly, neither method

was integrated into an existing GO classifier that predicts labels for an input amino acid sequence.

Until now, it is unknown for which scenarios will a GO classifier gain accuracy from having the

GO metadata as extra feature.

This chapter addresses the first question proposed in Section 1.2, that is, are there useful

metadata about the GO labels that can improve the accuracy for protein function classification? In

particular, we are interested in how to best embed and compare the two types of GO metadata—the

definitions of the GO terms and their hierarchical relationships in the ontology. We will not just

evaluate our BiLSTM encoder and the Onto2vec, but will also introduce new GO encoders built

from popular neural network approaches of Graph Convolution Network (GCN) [55], Embeddings

fromLanguageModels (ELMo) [78] andBidirectional Encoder Representations fromTransformers

(BERT) [25]. GCN, ELMo and BERT are key components in many machine learning methods,

but have not yet been implemented to produce GO embeddings. GCN, ELMo and BERT have

their own characteristics. GCN is an entity encoder related to Onto2vec, and applies convolutional

neural network to the terms on the GO hierarchy. ELMo and BERT are definition encoders just

like BiLSTM. ELMo uses two BiLSTM layers, where the first layer is the input of the second layer.

BERT however does not apply BiLSTM or convolutional neural network, but rather relies on the

Transformer architecture to model all pairwise interactions of the words in the definition of a GO

term [101].

We design three tasks to compare the types of GO embeddings from the encoders presented

above. Task 1 compares the similarity score distributions for the embeddings of child-parent GO

terms versus two unrelated terms. This task analyzes the edge cases where the embeddings may fail.

For example, definition encoders may not yield similar embeddings for child-parent terms located

near the root node, because these terms can have very broad definitions which make them appear

57

unrelated. Also, a high-level term can have many child nodes and so appear in many different

contexts. As a result, entity encoder like Onto2vec may produce a nonspecific embedding for this

term which will not be close the embeddings of its child terms. For all the types of GO embeddings,

we find that the similarity scores for child-parent terms are strongly affected by these edge cases.

When one of the child-parent terms has low Information Content (IC) value, then the similarity

score is not much higher than the score for two randomly chosen terms.

Task 2 follows the experiment in our previous work [27]. The objective is to evaluate how well

the GO embeddings measure the similarity scores for sets of GO terms. Because genes and proteins

are annotated by their own sets of GO terms, we reason that good embeddings should provide high

similarity scores for two orthologous genes and for two interacting proteins [70]. Task 2 is a more

realistic evaluation for different embedding types, because in practice, manually reviewed genes

and proteins are rarely annotated with uninformative terms. Hence, an encoder can perform well in

Task 2 even when it may fail in the edge cases of Task 1. In Task 2, definition encoders are better

than entity encoders. Interestingly, the performances for various choices of definition encoders

have mostly the same results.

In Task 3, we redesign the deep learning classifier DeepGO to take different kinds of GO

embeddings as its inputs, and evaluate which embedding type would have the most impact [60].

DeepGO is a supervised learning model. Importantly, its datasets contains only frequent BP, MF

and CC terms annotating at least 250, 50, and 50 proteins. Here, none of the GO embeddings

significantly improves the classification accuracy. We suspect that the labels in DeepGO datasets

are not sparse and can be well predicted without the extra information from the GO embeddings.

Next, to better quantify the impact for each embedding type, we consider the zeroshot learning

case which is more difficult than the DeepGO setting [87]. We make our own semi-supervised

classifier in which the GO embeddings are critical factors to predict labels unseen in the train data.

Here, definition encoders built from the BERT approach obtain the best classification accuracy.

Our software is available at https://github.com/datduong/EncodeGeneOntology.

58

https://github.com/datduong/EncodeGeneOntology

4.2 Information Content

We take small detour to describe the Aggregate Information Content (AIC) Method, as it will be

used as one of the baselines in our experiments [88]. The Information Content of a GO term t

is defined to be IC(t) = − log(p(t)) where p(t) is the probability of observing a term t in the

ontology. p(t) is computed as p(t) = freq(t)
freq(root) . The term freq(t) computes the frequency of a

term t, where freq(t) = count(t) + ∑c∈child(t) freq(c). count(t) is the number of genes annotated

with the term t and child(t) are the children of t. Based on this definition, IC(root) = 0, and a

node near the leaves has higher IC than nodes at upper levels.

AIC defines a knowledge function for the GO term t as k(t) = 1/IC(t) which is used to

measure its semantic value sw(t) = 1/(1 + exp(−k(t))). Here sw(root) = 1. The semantic

value sv(t) of t is then defined as sv(t) = ∑p∈path(t) sw(p). Function path(t) contains all the

ancestors of t and the term t itself. Usually, sv(a) < sv(b) when term a is nearer to the root than

b. Song et al. [88] define their similarity score of two GO terms a, b as

AIC(a, b) =
2 ∑p∈{path(a)∩path(b)} sw(p)

sv(a) + sv(b)
. (4.1)

AIC(a, b) ranges from 0 to 1. In this model, AIC(a, a) = 1. When a and b only have the root node

as the common ancestor, then AIC(a, b) = 2/(sv(a) + sv(b)) which depends on where a, b are

on the GO hierarchy.

4.3 Training datasets and objective function

We use cosine similarity score to compare the embeddings of two GO terms. Embeddings for a GO

term and its parent terms are expected to be comparable, and should have higher similarity scores

than the embeddings for unrelated terms. Suppose a GO encoder produces the vectors vu and vt

for the GO term u and t. We train the parameters of this encoder to max cos(vu, vt) when u and t

are child-parent terms, and to min cos(vu, vt) when u and t are randomly chosen, where the cos

is the cosine similarity score.

59

To create the training dataset, we treat the BP, MF and CC terms as one giant connected network

by treating the following one-directional relationships “is a”, “part of”, “regulates”, “negatively

regulates”, and “positively regulates” as the same edge type. We define a positive sample as two

child-parent terms, and a negative sample as two randomly chosen terms. We select a positive

sample by randomly choosing a GO term and one of its parents. We compute the AIC scores

for these positive samples and keep only samples having scores above the median [88]. This

step ensures each remaining sample contains truly related terms. We explain AIC method in the

Appendix.

We create two types of negative samples. First, we randomly select half the terms seen in the

positive samples, and couple each term c in this set with an unrelated term d also seen in the positive

samples. Second, we put the same term d with a random term e not found in the positive samples.

This strategy helps the training process by allowing a GO encoder to observe the same terms under

different scenarios [27]. We then compute theAIC scores for the negative samples, and keep samples

having scores below themedian. All encoders in our paper are trained on this dataset unless specified

otherwise. Our dataset is available at https://github.com/datduong/EncodeGeneOntology.

4.4 Definition encoders

Every GO term has a definition defining the biological event that it represents; for example, the

term GO:0008218 has the name bioluminescence, and the definition “production of light by certain

enzyme-catalyzed reactions in cells”. We concatenate the name and the definition of the term into

one single description. To simplify, we will refer to this concatenation as the definition of a GO

term. Naturally, to represent a GO term as a vector, we can transform its definition into a vector.

Below, we explain ways to do so based on the BiLSTM method in Duong et al. [27], and the two

recent popular approaches in Natural Language Processing, Embeddings from Language Models

(ELMo) and Bidirectional Encoder Representations from Transformers (BERT) [25, 78].

60

https://github.com/datduong/EncodeGeneOntology

4.4.1 Bidirectional Long-short Term Memory

We describe our previous BiLSTM encoder [27]. The BiLSTM network provides contextualized

vectors for words in a sentence, so that the same word has different vectors depending on its

positions in the sentence. Our input to BiLSTM is the word vectors produced by Word2vec.

Word2vec assigns similar vectors to words with related meanings or that are likely to co-occur [71].

We use the Word2vec output in Duong et al. [27] which was trained on open access Pubmed papers

and has word dimension in R300.

Using Word2vec, we transform the definition of GO term into a matrix M where the column

Mj is the vector for the jth word. The same word is always assigned to the same vector. To

capture the fact that the same word often has different meanings depending on its position in the

sentence, we apply M̃ = BiLSTM(M). Consider the word vector Mj at position j in a sentence

of length L. BiLSTM computes the forward and backward LSTM model to produce the output

vectors
−→
hj = LSTM(

−→
h j−1, Mj) and

←−
hj = LSTM(

←−
h j+1, Mj) and then returns M̃j = [

−→
hj ;
←−
hj]

where [
−→
hj ;
←−
hj] indicates the concatenation of the two vectors into one single vector.

To produce a vector representing the definition of one GO term, we take the max-pooling across

the columns of M̃, maxpool(M̃) [17]. We apply a final linear transformation to this aggregated

vector, making it into R768 to match BERT output dimension. We train this BiLSTMmodel on our

own dataset in Section 4.3. During training, we freeze the input M and update only the BiLSTM

parameters. We emphasize that 768 is chosen because of BERT (to be explained later); in practice,

our BiLSTM can be trained to have output of any dimension.

4.4.2 Embeddings from Language Models

Embeddings from Language Models (ELMo) improves the BiLSTM encoder in two key ways [78].

First, instead of representing a whole word as a vector, ELMo represents each character in the

alphabet as a vector and uses convolution filters of varying sizes to transform the alphabet vectors

into a word vector. Second, ELMo trains a 2-layer BiLSTM. The first BiLSTM input are the word

vectors from the character layer, and the second BiLSTM input are the output of the first BiLSTM.

61

The final vector for one word is a weighted average of the word vector from the character layer, and

the output of the first and second BiLSTM, where the weights are computed for a given specific

task and thus are jointly trained with the other parameters. We download the ELMo pretrained on

Pubmed1, freeze the character convolution layer, and train only the two BiLSTM layers. Borrowing

notation from the previous section, let M̃l
j be the BiLSTM output of layer l. Our final vector for

a word in a GO definition is ajM̃1
j + (1− aj)M̃2

j where aj ∈ [0, 1] is specific to position j and

is jointly trained with the two BiLSTMs. To encode a sentence (e.g. GO definition), we take the

mean-pooling of the ELMo output matrix. ELMo is trained on the dataset in Section 4.3.

4.4.3 Bidirectional Encoder Representations from Transformers

BERT is a training strategy that provides contextualized vectors for words in a sentence [25]. BERT

uses the Transformer architecture [101] which models all pairwise interactions between words in a

sentence. We briefly describe the key idea in the Transformer neural network model. Transformer

has 12 layers, where each layer takes as input the output of the previous layer. Each layer has 12

independent units (referred to as heads in the original paper). We describe one Head h in one

Layer i. Let j denote the jth word in the input sentence. Consider the input “perforation plate is-a

cellular anatomical entity”. We use the names for these two GO terms in this example, but in the

experiment we will use the complete definitions. This input is partitioned into the following tokens

[CLS] per ##fo ##ration plate [SEP] cellular an ##ato ##mic ##al entity [SEP], where the special

token [CLS] denotes the start of the whole input and [SEP] denotes end of each sentence [25].

Each token has three types of embeddings: the token W, position P and type T. Token

embeddings assign a token to a vector (analogous to Word2vec embeddings). Position embeddings

assign a location index j to a vector; for example, we assign the position vector P0 to the first token

[CLS]. Type embeddings assign the vector T1 and T2 to tokens in the first and second definitions

respectively; for example, we assign T1 to all the tokens [CLS] per ##fo ##ration plate [SEP].

The input of the first layer denoted as w0j is a sum of the token, position and type embeddings

1https://allennlp.org/elmo

62

corresponding to the jth token. The output vector of the Head h in Layer i denoted as oh
i,j is

computed as the following weighted average

oh
i,j = ∑

k∈{1:L}
ah

ikVh(wi−1,k) (4.2)

ah
ik = softmax(eh

ik) (4.3)

eh
ik = Qh(wi−1,j)

ᵀKh(wi−1,k) (4.4)

where L is the input length, and Vh, Qh, Kh are transformation functions. Loosely speaking, Eq.

4.3 models the pairwise interaction between the jth and kth tokens in the sentence. To merge all

the heads at Layer i, Transformer concatenates the output oh
i,j at the position j of all the heads, and

then applies a linear transformation on this concatenated vector. Linear transformation output oij

is then passed to the next Layer i + 1.

We now explain the two phases in BERT training strategy to train the Transformer model. In

Phase 1, BERT employs a self-supervised strategy with two key objectives. First, from the training

corpus, BERT removes words from the sentences, and then predicts these removed words using the

remaining words. To do this, BERT applies a classifier to the output of Layer 12 in Transformer, i.e.

the vector o12,j. Second, BERT predicts if two sentences in a document are sequential or unrelated.

Here, BERT applies a classifier to only the Layer 12 output vector o12,0 corresponding to the [CLS]

token. Because Transformer models all pairwise interactions of the words, the [CLS] token can be

used to represent the entire input string (e.g. definitions of two GO terms in an input string).

To train Phase 1, we create our own training corpus with respect to the context of the Gene

Ontology. To create one document, we concatenate the definitions of all the GO terms in one

single branch of the GO hierarchy, starting from the leaf node to the root. We consider only the

is-a relation, and randomly select only one parent if the node has many parents. Phase 1 will train

the Transformer parameters to learn the interactions of words within the same definition, and the

relationships among the definitions of terms on the same path to the root node. We use the same

hyperparameters as the original BERT, where there are 12 heads and 12 layers, and the output

vector in each layer is oij ∈ R768.

63

Phase 1 is often enough to produce an embedding for a sentence; for example, bert-as-service

[104] takes the mean of Layer 11 output to represent the input sentence. Xiao [104] recommends

the Layer 11 because they believe that Layer 12 values may be strongly affected by the two self-

supervised tasks. We apply the same strategy to get the embedding for the definition of a GO term,

and refer this strategy as BERTSERVICE. Specifically, to represent perforation plate as one single

vector, we first retrieve Transformer Layer 11 output for the input [CLS] per ##fo ##ration plate

[SEP], and then compute the mean over the six tokens 1
6 ∑6

j=1 o11,j. This example uses the short

name of a term, but in the final model, we use the long definition. We emphasize that BERTSERVICE

output is fixed at 768 because of the pretrained setting in the original paper of [25].

In Phase 2 of BERT, Transformer is trained with a task-specific objective; for example, in

Name Entity Recognition, this objective is to predict if a word in a sentence refers to a person,

a location, or an object. Our objective is to produce a vector representing a GO term definition.

We explore two different options for Phase 2. In the first choice, we average the Layer 12 output

from the Transformer in Phase 1 to represent the definition of the GO term c, and then do the

same for another term p. Denote vc and vp as the vector representing the label definitions of c and

p respectively. We now train the Transformer on the dataset in Section 4.3. The objective is to

maximize the cosine similarity score, max cos(Avc, Avp) if c and p are child-parent terms, and to

minimize min cos(Avc, Avp) if c and p are randomly chosen, where A is a linear transformation.

The same Transformer in Phase 1 is used in Phase 2, and we do not train a brand new Transformer.

We just replace the objective function, and continue training the parameters with respect to this

new objective function. We refer to this first choice as BERTLAYER12.

Our second choice is exactly the same as the first one, except for a single key step. For a term c,

we use the Layer 12 output vector o12,0 of the [CLS] token to represent its definition, and then do the

same for another term p. Because the vector o12,0 is a function of all the words in the sentence, the

[CLS] token can represent the entire input string [25]. Abusing the notation, let us define oc
12,0 and

op
12,0 as the vectors representing o12,0 for the term c and p, respectively. We train the Transformer

model to maximize max cos(Aoc
12,0, Aop

12,0) if c and p are child-parent terms, and to minimize

min cos(Avc, Avp) if c and p are randomly chosen, where A is a linear transformation. We refer

64

to this second strategy as BERTCLS. We set the final vector output for BERTLAYER12 and BERTCLS

to be in R768, same as BERTSERVICE.

