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Crowdsourcing seizure detection: algorithm
development and validation on human
implanted device recordings

Steven N. Baldassano,1,2 Benjamin H. Brinkmann,3,4 Hoameng Ung,1,2 Tyler Blevins,1,2

Erin C. Conrad,5 Kent Leyde,6 Mark J. Cook,7,8 Ankit N. Khambhati,1,2 Joost B. Wagenaar,2,5

Gregory A. Worrell3,4 and Brian Litt1,2,5

There exist significant clinical and basic research needs for accurate, automated seizure detection algorithms. These algorithms

have translational potential in responsive neurostimulation devices and in automatic parsing of continuous intracranial electroen-

cephalography data. An important barrier to developing accurate, validated algorithms for seizure detection is limited access to

high-quality, expertly annotated seizure data from prolonged recordings. To overcome this, we hosted a kaggle.com competition to

crowdsource the development of seizure detection algorithms using intracranial electroencephalography from canines and humans

with epilepsy. The top three performing algorithms from the contest were then validated on out-of-sample patient data including

standard clinical data and continuous ambulatory human data obtained over several years using the implantable NeuroVista

seizure advisory system. Two hundred teams of data scientists from all over the world participated in the kaggle.com competition.

The top performing teams submitted highly accurate algorithms with consistent performance in the out-of-sample validation study.

The performance of these seizure detection algorithms, achieved using freely available code and data, sets a new reproducible

benchmark for personalized seizure detection. We have also shared a ‘plug and play’ pipeline to allow other researchers to easily

use these algorithms on their own datasets. The success of this competition demonstrates how sharing code and high quality data

results in the creation of powerful translational tools with significant potential to impact patient care.
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Introduction
Epilepsy is a common chronic neurological condition affect-

ing 1–2% of the population (Sun et al., 2008). Despite

current treatment options, including anti-epileptic drugs

and surgical resection, up to 30% of patients with epilepsy

continue to have seizures (Kwan and Brodie, 2000). In add-

ition, many patients with seizures successfully controlled by

anti-epileptic drugs suffer from medication side-effects

(Morrell, 2002). Many medically-refractory patients are

not candidates for surgical resection due to poorly localized

epileptic networks or involvement of eloquent cortex, and

even ideal candidates remain seizure-free for a year after

surgery in only about 65% of cases (Wiebe et al., 2001).

Closed-loop stimulation devices are receiving significant

attention as an alternate method of therapy for medication-

resistant seizures. These devices are implanted to record

intracranial electroencephalography (iEEG) data from

depth or subdural electrodes. Seizure detection algorithms

are used to identify potential seizure epochs, and electrical

stimulation is delivered to arrest seizure propagation.

Despite the invasive nature of these devices, this approach

has the benefit of providing therapy only when needed to

targeted brain structures with few side effects (Morrell,

2011). The FDA approved the first of these devices, the

NeuroPace RNS system, in 2013. This device administers

electrical stimulation during a detected seizure, decreasing

seizure frequency by about 50% in most patients (Chabolla

et al., 2006). While this device demonstrates clinical benefit

to patients, its impact may be limited by the accuracy of

seizure detection. As it is necessary to detect seizure events

early and with high sensitivity, this device suffers from high

rates of false positive detections. These false positives cause

unnecessary brain stimulations that can reduce battery life,

increasing cost and patient discomfort due to more frequent

surgical procedures to replace spent batteries. Addressing

the shortcomings of existing online seizure detection strate-

gies is an essential step toward design of effective, long-

lasting implantable devices for treatment of epilepsy.

Given the existing framework for incorporating new algo-

rithms into implantable devices, generating novel, effective

methods for detecting seizures in real-time would immedi-

ately contribute to a rapidly expanding anti-seizure device

market.

In addition to their direct therapeutic utility, more accur-

ate automated seizure detection algorithms would address a

significant clinical and research burden. Physicians working

in epilepsy often review large quantities of continuous EEG

data from inpatient monitoring studies to identify seizures

(Gutierrez-Colina et al., 2012), which in some patients may

be quite subtle (Abend et al., 2010, 2011). In patients with

ambulatory recording devices, physicians must review hun-

dreds of hours of continuous recordings in order to gener-

ate accurate seizure diaries. For research applications, the

need to manually identify seizures places a significant

bottleneck on producing high quality datasets for analysis.

In contrast to the use case of implantable device recordings,

in which early detection of seizures is critical, these appli-

cations require seizure detection algorithms that are highly

sensitive and specific without undue regard for detection

latency.

Developing patient-specific seizure onset detection algo-

rithms remains challenging. Intractable epilepsy can result

from an enormous variety of pathologies, including trauma,

tumours, stroke, infection, cortical malformations, genetic

causes, and medications, resulting in significant diversity in

seizure onset patterns. Existing devices rely on manually

tuning preset detection parameters, and often fail to cap-

ture individual seizure dynamics, even after repeated

follow-up appointments for algorithm tuning. Researchers

have pursued automated algorithms for detecting epileptic

events from patient EEG recordings since the early 1970s

(Tzallas et al., 2012). These algorithms traditionally rely on

selecting discriminative features that are extracted from the

data, coupled with a classification strategy. While a variety

of signal features have been used in prior studies

(Ramgopal et al., 2014), including morphology-based fea-

tures [e.g. line length (Esteller et al., 2001), halfwave

(Gotman, 1982), area, principal component analysis], bio-

logically-inspired features [e.g. cross-channel correlation

(Liu et al., 2002), synchronization (Altenburg et al.,

2003)], and frequency-domain features [e.g. FFT analysis

(Temko et al., 2011), wavelet transform (Pradhan et al.,

1996; Casson et al., 2007)], there is no consensus regarding

the optimal feature or set for detection. Similarly, classifi-

cation approaches have ranged from simplistic feature

thresholds to more complex machine learning classifiers

such as support vector machines (Liu et al., 2002;

