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Abkowitz3, Vladimir N. Minin1,4

1Department of Statistics, University of Washington
2National Heart, Lung, and Blood Institute, National Institutes of Health
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Abstract

Single-cell lineage tracking strategies enabled by recent experimental technologies have produced
significant insights into cell fate decisions, but lack the quantitative framework necessary for
rigorous statistical analysis of mechanistic models of cell division and differentiation. In this
paper, we develop such a framework with corresponding moment-based parameter estimation
techniques for continuous-time stochastic compartmental models that provide a probabilistic
description of how cells divide and differentiate. We apply this method to hematopoiesis, the
complex mechanism of blood cell production. Viewing compartmental models of cell division
and differentiation as multi-type branching processes, we derive closed-form expressions for
higher moments in a general class of such models. These analytical results allow us to efficiently
estimate parameters of compartmental models of hematopoiesis that are much richer than the
models used in previous statistical studies. To our knowledge, the method provides the first rate
inference procedure for fitting such models to time series data generated from cellular barcoding
experiments. After testing the methodology in simulation studies, we apply our estimator
to hematopoietic lineage tracking data from rhesus macaques. Our analysis provides a more
complete understanding of cell fate decisions during hematopoiesis in non-human primates,
which may be more relevant to human biology and clinical strategies than previous findings in
murine studies. The methodology is transferrable to a large class of compartmental models and
multi-type branching models, commonly used in studies of cancer progression, epidemiology,
and many other fields.

1 Introduction

This paper develops inferential tools for a class of hidden stochastic population processes. In
particular, we present a correlation-based z-estimator for rate inference in multi-type branching
process models of hematopoiesis, the process of blood cell production. During hematopoiesis, self-
renewing hematopoietic stem cells (HSCs) specialize or differentiate via a series of intermediate
progenitor cell stages to produce mature blood cells [Weissman, 2000]. Understanding the details
of this system is a fundamental problem in biology, and progress in this area will also help shed light
on other areas of basic biology. For example, further advances in hematopoiesis research will yield
insights into mechanisms of cellular interactions, cell lineage programming, and characterization
of cellular phenotypes during cell differentiation [Orkin and Zon, 2008]. Moreover, understanding
hematopoiesis is clinically important: all blood cell diseases, including leukemias, myeloproliferative
disorders and myelodysplasia are caused by malfunctions in some part of the hematopoiesis process,
and hematopoietic stem cell transplantation has become a mainstay for gene therapy and cancer
treatments [Whichard et al., 2010].

Hematopoiesis research was one of the earliest successes of mathematical modeling in cell bi-
ology [Becker et al., 1963, Siminovitch et al., 1963]. Stochastic compartmental models form one
popular class of models used to study hematopoiesis, in which cells are assumed to self replicate
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and differentiate according to a Markov branching process [Kimmel and Axelrod, 2002]. While
much is known about production of blood cells by progenitor cells, uncovering details of HSC and
progenitor cell replication/differentiation dynamics has proven to be more difficult. Notably, ex-
perimental techniques developed to study feline hematopoiesis using X-chromosome inactivation
markers have produced a series of statistical studies using a two-compartmental stochastic model
of hematopoiesis [Abkowitz et al., 1990, Newton et al., 1995, Golinelli et al., 2006, Fong et al.,
2009, Catlin et al., 2011]. However, this simple two-type representation cannot distinguish between
stages of differentiation beyond the HSC, and results obtained from analyzing this model have not
resolved long standing questions about patterns and sizes of the clones descended from individual
HSC cells. It should be noted that even these simplified models capturing the clonal dynamics
descended from an HSC have posed significant statistical and computational challenges.

More complex multi-compartmental models have been studied mathematically under additional
assumptions—for instance, the regulatory behavior of several multi-stage models have been studied
by Colijn and Mackey [2005] and Marciniak-Czochra et al. [2009]. Efforts in analyzing these more
precisely specified structures have relied on deterministic modeling of the overall population with
continuous-valued state variables. To study dynamics in detail at the single-cell level, continuous
approximations are not suitable as HSC counts descended from a single clone are often very low
and near zero, and while deterministic models may be appropriate for steady-state population
level behavior, they are unsuitable to model fate decisions at the cell level which are much more
sensitive to stochastic events. Indeed, studies suggest that hematopoietic dynamics are stochastic
in nature [Ogawa, 1993, Kimmel, 2014]. Additionally, as one cannot completely specify all details
of such a complex system in a mathematical model, a stochastic modeling approach that quantifies
uncertainty provides a natural safeguard against model misspecification to some extent.