4.5 Entity encoders

Because GO terms are arranged as a hierarchical structure, we can treat a term as a single entity

and encode it into a vector without using its definition. We adapt the Graph Convolution Network

(GCN) for the GO terms and evaluate Onto2vec. There are other node embedding methods, but

GCN has shown to work well in various applications [81, 105].

4.5.1 Graph Convolution Network

Graph Convolution Network encodes each GO term in the tree into a vector [55]. Let A be the

adjacency matrix, where Aij = 1 if term i is the parent of term j. Compute Ã = A + I, where

I is identity matrix. Compute the degree matrix D̃, where D̃ii = ∑j Ãij. Next scale A into

Â = D̃−
1
2 ÃD̃−

1
2 . Let W1 and W2 be two transformation matrices. Define X to be the initial vector

embedding for the GO terms, where a column in X corresponds to a GO vector. Before training,

X is initialized with random numbers.

During training X is transformed into a newmatrix E = W2Â relu(W1ÂX). Loosely speaking,

one column i in ÂX is a summation of all its child nodes and itself, so that the information flows

from child to parent under this framework [55]. W1ÂX then transforms this summation into a new

vector. We repeat this transformation twice as in Kipf andWelling [55]. At the end, the column i in

E is the vector for the ith term. We set GCN to produce the final vector representation of size 768,

same as BERTSERVICE. We train GCN using the objective function and the data in Section 4.3.

4.5.2 Onto2vec

Onto2vec encodes GO terms into vectors by transforming their relationships on the GO hierarchy

into sentences, which are referred to as axioms in the original paper [86]. For example, the

65

child-parent GO terms GO:0060611 and GO:0060612 are rewritten into the following sentence

“GO:0060611 is_subclassGO:0060612”. Onto2vec then appliesWord2vec [71] on these sentences,

so that GO names occurring in the same sentence are encoded into similar vectors. Because

the training sentences are constructed from the GO trees without GO definitions, Onto2vec can

conceptually be viewed as method that encodes nodes on graph into vectors like GCN. Because

the Word2vec objective function is based on cosine similarity, for Onto2vec, GO terms in close

proximity will have high cosine similarity score. We set Onto2vec to produce the final vector in

R768, same as BERTSERVICE.

4.5.3 BERT as entity encoder

Following Onto2vec, we apply BERT as an entity encoder (denoted as BERTNAME) where the key

objective is to encode the GO names into vectors. We create training data as follows. For each

GO term, we select one path from that term to the root node via only is_a relation. For each

path, we split the set of GO terms into half so that they represent the first and second sentence.

BERTSERVICE and BERTNAME use a similar idea. In BERTSERVICE, the training step requires GO

definitions, whereas this phase in BERTNAME uses only the GO names. For example, consider the

path GO:0000023, GO:0005984 GO:0044262, GO:0044237, and GO:0008152. In BERTNAME,

we format it into the input [CLS] GO:0000023 GO:0005984 [SEP] GO:0044262 GO:0044237

GO:0008152 [SEP].

Next, we set the vocabularies to be learned as the GO names; that is, the token embeddings (i.e.

the values to be passed into Layer 1 of Transformer) return a vector for each GO name. Then, we

train the two self-supervised objectives in Phase 1 of BERT on this data, so that we can capture the

relatedness among the GO names. We use the same hyperparameters as the original BERT, where

the final token embedding size is 768. After the model is trained, we treat the token embeddings as

the GO embeddings. We do not take the last layer output because we do not want the contextualized

vectors of the GO names which will vary depending on their locations in the input sequence and

the surrounding words.

66

4.6 Task 1: Similarity score for two GO terms

Our GO encoders are trained so that the output vectors representing related terms will have high

cosine similarity scores (e.g. high cosine similarity scores for child-parent pairs). We now describe

a few edge cases where it may be challenging for GO embeddings to satisfy this property.

Two child-parent terms may describe very broad biological concepts, and their definitions can

appear to be very unrelated. For example, consider the term bioluminescence and its parent cellular

metabolic processwhose definitions are “production of light by certain enzyme-catalyzed reactions

in cells” and “chemical reactions and pathways by which individual cells transform chemical

substances”, respectively. One definition mentions the production of light; whereas the other does

not. It is possible that the vectors representing these two terms may not have a high similarity score.

Next, consider a GO term that has many child nodes, which is often the case for terms located

near root node. As an example, consider the term cellular process which has 59 child terms. In

Onto2vec, cellular processwill appear in many axioms and act like a hub, forcing all its child nodes

to have very similar embeddings even when these nodes have different meanings. Subsequently,

it is possible that the descendants of these dissimilar terms can also have similar embeddings.

Onto2vec embeddings are then likely to return high similarity scores for unrelated terms. In

GCN, our implementation builds the vector for a GO term by collecting the information from its

descendant nodes. When two siblings have very different descendant nodes of their own, then these

two siblings can have dissimilar embeddings. This strategy implies that the vector representing the

parent of these two siblings cannot be very close to either of them. GCN then has the same problem

observed in definition encoders.

To validate our intuition, we compute the cosine similarity scores between pairs of GO terms

using different types of GO embeddings. We observe how the IC values of GO terms affect these

similarity scores. The definition for IC value of a term g is IC(g) = − log p(g) where p(g) is

the probability that term g is used annotate a protein [77]. Terms having generic definitions or

many child nodes tend to have low IC values because a curator is unlikely to use them to annotate

proteins.

67

From the Human GO database, we sample 3000 child-parent pairs and 3000 pairs chosen at

random. We stratify samples by the minimum IC value of the terms in a pair, and then compute

the cosine similarity scores for the pairs using the embeddings of the terms. In this experiment, we

compare the IC-based model AIC with the neural network encoders [88].

Figure 4.1: Aneural network encoder’s ability to accurately classify child-parent terms is correlated
to the IC values of these terms.

Child−Parent Random

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●●●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

●
●

●
●

●●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●

●
●●●
●
●

●

●●

●

●

●

●

●
●
●

●●
●●

●

●

●

●
●

●
●●

●

●

●

●

●●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

[1.5,2.5]
(2.5,3.5]

(3.5,4.5]
(4.5,5.5]

(5.5,6.5]
(6.5,7.5]

(7.5,8.5]
(8.5,9.5]

(9.5,10.5]

(10.5,11.5]

(11.5,12.5]

Min IC of GO pair

co
si

ne
 s

im
. s

co
re

AIC

●

●●

●

●●

●

●●

●
●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●●

●
●

●

●

●
●

●

●

●●

●●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●●
●●
●

−1.0

−0.5

0.0

0.5

1.0

[1.5,2.5]
(2.5,3.5]

(3.5,4.5]
(4.5,5.5]

(5.5,6.5]
(6.5,7.5]

(7.5,8.5]
(8.5,9.5]

(9.5,10.5]

(10.5,11.5]

(11.5,12.5]

Min IC of GO pair

co
si

ne
 s

im
. s

co
re

BiLSTM

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●

●

●

●

●

●

●●

●

●

●

●

●●
●

●●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●●

● ●

●

●

●

●

●

●

−0.5

0.0

0.5

1.0

[1.5,2.5]
(2.5,3.5]

(3.5,4.5]
(4.5,5.5]

(5.5,6.5]
(6.5,7.5]

(7.5,8.5]
(8.5,9.5]

(9.5,10.5]

(10.5,11.5]

(11.5,12.5]

Min IC of GO pair

co
si

ne
 s

im
. s

co
re

ELMO

●●

●

●

●●●●
●●

●

●

● ●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●
●
●

●

●

●●

●

●

●

●

●

●●

●

●

●
●
●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

0.85

0.90

0.95

1.00

[1.5,2.5]
(2.5,3.5]

(3.5,4.5]
(4.5,5.5]

(5.5,6.5]
(6.5,7.5]

(7.5,8.5]
(8.5,9.5]

(9.5,10.5]

(10.5,11.5]

(11.5,12.5]

Min IC of GO pair

co
si

ne
 s

im
. s

co
re

BERT As Service

●●●

●

●

●

●

●

●●

●

●
●

●
●●

●

●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

[1.5,2.5]
(2.5,3.5]

(3.5,4.5]
(4.5,5.5]

(5.5,6.5]
(6.5,7.5]

(7.5,8.5]
(8.5,9.5]

(9.5,10.5]

(10.5,11.5]

(11.5,12.5]

Min IC of GO pair

co
si

ne
 s

im
. s

co
re

BERT Mean Layer 12

●●
●

●

●●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
● ●

●

●
●

●

●
●
●

●

●

●

●

●
●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

−1.0

−0.5

0.0

0.5

1.0

[1.5,2.5]
(2.5,3.5]

(3.5,4.5]
(4.5,5.5]

(5.5,6.5]
(6.5,7.5]

(7.5,8.5]
(8.5,9.5]

(9.5,10.5]

(10.5,11.5]

(11.5,12.5]

Min IC of GO pair

co
si

ne
 s

im
. s

co
re

BERT CLS Token

●

●●

●

●●

●

●
●●

●

●●
●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●●●
●

●

●

●

●

●

●

●●

●●

●

●

●

●
●●
●

●

●

●

●
●

●●
●

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

[1.5,2.5]
(2.5,3.5]

(3.5,4.5]
(4.5,5.5]

(5.5,6.5]
(6.5,7.5]

(7.5,8.5]
(8.5,9.5]

(9.5,10.5]

(10.5,11.5]

(11.5,12.5]

Min IC of GO pair

co
si

ne
 s

im
. s

co
re

GCN

●

●

●

●
●
●

●

●

●

●

●●
●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●
●
●
●

●

●

●●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

−0.1

0.0

0.1

0.2

0.3

[1.5,2.5]
(2.5,3.5]

(3.5,4.5]
(4.5,5.5]

(5.5,6.5]
(6.5,7.5]

(7.5,8.5]
(8.5,9.5]

(9.5,10.5]

(10.5,11.5]

(11.5,12.5]

Min IC of GO pair

co
si

ne
 s

im
. s

co
re

BERT Encode GO Name

●
●
●

●

●
●
●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●●
●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

● ●
●

●
●

●●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●
●●
●

●

●

●
●

●
●
●●●●
●

●●

●

●

●
●●
●
●

●

●

●

●

●

●

●●

●

●
●●●

●
●

●●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●
●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●●●

●

●

●●

●

●●

●●
●

●

●

0.25

0.50

0.75

1.00

[1.5,2.5]
(2.5,3.5]

(3.5,4.5]
(4.5,5.5]

(5.5,6.5]
(6.5,7.5]

(7.5,8.5]
(8.5,9.5]

(9.5,10.5]

(10.5,11.5]

(11.5,12.5]

Min IC of GO pair

co
si

ne
 s

im
. s

co
re

Onto2vec

Figure 4.1 shows that AIC is better than the neural network models. At each IC value interval,

AIC almost always returns higher similarity scores for child-parent terms than for unrelated terms.

Definition encoders and GCN achieve this result only when both child-parent terms have high IC

values (Fig. 4.1). This outcome agrees with our intuition about when the definition encoders

and GCN may not properly measure the similarity scores for parent-child terms. BERTNAME and

Onto2vec are noticeably worse than the other methods, where the score distributions for related

and unrelated pairs intersect at every IC value interval. Task 1 indicates that to generate better GO

68

embeddings, we must integrate components of IC models into the neural network frameworks.

4.7 Task 2: Compare gene and protein functions

In Task 2, we compare two genes or two proteins by computing the similarity scores for the sets

of GO terms annotating these genes and proteins. This is a canonical task applied in several

earlier works [68, 70]. We briefly describe the procedure to compare protein functions which

is explained in more detail in Duong et al. [27]. We evaluate different embedding types on the

orthologous gene dataset for Human–Mouse, Human–Fly, and Mouse–Fly [27], and the Human

[69] and Yeast Protein-Protein Interaction (PPI) network data [76]. Because the same procedure

applies to orthologous gene and PPI network datasets, we will discuss the orthologous gene dataset

in more detail. The orthologous gene datasets for Human–Mouse, Human–Fly, and Mouse–Fly

have 10235, 4880, and 5091 samples respectively. Each dataset contains a set of positive samples

which are pairs of orthologs, and an equally-sized set of negative samples which are pairs of

randomly chosen genes. Because two orthologous genes have conserved functions, their sets of GO

terms are often comparable and should have a higher similarity score than two GO sets annotating

two randomly chosen genes.

We apply the Best-Match Average (BMA) metric [77] to compare two sets of GO terms. This

metric requires a pairwise comparison for each term in the two annotation sets. Let A and B be

two sets of GO terms, and let t1 be a term in set A, and t2 be a term in set B, then the score is

BMA(A, B) =
1
2
(AVGt1(max

t2
sim(t1, t2)) +AVGt2(max

t1
sim(t1, t2))) (4.5)

We use cosine similarity for the function sim(t1, t2). Embeddings that best estimate the similarity

score for two terms will yield the most accurate BMA score. We compute the BMA score for pairs

in the positive and negative samples, and then compute the Area Under the Curve (AUC) using

the BMA scores as the predicted values and the true relationship between genes as the gold labels.

Proper GO encoders will produce high AUC scores for each of the datasets. We repeat the same

process for Human and Yeast PPI datasets, which contain 6031 and 3938 pairs respectively.

69

Table 4.1 shows the AUC for each neural network encoder. We observe that the AUCs of all the

methods decrease in Human–Fly and Mouse–Fly ortholog datasets as compared to Human–Mouse

dataset. We suspect that the accuracy drops because Human–Fly and Mouse–Fly datasets contain

less well-annotated genes. The accuracy drops more for neural network encoders than for AIC

method; this result agrees with Task 1 where AIC is better at comparing GO terms with low ICs.

There is no single encoder that works best for all the datasets, but the definition encoders are

consistently better than the entity encoders. Among the definition encoders, BERT variants obtain

the best outcome. In term of model complexity and implementation, BiLSTM is the simplest

definition encoder and can perform close to the BERT variants. We recommend BiLSTM for

comparing sets of GO annotations.

Table 4.1: AUC for classifying true orthologous genes in Human, Mouse and Fly, and interacting
proteins in Human and Yeast.

Orthologous gene datasets PPI data

Human-Mouse Human-Fly Mouse-Fly Human Yeast

Info Content
AIC 95.79 93.91 89.84 87.89 87.77

Definition encoders
BiLSTM 95.19 91.49 80.28 86.61 88.24
ELMo 95.47 91.10 79.78 87.73 89.03
BERTSERVICE 96.72 92.94 79.62 88.15 89.00
BERTLAYER12 95.94 92.50 81.65 88.33 89.96
BERTCLS 96.05 90.80 78.99 86.94 89.27

Entity encoders
GCN 94.99 85.54 72.99 85.45 86.75
Onto2vec 91.80 82.83 74.41 79.72 83.98
BERTNAME 96.27 85.40 70.49 83.93 82.67

4.8 Task 3: Predict GO annotations for protein sequences

Predicting GO terms for novel protein sequences is an important research problem. As of January

2020, there are 44,700 terms in the GO database; many terms are sparse, annotating only a few

proteins, and cannot be readily predicted by machine learning models. For this reason, several

existing statistical and deep learning annotation models are built and tested on a smaller set of GO

70

terms that are not sparse; for example, Liu et al. [65] trained hierarchical classifiers on 281 and 790

labels for their yeast and human datasets, and Kulmanov et al. [60] trained a deep learning model

on 1957 labels.