Acharya et al., 2011; Kharbouch et al., 2011; Temko

et al., 2011), random forests, and artificial neural networks

(Alkan et al., 2005; D’Alessandro et al., 2005), but no

clearly optimal classification method has yet been

established.

An important handicap to developing and validating al-

gorithms for seizure detection is that only a limited number

of data scientists have access to high-quality, expertly anno-

tated seizure data. Thus far, EEG data have been largely

acquired from intensive care unit (ICU) monitoring (Osorio

et al., 2002; Wilson et al., 2004; Gardner et al., 2006),

presurgical inpatient studies (So, 2000; Chung et al.,
2015), animal models (White et al., 2006; Raghunathan

et al., 2009), and some implantable devices (Davis et al.,

2011). The utility of these data is limited by shortcomings

such as short recording duration, few recorded seizures,

degraded data quality from faulty electrodes, and concerns

regarding the validity of animal models. Furthermore, data-

sets largely remain at their acquiring institutions, limiting

seizure detection research and our ability to validate pub-

lished algorithms (Wagenaar et al., 2015). The lack of a

standardized database of seizure data (Wagenaar et al.,

2015), as well as a common ‘gold standard’ for annotating

seizure entities (Cui et al., 2012), hampers our ability to

compare detection accuracy across algorithms. This
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challenge is not unique to epilepsy, as other fields have

tackled the ‘data barrier’ with open data platforms such

as OSF.io and PhysioNet. In the field of epilepsy,

approaches to address this problem are gradually emerging,

such as the data archive, Epilepsiae, and the collaborative,

cloud-based platform http://ieeg.org, which our group cre-

ated to encourage sharing of data, computational tools,

and expertise among researchers (Wagenaar et al., 2013).

The seizure detection challenge

We hosted a kaggle.com competition, sponsored by the

National Institutes of Health’s National Institute of

Neurological Disorders and Stroke (NINDS) and the

American Epilepsy Society (AES), to develop the best per-

sonalized seizure detection algorithms. This platform

allowed for a crowdsourced approach by providing easily

accessible, annotated recordings to data scientists.

Contestants were provided with labelled interictal and

ictal training data and unlabelled testing data derived

from four canine and eight human subjects (described in

detail in the ‘Materials and methods’ section). The contest-

ants applied machine learning techniques of their choosing

in an attempt to accurately classify the testing data as

interictal or ictal. The contest was carried out using

kaggle.com’s infrastructure for tracking algorithm submis-

sions, maintaining a live-updating leaderboard, and evalu-

ating performance on a limited hidden test set. This

endeavour was designed to engage algorithm and machine

learning experts across a wide array of fields by providing

high-quality data in a format easily accessible to data sci-

entists without detailed knowledge of epilepsy. At the con-

clusion of the seizure detection competition the same

organizations hosted a parallel competition in seizure pre-

diction (Brinkmann et al., 2016).

The competition was held from May to August 2014. At

the end of the competition, the top three teams were

awarded prizes of $5000, $2000, and $1000. These

teams’ algorithms were further tested on a more extensive

archive of prolonged, open-source, multi-institutional data-

sets hosted on the International Electrophysiology Portal

(http://www.ieeg.org). In this validation study we evaluated

the generalizability and robustness of these algorithms. This

study included continuous human recordings from the im-

planted NeuroVista seizure advisory system (Cook et al.,

2013), offering an unprecedented opportunity to prospect-

ively evaluate seizure detection algorithm performance in

this use-case. We also developed a pipeline infrastructure

allowing rapid application of these algorithms to custom,

user-supplied datasets.

Here, we present descriptions of the datasets used in the

kaggle.com seizure detection contest, the methodology of

each of the winning algorithms, and the performance of

these algorithms in both the original competition and a

larger validation trial. These algorithms have immediate

utility for state-of-the-art seizure detection. We hope that

this work, in addition to our published pipeline and

archive, will encourage open data sharing to improve re-

search reproducibility and facilitate algorithm comparison.

Materials and methods

Experimental design

The goals of this study were (i) to develop and objectively
compare seizure detection algorithms through crowdsourcing;
(ii) to assess the robustness of the top algorithms on out-of-
sample data; and (iii) to produce a pipeline to facilitate appli-
cation of these algorithms to new datasets. Crowdsourcing was
carried out using a kaggle.com competition (described in detail
below). This competition included data from eight human pa-
tients with epilepsy and four canines with naturally-occurring
epilepsy. The top three algorithms from the competition were
then evaluated using data from 18 out-of-sample human pa-
tients with epilepsy. No data were excluded from the study,
and no subjects or data were removed as outliers.