Recently emergent experimental techniques now allow researchers to track the dynamics of cell
lineages descended from distinct ancestral progenitor or HSC cells. Collecting such high resolu-
tion data is made possible by lentiviral genetic barcoding coupled with modern high-throughput
sequencing technologies [Gerrits et al., 2010, Lu et al., 2011, Wu et al., 2014]. Data collected from
individual cell barcodes, rather than from a population descended from a mixture of indistinguish-
able clones, comprise independent and identically distributed time series, potentially allowing for
investigation of much more realistic models of hematopoiesis. More importantly, the ability to
analyze individual lineage trajectories can be very useful in characterizing patterns of cell differen-
tiation, shedding light on the larger tree structure of the differentiation process. While these data
are certainly more informative than those from previous experiments, statistical methods capable of
analyzing such data are only beginning to emerge. Perié et al. [2014] model genetic barcoding data
in a murine study collected at the end of the mice’s lifespans, but do not account for the longitudi-
nal aspect of the data nor read count information, instead working with a binarized simplification
of the data. Goyal et al. [2015] present a neutral steady-state model of long term hematopoiesis
applied to vector site integration data, but cannot infer crucial process parameters such as the rate
of stem cell self-renewal. Biasco et al. [2016] manage to estimate cell differentiation rates from
blood lineage tracking data, but resort to diffusion approximation and ignore experimental noise
during their statistical analysis.

Wu et al. [2014] provide a preliminary analysis of their cellular barcoding data revealing im-
portant scientific insights, but lacking the ability to perform statistical tasks such as parameter
estimation and model fitting/selection. This paper attempts to fill this methodological gap, de-
veloping new statistical techniques for studying the barcoded hematopoietic cell lineages from the
rhesus macaque data. The difficulty lies in the partially observed nature of a complex process with
a massive hidden state space. Statistical challenges arise from several facets of the experimental
design so that standard techniques for hidden Markov models and continuous-time March chains
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(CTMCs) cannot be readily applied, instead requiring careful modeling that at once captures the
complexity of the data yet allows feasible algorithms for inference. We propose a fully generative
stochastic modeling framework and an efficient method of parameter estimation that allows much
richer hematopoietic structures to be statistically analyzed than previously possible, allowing for
many-compartmental models that consider HSC, progenitor, and mature cell stages. The follow-
ing section details the experimental design and dataset we consider, and provides an overview of
the stochastic model. Next, we motivate the approach by statistically formulating our inferential
goal, provide a rigorous characterization of each component of our model, and derive the necessary
mathematical expressions in Section 3. We then thoroughly validate these methods via several
simulation studies, and fit the models to the rhesus macaque barcoding data. Finally, we close with
a discussion of these results, their implications, and avenues for future work.

2 Data and Model

We analyze single cell lineage tracking data generated by the cellular barcoding experiments in
[Wu et al., 2014]. Briefly, Wu et al. [2014] start by mobilizing marrow cells from rhesus macaques
into blood, selecting the subset of cells that contains HSCs and progenitors, and labelling these
cells. Specifically, lentiviral vectors are created using high diversity oligonucleotides with known
DNA sequences that can later be retrieved — these vector sequences each correspond to a unique
ID, collectively forming a genetic barcode library. Next, cells are extracted and enriched for HSC
and early progenitor cells. These cells are transduced, or labeled, by the lentiviruses, and are
then infused back into the irradiated monkeys. Since irradiation depletes the residual blood cells,
reconstitution of the blood system is supported by these extracted cells following transplantation.