Work in other research fields have showed that the accuracy of an annotation method can

improve when metadata about the labels are used as extra inputs [81, 105]. Because our GO

embeddings capture the metadata about the terms such as their definitions and positions in the

GO hierarchy, we want to observe how these embeddings affect the accuracy of an existing GO

annotation model. We design two sub-tasks for Task 3. First, we modify the deep learning model

DeepGO [60] to take as extra inputs the GO embeddings, and evaluate our model on the same

datasets in the original paper. Second, we consider a more difficult task and build a model that uses

the GO embeddings to predict labels unseen in the train datasets.

4.8.1 GO embeddings in supervised learning

In this sub-task, we integrate the GO embeddings into the supervised classifier DeepGO [60]. We

use the DeepGO version which analyzes only the amino acid sequences, because we aim to observe

the effect of the GO embeddings in the absence of any other factors such as PPI network data. This

DeepGO version (denoted as DeepGoSeq in our paper) converts an amino acid sequence, e.g. p =

MARS . . . , into a list of overlapping 3-mers MAR ARS Each 3-mer is assigned a vector in

R128, so that if p has length 1002 amino acids, then the matrix representing p is Ep ∈ R128×1000.

A 1D-convolution layer, 1D-maxpooling, and Flatten layer are then applied to get a vector vp

representing p, where vp = flatten(maxpool (conv1d(Ep)). To predict if the term i is assigned

to p, DeepGO fits a logistic regression layer sigmoid(Bᵀ
i vp + bi), where Bi and bi are parameters

unique to label i. The objective loss function is binary cross entropy.

To add a type of GO embeddings into DeepGO, we make one minor change to the original

model. Let gi be the vector representing the term i, which can be retrieved by using any of our GO

encoders. We concatenate cpi = [vp gi], and apply a linear transformation c̃pi = relu(Wcpi) so

that c̃pi is the interaction of the sequence and the GO vector. To predict if term i is assigned to p,

we fit sigmoid(Bᵀ
i [vp gi c̃pi] + bi) where [vp gi c̃pi] is the concatenation of the three vectors. In

71

words, [vp gi c̃pi] represents the information from the amino acid sequence alone, the GOmetadata

alone, and their interaction effects. To train the model, we keep the GO vector gi constant and

update only the other parameters.

We create two more baselines to critically evaluate the effect of the GO embeddings on the

classification accuracy. The first baseline (denoted as +ExtraLayer) is the same as DeepGO but has

one extra linear layer where the logistic regression layer now becomes sigmoid(Bᵀ
i relu(Wvp) +

bi). This baseline allows us to estimate the effect of adding more layers to the original model

without using any GO embeddings. The second baseline (denoted as RandomEmb) takes random

embeddings where each entry is sampled from a uniform distribution U(−1, 1). RandomEmb acts

as the control case for the actual GO embeddings, and are integrated into DeepGO in the same way

that real GO embeddings are.

We train and evaluate all methods on the same DeepGO datasets. The original DeepGO paper

has three datasets, one for each of the BP, MF, and CC ontology. The BP, MF, and CC training data

sample sizes are 29100, 20159, and 28437 proteins, and their test data sizes are 9095, 6294, and

8886, respectively. Ancestors of the GO terms annotating a protein are added into the ground-truth

label set, and then BP, MF and CC terms occurring below 250, 50, and 50 times are removed from

the datasets. In total, the number of BP, MF and CC terms to be predicted are 932, 589, and 436,

respectively. These BP, MF and CC labels are not sparse; the median occurrence frequencies are

365, 88, and 111 times, respectively. In this experiment, we do not want very common labels to

affect the accuracy metric; for example, the term cell part occurs 25850 times and has a high AUC

value 83.57 in the original DeepGO paper. We compute Micro AUC and Macro AUC, but we will

focus our discussion on the Macro AUC which is the unweighted average of the per-label AUC, so

that the AUC values of infrequent labels have more contributions.

In a supervised learning, we can usually obtain accurate predictions for labels occurring fre-

quently enough in the datasets. We suspect that DeepGO may not benefit from having GO

embeddings as additional inputs. Table 4.2 shows that this is indeed the case. Our baseline +Ex-

traLayer performs very well compared to DeepGO integrated with GO embeddings. Micro and

Macro AUC are similar for all the embedding types, where BERTNAME and Onto2vec produce

72

competitive accuracy even when they are subpar to the other encoders in Task 1 and 2. We suspect

that the parameters in DeepGO can be trained to compensate for imperfect GO embeddings. This

idea is supported by the result of RandomEmb which is about the same as all the other methods.

We observe that by adding only one more layer to DeepGoSeq, we can significantly increase the

Macro AUC in the MF and CC data (Table 4.2 row 2). A more complex neural network model can

probably extract more useful information form the amino acid sequences. In Chapter 5, we will

build a more complex deep learning model.

Table 4.2: Models are trained and tested on the same original DeepGO datasets. DeepGoSeq
indicates most basic DeepGO version that analyzes only amino acid sequences of proteins. GO
embeddings produced by different types of GO encoders are then integrated into the DeepGoSeq.
We do not observe significant differences among the encoders, except for GCN in the BP ontology.
Italicized numbers are the best baseline values, and bold numbers are the best values for the GO
encoders.

BP AUC MF AUC CC AUC

Macro Micro Macro Micro Macro Micro

Baselines
DeepGoSeq 62.60 82.17 73.90 87.49 67.12 93.07
+ExtraLayer 62.82 82.51 77.39 88.89 71.03 93.32
RandomEmb 65.49 82.76 78.17 88.94 71.55 93.10

Defintion encoders
BiLSTM 64.37 83.16 76.53 88.83 70.95 93.56
ELMo 64.00 82.97 76.53 88.25 71.26 93.40
BERTSERVICE 64.95 83.51 77.74 89.21 71.85 93.54
BERTLAYER12 64.50 83.30 76.59 88.63 67.36 93.01
BERTCLS 64.49 83.38 77.08 88.75 70.45 93.35

Entity encoders
GCN 60.26 78.20 75.09 86.19 69.53 92.06
Onto2vec 64.85 83.41 76.52 88.90 69.82 93.31
BERTNAME 63.50 82.94 76.03 88.65 69.36 93.26

4.8.2 GO embeddings in zeroshot learning

In the supervised learning setting where the labels occur many times, we observe that adding GO

embeddings does not improve prediction accuracy. In this section, we consider a more difficult

problem where the GO embeddings will hold critical roles. We build a model that uses the

73

embeddings to predict the unseen labels, a scenario which has not been tried in previous deep

learning approaches [60, 65]. It is worthwhile to predict these rare labels because they are the most

related to the true protein functions. For example, perforation plate is precise to a protein location

but not its parent cellular anatomical entity or ancestor cellular component. Moreover, the GO

database is frequently updated with terms being added and deleted. If we can readily predict new

labels, then we will not need to train the existing classifier for each update.

Our model in this experiment relies on the zeroshot learning idea [87]. Suppose we can train a

classifier C(vp, vs) that takes two vectors vp and vs representing the input p and the label s seen

in the training data. Then for an unseen label u which can be represented as a vector vu, we can

apply C(vp, vu) to classify if p has the unseen label u. Building a good zeroshot learning model is

nontrivial. In this paper, our goal is not building a state-of-the-art zeroshot model; rather, we want

to know which types of GO embeddings will be most suitable for future work toward this direction.

We introduce our model DeepGOZero which is based on the original DeepGO.We use the same

vp = flatten(maxpool (conv1d(Ep)) to encode the amino acids. Next, we convert vp into the same

dimension as the GO vector gi by using ṽp = W2reluW1vp. Then we create the vector cpi for the

final classification by concatenating four vectors cpi = [ṽp, gi, ṽp ⊗ gi, |ṽp − gi|]. The predicted

probability for label i is computed from three layers of fully-connected feed forward network with

Relu activation. We will refer to these three layers as one layer L, and write the prediction as

sigmoid(L(cpi)) = sigmoid(L(vp, gi)).

The parameters in L are shared for all the labels, so that terms with similar embeddings (e.g.

child-parent terms) will be forced to have comparable predictions. We fix the GO embeddings as

constants and train only the other model parameters. Importantly, after the model is trained, we

can still predict if a protein p is assigned a GO term u which is not seen in the training label set.

First, we get the vector gu for this term by using any of our GO encoders. Then, we obtain vp for

the protein p, and apply the classifier layer L to vp and gu. Unlike L, the parameters Bi and bi in

the logistic layer of DeepGO are unique for each label and cannot be applied to labels not included

in the train datasets.

We describe our new datasets used to evaluate DeepGOZero. We extend the label sets in the

74

original DeepGO data by including BP, MF, and CC terms annotating at least 50, 10, and 10

proteins, respectively (the same criteria in the original paper are 250, 50 and 50 respectively). Our

BP, MF and CC datasets now have 2980, 1697 and 989 labels instead of 932, 589 and 439 labels,

respectively. We keep the same number of proteins as the original datasets, so that the added labels

are sparse. 95% of the added labels occur below 252, 34, and 68 times in the BP, MF and CC

training data, respectively. We do not lower the selection criteria further because wewant to reliably

train our baseline +ExtraLayer on this entire larger datasets. Having too many sparse labels can

decrease the performance of +ExtraLayer. The baseline +ExtraLayer represents the upper bound

for our zeroshot learning experiment, because models trained on the complete data should be better

than models trained only on part of the label sets.

Table 4.3: We add 2048 BP, 1108 MF and 550 CC labels to the original DeepGO datasets, and
keep the same number of proteins. Our improved DeepGO baseline +ExtraLayer is trained and
tested on the entire larger dataset, and acts as an upper bound for the other models. Different
types of GO embeddings are then integrated into DeepGOZero. Models are trained on the original
DeepGO datasets, but tested on the added 2048 BP, 1108 MF and 550 CC labels in our own larger
datasets. These added labels are unseen by models during training. Italicized numbers are the
upper bound, and bold numbers are the best values for the GO encoders.

BP AUC MF AUC CC AUC

Macro Macro Macro

Baselines
+ExtraLayer 64.64 72.45 69.31
RandomEmb 54.39 49.72 52.05

Defintion encoders
BiLSTM 54.91 61.35 61.45
ELMo 56.00 57.60 58.74
BERTSERVICE 62.48 69.96 62.55
BERTLAYER12 59.91 66.39 65.53
BERTCLS 55.97 57.78 58.13

Entity encoders
GCN 54.05 50.25 53.81
Onto2vec 56.30 56.82 52.38
BERTNAME 56.06 55.46 58.00

DeepGOZero is trained on the original DeepGO data but tested on the added 2048 BP, 1108

MF and 550 CC labels in our larger datasets (Table 4.3). As a control case, DeepGOZero is

also implemented with RandomEmb to estimate the accuracy due to chance. We pay attention

75

specifically to Macro AUC because it gives equal weights to rare and common labels; whereas,

Micro AUC focuses more on the common labels which are often easier to classify.

In Table 4.3, BERTSERVICE and BERTLAYER12 have Macro AUC closest to +ExtraLayer and

furthest from RandomEmb. BERTSERVICE is better than BERTLAYER12 for BP and MF labels;

whereas, BERTLAYER12 is better than BERTSERVICE for CC labels. DeepGOZero may not be the

most effective zeroshot model to annotate protein functions; yet, BERTSERVICE and BERTLAYER12

still come close to the upper bound +ExtraLayer. These results demonstrate that GO embeddings

are meaningful for zeroshot learning models. We recommend the BERTSERVICE or BERTLAYER12

embeddings for future zeroshot learning methods.

4.9 Summary and discussion

This chapter presents a comprehensive experiment comparing different ways to encode themetadata

of the terms in the GO database. There are two types of encoders (1) definition encoders which

encode the definitions of the term and (2) entity encoders which encode the hierarchal relationships

of the terms in the database. In this experiment, the definition encoders are BiLSTM and ELMo,

whereas the entity encoders are GCN and Onto2vec. BERT is a special case because we can design

it to be either in defintion (BERTSERVICE, BERTLAYER12 and BERTCLS) or entity (BERTNAME)

encoder.

We evaluate all the encoders in the following tasks. Task 1 studies edge cases where the GO

encoders may not produce accurate GO embeddings. We find that all the neural network models

often fail to properly produce the embeddings for child-parent terms when these terms have low

IC values (Fig. 4.1). Usually, manually annotated proteins are unlikely to contain terms with

low IC values. To observe a realistic application of the GO encoders, in Task 2, we measure the

relationships of proteins by comparing the set of GO terms annotating them. In this case, definition

encoders work better than entity encoders, and more accurately classify whether two proteins are

interacting or two genes are orthologous. Surprisingly, our BiLSTM encoder in Duong et al.

[27] obtains very close results compared to the more complex ELMo and BERT-based encoders.

76

Because BiLSTM is easier to implement than the other definition encoders, we recommend the

BiLSTM encoder for comparing functions of genes or proteins.

Task 3 evaluates the scenarios where GO metadata may help the accuracy of annotating protein

functions. We add GO embeddings as additional features for DeepGO [60]. DeepGO datasets

have enough observations for each GO label, and we do not observe that the GO embeddings

significantly help the classification accuracy. This result is rather expected because one key factor

leading to high accuracy for a classification problem is to have a lot of labeled data.

Predicting sparse labels is important for a protein, because these labels are more precise to the

protein functions. We design another classifier DeepGOZero where the GO embeddings are key

factors for predicting rare labels which were excluded in the original DeepGO datasets. We train

DeepGOZero on the 932 BP, 589 MF and 439 CC labels in the original DeepGO datasets, and

test on the 2048 BP, 1108 MF and 550 CC sparse labels which were removed due to the exclusion

criteria in the original DeepGO paper. BERTSERVICE and BERTLAYER12 obtain the highest Macro

AUCs and come close to the supervised DeepGO trained on the full label sets (original and sparse

labels). This experiment shows that GO embeddings are meaningful for zeroshot learning models.

Zeroshot learning has two key advantages: it can predict any labels in the GO database, and is not

required to be trained each time the database is updated.

Our encoders in this chapter produceGOembeddings at dimension 768 tomatch theBERTSERVICE

output. BERTLAYER12 however can be pretrained to produce embedding of any dimension for other

downstream tasks (depending on GPU constraint). In contrast, by construction the BERTSERVICE

embedding is always at dimension 768, because each layer including the output must have the same

dimension as the pretrained setting in Devlin et al. [25]. To reduce BERTSERVICE embedding size,

we may add a transformation layer in the downstream task. This extra step may complicate the

training procedure (e.g. needing more memory and longer runtime).

Due to BERTLAYER12 flexibility and good performance in all the evaluation tasks, we recom-

mend it for future works involving the application of GO metadata. In Chapter 5, we will use

BERTLAYER12 as inputs to our new GO label classifier.

Our neural network encoders are not built independently from the GO hierarchy and the IC-

77

methods. In BERTSERVICE, BERTNAME, GCN, and Onto2vec, the training corpus are generated

from the terms that are on the same branch in the GO hierarchy. In BiLSTM, ELMo, BERTLAYER12

and BERTCLS, we apply the AIC method to keep training samples that are very similar or are very

different. For our future work, we will study other techniques to combine neural network encoders

with the GO hierarchy topology and the components of IC-models.