Subjects and data

Twelve intracranial EEG datasets provided by the Mayo Clinic
and University of Pennsylvania were selected for use in the
kaggle.com competition. Four of the datasets were generated
from chronic recordings of canines with naturally-occurring
epilepsy using the ambulatory NeuroVista Seizure Advisory
System implanted device described previously (Davis et al.,
2011). The dogs were housed at the veterinary hospitals at
the University of Minnesota and University of Pennsylvania
and continuously monitored with video and iEEG. All dogs
had normal neurologic examinations and MRIs. IEEG was
acquired from the implanted device with a sampling rate of
400 Hz from 16 subdural electrodes arranged on two stand-
ard, human-sized, 4-contact strips implanted on each hemi-
sphere in an antero-posterior position. An analogue
anti-aliasing low-pass filter was applied with poles at 100 Hz
and 150 Hz. The remaining eight datasets were produced from
patients with drug-resistant epilepsy undergoing intracranial
EEG monitoring at Mayo Clinic Rochester. These datasets
were sampled continuously at 500 Hz or 5000 Hz (with anti-
aliasing low-pass filters at 130 Hz and 1 kHz, respectively)
with a varying number of subdural electrode grids as deter-
mined by individual clinical considerations. A sample record-
ing is shown in Fig. 1. Subject recording information is shown
in Table 1 and patient demographics and electrode locations
are shown in Supplementary Table 1.

All intracranial EEG records were reviewed and seizures
annotated by two board certified epileptologists (G.W. and
B.L.). Malfunctioning or grossly non-physiological iEEG chan-
nels were removed by visual inspection. To prepare the data
for competition use, each dataset was chronologically split into
a training set and a testing set (Table 1). Testing and training
data were organized into 1-s clips. Training data clips were
labelled ‘ictal’ for the seizure data segments or ‘interictal’ for
non-seizure data segments, and testing clips remained un-
labelled. Training data clips were arranged sequentially,
while the order of testing data clips was randomized. Both
the training and testing datasets were intentionally unbalanced
with a larger number of interictal clips to mimic the sparse
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nature of seizure events. Only seizures with a 4 h lead of seiz-
ure-free activity were included in the study, as previous evi-

dence suggests that seizures less than 4 h apart may not be

independent events (Litt et al., 2001). Ictal segments were se-
lected to cover the entirety of seizure from the earliest

electrographic change (EEC) to seizure termination. Interictal
segments, each approximately equal to the mean seizure dur-

ation of the patient, were selected randomly under the provi-

sion that they were not within 1 h before or after a seizure. No
further preprocessing or selection criteria were applied to these

Figure 1 Representative EEG data. (A) MRI imaging of patient with implanted NeuroVista SAS device. This device was used for collection of

canine data in the competition and human data in the validation study. (B) Sample EEG recording of a seizure. Vertical lines represent 1-s intervals.

Boundaries of seizure and early seizure periods are marked.

Table 1 Recording characteristics for kaggle.com competition datasets

Subject Channels, n Sampling

rate

Seizures,

n (training)

Recording

length used (h)

Training clips,

n (% ictal, early)

Testing clips,

n (% ictal, early)

Dog 1 16 400 9 (5) 8208 596 (0.30, 0.13) 3181 (0.05, 0.02)

Dog 2 16 400 5 (3) 7152 1320 (0.13, 0.03) 2997 (0.05, 0.01)

Dog 3 16 400 22 (12) 1920 5240 (0.09, 0.03) 4450 (0.09, 0.04)

Dog 4 16 400 6 (2) 1099 3047 (0.08, 0.01) 3013 (0.04, 0.02)

Patient 1 68 500 7 (2) 144 174 (0.40, 0.17) 2050 (0.08, 0.04)

Patient2 16 5000 7 (3) 75 3141 (0.05, 0.01) 3894 (0.06, 0.02)

Patient 3 55 5000 9 (7) 82 1041 (0.31, 0.10) 1281 (0.10, 0.02)

Patient 4 72 5000 5 (2) 96 210 (0.10, 0.10) 543 (0.09, 0.09)

Patient 5 64 5000 7 (3) 141 2745 (0.05, 0.02) 2986 (0.06, 0.02)

Patient 6 30 5000 8 (4) 159 2997 (0.08, 0.02) 2997 (0.07, 0.02)

Patient 7 36 5000 6 (3) 70 3521 (0.08, 0.01) 3601 (0.10, 0.01)

Patient 8 16 5000 4 (2) 71 1890 (0.10, 0.02) 1922 (0.09, 0.02)
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clips. Each extracted data segment was individually mean
centred. Data segments were stored as ordered structures
including sample data, data segment length, iEEG sampling
frequency, and channel names in uncompressed MATLAB
format data files. Dataset characteristics, including the sequen-
tial nature of training segments and selection criteria for inter-
ictal segments, and general descriptions of hardware used for
recording were made available to competition participants. All
data remain available for download at ieeg.org and from kag-
gle.com (www.kaggle.com/c/seizure-detection/data).

Competition details

Participants were required to use an algorithmic approach to
classify data segments. Changes in methodology across sub-
jects were permitted if done in an automated manner that
could generalize to outside datasets. Classification of test seg-
ments had to be performed by an algorithm and not deter-
mined by visual inspection. Each test segment was to be
assigned probabilities that it was (i) a seizure clip; and
(ii) an early seizure clip. Early seizure clips were defined as
occurring within the first 15 s of seizure start as marked by
the EEC. These classifications were structured as parallel two-
class problems (seizure versus non-seizure, early seizure versus
non-early seizure). Participants submitted answers in a .csv file
formatted by ‘clip name’, ‘seizure probability’, and ‘early seiz-
ure probability’. Area under the receiver operating character-
istic (ROC) curve scores for seizure detection and early seizure
detection were then computed by applying varying thresholds
to the probability values.