Hematopoietic reconstitution is monitored indirectly by taking samples of the blood cells at
observation intervals ranging from several weeks to months. All cells descended from a marked
cell inherit its unique barcode ID, thereby enabling lineage tracking. We note that by lineage
we mean cells that descend from a marked cell. Such cells would be denoted as a clone in the
hematopoiesis literature, where the word lineage is reserved for a cell type. At each observation
time, the blood sample is sorted into monocyte (Mono), granulocyte (Gr), T, B, and natural
killer (NK) cell types. Next, polymerase chain reaction (PCR) is performed on purified DNA
samples from each sorted cell population, and barcodes are retrieved from the PCR product using
Illumina sequencing. Sequences are filtered in such a way that only barcode IDs with numbers of
reads exceeding a specified minimum read threshold remain in the dataset, reducing the effect of
nonlinearities and noise arising from the PCR procedure in the pool of sequences we work with.
Thus, at each observation time, the experimental protocol yields a read count corresponding to
each barcode ID present in each cell type sample. Together, read count data for a given barcode ID
constitute an independent time series that informs us of contributions to different cell types over
time. Restricting our attention to only those barcodes exceeding a threshold of 1000 read counts at
any observation time similarly to [Wu et al., 2014], we arrive at the dataset consisting of over 110
million read counts across 9635 unique barcode IDs, observed at irregular time intervals over a total
period of 30 months. An illustration summarizing the process after transplantation corresponding
to one clone is provided in Figure 1.

The observed dataset is the collection of read counts for each mature cell type m and can be
represented by P × J matrices Ym = (y1

m,y
2
m, . . . ,y

J
m) whose columns correspond to observation

times t = (t1, . . . , tJ). Each pth row encodes the read count time series corresponding to a unique
barcode ID p ∈ 1, . . . , P among the cell type population associated with this matrix.

To analyze the data, we first assume that the hematopoietic process evolves according to a
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Figure 1: Illustration of experimental protocol for one single fixed barcode ID. The top panel
represents the latent process starting with a single HSC (pink) at several snapshots in time t0, . . . , t3.
The second panel illustrates blood samples. Note that the barcode only becomes present in the
blood when mature cells, produced by time t2 in this example, are sampled in blood; the HSCs
and early progenitors (purple) reside in the marrow and thus are unobservable. Read counts
corresponding to the given barcode after PCR and sequencing reflect the number of cells sharing
that barcode in the sample, which in turn reflect the barcoded population in the latent process.

continuous-time Markov branching process. The choice of a branching process model is natural,
as canonical differentiation trees that have been posited in the scientific literature follow such a
structure, and equivalent stochastic models have been established and successfully studied in the
statistical hematopoiesis literature [Kimmel and Axelrod, 2002, Catlin et al., 2011].

2.1 Stochastic branching model formulation

A branching process is a Markov process in which a collection of independently acting particles
(cells) can reproduce and die according to a probability distribution. Here we consider a continuous-
time, multi-type branching process taking values over a discrete state space of cell counts. In this
setting, each particle type has a distinct mean lifespan and reproductive probabilities, and can give
rise to particles of its own type as well as other types at its time of death.

For concreteness, notation is introduced for the branching process corresponding to Figure 2 (a).
The process is a stochastic vector X(t) = (X1(t), X2(t), . . . , X5(t)) taking values in state space Ω =
N5, where Xi(t) denotes the number of type i cells at time t ≥ 0. Each type i cell produces j type 1
particles, l type 2 particles, m type 3 particles, n type 4 particles, and m type 5 particles at instanta-
neous rates ai(j, k, l,m, n) upon completion of its lifespan. The rate of no event occurring, beginning
with one type 1 particle, is defined as α1 := a1(1, 0, 0, 0, 0) = −

∑
(j,k,l,m,n)6=(1,0,0,0,0) a1(j, k, l,m, n),

with αi defined analogously, so that
∑

j,k,l,m,n ai(j, k, l,m, n) = 0 for i = 1, . . . , 5.
Particle independence implies that the process is linear : overall rates are multiplicative in the
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Figure 2: Differentiation trees to be considered in simulation study and real data analysis. In the
first two models, mature cells are descended from one common multipotent progenitor: (a) groups
mature cells in a model with three total mature cell compartments, and (b) assigns each mature cell
type its own compartment. Note that previous statistical studies by Catlin et al. [2001], Golinelli
et al. [2006], Fong et al. [2009] have modeled only the first two compartments. Models (c)—(f)
include several biologically plausible topologies featuring two or three oligopotent progenitors, each
specializing to produce only particular mature cells.
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number of particles. For example, in such a process, the infinitesimal probability of jumping to
X(h) = (j, k, l,m, n) beginning with K type 1 particles over a short interval of time h is

Pr(K,0,0,0,0),(j,k,l,m,n)(h) := Pr {X(h) = (j, k, l,m, n)|X(0) = (K, 0, 0, 0, 0)}
= K · a1(j, k, l,m, n) · h+ o(h).