78

CHAPTER 5

Deep learning model to predict protein functions

5.1 Introduction

Predicting protein functions is an important task in computational biology. With the decline of

sequencing cost, the gap between the numbers of labeled and unlabeled sequences continues to

grow [107]. Protein functions are described by Gene Ontology (GO) terms [96]. Predicting protein

functions is a multi-label classification problem where the input is an amino acid sequence and the

output is a set of GO terms. GO terms are organized into a hierarchical structure, where generic

terms (e.g. cellular anatomical entity) are parents of specific terms (e.g. perforation plate). Due to

this tree structure, in the training and testing datasets, if a GO term is assigned to a protein, then all

its ancestors are also assigned to this same protein.

When analyzing only the amino acid sequence data to predict protein functions, there are two

major trends. The first trend relies on string-matching tools like Basic Local Alignment Search Tool

(BLAST) to match the unknown sequence with labeled proteins in the database [3, 80, 107]. Zhang

et al. [107] combined BLAST with Position-Specific Iterative Basic Local Alignment Search Tool

(PSI-BLAST) to retrieve even more labeled proteins related to the unknown sequence [4]. The key

idea behind BLAST-based methods is to retrieve proteins that resemble the unknown sequence.

Most likely, the retrieved proteins will contain similar evolutionarily conserved regions, motifs (e.g.

kinase domain), and general secondary structures (e.g. helix-turn-helix) that align well with the

unknown input sequence. Then, all GO labels assigned to these retrieved proteins are assigned to

the unknown sequence [107].

The second trend transforms the amino acid sequences into feature vectors, then applies clas-

79

sification methods to these vectors. For example, DeepGO converts an amino acid sequence into

a string of k-mers, where each k-mer is represented by a vector so that the amino acid sequence is

represented as a matrix m [60]. The next objective is to find a function f (m, g) that returns the

correct assignment for the label g. Deep learning models like DeepGO and related work on DNA

sequences use the convolutional neural network (CNN) as the key component for this function f

[59, 60, 110]. There have been attempts in applying long-short term memory (LSTM) but the

results did not outperform the CNN architecture [59].

We address the remaining two questions in Section 1.2. The first question is: how does

an attention-based neural network compared against CNN models? Here, we introduce a novel

classifier GOAT,GO annotation based on the Transformer framework [101]. In Natural Language

Processing, the Transformer was designed to capture how much attention each word in an input

sequence (e.g. sentences) gives to and receives from the other words in the same sequence. In

the context of protein sequences, unlike CNN and LSTM, Transformer models all the pairwise

interactions of the amino acids in the protein and may have a better chance of capturing meaningful

long-range relationships among these amino acids. Besides the amino acid sequences, GOAT also

takes GO label embeddings (Chapter 4) so that it leverages label metadata to make prediction.

The second question is: is there key information in a protein sequence that is best retrieved by

BLAST, and how to integrate this knowledge into a deep learning method? We want to reconcile

the gap between BLAST and deep learning methods. BLAST models retrieve sequences with

key amino acid patterns similar to the unlabeled protein. BLAST may even recognize secondary

structural motifs (e.g. helix-turn-helix) [92]. However, BLAST models do not apply machine

learning techniques on these patterns to predict the GO labels. Deep learning models want to

correlate these patterns to the labels via the function f , but are not always guaranteed to discover

such amino acid patterns. For this reason, we will identify motifs in the protein sequences via tools

like PROSITE [85], and then use this information as extra features for our classifier.

We will also evaluate how protein metadata such as high-level 3D structures and protein-protein

interaction (PPI) network affect the prediction. We focus on neural network models, whereas

previous work of Zhang et al. [107] focused on BLAST-based methods. Zhang et al. [107] built

80

ensemble model from individual classifier created from each type of metadata. We will use all the

metadata as inputs into one single classifier.

In the following sections, we will compare GOAT against a recent BLAST-based approach and

two CNN methods on the Uniprot data [59, 60, 107]. We will study key properties of GOAT (e.g.

do the motifs pay attention to each other?) and the effect of three types of protein metadata: amino

acid motifs, high-level 3D structures, and PPI network. Without metadata, GOAT is better than

CNN methods for rare MF and CC labels, but not for BP labels. With metadata, GOAT has higher

accuracy for rare labels than the CNNmethods and the BLAST baseline. Ablation study shows that

motifs and 3D folding information are meaningful factors, but PPI network is the most important.

We hope that GOAT will serve as a meaningful neural network baseline for future research work.

GOAT is available at https://github.com/datduong/GOAnnotationTransformer.

5.2 BLAST and PSI-BLAST

We describe our first baseline which is a very competitive BLAST-based method by Zhang et al.

[107]. Zhang et al. [107] consider several best matched proteins from BLAST and additional

sequences attained by PSI-BLAST when predicting annotations. The authors [107] refer to their

BLAST and PSI-BLAST method as the sequence-based module of their software MetaGO. Here,

we refer to it as MetaGOBLAST , and briefly describe this method. Let Nblast and Npsiblast be the

number of sequences in the train data retrieved by BLAST and PSI-BLAST that best match the

unknown protein, and q be a GO label. Next define Nblast(q) and Npsiblast(q) as the number of

sequences having the label q in Nblast and Npsiblast. Let Sblast
n (q) and Spsiblast

n (q) be the sequence-

similarity scores of the nth retrieved sequence in Nblast(q) and Npsiblast(q) which contains the GO

label q. The assigned prediction probability for label q with respect to the unknown query sequence

is

score(q) = w∑
Nblast(q)
n Sblast

n (q)

∑Nblast
n Sblast

n
+ (1− w)

∑
Npsiblast(q)
n Spsiblast

n (q)

∑Npsiblast
n Spsiblast

n
(5.1)

where w = maxn Spsiblast
n so that BLAST has a stronger weight when very close homologs are

found [107]. In other words, the prediction scores for the GO labels are scaled by how similar the

81

https://github.com/datduong/GOAnnotationTransformer

query protein is to the known sequences.

5.3 Convolutional neural network

We describe DeepGO by Kulmanov et al. [60] which is built from the convolution neural network

(CNN) architecture. This baseline was described in Section 4.8.1. We will briefly discuss it

here again. We consider the DeepGO version which does not correct for consistent predicted

probabilities. Consistency is defined as the fact that if a GO label is assigned to a protein then

all its ancestors must also be assigned to the same protein. This consistency is corrected for each

GO label, where the final prediction is the maximum of its own predicted probability and the

probabilities of its descendants. In other words, in DeepGO when a descendant of a specific label

has high predicted probability then this label will also have high predicted probability. There are

other types of correction in Obozinski et al. [73] which DeepGO did not compare. We believe

this research direction on consistency correction requires its own analysis. Moreover, consistency

correction relies on the per-term prediction accuracy. For this reason, we focus comparing GOAT

to only the basic DeepGO.

DeepGOconverts an amino acid sequence, for example p =MARS . . . , into a list of overlapping

3-mers, e.g. MAR, ARS Each 3-mer is represented by a vector of in R128, so that p is repre-

sented by a matrix Ep ∈ R128×(L−2) where L is the sequence length. A 1D-convolution layer, 1D-

maxpooling and Flatten are then applied to Ep, so that we have vp = flatten(maxpool (conv1d(Ep))

as the vector representing this k-mer sequence. To predict a GO label i, DeepGO fits a logistic

regression layer sigmoid(Bᵀ
i vp + bi) with the binary cross entropy as the objective loss function.

To integrate metadata about the protein (e.g. PPI network), DeepGO concatenates this informa-

tion into vp before sending it through the logistic layer. For example, in the original paper, Kulmanov

et al. [60] convert proteins from a PPI network into vectors. Let cp ∈ Rd be the vector representing

protein p in this PPI network; then the classification layer becomes sigmoid(Bᵀ
i [vp, cp] + bi)where

[vp, cp] is the concatenation of the two vectors. We emphasize that the vector cp does not have to

be from the PPI network; in the results, we evaluate the DeepGO model with vectors representing

82

3D structures of proteins (the outcome of this experiment is not shown in table but explained in

result section). To train DeepGO, we use the same hyperparameters as the original paper [60].

DeepGOPlus developed by the same authors of DeepGO is an ensemble method of BLAST and

DeepGOCNN [59]. Wewill focus on the neural network componentDeepGOCNNofDeepGOPlus.

DeepGOCNN follows the same idea of DeepGO. However, DeepGOCNN does not use 3-mers but

encodes each unique amino acid as 1-hot vector. For example, the first amino acid (out of 21 amino

acids) will have the vector [1, 0, 0 . . . 0] of length 21. DeepGOCNN uses 512 CNN components

of sizes 8, 16, 32 . . . 128 (512× 16 total CNN components). These CNN layers are not stacked to

create a deep network, insteadmax-pooling is applied for eachCNNmodule. The final feature vector

vp of the protein sequence (in R8192) is the concatenation of these max-pooled outputs. The authors

of DeepGOCNN trained one single model for all three ontologies. We will train DeepGOCNN

separately, one model for each of the three ontologies using the same hyperparameters as the

original paper.

5.4 GOAT: GO annotation method with Transformer

We introduce our novel GO annotation method with Transformer (GOAT). GOAT takes as an

input a sequence of amino acids and GO labels. For illustration purposes, consider the protein

MAP Kinase-activated Protein Kinase 5 (UniProtKB O54992), which we will refer to by its id

O54992 for brevity. Let L denote the sequence length, and let g1 . . . gG denote the names of the

labels to be predicted, where G is the number of labels to be predicted. Our input will be the

string MSEDS . . . LPHEPQ g1 . . . gG of total length L + G. Next, define E as the embeddings

for the amino acids, for example EM and ES are the vectors representing the amino acids M and S

respectively.

Let EG be the embeddings for the GO labels, so that EG
g1

and EG
g2

are the vectors representing

the first and second GO label g1 and g2 respectively. EG is analogous to Word2vec embedding;

except in this case, instead of having a vector for each word in a corpus, we will have a vector for

each GO label in the train and test datasets. In this chapter, we set the vectors represent the amino

83

acids and GO labels to be in the same dimension; that is, EM and EG
g1

are vectors of the same

size. To reduce the number of parameters, for the GO labels, we fix EG as the BERTLAYER12 GO

embeddings in Chapter 4 instead of setting it as a trainable parameter.

We add a position vector Pj to the jth amino acid in the sequence; for example, the first and

second amino acid M and S will have the following two vectors, EM + P1 and ES + P2. We observe

that the position embedding makes sense for amino acids so that the same amino acid appearing at

different locations will be treated differently. However, position embedding does not apply to GO

labels; that is, the ordering of the labels should not affect the prediction outcome. For this reason,

we do not add position embedding to the GO labels.

Next, we introduce the region-type embeddings R to highlight the fact that some amino acids

belong to known motifs. Again consider the protein O54992, which is 473 residues long and

contains two key regions: a kinase motif at position 22-304 and a coiled coil domain at position

409-440. In this case the 25th amino acid is T and is inside the kinase motif; for this reason, it will

have the vector ET + P25 + Rkinase. Likewise, the 410th amino acid is N and will have the vector

EN + P410 + Rcoiled coil. Amino acids outside any key regions will not have region embedding

added to them. Motifs can be found by using PROSITE; fortunately, many labeled sequences in

Uniprot already have this information [21, 85].

We now describe how the Transformer architecture in GOAT analyzes the input sequence. The

original Transformer has 12 layers of encoders and each layer has 12 independent identical units

(referred to as heads in the original paper) [101]. To keep our software manageable for all users,

we use only one head and so we will exclude description of head. We will use 12 layers. The first

layer takes as arguments the vectors representing the input string. Here we simplify the notation,

let wj be the vector representing the jth element in the input string. For protein O54992 of length

L = 473 and G number of GO labels, from the input string MSEDS . . . LPHEPQ g1 . . . gG, we

84

will have for example w25 = ET + P25 + Rkinase, and w474 = Eg1 . At the first layer, we have

o1j = ∑
k∈{1:(L+G)}

ajkV1(wk) (5.2)

ajk = softmax(ejk) (5.3)

ejk = Q1(wj)
ᵀK1(wk) (5.4)

V1, Q1, K1 are transformation functions for layer 1. o1j is a weighted sum of the transformed

vectors representing itself and the other entities in the input string. o1j is then transformed as

p1j = L1
2(gelu(L1

1o1j)) where L1
1 and L1

2 are two linear transformations with the gelu activation

function in between. The final output of Layer 1 is h1j = LayerNorm(p1j + o1j). Loosely speaking,

the first layer computes all pairwise interactions of wj and wk for all k, where the attention ajk in

Eq. 5.3 indicates how much wk contributes toward wj.

The second layer takes the output of the first layer as its input, so that we have for any layer i

oij = ∑
k∈{1:L+G}

ajkVi(hi−1,k) (5.5)

ajk = softmax(ejk) (5.6)

ejk = Qi(hi−1,j)
ᵀKi(hi−1,k) (5.7)

where Vi, Qi, Ki are transformation functions for layer i. This layer i will have its own linear

transformations Li
1 and Li

2 to transform oij. Again, loosely speaking, layer i computes all pairwise

interaction for the output from the previous layer i− 1.

At layer 12, we focus only on the output h12,k corresponding to the GO labels. Let us denote

h12,gi as the final output for the term gi. We use a single linear classifier softmax(Ch12,gi) to return

the presence and absence probability of gi for the input protein. The same transformation C is

applied to all labels, so that a set S of GO terms having similar h12,gi∈S will have similar predictions.

At each label gi, the output h12,gi encapsulates all the information from the amino acids and

from all the other labels, so that values which affect h12,gi will also affect the output h12,gj at

85

another label gj. Intuitively, with this fact and the fact that all labels share the same classifier C,

the prediction at gi and gj are to some degree correlated. We suspect that Transformer can model

co-occurrences of labels. To validate this, from the T-SNE plot of the vectors h12,gi in the result

section, we observe that a label and its ancestors will be nearby, even when their initial definition

embeddings Egi in Duong et al. [28] are dissimilar, as is the case when a term and its distant

ancestors can have dissimilar definitions.

When there aremetadata for the proteins, such as their embedding cp from a PPI network, we can

concatenate such embeddings into h12,gi as in DeepGO. Next, we use a two-layer fully connected

classifier, softmax(C1(relu(C2[cp, h12,gi]))) to return the presence and absence probability of gi,

where C1 and C2 are shared for all the labels.

5.5 Uniprot data and evaluation metrics

GOAT takes several data sources as inputs, some of which (e.g. PPI network or new motifs) may

not be known for brand new proteins. To fully understand its behaviors, we evaluate GOAT on a

subset of well-annotated proteins in the Uniprot data. We use same the Uniprot data as in DeepGO

and follow the same preprocessing steps [60]. DeepGO removed proteins with ambiguous amino

acid codes (B, O, J, U, X, Z) and sequences longer than 1000 amino acids. The remaining dataset

covers more than 90% of the Uniprot data. For each GO term annotating a protein, all the ancestors

of that term are also added to the ground truth. DeepGO removed BP, MF and CC labels annotating

less than 250, 50, and 50 proteins, respectively. The final BP, MF and CC datasets have 29100,

20159, and 28437 training proteins, and 9095, 6294, and 8886 testing proteins, respectively. In

total, the numbers of BP, MF and CC terms in the label sets are 932, 589, and 439, respectively.

For baselines, we will not include DeepGOCNN until Section 5.9 where we have larger datasets

with more labels.

We present three main results in the following sections. First, we evaluate the base imple-

mentation of GOAT that analyzes just the raw amino acid sequence data alone. We use the name

GOATBASE to indicate this base implementation, and ignore the subscripts when the context is clear.