The competition included both public and private leader
boards. The public leader board reflected ranked scores on
15% of the full test set and was visible to all participants.
This leader board was updated during the algorithm develop-
ment phase of the competition. Teams were permitted five
submissions to the public leader board per day. The private

leader board was hidden from view and ranked submissions
on their performance on the remaining 85% of the test set.
Final placement was awarded based on the private leader
board results. Contestants were informed prior to the compe-
tition that winning solutions must be made publicly available
under an Open Source Initiative (OSI) license to be eligible for
recognition and prize money.

Validation study

Many existing seizure detection algorithms suffer from poor
generalizability due to overfitting of the dataset used for de-
velopment. To address this concern, we evaluated the robust-
ness of the top three algorithms from the competition in a
larger validation study using recordings from 18 human pa-
tients not included in the competition. This study included
seven human iEEG recordings from the Hospital of the
University of Pennsylvania (HUP) and Mayo Clinic, as well
as 11 prolonged, continuous recordings from humans im-
planted with the NeuroVista seizure prediction device. The
HUP and Mayo Clinic recordings were generated during pa-
tient monitoring studies in the epilepsy monitoring unit
(EMU), mimicking the human datasets used in the competi-
tion. The human NeuroVista recordings were generated using
the same implantable devices used to produce the canine
recordings used in the competition (Davis et al., 2011).
These patients were recorded for up to 2.5 years with continu-
ous intracranial EEG via an implanted telemeter device
coupled to a belt-worn unit (Cook et al., 2013). All seizure
start times were annotated by board certified epileptologists
(G.W., B.L., M.C.). Subject demographics and electrode loca-
tions are listed in Supplementary Table 1. Each recording was
divided into training and testing datasets (Table 2) and seg-
mented into 1-s clips as in the kaggle.com competition. Dataset
size was scaled proportionally with the number of seizure clips

Table 2 Recording characteristics for validation study datasets

Subject Channels, n Sampling

rate

Seizures,

n (training)

Recording

length used (h)

Training clips,

n (% ictal, early)

Testing clips,

n (% ictal, early)

Patient H1 79 512 5 (3) 310 2306 (0.13, 0.02) 1538 (0.13, 0.02)

Patient H2 61 512 8 (5) 221 408 (0.14, 0.14) 236 (0.11, 0.11)

Patient H3 46 512 5 (3) 146 1853 (0.13, 0.02) 1227 (0.12, 0.02)

Patient M1 56 500 7 (5) 120 5226 (0.06, 0.01) 2617 (0.25, 0.02)

Patient M2 89 500 10 (5) 75 2099 (0.12, 0.04) 2145 (0.14, 0.04)

Patient M3 112 500 5 (3) 163 1051 (0.12, 0.04) 712 (0.13, 0.04)

Patient M4 78 500 8 (5) 215 8721 (0.11, 0.01) 5423 (0.14, 0.01)

Patient NV1 16 400 40 (20) 7959 5876 (0.12, 0.05) 5804 (0.11, 0.04)

Patient NV2 16 400 31 (20) 1503 12466 (0.13, 0.02) 6825 (0.11, 0.02)

Patient NV3 16 400 40 (20) 2034 3752 (0.14, 0.07) 3606 (0.11, 0.07)

Patient NV4 14 400 17 (12) 4995 9339 (0.10, 0.02) 3947 (0.11, 0.02)

Patient NV5 16 400 6 (4) 4955 2004 (0.12, 0.03) 961 (0.08, 0.02)

Patient NV6 16 400 40 (20) 1899 4523 (0.10, 0.06) 4754 (0.15, 0.06)

Patient NV7 16 400 40 (20) 1279 10861 (0.14, 0.03) 10587 (0.14, 0.03)

Patient NV8 15 400 40 (20) 2862 9999 (0.13, 0.03) 9812 (0.12, 0.03)

Patient NV9 16 400 40 (20) 2254 7185 (0.12, 0.04) 7220 (0.13, 0.04)

Patient NV10 16 400 11 (7) 1252 3534 (0.13, 0.03) 1985 (0.11, 0.03)

Patient NV11 16 400 40 (20) 6014 8973 (0.13, 0.03) 8688 (0.10, 0.03)
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on a per subject basis. Algorithm metrics were determined
using performance on unlabelled test data.

Performance metrics

ROC curves were generated for (i) classification of seizure
(ictal) clips versus non-seizure (interictal) clips; and (ii) classi-
fication of early seizure clips versus non-early seizure clips.
Algorithm performance was assessed using the area under
the ROC curve (AUC). The overall performance metric used
for algorithm ranking was the average of the AUCs for seizure
and early seizure classification (Equation 1). Early seizure clips
are emphasized in this metric due to the importance of early
seizure detection for successful intervention with a responsive
therapeutic device.

Performance ¼
1

2
ðAUCseizure þ AUCearlyÞ ð1Þ

Statistical analysis

Student’s t-test was used for comparison of means, and P-
values50.05 were considered significant.