Subsequently, offspring of each particle evolve according to the same set of instantaneous rates, and
these rates ai(j, k, l,m, n) do not depend on t so that the process is time-homogeneous. Together
these assumptions imply that each type i particle has exponentially distributed lifespan with rate
−αi, and X(t) evolves over time as a CTMC [Guttorp, 1995, Chapter 3].

As depicted in Figure 2 (a), the parameters λ, νa, µa, ν1, ν2, ν3, µ1, µ2, and µ3 define the infinites-
imal rates of the process. The rates denoted νi correspond to differentiation, while µi denotes cell
death/exhaustion; λ denotes HSC self-renewal. Specifying such a process classically using the in-
finitesimal generator or CTMC rate matrix is mathematically unwieldy, as this is an infinite matrix
with no simplifying structure. However, in terms of branching process rates, these event rates can
now be equivalently and compactly expressed as

a1(2, 0, 0, 0, 0) = λ, a1(0, 1, 0, 0, 0) = νa, a1(1, 0, 0, 0, 0) = −(λ+ νa), a2(0, 0, 0, 0, 0) = µa,

a2(0, 1, 1, 0, 0) = ν1, a2 = (0, 1, 0, 1, 0) = ν2, a2(0, 1, 0, 0, 1) = ν3, a2(0, 1, 0, 0, 0) = −(µa+ν1+ν2),

a3(0, 0, 0, 0, 0) = µ1, a3(0, 0, 1, 0, 0) = −µ1, a4(0, 0, 0, 0, 0) = µ2,

a4(0, 0, 0, 1, 0) = −µ2, a5(0, 0, 0, 0, 0) = µ3, a5(0, 0, 0, 0, 1) = −µ5,

with all other rates zero. Thus, the process is characterized by parameters θ = (λ, νa, µa, ν1, ν2, ν3, µ1, µ2, µ3, πa)
containing the rates and initial distribution parameter πa representing the probability that the clone
is originally descended from a progenitor rather than from an HSC. In models with more than one
progenitor compartment, the initial distribution is parametrized by a vector π = (πa, πb, . . .).

2.2 Observation model

To complete the data generating model, it is necessary to specify the probability distribution of
the barcode read counts conditional on the state of the branching process X(t). Read counts are
observed between mature blood cells, and recall we denote these counts for cell type m correspond-
ing to barcode p at time t by ypm(t). Read counts are assumed proportional to the number of
blood cells with barcode p sampled at time t, denoted ỹpm(t), so that ypm(t) = dm(t)× ỹpm(t) where
constants dm(t) reflect the results of PCR amplification at time t. Such a linear representation of
PCR amplification is standard after applying minimum read count thresholds that already ame-
liorate noise and nonlinearities in the amplification process. However, this has not accounted for
uncertainty due to sampling: recall that at each observation time point, a fixed number of cells of
each type is obtained from the blood sample. Within the purified DNA samples, a random number
of barcodes is present, sampled in proportion to their prevalence in the cell population. Therefore,
the distribution of sampled cells can be well-modeled by a multivariate hypergeometric distribution

ỹm(t) | X(t) ∼ mvhypergeom(Bm,Xm(t), bm), (1)

where bm is the known number of sampled type m cells, Bm is the total number of barcoded cells
of type m in the animal, and Xm(t) again represents the state of the underlying branching process,
whose pth components contain the numbers of type m cells with barcode p. Note that bm, Bm are
known based on the experimental protocol, while Xm(t) is unknown. The pth component of the
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probability mass vector ỹpm(t) can be interpreted as the probability of drawing ỹpm balls of color p
out of an urn containing Bm total balls, Xp

m(t) of which are of color p, in a sample of size bm. In
this setting, each color corresponds to a barcode ID; the distributional choice is driven by its close
mechanistic resemblance to the experimental sampling itself.