86

Second, we show that GOAT obtains higher classification accuracy when it takes as extra inputs

the motif information from the protein sequences. We use the name GOATMOTIF for this version of

GOAT. We also observe how the Transformer architecture in GOAT analyzes the motif information

when it predicts GO labels for an amino acid sequence. Third, because motif information is a key

input of GOAT, we integrate 3D structure and PPI network data on top of GOATMOTIF to obtain even

better prediction outcome. We use the name GOATMOTIF,3D, GOATMOTIF,PPI, GOATMOTIF,3D,PPI

to indicate joint inputs in GOAT.

We measure the per-label accuracy using Macro and Micro AUC which are the unweighted and

weighted averages of the AUC at each label, respectively. We are interested in the accuracy for

rare labels because these labels are closer to the true functions of the proteins. Rare labels affect

Macro AUC more than Micro AUC, so we will report Macro AUC more often. We also compute

recall-at-k (R@k) which measures the per-protein accuracy. In practice, a classifier would return

k of the most probable labels for an unknown sequence, which a curator can then review. These

k labels are referred to as top-k labels because they are the k labels having the highest predicted

probabilities for an input sequence. For one protein, R@k measures the fraction of correct labels

retrieved among the top-k labels. We report the final R@k which is the average R@k over all test

samples.

5.6 GOAT base implementation

For the Transformer parameters inGOAT,we set input embedding at size 256 (that is EG ∈ R932×256

forMF), and intermediate vectors at size 512. To keep our software GOATmanageable for all users,

we implement Transformer with only one head and 12 layers. We initialize the GO embedding

EG as the pretrained embedding BERTLAYER12 in Duong et al. [28] which transforms the GO

definitions into vectors, where GOs having related definitions will have comparable vectors. Using

pretrained GO embeddings reduces the number of parameters in the Transformer, which can also

reduce overfitting, use less GPU memory, and decrease run time. We train all GOAT variations on

a single GTX 1080 Ti with 11GB memory for all three datasets.

87

We first compare the base implementations of GOAT and DeepGO, and in the next section we

will include MetaGOBLAST. In BP, MF and CC data, GOATBASE exceeds DeepGOBASE in Macro

and Micro AUC, indicating that the base implementation of GOAT attains better per-label accuracy

(Table 5.1.A row 3 and 5). On per-protein accuracy, we select R@50, R@30, and R@30 for the

BP, MF and CC data, respectively (approximately 5% of total label size). GOAT increases recall

rates by a small amount.

Recall for the entire label set can be affected by common terms which are often easier to classify

compared to rare labels. Accurately predicting rare terms is more important for the proteins,

because rarer labels describe more detailed biological events which reflect the true properties of

the unknown proteins. Table 5.1.B shows the R@k for 232 BP, 143 MF, and 110 CC rare labels

which appear below the 25th quantile occurrence frequency in the label sets. For recall rates to

make sense in this case, we compute recall rates for the proteins annotated by at least one of these

rare labels. GOAT has a noticeable improvement over DeepGO, especially for larger top-k label

sets (Table 5.1.B row 3 and 5).

We next evaluate whether our Transformer adaptation can learn the co-occurrences of labels.

Duong et al. [28] noticed in their GO embeddings that when one of the child-parent GO labels

describes very broad biological events (e.g. low IC), then their vector representations may be

far apart. This fact implies that for Transformer to work well, to some degree it must learn the

co-occurrences of labels and adjust EG so that any two related GO labels (regardless of their

frequencies in the train data, IC values and distance to roots) will have comparable vectors. To

observe that Transformer can implicitly learn label co-occurrences, we compare the T-SNE plots

of the input GO embedding EG and its output h12,gi from the Transformer layer 12 which is directly

passed into the classification layer.

For every input protein, we have a different value of h12,gi for the same label gi because h12,gi

is function of the vector representing the amino acids. We apply our trained Transformer on the

test set, and take the average h12,gi over each input proteins in test data (denoted as h̄12,gi). We

compute h̄12,gi from the test data because these proteins are not seen in training and provide a more

realistic evidence. We use h̄G
12 to denote the set of h̄12,gi for all gi.

88

Figure 5.1: T-SNE plot of (a) input GO embeddings and (b) their transformed values created
by Transformer layer 12. Red and blue nodes are the ancestors of the term GO:0008376 and
GO:0030291 respectively.

GO:0003824

GO:0004672
GO:0004674

GO:0004857

GO:0004860

GO:0005515

GO:0008194GO:0008376

GO:0016301

GO:0016740GO:0016757

GO:0016758

GO:0016772

GO:0016773

GO:0019207

GO:0019210

GO:0019887

GO:0019899

GO:0019900

GO:0019901

GO:0030234

GO:0030291

GO:0098772

−20

−10

0

10

−20 −10 0 10 20
Dim 1

D
im

 2

MF GO Vector Input

(a)

GO0003824

GO0004672

GO0004674

GO0004857

GO0004860

GO0005515

GO0008194

GO0008376

GO0016301

GO0016740

GO0016757

GO0016758

GO0016772

GO0016773

GO0019207
GO0019210

GO0019887

GO0019899

GO0019900
GO0019901

GO0030234

GO0030291

GO0098772
−20

−10

0

10

20

−20 −10 0 10
Dim 1

D
im

 2

MF GO Vector Hidden Layer

(b)

Figure 5.1 shows the T-SNE plot of EG for the MF labels in DeepGO dataset; we highlight two

terms GO:0008376 (red) and GO:0030291 (blue) and their corresponding ancestors in the same

colors. The dot sizes are scaled by IC values, where a smaller size implies lower IC (so the label

is more common). Smaller dots tend to cluster well together but large dots do not. For example,

consider the term GO:0016740 and its parent GO:0003824 (far right and far left red nodes in

Fig. 5.1(a)) which should often co-occur because in our dataset ancestors of an assigned label are

included as the ground truth labels. For Transformer to work well, it should reposition the h12,gi

vectors representing GO:0016740 and GO:0003824 closer together.

The T-SNE plot of h̄G
12 from Transformer shows that the red and blue nodes have clustered

more closely compared to EG. Now, the blue dots are gathering at the bottom of Fig. 5.1(b), as

compared to being two separated groups in Fig. 5.1(a). Our two running examples GO:0016740

and GO:0003824 have moved closer to each other, the two red nodes at bottom of Figure 5.1(b).

However, the lowest child node GO:0008376 remains far from its ancestors (top most red node).

The red and blue dots are not yet tightly compacted into two dense clusters, and so there is room

for further development. In conclusion, Transformer weakly models the co-occurrences of labels

89

even when such a constraint is not explicitly enforced.

5.7 Motifs in amino acid sequences as features

Before neural network models, earlier methods integrated BLAST as a key component. BLAST

retrieves annotated proteins in the database that share similar amino acid patterns with the unknown

sequence, and then assigns the GO labels of these retrieved proteins to the unknown query. Loosely

speaking, the amino acid patterns shared by the training sequences can be considered as the key

factors in BLAST-based methods. We evaluate whether neural network models can automatically

learn these key patterns from the training sequences, and explain how to introduce these patterns

as input features to GOAT.

For fair comparison, we select a strong BLAST baseline MetaGOBLAST and apply it to the

same DeepGO datasets [107]. We emphasize that MetaGOBLAST , which matches multiple related

sequences to the query, has much stronger performance than the BLAST baseline used in DeepGO

where only a single best matching sequence is selected [60, 107]. For BLAST and PSI-BLAST,

we perform the experiments using both e-value at 10 and 100. Lower e-values leave too many

unmatched testing sequences; for example, in the CC dataset at e-value 1, only 7236 out of 8886

test samples match to some sequences in the train data. Moreover, in the context of finding possible

protein functions, a higher e-value can allow for higher recall rates.

On the entire label set, when considering all the metrics, the base DeepGO and GOAT outper-

formMetaGOBLAST only for CC data, but not forMF and BPwhereMetaGOBLAST has higher recall

rates (Table 5.1.A row 1–3 and 5). On rare labels, MetaGOBLAST yields better recall rates especially

for small top-k label set. For larger top-k label sets, GOATBASE comes close to MetaGOBLAST,

whereas DeepGO cannot (Table 5.1.B row 1–3 and 5). The CNN in DeepGO and Transformer in

GOAT have not fully captured the amino acid patterns shared among the sequences with related

functions, which BLAST or PSI-BLAST can detect.

We had hoped that the complex Transformer architecture in GOAT would learn key amino acid

patterns, but this is not the case. There are information about the amino acid sequences that we

90

must explicitly specify for GOAT to function better. For this reason, we use the motifs extracted by

string-matching methods as inputs to our method GOAT. For example, we can apply PROSITE to

scan the protein database for known motifs in a given input sequence [85]. Loosely speaking, we

are combining motif-based methods and the Transformer architecture into one pipeline by taking

the output of motif-based models and passing them as inputs to our Transformer. Our strategy is

different from an ensemble approach that averages the predictions of independent classifiers.

In the Uniprot database, each protein already has a Family & Domains section describing

its key regions [96]. We add these region types as input features into our method GOAT. We

emphasize that not all region types are meaningful for predicting labels in a certain ontology.

For example, Serine/threonine-protein kinase TBK1 (UniProtKB number Q9UHD2) has a kinase

domain at position 9-310 (PROSITE annotation rule PRU00159). The kinase domain is involved in

a wide range of biological processing at various locations in the cell like metabolism, transcription,

cytoskeletal rearrangement and movement, and cell apoptosis and differentiation [30, 83]. Thus,

this kinase domain in Q9UHD2 tells us which Molecular Functions are more likely to be assigned,

but is less informative about which Biological Processes or Cellular Components Q9UHD2 will

have.

For each protein in the original DeepGO datasets, we download its sequence annotation rule

(e.g. PROSITE rule) from the 2019 data at https://www.uniprot.org/. We do not consider region

types for sequences that have changed in length; otherwise, we consider region types only for

portions that have not changed in amino acid composition. Uniprot data divides region types into

subgroups. Some subgroups require curated comments and are not truly applicable for analyzing

new proteins; for example, the subgroup Domain Non-positional Annotation is not determined by

sequence analysis.

We use the following six subgroups which can be found by sequence analysis: Zinc finger (e.g.

C2H2-type), Repeat (e.g. AA tandem repeat), Motif (e.g. LXXLL motifs), Compositional bias

(e.g. Asp/Glu-rich), Coiled coil (e.g. Leucine-zippers), Domain (e.g. Ser/Thr kinase domain). In

the original DeepGO datasets, we found 1629, 1450 and 1655 amino acid region types for the BP,

MF and CC train data, respectively. Region types found in test sequences but not seen in the train

91

data are set as zero; effectively we treat these cases as if the region types do not exist. To model

the region types in the amino acid sequence, we apply the region-type embedding R explained in

Section 5.4; for example, in BP ontology we will have a embedding R ∈ R1629×256. We will use

the name MOTIF to denote all types of information in these six subgroups reported by The UniProt

Consortium [96].

On the entire data, GOATMOTIF obtains betterAUCs and comparable recall rates toMetaGOBLAST

(Table 5.1.A row 6). On rare labels, GOATMOTIF has subpar recalls when the top-k label set is

small. However, at larger top-k label set, especially in MF and CC data, GOAT retrieves more

correct labels (Table 5.1.B row 6). Our result also highlights an important point. Ideally, a neural

network should teach itself the patterns associated with certain key protein functions. However,

a neural network may fail to learn such key information, and needs these inputs to be explicitly

provided.

To observe how the MOTIF are analyzed by the Transformer architecture in GOAT, we select

the human protein Serine/threonine-protein kinase TBK1 (UniProtKB Q9UHD2) in DeepGO test

data. As described in Section 5.4, we concatenate the amino acid sequence and GO labels into

one single input into GOAT. Q9UHD2 is 729 amino acids long, and when predicting MF labels,

the input into GOAT is a string of amino acids and GO labels of length 1318 (from 729 + 589 MF

labels). We integrate into the Transformer framework the three key domains in Q9UHD2 derived

from sequence analysis methods; these are Protein Kinase at 9-310, Ubiquitin-like at 309-385, and

Coiled coil at 407-713.

We plot the attention heatmap of αjk in each layer. αjk measures howmuch position k contributes

toward position j (Eq. 5.3). Each row in the heatmap adds to 1. The heatmap is divided into four

quadrants. The first quadrant shows the interactions of GO labels among themselves (e.g. αjk for

j, k ∈ [730, 1318]), the second shows contribution of amino acids toward the GO labels, the third

shows interactions of amino acids among themselves (e.g. αjk for j, k ∈ [1, 729]), and the fourth

shows contribution of GO labels toward the amino acids.

The Transformer without region-type embeddings has a noisy attention heatmap (Fig. 5.3).

Transformer with region-type embedding displays meaningful patterns (Fig. 5.2). For example,

92

layer 1 illustrates the cross interactions between Protein Kinase and Coiled coil domain (black boxes

quadrant 3); whereas layers 4 and 8 show interactions within the Protein Kinase and Coiled coil

themselves. In layer 12, the final vectors representing GO labels receive more attention from the

Protein Kinase than the other regions (left most box in quadrant 2). Because these layer 12 vector

output are sent to the classification layer, we can assume that the Protein Kinase region contributes

more to the label classification compared to the other domains. This observation is consistent

with the true molecular functions of Q9UHD2 which are: phosphoprotein binding, protein kinase

activity, protein phosphatase binding, and protein serine/threonine kinase activity.

Figure 5.2: Heatmap of the attention values αjk in each layer when analyzing the protein kinase
TBK1 (UniProtKB Q9UHD2). The three key regions of this sequence (separated by red lines)
are explicitly given as inputs to the Transformer model. The first quadrant shows the interactions
among the GO labels, the second shows contribution of amino acids toward the GO labels, the
third shows interactions of amino acids among themselves, and the fourth shows contribution of
GO labels toward the amino acids.

93

Figure 5.3: Heatmap of the attention values αjk in each layer. Motifs of the sequences are not
explicitly given as inputs to this Transformer model.

5.8 Other protein metadata as features

Zhang et al. [107] evaluate how PPI network and 3D structure data affect the annotation accuracy

for methods built from BLAST. We assess the contributions of these components in the context

of a neural network classifier. Unlike Zhang et al. [107] which use ensemble of the models built

from each component, we will model all these components as inputs to the neural network. We

consider these other protein metadata as any information about the proteins coming from some

external resources besides the Uniprot data. For example, one can train a neural network on the PPI

network (e.g. STRING database) to transform interacting proteins into similar vectors and then use

these vectors as extra features for the classifier [2, 16, 95]. Introducing these protein vectors into

annotation methods is motivated by the fact that interacting proteins (ideally encoded into similar

vectors) should have related functions (e.g. found in the same biological processes and cellular

locations). It is only recently that proteins in knowledge graph have been transformed into vectors

94

via neural network models [16]. We will not build new models to encode proteins from knowledge

graph, and reserve this topic for future work. We will focus on evaluating how much can protein

vectors built from external data sources increase the prediction accuracy.

Table 5.1: Evaluation on the preprocessed Uniprot data, containing 932 BP, 589 MF, and 439 CC
labels for 9095, 6294, and 8886 testing proteins in BP, MF and CC data.

Table 5.1.AMacro and Micro AUC, and R@k on the entire label sets.