Results

Kaggle competition results

Two hundred teams comprising 241 individuals took part

in the competition. These teams submitted a combined

4503 classifications of the test data. The top performance

on the public and private leader boards over the length of

the competition is shown in Fig. 2. The final standings of

the top performing teams are shown in Table 3. The top

three teams achieved public leader board scores of 0.975,

0.968, and 0.962, and private leader board scores of 0.963,

0.957, and 0.956. Additional information regarding the

distribution of scores across all teams is shown in

Supplementary Fig. 2.

Algorithms

The algorithms of the top three performers on the private

leader board are summarized below. More detailed descrip-

tions of these models and the code used for implementation

are available at www.kaggle.com/c/seizure-detection/details/

winners.

Algorithm 1

The first place algorithm was developed by Michael Hills

(Dessert Labs). This algorithm relies on three sets of fea-

tures for classification. The first set of features consists of

the pairwise cross-correlation between channel signals as

well as the sorted eigenvalues of the cross-correlation

matrix. The Fast Fourier Transform is then applied to

each 1-s clip for preprocessing. The second set of features

consists of the frequency magnitudes of each channel in the

range of 1–47 Hz. These power spectra are then normalized

within each frequency bin. The third set of features consists

of the pairwise cross-correlation between normalized chan-

nel power spectra in the range of 1–47 Hz as well as the

sorted eigenvalues of the cross-correlation matrix. A

random forest classifier of 3000 trees is trained on the

complete feature set.

Algorithm 2

The second place algorithm was developed by Eben Olson

(Yale University) and Damian Mingle (WPC Healthcare).

Data are preprocessed in an automated filter selection step.

Combinations of filters (each containing up to four filters)

are chosen from a bank of 10 partially overlapping, ap-

proximately log-spaced bandpass filters covering the range

5–200 Hz and evaluated on each subject. The three com-

binations that perform best on cross-validation are retained

for each subject. After filtering, covariance matrices are

calculated and normalized for each clip to generate the

feature set. Classification is carried out using an ensemble

of 100 multi-layered neural networks each consisting of

Figure 2 Top algorithm performance over time. Leading

score over the course of the kaggle.com competition on public

(blue) and private (red) leader boards. The top score in the valid-

ation study is represented by the dashed grey line.

Table 3 Final private and public leader board standings

for kaggle.com competition

Team name Private Public

Michael Hills 0.96288 0.97490

Olson and Mingle 0.95655 0.96803

cdipsters 0.95643 0.96199

alap 0.95600 0.96699

Fusion 0.95437 0.96861

Maineiac 0.95239 0.96017

ACG Mojtaba 0.95183 0.96214

Matthew Roos 0.95072 0.94963

Fitzgerald 0.94956 0.95845

Diba 0.94865 0.95845
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two hidden layers of 200 and 100 units, respectively. These

networks are trained with the AdaDelta method for 100

epochs. Each network is trained on a 12-channel subset

of the full covariance matrix using a dropout of 0.5 in

the hidden layers.

Algorithm 3

The third place algorithm was developed by Ishan

Talukdar, Nathan Moore, and Alexander Sood (UC

Berkeley). For preprocessing, samples are downsampled to

100 Hz to decrease noise. The algorithm relies on channel-

specific features as well as global signal features. The chan-

nel-specific features include signal characteristics (maximum

amplitude, mean amplitude, absolute deviation, and vari-

ance), as well as characteristics of the Fast Fourier

Transform of the signal (maximum power, mean power,

variance, and frequency at which the maximum power

occurs). The global features also include signal features in

the time domain (maximum amplitude, mean amplitude,

maximum absolute deviation across channels, maximum,

mean, and variance of the variance across channels, and

covariance between channel signals) and characteristics of

the Fast Fourier Transform of the signal (maximum power,

mean power, maximum variance across channels, and the

maximum, mean, and variance of the frequency at which

maximum power occurs across channels). Channel-specific

and global features are also extracted from the first and

second derivatives of the time series data. Classification is

carried out by averaging the outputs of an ensemble of

1000 decision trees using the Extremely Randomized

Trees algorithm (Geurts et al., 2006), implemented in

python using scikit-learn’s ExtraTreesClassifier.

Validation study results

The performance of the top three teams was further eval-

uated in the validation study (Fig. 3). In addition to stand-

ard clinical data from patients recorded at Mayo Clinic and

the Hospital of the University of Pennsylvania (HUP), the

validation study included prolonged, continuous recordings

from humans implanted with the NeuroVista seizure pre-

diction device (see ‘Materials and methods’ section). These

datasets provide the first-ever opportunity to directly evalu-

ate seizure detection algorithms on long-running, human

implanted device data. As in the kaggle.com competition,

performance metrics were based on clip-by-clip classifica-

tions. The teams achieved overall performance scores of

0.972, 0.946, and 0.974, respectively, representing mean

changes in performance of + 0.009, �0.011, and + 0.017

relative to the private leader board scores (Table 3). The

performance of the algorithms varied across patient co-

horts, with better performance of all algorithms in the

NeuroVista cohort than in the Mayo Clinic cohort (for

each algorithm, respectively: effect sizes of 0.035, 0.0855,

0.055; P-values of 0.007, 0.005, and 0.004 by one-tailed t-

test with 13 degrees of freedom). The performance in the

HUP cohort was not significantly different from that in

either the NeuroVista or Mayo Clinic cohorts. To control

for potential skewing of ROC curves due to differences in

sample size among subjects, we also generated ROC curves

for each algorithm for each individual subject. AUC values

from these curves were used to compute performance when

each subject is weighted equally [mean � standard error of

the mean (SEM); Algorithm 1: 0.966 � 0.006; Algorithm 2:

0.946 � 0.008; Algorithm 3: 0.968 � 0.006]. Full perform-

ance metrics of each algorithm on the validation dataset are

shown in Supplementary Table 2.