3 Methods

When feasible, likelihood methods for CTMC model-based inference are often preferable as they
are most statistically efficient. However, the likelihood in our setting is intractable for two reasons:
the observed data likelihood of the latent branching process is already computationally unwieldy—
recent numerical techniques to compute this likelihood for multi-type branching processes and
efforts to scale these techniques [Xu et al., 2015, Xu and Minin, 2015] fall short in our application
due to the potential sizes of barcoded mature cell populations, which reach hundreds of thousands
per type for a single barcode. Further, marginalizing over all possible configurations of unobserved
compartments and underlying cell populations that are consistent with observed reads requires an
additional integration step over an enormous hidden state space. Without an expression to ana-
lytically integrate out the hidden variables, alternatives such as data augmentation are notoriously
difficult when the discrete hidden space is large. Although HMMs have been extensively studied,
likelihood-based inference for HMMs is generally intractable when the state space of the hidden
Markov process is infinite or finite but massive [Cappé et al., 2006]. On the other hand, populations
of HSCs and early progenitors of a given barcode are likely to be very low and near zero, rendering
approximations such as diffusion processes and other continuous-space representations ill-suited.

In lieu of feasible likelihood methods, we consider inference based on the generalized method of
moments, a computationally simpler alternative to maximum likelihood estimation that yields con-
sistent estimators. This method relies on deriving equations relating a set of population moments
to the target model parameters to be estimated. Next, the discrepancy between the population
and sample moments are minimized to estimate parameters of interest. Although moment-based
estimators are known to be less statistically efficient than MLEs, the choice is well-motivated for our
dataset consisting of thousands of barcoded clones, each acting as an independent, identically dis-
tributed realization from the model. Perhaps more appealing than their simplicity, moment-based
methods feature more robustness to model misspecification than techniques relying on a completely
prescribed likelihood [Wakefield, 2013]. Similar approaches have found success in application to
stochastic kinetic models [Lakatos et al., 2015] and toward developing quasi- and pseudo-likelihood
estimators [Chen and Hyrien, 2011].

Our estimator seeks to match pairwise empirical read count correlations across barcodes with
their corresponding model-based population correlations. We derive explicit analytic forms for the
first and second moments of a general class of branching models for hematopoiesis, allowing for the
computation of marginal correlations between any two mature types. The advantage of working
with correlations in the data is twofold: first, the observed correlation profiles between types are
more time-varying and thus more informative than the mean and variance curves of read counts.
Second, because correlations are scale invariant, we do not need to additionally model and estimate
the effect of PCR amplification and fluctuations of absolute cell numbers on read counts in an
already complex model. This robustness comes with a caveat — we may not expect all branching
process rates to be identifiable with a scale free approach, instead requiring some parameters be
fixed to provide scale information. This will be further discussed in Section 4.1.

With closed form moment expressions, model-based correlations can be computed very effi-
ciently given any parameter setting, enabling the use of generic optimization methods to minimize
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a loss function relating the model-based correlations to observed correlations in the read count
data. The following derivations apply to a rich class of models, including the candidate models
displayed in Figure 2, with arbitrarily many compartments at the progenitor level and mature cell
level, enabling us to investigate arbitrary groupings of cell types and candidate branching pathways.

3.1 Correlation loss function

To estimate the parameter vector θ, consisting of branching process rates and initial distribution π,
we seek to match model-based correlations closely to the empirical correlations between observed
read counts. This is achieved by minimizing the loss function

L(θ; Y) =
∑
tj

∑
m

∑
n6=m

[
ψjmn(θ; Y)− ψ̂jmn(Y)

]2
, (2)

where ψjmn represents model-based correlation between reads of type m and n cells at time tj :

ψjmn(θ; Y) := ρ(Ym(tj), Yn(tj);θ) =
Cov[Ym(tj), Yn(tj);θ]

σ(Ym(tj);θ)σ(Yn(tj);θ)
,

and ψ̂jmn denotes corresponding sample correlations across realizations p = 1, . . . , N at time tj ,
where N denotes the total number of barcode IDs:

ψ̂jmn(Y) := ρ̂(ym(tj),yn(tj) =

∑N
p=1(y

p
m(tj)− ym(tj))(y

p
n(tj)− yn(tj))√∑N

p=1(y
p
m(tj)− ym(tj))2

√∑N
p=1(y

p
n(tj)− yn(tj))2

.