BP MF CC

Macro Micro R@50 Macro Micro R@30 Macro Micro R@30

BLAST Psi-BLAST
1 Evalue10 65.99 81.34 48.02 76.51 87.12 69.75 64.17 89.36 77.24
2 Evalue100 66.61 84.41 48.84 78.67 90.34 68.06 65.62 92.54 80.23
DeepGO
3 BASE 62.60 82.17 46.13 73.90 87.49 59.63 67.12 93.07 81.47
4 +PPI 82.16 90.31 56.97 84.97 92.40 70.19 87.51 96.76 87.98
GOAT
5 BASE 67.69 84.46 47.40 78.67 89.43 60.46 74.94 93.95 82.98
6 +MOTIF 71.04 85.64 48.65 82.53 91.12 66.19 77.62 94.51 83.01
7 +MOTIF+3D 72.62 86.09 50.76 85.38 92.72 69.23 79.57 94.95 84.22
8 +MOTIF+PPI 83.68 90.49 57.81 88.92 93.98 72.16 90.76 97.23 87.95

Table 5.1.B R@k on the most uncommon 232 BP, 143 MF, and 110 CC labels of the entire label sets.

BP MF CC

R@10 R@30 R@50 R@10 R@20 R@30 R@5 R@10 R@20

BLAST Psi-BLAST
1 Evalue10 25.13 38.34 47.33 51.11 54.93 57.51 25.09 30.91 40.48
2 Evalue100 21.79 36.06 46.29 48.37 55.98 60.98 21.91 29.72 39.20
DeepGO
3 BASE 11.88 27.23 39.75 27.07 40.38 50.47 13.28 24.57 38.99
4 +PPI 45.62 64.93 74.55 52.85 63.64 71.98 53.14 64.85 76.61
GOAT
5 BASE 13.49 31.73 44.54 30.95 48.31 58.87 17.89 26.47 39.90
6 +MOTIF 17.27 35.58 48.11 41.72 55.80 64.76 19.06 31.03 48.04
7 +MOTIF+3D 23.66 42.90 55.06 47.90 62.49 72.23 27.36 39.72 57.17
8 +MOTIF+PPI 42.84 64.53 74.78 59.49 74.77 82.67 48.04 62.14 77.68

5.8.1 High-level 3D structures of proteins

High-level structures within a protein may be derived from the patterns within its amino acid

sequence. We evaluate the embeddings of Bepler and Berger [9] that capture these high-level

95

configurations. Bepler and Berger [9] applied a 3-layer Bidirectional Long-Short Term Memory

(BiLSTM) to encode an amino acid sequence into a matrix. Bepler and Berger [9] trained their

model on the SCOP database and residue-residue contact prediction. The SCOP database describes

the major classes of 3D-structures often seen in proteins (not detailed final 3D shapes of proteins).

Their model was trained on SCOPe ASTRAL 2.06 dataset with 22,408 amino acid sequences,

and each training epoch has 100,000 pairs sampled from these 22,408 sequences. From SCOP,

Bepler and Berger [9] predict whether two protein sequences have no relationship, class-level

relationship, fold-level relationship, superfamily-level relationship, or family-level relationship

(e.g. label y = 0, 1, 2, 3, 4) [9]. For example, two proteins with the same Rossmann-fold structural

motif have a class-level relationship (y = 1 in this case). Residue-residue contact prediction is

applied within the same protein sequence; the objective is to predict whether each pair of positions

i, j within the same protein are close by (distance less than 8 angstroms) in the 3D structure.

Bepler and Berger [9] provide the pretrained encoder which can return a matrix for any amino acid

sequence, even those not used in training. We take the mean-pool of this matrix to represent the

entire sequence.

Because motif information is a key input for GOAT, we integrate the high-level 3D structure

embeddings with GOATMOTIF. 3D structures and motifs are targeting two different kinds of

information; for example, a kinase domain does not strictly entail a specific folding pattern.

GOATMOTIF,3D improves upon GOATMOTIF (Table 5.1.A row 7). For a small top-k label set,

GOAT finds fewer correct labels than MetaGOBLAST. However, for a larger top-k label set, GOAT

is better than MetaGOBLAST, where our recall rates increase by about 9%, 12%, and 17% in BP,

MF and CC data respectively (Table 5.1.B row 7).

When we replace the PPI network in DeepGOwith the vectors from SCOP in Bepler and Berger

[9], the performance significantly decreases. Macro AUC in DeepGO drops from 82.16 to 66.54 in

BP, from 84.97 to 77.78 in MF, and from 87.51 to 68.93 in CC data. This decrement is anticipated

as we will argue in the next section, that protein interaction network has more impact than 3D

structure information.

The embeddings in Bepler and Berger [9] capture less information than the protein 3D structure

96

data used in MetaGO. Besides its BLAST component, MetaGO uses I-TASSER to derive the

final 3D configuration of an input sequence (not just high-level secondary structures) [106, 107].

I-TASSER does not provide embedding for an input protein and cannot yet be integrated into

neural network model [106]. We will not compare the neural network models against the MetaGO

integrated with I-TASSER.

5.8.2 Protein-protein interaction network

We evaluate protein vectors that capture their relatedness in a protein-protein interaction network.

To be consistent with DeepGO, we use the same protein vectors in their paper as input features

for our GOAT. These vectors are created following the method in Alshahrani et al. [2]. In brief,

DeepGO uses vectors representing the protein names in a PPI network that has 8,478,935 proteins,

and 11,586,695,610 edges total (derived from STRING database). DeepGO uses DeepWalk to

generate sentences from the network, and apply Word2Vec on these sentences to create the vector

embedding for the protein names [71, 75]. Effectively, interacting proteins will have similar vectors.

Because motif information is a key input of GOAT, we integrate PPI network data on top of

our GOATMOTIF. GOATMOTIF,PPI exceeds the other Transformer models by large margins (Table

5.1.A row 8). On the entire label sets, with PPI network information GOAT and DeepGO perform

similarly (Table 5.1.A row 4, 8). Only for rareMF labels does GOAT exceed DeepGO by noticeable

margins (Table 5.1.B row 4, 8).

Intuitively, it is reasonable that PPI network dominates the information from amino acid se-

quences at classifying BP and CC labels, but not for MF labels. For example, two interacting

proteins can have distinct 3D structures and sequences (and thus motifs); yet, they involve in the

same biological process and sometimes found at the same cellular components. The same two

interacting proteins however can have dissimilar molecular functions because they can induce very

different chemical reactions.

PPI network embeddings in DeepGO do not need amino acid sequences to retrieve vectors

representing the proteins. However, this method will not return vector representations for novel

proteins not yet existed in the database. In practice, for proteins not yet well studied, we may need

97

a different approach and other metadata for such proteins. We reserve this topic for future research

work.

5.9 Evaluation on sparse GO labels

Many GO terms annotate only a few proteins because protein functions can be very unique.

Parametric predictors must handle sparse labels to predict terms closely resemble the true protein

functions. In practice, parametric models can fail when the training data has too many sparse labels.

In such cases, neural network accuracy will drop as we need each label to have enough samples

to reliably train the model parameters. It is important to evaluate neural network models against

MetaGOBLAST which does not have trainable parameters.

To create datasets containing more rare labels, we reuse the same proteins in the preprocessed

Uniprot data of Section 5.5. Now, we include labels with at least 50, 10, and 10 occurrences in

the BP, MF and CC train data, whereas the same criteria before were 250, 50 and 50. Our larger

datasets now have 2980 BP, 1697 MF and 989 CC labels, respectively (versus the original 932 BP,

589 MF, and 439 CC labels). For each added term, we include its ancestors as the gold-standard

labels, so that most of the labels in the original data now have higher occurrence frequencies.

We train the models on the entire larger dataset. We will include DeepGOCNN, GOATPPI and

GOATMOTIF,3D,PPI in this experiment. We do not include PPI network into DeepGOCNN because

the DeepGOCNN code does not accept PPI network data [59]. GOATPPI evaluates the contribution

of the PPI network alone, and GOATMOTIF,3D,PPI evaluates our most complete model. We will

evaluate the accuracy for the labels found in the original preprocessed Uniprot data. However, we

are less interested in these common labels, and will also evaluate the added 2048 BP, 1108 MF

and 550 CC labels which are sparse. For example, 95% of the added labels occur below 252, 34,

and 68 times in the BP, MF and CC training data, respectively. Table 5.2 shows the results for the

common and sparse labels. We include Macro AUC to judge whether a classifier obtains higher

recall rates by making too many false positives. We discuss four keys points in these results.

First, MetaGOBLAST is very competitive against the base implementations of deep learning

98

Table 5.2: We increase the label sets in the preprocessed Uniprot data from 932 BP, 589 MF, and
439 CC labels to 2980 BP, 1697 MF and 989 CC labels. Models are trained on the entire expanded
label sets.

Table 5.2.A Evaluating the original 932 BP, 589 MF, and 439 CC labels. Largest R@k is about 10% of BP,
MF and CC labels.

BP MF CC

Macro R@k Macro R@k Macro R@k

AUC 40 70 100 AUC 10 30 60 AUC 10 20 40

BLAST Psi-BLAST
1 Evalue10 66.66 43.38 54.94 62.16 75.31 52.21 68.92 76.91 65.07 56.02 72.92 82.96
2 Evalue100 67.12 43.19 55.27 62.91 77.47 49.07 66.87 76.63 66.37 56.31 74.61 85.26

DeepGO
3 BASE 64.49 40.89 53.02 61.38 73.39 41.38 58.17 70.22 68.61 57.52 75.82 86.23
4 +PPI 81.58 49.86 63.48 71.75 83.73 48.48 68.44 79.86 88.05 61.37 80.00 91.11

DeepGOPlus
5 DeepGOCNN 69.92 41.50 55.15 63.77 78.56 45.70 63.12 71.46 75.01 60.21 77.57 87.27

GOAT
6 BASE 66.74 40.41 52.87 61.38 76.79 41.00 58.23 70.53 74.75 59.82 77.20 87.16
7 +MOTIF+3D 69.93 43.12 55.54 63.54 84.40 48.83 67.56 78.51 78.34 59.50 77.31 87.98
8 +PPI 83.02 50.40 63.87 72.10 87.03 48.74 68.44 79.91 91.34 62.68 80.90 91.68
9 +MOTIF+PPI 82.82 50.26 63.57 71.96 85.89 47.86 67.92 79.63 90.41 61.50 80.08 91.35

10 +MOTIF+3D+PPI 84.02 51.50 65.31 73.61 88.61 53.75 73.62 84.12 91.41 62.24 80.86 91.72

Table 5.2.B Evaluating the added 2048 BP, 1108 MF and 550 CC labels which are sparse. We evaluate only
7850, 2671, and 1848 proteins having these labels out of the 9095, 6294, and 8886 samples in BP, MF and
CC testing data. Largest R@k is about 5% of BP, and 10% of MF and CC labels.

BP MF CC

Macro R@k Macro R@k Macro R@k

AUC 40 70 100 AUC 40 70 100 AUC 10 30 50

BLAST Psi-BLAST
1 Evalue10 64.10 30.30 34.84 37.88 68.79 38.67 41.09 43.42 60.20 20.80 29.15 33.13
2 Evalue100 64.44 29.53 34.57 38.02 69.93 38.58 43.32 45.81 60.03 23.47 35.23 39.78

DeepGO
3 BASE 63.53 23.14 27.98 32.01 68.27 16.62 23.83 29.60 60.45 22.49 31.53 37.96
4 +PPI 84.66 48.06 55.86 61.02 80.22 41.61 48.61 53.39 83.17 47.89 60.77 66.48

DeepGOPlus
5 DeepGOCNN 69.35 27.32 33.34 37.92 70.31 17.92 24.38 28.87 61.55 24.38 33.36 39.99

GOAT
6 BASE 65.68 23.78 28.82 32.69 73.58 19.41 27.88 34.19 68.22 25.22 35.98 42.53
7 +MOTIF+3D 70.00 27.70 33.50 38.03 79.50 30.52 38.74 45.44 69.61 25.73 37.82 44.42
8 +PPI 86.77 43.51 52.52 58.54 85.61 41.77 52.46 58.51 88.12 41.98 60.02 68.70
9 +MOTIF+PPI 87.32 46.22 55.06 61.08 84.93 45.69 55.32 61.11 90.01 50.08 67.15 73.89

10 +MOTIF+3D+PPI 88.08 46.78 56.24 62.49 87.57 50.92 60.77 66.64 90.07 47.96 65.30 74.36

99

methods, especially for small top-k label sets. Only for CC labels, we observe that neural network

models are better for both common and sparse labels. In the future work, we will explore ways

to create an ensemble between a BLAST-based and a neural network model. For example, the

combination weights of the predictions for these two models can be trained with the neural network

parameters. The neural network would then primarily focus on labels that are hard to predict by a

BLAST-based method.

Second, amino acid motifs and high-level structural motifs, which can be inferred from the

sequence data, increase the accuracy of GOAT on BP and CC labels, and has the highest effect on

MF labels. For BP and MF labels, motifs and high-level 3D structure data enable GOAT to come

close to MetaGOBLAST (Table 5.2 row 6, 7). Future neural network model should leverage these

two data types either by following our approach or any other means.

Third, PPI network has the most impact on the prediction accuracy. With PPI, even the simple

DeepGO surpasses MetaGOBLAST (Table 5.2 row 4, 8–10). This evidence supports our earlier

hypothesis that PPI network can dominate sequence information; that is, two interacting proteins

should be involved in the same biological processes even when their sequences display dissimilar

motifs, 3D structures, or any other types of information extracted by the neural network. BLAST

search can infer motifs and high-level 3D structure from amino acid sequences, but not the PPI

network. It is unfair to compareMetaGOBLAST against deep learning models with PPI embeddings;

however, our results highlight the major impact of having the PPI network embeddings.

Fourth, within the three neural network approaches, DeepGO has the lowest accuracy but

understandably, it is also the simplest model. For BP labels, DeepGOCNN outperforms GOATBASE

and is about the same as GOATMOTIF,3D. For BP labels, having many CNN components may be

enough to capture key amino acid patterns. This is not the case for GOATMOTIF,3D on MF and CC

labels, where GOATMOTIF,3D is better than DeepGOCNN and the improvement is most prominent

for rare labels (Table 5.2 row 5, 7). Between DeepGOCNN and the base architecture of GOAT, for

MF and CC labels, there is a trade-off in the accuracy of common and sparse labels. DeepGOCNN

is better than GOATBASE at classifying common labels, but GOATBASE is better for sparse labels

(Table 5.2 row 5, 6). Because sparse labels are closer to the true protein functions, GOATBASE

100

would provide more precise predictions than DeepGOCNN. Both DeepGOCNN and GOATBASE

apply their own large neural network architectures on the amino acid sequences. DeepGOCNN

uses 8192 components of CNN, and GOAT uses 12 layers of Transformer. The main differences are

that GOAT uses an attention-based network, and that GOAT takes label embeddings. Both factors

are likely to have improved the accuracy for rare MF and CC labels.

5.10 Summary and discussion

We introduce GO annotation method with Transformer (GOAT), a deep learning classifier based

on the neural network with attention mechanism. Besides the raw amino acid sequences, GOAT

can be trained with three types of metadata: motif information, high-level 3D structures and PPI

network. Each metadata increases the accuracy of GOAT, but the PPI network has the highest

impact. GOAT is better than the most recent CNN-based classifier DeepGOCNN for rare MF and

CC labels [59]. With metadata, in some cases GOAT can be at least equivalent to MetaGOBLAST

[107].