All algorithms performed better on seizure classification

(AUCs of 0.981, 0.976, 0.984) than on early seizure

classification (AUCs of 0.964, 0.916, 0.964) as shown in

Fig. 4. While the algorithms achieved similar accuracy in

seizure epoch classification, Algorithm 2 performed more

poorly in early seizure classification than the other algo-

rithms, particularly on the Mayo Clinic datasets

(Supplementary Table 2).

To directly assess their utility for functional seizure de-

tection, the algorithms were further evaluated on the

NeuroVista cohort using two specific tuning strategies:

(i) high specificity; and (ii) high early seizure sensitivity.

We first tuned the algorithms to have few false positives,

and measured their detection sensitivity at high specificity.

This analysis directly simulates the ideal application of

these algorithms for automated generation of seizure diaries

or clinical data parsing from high volume, continuous

recordings. Seizure and early seizure detection sensitivities

computed at a specificity threshold of one false positive per

hour of interictal data (specificity of 0.9997) are shown in

Supplementary Table 3, and seizure detection at this false

positive rate is shown in Fig. 5. This false positive rate

would represent a significant improvement relative to cur-

rently approved devices, which typically deliver 600 to

Figure 3 Validation study performance. Performance of (left

to right bars) Algorithm 1 (blue), Algorithm 2 (red), Algorithm 3

(green), and the ensemble Algorithm (grey) on each cohort in the

validation study. Each point represents performance on an individual

subject.
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2000 stimulations per day (25 to 83 false positives/h) (Sun

and Morrell, 2014). These results indicate that these algo-

rithms provide sufficient detection sensitivity with high

positive predictive value (PPV) (Algorithms 1 and 3

PPV = 0.99, Algorithm 2 PPV = 0.97) for identification of

seizure and early seizure periods with few false positives.

Every seizure in the test set (n = 162) was detected by

Algorithms 1 and 3 with at least one correctly identified

seizure clip (seizure detection sensitivity = 100%; Algorithm

2 seizure detection sensitivity = 94%).

We next tuned the algorithms for highly sensitive early

detection of seizure activity, which is necessary for effective

neuroresponsive therapy. Early seizure detection poses a

quite difficult problem as seizure onset patterns are often

very diverse and may closely resemble interictal epilepti-

form bursts that can occur frequently between seizures

(Davis et al., 2016). Despite the negative impact of false

positive detections on device battery life and the lack of

understanding of the effects of frequent stimulation

(Hodaie et al., 2002; Chkhenkeli et al., 2004), high false

positive rates are often tolerated as the stimulation is below

patient perception in order to reliably capture seizure onset.

We examined the high sensitivity use case by computing the

specificity when setting early seizure detection sensitivity to

75% (Supplementary Table 3). In this limit, Algorithms 1

and 3 achieved specificities of nearly 99%. It is important

to note that the reported specificities are based on classifi-

cation of individual 1-s clips and could be improved by

postprocessing, such as integration of classification results

over several seconds. In addition, while incorrectly labelling

late seizure activity as early seizure decreases algorithm spe-

cificity by our metrics it may not have any functional nega-

tive impact in patient care.

Figure 4 Validation study ROC curves. ROC curves for (A) seizure classification in the HUP and Mayo cohorts, (B) early seizure

classification in the HUP and Mayo cohorts, (C) seizure classification in the NeuroVista cohort, (D) early seizure classification in the NeuroVista

cohort.

Figure 5 Representative seizure detection in the low-false-

positive limit. Each EEG trace shows a single representative

channel signal from a different seizure with 40 s of preictal record-

ing. The seizure EEC is denoted by the dashed line. Seizures shown

were all derived from Patient NV1. Areas highlighted in red were

classified as seizure by Algorithm 1.
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Algorithm performances varied on a per subject basis.

This discrepancy makes it difficult to predict which algo-

rithm will perform best on novel patient data. To address

this concern, we evaluated the performance of an ensemble

algorithm that averages the prediction scores of the top

three algorithms (Fig. 3). Combining multiple, heteroge-

neous learning algorithms tends to decrease overfitting and

provide a more generalizable solution (Bühlmann, 2012).

This algorithm performed better than Algorithms 1 and 2

on a patient-by-patient basis, with mean score increases of

0.005 (P = 0.012) and 0.03 (P5 0.001), respectively (one-

tailed paired t-test). The ensemble algorithm provided a

mean score increase relative to Algorithm 3 of 0.004 on

average, but this difference was not statistically significant.

While the kaggle.com competition was designed to select the

single best detection algorithm, it is possible that optimal

detection over diverse patient cohorts may be achieved

through combination or stacking of individual models.