MetaGO of Zhang et al. [107] has also combined sequence data, 3D structure and PPI network

information to annotate GO labels. In MetaGO, each type of metadata is used to build its own

classifier, and then these independent classifiers are combined to produce the final prediction. For

example, Zhang et al. [107] built their MetaGOBLAST as an independent unit from the their two

classifiers that uses PPI network and 3D structure data. The reason for their strategy is that BLAST

algorithm, which is similar to Smith-Waterman, cannot take information about the interacting

partners and 3D structure of the input sequences [3]. Unlike MetaGO, GOAT can jointly analyze

the raw amino acid sequences, motifs, protein 3D structures and PPI network. In the future work,

we wish to integrate components of MetaGO into GOAT, and vice versa.

We discuss a key property of our Transformer in the context of GO embeddings. This Trans-

former learns the co-occurrences among the labels; for example, the last layer in Transformer

returns comparable vectors for a child and parent GO label (Fig. 5.1). GO embeddings produced

by our Transformer are not equivalent to the embeddings produced by factorizing the co-occurrence

101

matrix of GO labels, because GO embeddings from our Transformer are also affected by informa-

tion from the amino acid sequence (Fig. 5.2). For our future work, we will integrate embedding

learned from co-occurrence frequencies into our Transformer framework.

Next, GOAT is capable of zeroshot learning, where it classifies labels not yet observed in the

training data. The reasons are because (1) the model parameters are just the matrices V, Q, and

K in Eq. 5.5 and (2) the input GO embeddings is the pretrained BERTLAYER12 embeddings which

will provide vector representation for any GO label from its definition. Unfortunately, zeroshot

learning requires GOAT to handle a much larger label set, because for every added label, we must

also include all the parent labels of that label. Theoretically, this is not a problem, but in practice,

due to GPU limitation, we will need to devise a better training strategy.

We outline two limitations of our adaptation of Transformer. First, to make our software GOAT

accessible to many users, we have reduced the number of parameters that Transformer often assume

in other machine learning applications. GOAT fits in one GPU having 11GB memory, whereas

Rives et al. [82] trained a language model on protein sequences using a 36-layer Transformer with

multiple GPUs. We expect that our GO annotation accuracy to increase if we train our model with

more parameters and on more samples. Second, we do not pretrain our Transformer. For example,

before predicting GO labels, Transformer can be pretrained only on protein sequences with the

following objective. We can remove amino acids from a sequence, and then use Transformer to

retrieve these missing amino acids. Pretraining helps the parameters in Transformer to converge

better for the downstream tasks. However, pretraining requires a lot of data; for example Rives

et al. [82] pretrained their 36-layer Transformer on 250 million sequences. For our future work, we

will consider training a large-scale Transformer to predict GO labels for protein sequences.

102

CHAPTER 6

Conclusion

Since the past two decades, many biological datasets have emerged, capturing different aspects

of gene expressions and protein functions. This thesis presents techniques to jointly analyze

these datasets, so that we gain more holistic views of the biological mechanisms and obtain higher

detection power for biological signals of interest. In particular, we study the two following problems:

associating genotypes and gene expressions, and predicting protein functions.

The first problem focuses on ways to better discover eGenes in the GTEx data. eGenes are

considered as potential causal factors for many phenotypes of interest [50, 66]. An eGene is defined

as a gene that has at least one SNP associated with its expression. eGenes are identified via eQTL

studies, where the objective is to correlate the genotypes with the gene expressions. We present

approaches to increase the number of discovered eGenes when analyzing a single tissue and then

many tissues altogether.

In a single tissue, we leverage the Roadmap data to obtain extra knowledge about the SNPs

in the eQTL studies; for example, SNPs located in DNase hypersensitive sites are likely to affect

gene expressions. We evaluate the effects of the following genomic regions in the eQTL studies:

±150kb from transcription start sites, DNase hypersensitive sites, and histone modification sites.

Each type of genomic annotation increases the number of discovered eGenes by at least 16% more

than the baseline without genomic annotation, and transcription start sites have the most impact

(57% increment).

For many tissues, the GTEx data contains few sample sizes, making it difficult to detect eGenes

in each tissue. To overcome this problem, we design a meta-analysis that combines the eQTL

results of the 44 tissues in the GTEx data. Our model also has a new parameter to capture the

103

correlations of SNP effects on the gene expressions in these tissues. Our method discovers 20%

more eGenes than the standard tissue-by-tissue approach.

On the topic of predicting protein functions, since 2015 there has been many deep learning

methods to analyze different aspects of the protein sequences [2, 9, 16, 59]. Recently, neural

network models were built to annotate functions of proteins based on their amino acid sequences.

To gain more knowledge about the proteins, besides the amino acid sequences, these classifiers also

include various protein metadata like the protein 3D structures and the protein-protein interaction

network.

These deep learning classifiers have not yet leveraged the metadata presented in the function

labels. Protein functions are described by GO labels which contain two types of metadata, the

definitions of the GO labels and their hierarchical relationships. We design and compare ways to

embed the two types of GO metadata by using the recent neural network methods of BiLSTM,

ELMo, BERT, and GCN. Embedding GO label definitions via our BERT implementation most

faithfully captures the relationships of the GO labels.

Next, we introduce a new GO label classifier based on the Transformer architecture (named

GOAT) that uses the GO label embeddings and the protein metadata. GOAT models all pairwise

interactions of the amino acids in the same sequence, surpassing the constraint of CNN approaches

[59]. GOAT takes the following proteinmetadata: key amino acid patterns, high-level 3D structures,

and PPI network. Together with the label embeddings, these metadata increase the prediction

accuracy, and the PPI network data has the highest impact. For rare MF and CC labels which are

closer to the true protein functions, GOAT obtains higher accuracy than the recent CNN models.

In conclusion, for association studies and protein function prediction, borrowing information

from related data resources improves the results.

104

CHAPTER 7

Future Work

Many genetic datasets contain individuals primarily of European ancestry, and the GTEx data is no

exception. Only in its most recent release v8 in Aug 2019, there are about 15% of non-European

donors [37]. Recent publications have been analyzing the impact of population structure on the

eQTL analysis, but not so much work has been done to find eGenes [109]. Because eGenes are

viewed as candidate genes for phenotypic variations, it is important to characterize the differences for

the lists of eGenes discovered in each population. This result would provide deeper understanding

of the genetic factors for a phenotype in each population. To further improve the detection power

for the eGenes in each population, we may integrate population-specific epigenomic data into the

eQTL analysis.

On predicting protein functions, we propose the following directions. Having PPI network

data significantly increases the accuracy of GO label classifiers. Yet, providing a classifier with

this information is counter-intuitive because interacting partners of a new protein are not identified

without experimental evidence. Future work should focus on building method that predict rela-

tionships of proteins using just their amino acid sequences. These outputs can then be passed to a

downstream GO label classifier.

We may also shift our attention from proteins to non-coding RNAs (ncRNAs). ncRNAs have

been found to play critical roles in cancer development [57, 67, 108]. We may design a function

classifier for RNA sequences, by following the same idea for classifier of protein functions. Finally,

we desire a classifier that will scale well to a large label set (e.g. 44,531 labels in the GO database

as of March 2020). At this moment, deep learning classifiers based on CNN or Transformer cannot

scale to this many labels. For future endeavor, this problem is challenging in both the mathematical

105

and hardware perspective.

106

BIBLIOGRAPHY

[1] Abraham, B. and Ledolter, J. (2006). Introduction to regression modeling.

[2] Alshahrani, M., Khan, M.A., Maddouri, O., Kinjo, A.R., Queralt-Rosinach, N. and Hoehndorf,

R. (2017). Neuro-symbolic representation learning on biological knowledge graphs. Bioinfor-

matics, 33(17), 2723–2730.

[3] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990). Basic local

alignment search tool. Journal of molecular biology, 215(3), 403–410.

[4] Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. et al (1997).

Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic acids

research, 25(17), 3389–3402.

[5] Bao, X.R., Zhu, Y.H. and Yu, D.J. (2019). Deeptf: Accurate prediction of transcription factor

binding sites by combiningmulti-scale convolution and long short-termmemory neural network.

In International Conference on Intelligent Science and Big Data Engineering, pages 126–138.

Springer.

[6] Begum, F., Ghosh, D., Tseng, G.C. and Feingold, E. (2012). Comprehensive literature review

and statistical considerations for gwas meta-analysis. Nucleic acids research, 40(9), 3777–3784.

[7] Belanger, D. andMcCallum, A. (2016). Structured prediction energy networks. In International

Conference on Machine Learning, pages 983–992.

[8] Benner, C., Spencer, C.C., Havulinna, A.S., Salomaa, V., Ripatti, S. and Pirinen, M. (2016).

FINEMAP: efficient variable selection using summary data from genome-wide association

studies. Bioinformatics, page btw018.

[9] Bepler, T. and Berger, B. (2019). Learning protein sequence embeddings using information

from structure. arXiv preprint arXiv:1902.08661.

107

[10] Berman, H.M., Battistuz, T., Bhat, T.N., Bluhm, W.F., Bourne, P.E., Burkhardt, K. et al

(2002). The protein data bank. Acta Crystallographica Section D: Biological Crystallography,

58(6), 899–907.

[11] Bernstein, B.E., Kamal, M., Lindblad-Toh, K., Bekiranov, S., Bailey, D.K., Huebert, D.J. et al

(2005). Genomic maps and comparative analysis of histone modifications in human and mouse.

Cell, 120(2), 169–181.

[12] Binns, D., Dimmer, E., Huntley, R., Barrell, D., O’donovan, C. and Apweiler, R. (2009).

Quickgo: a web-based tool for gene ontology searching. Bioinformatics, 25(22), 3045–3046.

[13] Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L.T., Sharp, K. et al (2018). The uk

biobank resource with deep phenotyping and genomic data. Nature, 562(7726), 203–209.

[14] Cantor, R.M., Lange, K. and Sinsheimer, J.S. (2010). Prioritizing gwas results: a review of

statistical methods and recommendations for their application. The American Journal of Human

Genetics, 86(1), 6–22.

[15] Cao, J. (2019). A Case Study for Predicting in-Hospital Mortality by Utilizing the Hyperbolic

Embedding of ICD-9 Medical Ontology. Ph.D. thesis.

[16] Chen, M., Ju, C.J.T., Zhou, G., Chen, X., Zhang, T., Chang, K.W. et al (2019). Multifaceted

protein–protein interaction prediction based on siamese residual rcnn. Bioinformatics, 35(14),

i305–i314.

[17] Conneau, A., Kiela, D., Schwenk, H., Barrault, L. and Bordes, A. (2017). Supervised

learning of universal sentence representations from natural language inference data. arXiv

preprint arXiv:1705.02364.

[18] Consortium, E.P. et al (2012). An integrated encyclopedia of dna elements in the human

genome. Nature, 489(7414), 57–74.

[19] Dabney, A., Storey, J.D. andWarnes, G. (2010). qvalue: Q-value estimation for false discovery

rate control. R package version, 1(0).

108

[20] Darnell, G., Duong, D., Han, B. and Eskin, E. (2012). Incorporating prior information into

association studies. Bioinformatics, 28(12), i147–i153.

[21] De Castro, E., Sigrist, C.J., Gattiker, A., Bulliard, V., Langendijk-Genevaux, P.S., Gasteiger,

E. et al (2006). Scanprosite: detection of prosite signature matches and prorule-associated

functional and structural residues in proteins. Nucleic acids research, 34(suppl_2), W362–

W365.

[22] De Jong, S., Van Eijk, K.R., Zeegers, D.W., Strengman, E., Janson, E., Veldink, J.H. et al

(2012). Expression qtl analysis of top loci from gwas meta-analysis highlights additional

schizophrenia candidate genes. European Journal of Human Genetics, 20(9), 1004–1008.

[23] Degner, J.F., Pai, A.A., Pique-Regi, R., Veyrieras, J.B., Gaffney, D.J., Pickrell, J.K. et al

(2012). Dnase i sensitivity qtls are a major determinant of human expression variation. Nature,

482(7385), 390–394.

[24] Devlin, B. and Roeder, K. (1999). Genomic control for association studies. Biometrics, 55(4),

997–1004.

[25] Devlin, J., Chang, M.W., Lee, K. and Toutanova, K. (2018). Bert: Pre-training of deep

bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

[26] Duong, D., Zou, J., Hormozdiari, F., Sul, J.H., Ernst, J., Han, B. et al (2016). Using genomic

annotations increases statistical power to detect eGenes. Bioinformatics, 32(12), i156–i163.

[27] Duong, D., Ahmad, W.U., Eskin, E., Chang, K.W. and Li, J.J. (2018). Word and sentence

embedding tools to measure semantic similarity of gene ontology terms by their definitions.

Journal of Computational Biology, 26(1), 38–52.

[28] Duong, D., Uppunda, A., Ju, C., Zhang, J., Chen, M., Eskin, E. et al (2019). Evaluating

representations for gene ontology terms. bioRxiv, page 765644.

[29] Duong, D.B., Gai, L., Uppunda, A., Le, D., Eskin, E., Li, J.J. et al (2020). Annotating gene

ontology terms for protein sequences with the transformer model. bioRxiv.

109

[30] Dworkin, J. (2015). Ser/thr phosphorylation as a regulatory mechanism in bacteria. Current

opinion in microbiology, 24, 47–52.

[31] Dynomant, E., Darmoni, S.J., Lejeune, É., Kerdelhué, G., Leroy, J.P., Lequertier, V. et al

(2019). Doc2vec on the pubmed corpus: study of a new approach to generate related articles.

arXiv preprint arXiv:1911.11698.

[32] Eskin, E. (2008). Increasing power in association studies by using linkage disequilibrium

structure and molecular function as prior information. Genome Research, 18(4), 653–660.

[33] Eskin, E. (2015). Discovering genes involved in disease and themystery ofmissing heritability.

Communications of the ACM, 58(10), 80–87.

[34] Fei-Fei, L., Fergus, R. and Perona, P. (2006). One-shot learning of object categories. IEEE

transactions on pattern analysis and machine intelligence, 28(4), 594–611.

[35] Flutre, T., Wen, X., Pritchard, J. and Stephens, M. (2013). A statistical framework for joint

eQTL analysis in multiple tissues. PLoS Genetics, 9(5), e1003486.

[36] Gamazon, E.R., Segrè, A.V., van de Bunt, M., Wen, X., Xi, H.S., Hormozdiari, F. et al (2018).

Using an atlas of gene regulation across 44 human tissues to inform complex disease-and trait-

associated variation. Nature genetics, 50(7), 956–967.

[37] Gay, N.R., Gloudemans, M., Antonio, M.L., Balliu, B., Park, Y., Martin, A.R. et al (2019).

Impact of admixture and ancestry on eqtl analysis and gwas colocalization in gtex. bioRxiv, page

836825.

[38] Gene Ontology Consortium (2019). The gene ontology resource: 20 years and still going

strong. Nucleic acids research, 47(D1), D330–D338.

[39] Giral, H., Landmesser, U. and Kratzer, A. (2018). Into the wild: Gwas exploration of

non-coding rnas. Frontiers in cardiovascular medicine, 5, 181.

110

[40] Guillemette, B., Drogaris, P., Lin, H.H.S., Armstrong, H., Hiragami-Hamada, K., Imhof, A.

et al (2011). H3 lysine 4 is acetylated at active gene promoters and is regulated by h3 lysine 4

methylation. PLoS genetics, 7(3).

[41] Han, B. and Eskin, E. (2011). Random-effects model aimed at discovering associations in

meta-analysis of genome-wide association studies. The American Journal of Human Genetics,

88(5), 586–598.

[42] Han, B. and Eskin, E. (2012). Interpreting meta-analyses of genome-wide association studies.

PLoS genetics, 8(3).

[43] Han, B., Kang, H.M. and Eskin, E. (2009a). Rapid and accurate multiple testing correction

and power estimation for millions of correlated markers. PLoS Genetics, 5(4), e1000456.

[44] Han, B., Kang, H.M. and Eskin, E. (2009b). Rapid and accurate multiple testing correction

and power estimation for millions of correlated markers. PLoS Genet, 5(4), e1000456.

[45] Han, B., Duong, D., Sul, J.H., de Bakker, P.I.W., Eskin, E. and Raychaudhuri, S. (2016). A

general framework formeta-analyzing dependent studies with overlapping subjects in association

mapping. Hum. Mol. Genet., 25(9), 1857–1866.

[46] Hernández-Ramírez, L.C., Gam, R., Valdés, N., Lodish, M.B., Pankratz, N., Balsalobre, A.

et al (2017). Loss-of-function mutations in the cables1 gene are a novel cause of cushing’s

disease. Endocrine-related cancer, 24(8), 379–392.

[47] Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural nets

and problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based

Systems, 6(02), 107–116.

[48] Hormozdiari, F., Kostem, E., Kang, E.Y., Pasaniuc, B. and Eskin, E. (2014). Identifying

causal variants at loci with multiple signals of association. Genetics, 198(2), 497–508.

[49] Hormozdiari, F., Kichaev, G., Yang, W.Y., Pasaniuc, B. and Eskin, E. (2015). Identification

of causal genes for complex traits. Bioinformatics, 31(12), i206–i213.

111

[50] Hormozdiari, F., Van De Bunt, M., Segre, A.V., Li, X., Joo, J.W.J., Bilow, M. et al (2016).

Colocalization of gwas and eqtl signals detects target genes. The American Journal of Human

Genetics, 99(6), 1245–1260.

[51] Huang, J., Osorio, C. and Sy, L.W. (2019). An empirical evaluation of deep learning for icd-9

code assignment usingmimic-iii clinical notes. Computermethods and programs in biomedicine,

177, 141–153.

[52] Huang, Z., Tomitaka, A., Raymond, A. and Nair, M. (2017). Current application of crispr/cas9

gene-editing technique to eradication of hiv/aids. Gene therapy, 24(7), 377–384.

[53] Isenberg, I. (1979). Histones. Annual review of biochemistry, 48(1), 159–191.

[54] Jones, C.E., Schwerdt, J., Bretag, T.A., Baumann, U. and Brown, A.L. (2008). Gosling: a

rule-based protein annotator using blast and go. Bioinformatics, 24(22), 2628–2629.

[55] Kipf, T.N. and Welling, M. (2016). Semi-supervised classification with graph convolutional

networks. arXiv preprint arXiv:1609.02907.

[56] Koch, G., Zemel, R. and Salakhutdinov, R. (2015). Siamese neural networks for one-shot

image recognition. In ICML deep learning workshop, volume 2. Lille.

[57] Kotake, Y., Nakagawa, T., Kitagawa, K., Suzuki, S., Liu, N., Kitagawa, M. et al (2011). Long

non-coding rna anril is required for the prc2 recruitment to and silencing of p15 ink4b tumor

suppressor gene. Oncogene, 30(16), 1956–1962.

[58] Kuhlman, B. and Bradley, P. (2019). Advances in protein structure prediction and design.

Nature Reviews Molecular Cell Biology, 20(11), 681–697.

[59] Kulmanov, M. and Hoehndorf, R. (2020). Deepgoplus: improved protein function prediction

from sequence. Bioinformatics, 36(2), 422–429.

[60] Kulmanov, M., Khan, M.A. and Hoehndorf, R. (2017). Deepgo: predicting protein functions

from sequence and interactions using a deep ontology-aware classifier. Bioinformatics, 34(4),

660–668.

112

[61] Lambert, J.C., Ibrahim-Verbaas, C.A., Harold, D., Naj, A.C., Sims, R., Bellenguez, C. et al

(2013). Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for alzheimer’s

disease. Nature genetics, 45(12), 1452.

[62] Lau, J.H. and Baldwin, T. (2016). An empirical evaluation of doc2vec with practical insights

into document embedding generation. arXiv preprint arXiv:1607.05368.

[63] Ledford, H. (2016). Crispr: gene editing is just the beginning. Nature News, 531(7593), 156.

[64] Lencz, T., Lam, M., Consortium, C. et al (2019). Large-scale gwas meta-analysis and multi-

trait analysis yields dozens of novel loci and novel genetic correlates for general cognitive ability.

European Neuropsychopharmacology, 29, S808–S809.

[65] Liu, L., Tang, L., He, L., Yao, S. and Zhou, W. (2017). Predicting protein function via multi-

label supervised topic model on gene ontology. Biotechnology & Biotechnological Equipment,

31(3), 630–638.

[66] Marees, A.T., Gamazon, E.R., Gerring, Z., Vorspan, F., Fingal, J., van den Brink, W. et al

(2020). Post-gwas analysis of six substance use traits improves the identification and functional

interpretation of genetic risk loci. Drug and Alcohol Dependence, 206, 107703.

[67] Mattick, J.S. (2005). The functional genomics of noncoding rna. Science, 309(5740), 1527–

1528.

[68] Mazandu, G.K. and Mulder, N.J. (2013). Information content-based gene ontology semantic

similarity approaches: toward a unified framework theory. BioMed research international, 2013.

[69] Mazandu, G.K. and Mulder, N.J. (2014). Information content-based gene ontology functional

similarity measures: Which one to use for a given biological data type? PLoS ONE, 9(12),

e113859.

[70] Mazandu, G.K., Chimusa, E.R. and Mulder, N.J. (2016). Gene ontology semantic similarity

tools: survey on features and challenges for biological knowledge discovery. Briefings in

Bioinformatics, page bbw067.

113

[71] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and Dean, J. (2013). Distributed repre-

sentations of words and phrases and their compositionality. In Advances in neural information

processing systems, pages 3111–3119.

[72] Mullenbach, J., Wiegreffe, S., Duke, J., Sun, J. and Eisenstein, J. (2018). Explainable

prediction of medical codes from clinical text. arXiv preprint arXiv:1802.05695.

[73] Obozinski, G., Lanckriet, G., Grant, C., Jordan, M.I. and Noble, W.S. (2008). Consistent

probabilistic outputs for protein function prediction. Genome Biology, 9(1), S6.

[74] Orphanides, G. and Reinberg, D. (2002). A unified theory of gene expression. Cell, 108(4),

439–451.

[75] Perozzi, B., Al-Rfou, R. and Skiena, S. (2014). Deepwalk: Online learning of social repre-

sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 701–710.

[76] Pesaranghader, A., Matwin, S., Sokolova, M. and Beiko, R.G. (2015). simdef: definition-

based semantic similarity measure of gene ontology terms for functional similarity analysis of

genes. Bioinformatics, 32(9), 1380–1387.

[77] Pesquita, C., Faria, D., Bastos, H., Ferreira, A.E., Falcão, A.O. and Couto, F.M. (2008).

Metrics for go based protein semantic similarity: a systematic evaluation. BMC bioinformatics,

9(5), S4.

[78] Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K. et al (2018). Deep

contextualized word representations. In Proc. of NAACL.

[79] Plackett, R.L. (1958). Studies in the history of probability and statistics: Vii. the principle of

the arithmetic mean. Biometrika, 45(1-2), 130–135.

[80] Profiti, G., Martelli, P.L. and Casadio, R. (2017). The bologna annotation resource (bar 3.0):

improving protein functional annotation. Nucleic acids research, 45(W1), W285–W290.

114

[81] Rios, A. and Kavuluru, R. (2018). Few-shot and zero-shot multi-label learning for structured

label spaces. In Proceedings of the Conference on Empirical Methods in Natural Language

Processing. Conference on Empirical Methods in Natural Language Processing, volume 2018,

page 3132. NIH Public Access.

[82] Rives, A., Goyal, S., Meier, J., Guo, D., Ott, M., Zitnick, C.L. et al (2019). Biological structure

and function emerge from scaling unsupervised learning to 250 million protein sequences.

bioRxiv, page 622803.

[83] Schwartzberg, P.L. (1998). The many faces of src: multiple functions of a prototypical

tyrosine kinase. Oncogene, 17(11), 1463.

[84] Self, S.G. and Liang, K.Y. (1987). Asymptotic properties of maximum likelihood estimators

and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical

Association, 82(398), 605–610.

[85] Sigrist, C.J., De Castro, E., Cerutti, L., Cuche, B.A., Hulo, N., Bridge, A. et al (2012). New

and continuing developments at prosite. Nucleic acids research, 41(D1), D344–D347.

[86] Smaili, F.Z., Gao, X. and Hoehndorf, R. (2018). Onto2vec: joint vector-based representation

of biological entities and their ontology-based annotations. Bioinformatics, 34(13), i52–i60.

[87] Socher, R., Ganjoo, M., Manning, C.D. and Ng, A. (2013). Zero-shot learning through

cross-modal transfer. In Advances in neural information processing systems, pages 935–943.

[88] Song, X., Li, L., Srimani, P.K., Yu, P.S. andWang, J.Z. (2014). Measure the semantic similarity

of GO terms using aggregate information content. IEEE/ACM Transactions on Computational

Biology and Bioinformatics, 11(3), 468–476.

[89] Sterner, D.E. andBerger, S.L. (2000). Acetylation of histones and transcription-related factors.

Microbiol. Mol. Biol. Rev., 64(2), 435–459.

[90] Storey, J.D. and Tibshirani, R. (2003). Statistical significance for genomewide studies. Pro-

ceedings of the National Academy of Sciences, 100(16), 9440–9445.

115

[91] Stranger, B.E., Brigham, L.E., Hasz, R., Hunter, M., Johns, C., Johnson, M. et al (2017).

Enhancing gtex by bridging the gaps between genotype, gene expression, and disease. Nature

genetics, 49(12), 1664.

[92] Struhl, K. (1989). Helix-turn-helix, zinc-finger, and leucine-zipper motifs for eukaryotic

transcriptional regulatory proteins. Trends in biochemical sciences, 14(4), 137–140.

[93] Sul, J.H., Han, B., Ye, C., Choi, T. and Eskin, E. (2013). Effectively identifying eQTLs from

multiple tissues by combining mixed model and meta-analytic approaches. PLoS Genetics, 9(6),

e1003491.

[94] Sul, J.H., Raj, T., de Jong, S., de Bakker, P.I., Raychaudhuri, S., Ophoff, R.A. et al (2015).

Accurate and fast multiple-testing correction in eQTL studies. The American Journal of Human

Genetics, 96(6), 857–868.

[95] Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J. et al (2019).

String v11: protein–protein association networks with increased coverage, supporting functional

discovery in genome-wide experimental datasets. Nucleic acids research, 47(D1), D607–D613.

[96] The UniProt Consortium (2018). UniProt: the universal protein knowledgebase. Nucleic

Acids Research, 46(5), 2699–2699.

[97] The ENCODE project Consortium (2007). Nature, 447(7146), 799–816.

[98] The GTEx Consortium (2015). The genotype-tissue expression (GTEx) pilot analysis: Mul-

titissue gene regulation in humans. Science, 348(6235), 648–660.

[99] The Roadmap Epigenomics Mapping Consortium (2015). Integrative analysis of 111 refer-

ence human epigenomes. Nature, (518), 317–330.

[100] Thompson, S.G. and Sharp, S.J. (1997). Explaining heterogeneity in meta-analysis: A

comparison of methods. Statist. Med., 18(3), S82.

116

[101] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N. et al (2017).

Attention is all you need. In Advances in neural information processing systems, pages 5998–

6008.

[102] Wang, S., Cho, H., Zhai, C., Berger, B. and Peng, J. (2015). Exploiting ontology graph for

predicting sparsely annotated gene function. Bioinformatics, 31(12), i357–i364.

[103] Wang, Y. andYao, Q. (2019). Few-shot learning: A survey. arXiv preprint arXiv:1904.05046.

[104] Xiao, H. (2018). bert-as-service. github.com/hanxiao/bert-as-service.

[105] Xiong, W., Yu, M., Chang, S., Guo, X. andWang, W.Y. (2018). One-shot relational learning

for knowledge graphs. CoRR, abs/1808.09040.

[106] Yang, J. and Zhang, Y. (2015). I-tasser server: new development for protein structure and

function predictions. Nucleic acids research, 43(W1), W174–W181.

[107] Zhang, C., Zheng, W., Freddolino, P.L. and Zhang, Y. (2018). Metago: Predicting gene

ontology of non-homologous proteins through low-resolution protein structure prediction and

protein–protein network mapping. Journal of molecular biology, 430(15), 2256–2265.

[108] Zhang, H., Chen, Z., Wang, X., Huang, Z., He, Z. and Chen, Y. (2013). Long non-coding

rna: a new player in cancer. Journal of hematology & oncology, 6(1), 37.

[109] Zhong, Y., Perera, M.A. and Gamazon, E.R. (2019). On using local ancestry to characterize

the genetic architecture of human traits: Genetic regulation of gene expression in multiethnic or

admixed populations. The American Journal of Human Genetics, 104(6), 1097–1115.

[110] Zhou, J. and Troyanskaya, O.G. (2015). Predicting effects of noncoding variants with deep

learning–based sequence model. Nature methods, 12(10), 931–934.

117

	Title Page
	Abstract
	Committee
	Dedication
	TABLE OF CONTENTS
	List of Figures
	List of Tables
	Vita
	Research scope and contribution
	Association study to discover eGenes
	Deep learning model to predict protein functions
	Overview

	Model importance of SNPs to discover eGenes
	Introduction
	Association study for eQTLs
	Association study for eGenes
	Multi-threshold association study for GWAS
	Multi-threshold association study for eQTLs and eGenes
	LD-corrected eGene p-value
	Estimate SNP prior information from data

	The Genotype-Tissue Expression data
	False-positive rate simulation
	Statistical power simulation
	Model transcription start sites
	Model DNase hypersensitive sites
	Model histone modification sites
	Summary and discussion

	Meta-analysis model to discover eGenes
	Introduction
	Tissue-by-tissue analysis
	Random effects meta-analysis for multiple eQTL studies
	RECOV: Random effects meta-analysis with covariance
	Discover eGenes from meta-analyses of eQTL studies
	LD-corrected eGene p-value in meta-analysis
	Remove effect of overlapping samples among tissues

	False-positive rate simulation
	Application to the GTEx data
	Case studies
	Summary and discussion

	Learning embeddings of Gene Ontology terms
	Introduction
	Information Content
	Training datasets and objective function
	Definition encoders
	Bidirectional Long-short Term Memory
	Embeddings from Language Models
	Bidirectional Encoder Representations from Transformers

	Entity encoders
	Graph Convolution Network
	Onto2vec
	BERT as entity encoder

	Task 1: Similarity score for two GO terms
	Task 2: Compare gene and protein functions
	Task 3: Predict GO annotations for protein sequences
	GO embeddings in supervised learning
	GO embeddings in zeroshot learning

	Summary and discussion

	Deep learning model to predict protein functions
	Introduction
	BLAST and PSI-BLAST
	Convolutional neural network
	GOAT: GO annotation method with Transformer
	Uniprot data and evaluation metrics
	GOAT base implementation
	Motifs in amino acid sequences as features
	Other protein metadata as features
	High-level 3D structures of proteins
	Protein-protein interaction network

	Evaluation on sparse GO labels
	Summary and discussion

	Conclusion
	Future Work