Discussion
This seizure detection competition yielded a set of highly

successful classification algorithms. These algorithms pro-

vide an immediate improvement in seizure detection over

the current industry standard, and represent a new bench-

mark for personalized seizure detection. The performance

of the top three algorithms was consistent between the con-

test and the validation study, indicating that these methods

provide robust seizure detection not limited to patients in

the dataset used for development.

The field of seizure detection has been hampered by a

lack of reproducible, properly validated algorithms. While

many seizure detection algorithms have been published

(Tzallas et al., 2012; Orosco et al., 2013), few studies

have been carried out to assess the reproducibility of algo-

rithm performance across multiple datasets (Varsavsky

et al., 2011; Orosco et al., 2013). Consequently, there is

significant concern that many of these algorithms suffer

from overfitting of the dataset used for development, and

do not offer genuine advancements in detection technology.

In this study, we present a framework for direct, objective

comparison of algorithms on a common dataset. We have

addressed concerns regarding algorithm robustness by

demonstrating the efficacy of these algorithms on validation

data from patients not included in the original study. We

have shown that the algorithms produced in this competi-

tion detect seizure activity with high accuracy regardless of

subject species (human and canine), recording method

(high-density EMU and implanted device recordings), or

recording institution (HUP, Mayo Clinic, NeuroVista).

Seizure start and end times were annotated by several dif-

ferent clinicians without loss of classification accuracy. The

original competition dataset remains open for submission,

so that any seizure detection algorithm can be validated on

these data and compared to the competitors’ performances.

We have taken the additional step to supply the source

code for the top three algorithms along with a custom

pipeline to facilitate application of these algorithms to

any EEG dataset. This pipeline can be easily used by re-

searchers to assess the efficacy of these algorithms in their

own data for functional detection of seizures or as a bench-

mark for comparison of novel detection methods (https://

github.com/sbaldassano/seizuredetection).

Accurately detecting the beginning of seizure activity is

critical for developing effective neuroresponsive devices de-

signed to intervene before seizure propagation. The

NeuroVista cohort used in this validation study provides

an unprecedented use–case opportunity to directly evaluate

algorithm performance in human patients with continuously

recording implanted devices. We have demonstrated highly

accurate early seizure detection in human implanted device

recordings (early seizure AUCs of 0.966, 0.925, and 0.970

for Algorithms 1, 2, and 3, respectively), and shown that it

is possible to achieve high specificity while tuned for high

early seizure sensitivity. It is also important to consider that

these results were achieved despite inherent subjectivity in

the marking of seizure EEC (Wilson et al., 2003; Halford

et al., 2013), which may introduce dataset variability across

seizures and clinician markers. While these algorithms must

be further validated on a larger database of human record-

ings, these results represent a promising step toward im-

provement in the efficacy of neuroresponsive devices.

Automated seizure detection algorithms may also ad-

dress the clinical and research burden of manual record

review. Manual identification of seizure epochs is cumber-

some due to high patient volumes at major academic cen-

tres and the long length of recordings from ambulatory or

implanted devices. The detection methods presented in this

study offer high sensitivity and high specificity seizure de-

tection for all subjects included in the competition and the

validation study [validation study AUC scores

(mean � SEM) of 0.983 � 0.004, 0.982 � 0.004,

0.983 � 0.004]. Using the provided data hosting services

and analysis pipeline, these algorithms can be immediately

applied to clinical and research datasets to decrease the

existing labour burden.

Structuring the problem of seizure detection as a kaggle.com

competition allowed us to engage with a diverse group of

data scientists, many of whom have little to no neuroscience

or clinical experience. This competition provided a unique

opportunity to leverage the signal processing and machine

learning expertise of these scientists to address an important

problem in neuroscience research. Crowdsourcing solutions

using this platform yielded rapid advancements in state-of-

the-art detection technology by providing research bandwidth

far exceeding that of a single laboratory. These results were

achieved in an extremely short time and at greatly reduced

cost compared to prolonged multi-year research efforts. The

success of this competition demonstrates how sharing high

quality data results in the creation of powerful translational

tools for clinical patient care. Open access to data and meth-

ods is essential for producing reproducible research and com-

paring performance of novel algorithms. To facilitate
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corroboration of results and encourage further research, all

datasets used in the competition and validation study are

hosted on http://ieeg.org.

There are several methodological considerations to ad-

dress related to the competition and this research. One crit-

ical issue in development of robust algorithms is prevention

of overfitting of the training data. While use of a private

leader board in the kaggle.com competition mitigates this

concern to a degree, the data used for the public and pri-

vate leader boards are from the same patients and therefore

similar in nature. It is possible that allowing multiple sub-

missions to the public leader board may result in inappro-

priately high-variance solutions. Further, it is possible that

teams may use statistical analyses of the unlabelled testing

data during method development in a manner not translat-

able to prospective algorithm use. We address the issue of

potential overfitting by evaluating the algorithms in the

validation study, using data from 18 patients not included

in the competition. Algorithm performance is consistent be-

tween the studies on average, but there are a few validation

study subjects in which performance showed a modest de-

cline. It is important to note that algorithm performance

may be dependent on cohort-specific variables such as clin-

ical patient scenario and methods of data collection or seiz-

ure start time annotation.

Another consideration relates to ease of algorithm imple-

mentation in an implantable device. The kaggle.com com-

petition did not place any requirements on algorithm

runtime, computational requirements, or code structure.

The winning classification algorithms we present may

need to be optimized or otherwise altered to be compatible

with the relatively limited computational power of a com-

pact implantable device. The validation study was carried

out using a Rackform R331.v5 server (Silicon Mechanics)

with 32 Intel Xeon E5-2698v3 (2.3 GHz) cores and 256 GB

memory. Computation times (training, testing) for each al-

gorithm were benchmarked using subject NV1 (696 ictal

and 5180 interictal training clips, 5804 testing clips)

(Algorithm 1: 75 s, 28 s; Algorithm 2: 3076 s, 618 s;

Algorithm 3: 1092 s, 939 s).

These algorithms were able to accurately model seizure

behaviour over many individual subjects. This patient-spe-

cific modelling requires verification of several training seiz-

ures by a neurologist before detection can be automated.

However, preliminary work indicates that only a few train-

ing seizures are required for high-accuracy detection

(Supplementary Fig. 3), suggesting that algorithms may be

implemented with limited neurologist input. While these

algorithms may not be suitable for short, inpatient studies

during which few seizures are recorded, such as presurgical

patient evaluation, they offer utility for extended inpatient

monitoring (e.g. long-term EEG monitoring, neurointensive

care unit observation) as well as for ambulatory or im-

planted device recordings. It is also important to consider

that seizure detection using standard (scalp) EEG presents

unique challenges. Compared to intracranial recordings,

standard EEG is complicated by more poorly localized

signals (Ray et al., 2007), increased biological noise

(Scheer et al., 2006), and attenuation of higher-frequency

signal components by tissue (Pfurtscheller and Cooper,

1975). Further work must be carried out to validate the

performance of these algorithms on standard EEG to

assess their range of clinical applicability.

This study only included seizures with at least a 4-h lead

of seizure-free activity. Clustered seizures represent related

physiologic events and tend to have highly correlated

morphology on EEG. As a result, these seizures are more

easily modelled than leading seizures, and are typically

removed from performance benchmarking to prevent bias-

ing of results (Litt et al., 2001; Cook et al., 2013). Early

seizure behaviour may also be easier to identify in the con-

text of postictal EEG suppression from a previous seizure

due to decreased background activity (Esteller et al., 2005).

In contrast to closed-loop applications using continuous

data, these algorithms are unable to leverage knowledge

of recent seizures, a powerful feature for detecting subse-

quent, clustered seizure events (Dudek and Staley, 2011).

This study methodology provides conservative estimates of

performance relative to those expected in practice. Further

work using extended, continuous recordings must be car-

ried out to directly compare algorithm performance to that

of existing closed-loop devices.

The performance metric used for algorithm ranking relies

on the area under the ROC curves for seizure and early

seizure classification. This metric provides the most object-

ive assessment of algorithm efficacy over the full range of

functionality. However, in the application of seizure detec-

tion from continuous iEEG it is important to limit the

number of false positive detections in order to achieve ac-

ceptable positive predictive values. Therefore it could be

argued that a more appropriate metric would be sensitivity

at high specificity, or the area under a restricted segment of

the ROC curve. While we included such a metric in the

validation study, it was not used for initial algorithm rank-

ings in the competition and may have resulted in selection

of different winning teams.

Finally, for the purpose of the competition, the datasets

were composed of 1-s clips randomized from seizure and

interictal events, discarding any temporal relationships be-

tween clips. Performance of these algorithms can only be

improved by incorporating knowledge of sequential clips in

a real-world situation.

We present this crowdsourced experiment as a successful

example of a new collaborative research paradigm rooted

in the principles of data and code sharing and experimental

reproducibility. The authors firmly believe that changing

the incentive structure to stimulate similar projects across

many fields is essential to accelerate progress and eliminate

waste and redundancy in research. Our group continues to

aggressively work with funding agencies and academic and

industry partners to harness the ‘power of the crowd’ in

further translational neuroengineering research.

It is important to note that crowdsourced research may

present challenges that must be considered during project
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design. Effective crowdsourcing requires incentivization of

large numbers of qualified entrants, most of whom will not

receive cash prizes. As the primary motivation of these en-

trants is often the opportunity to develop creative solutions

to interesting problems, the competition must address a

compelling need to foster participation. In addition, while

this competition produced rapid advancements in seizure

detection technology, experience gained in traditional, pro-

longed research efforts was essential to framing the prob-

lem in a tractable manner for participants who may not be

experts in epilepsy or neuroscience. Such experience is ne-

cessary to design fair and objective performance metrics to

compare competitors’ solutions while maximizing the utility

of winning solutions. Crowdsourced research can also raise

concerns regarding intellectual property and licensing of

solutions. In this competition, we required that winning

solutions be made available under an Open Source

Initiative approved license to facilitate implementation by

other researchers and clinicians.

We have successfully conducted a large-scale, online, seiz-

ure detection competition using open access datasets from

canines and humans. The structure of the kaggle.com com-

petition allows for direct comparison of algorithms on a

common dataset. This competition yielded many novel so-

lutions to the problem of personalized seizure detection.

The top three algorithms were successfully validated on

unseen datasets including long-running human implanted

device recordings. We have provided open source code

for each of these algorithms and an application pipeline

to facilitate translational use by researchers and clinicians.

The rapid progress afforded by crowdsourcing algorithm

development provides further evidence for a need for

open access data and methods to ensure transparency and

reproducibility in research.
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