Underlying (2) is the system of moment equations
{
ψjmn(θ; Y) = ψ̂jmn

}
equating theoretical nor-

malized moments with their sample analogs at each time tj . Because the dataset contains more
constraints than parameters to be estimated, the loss function is motivated by minimizing the
residuals as a nonlinear least squares objective. The problem of estimating hematopoietic rates
now translates to seeking

θ̂N = argmin
θ
L(θ; Y) = argmin

θ
‖GN (θ; Y)‖22, where GN (θ; Y) := ψ(θ; Y)− ψ̂(Y),

and ψ(θ; Y), ψ̂(Y) are vectors containing all pairwise model-based and empirical correlations at
each time point, respectively. Note that N is also the number of rows in the data matrix Y, from
which the dependence of GN on N arises.

If θ0 are the true data generating parameters, then E[GN (θ0; Y)] → 0 as the number of
processes N →∞. Our method is therefore akin to a z-estimator or estimating equations approach
[Van der Vaart, 2000, Chapter 5], which typically assumes E[GN (θ0; Y)] = 0 for all sample sizes N ,
and therefore yields a consistent estimator as the zero of the estimating equations GN (θ̂N ; Y) = 0.
While we minimize ‖GN (θ; Y)‖22 rather than root-finding and do not have unbiasedness for every
N , our loss function estimator θ̂N is also shown to be consistent. We prove the following result in
the Appendix within a generalized method of moments (GMM) framework:

Theorem 3.1 Assume the observed process Y (t) has finite first and second moments, and assume
the true parameter vector θ0 is identifiable, i.e. sup

‖θ−θ0‖>δ
‖GN (θ) − G(θ0)‖−1 = Op(1) for each

δ > 0. Then
{
θ̂N

}
converges in probability to θ0, where θ̂N = argminθ L(θ; Y).
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In addition to serving as a useful context for analyzing properties of θ̂N , it is worth mentioning
that the GMM framework provides a natural extension of our loss function estimator by replacing
the `2 norm ‖·‖2 by a general family of norms ‖·‖W induced by positive definite weight matrices
W. The estimator is now given by

θ̂W = argmin
θ
‖GN (θ; Y)‖2W := argmin

θ
GN (θ; Y)T Ŵ GN (θ; Y);

notice minimization of L(θ; Y) is the special case of Ŵ = I. The norm induced by W allows
different moment equations to have unequal contributions to the objective function, and its estimate
Ŵ from the data intuitively assigns less weight to components which have higher variance and
thus provide less information. GMM estimators θ̂W enjoy asymptotic normality under additional
regularity assumptions which we do not impose here [Pakes and Pollard, 1989, Van der Vaart,
2000], and are furthermore asymptotically efficient under optimal choice of Ŵ [Hansen, 1982].
While many algorithms exist for estimating the weight matrix Ŵ, the task is nontrivial [Hansen
et al., 1996]. Because we have a large enough dataset such that finite-sample efficiency is of lesser
concern and we do not expect particular time points or correlation pairs to be more informative
than others, we opt for the simple case with Ŵ = I, avoiding the inclusion of many additional
entries of the weight matrix as parameters to be estimated.

Having established the data generating model and estimation framework, next we derive the
second moments of the latent process X(t) using branching process techniques. While this enables
us to compute model-based correlations of the branching process, we must then relate these quan-
tities to those in the observed process Y(t): we do so by connecting correlations of X(t) and Y(t)
via laws of iterated expectations and (co)variances.

3.2 Moments of the compartmental process

Here we derive analytic expressions for the first and second moments of the latent branching process,
enabling efficient computation of model-based correlations ψj(θ,Y) appearing in the loss function.
Our approach is similar to the random variable technique introduced by Bailey [1964], but we
derive expressions by way of probability generating functions rather than appealing to the cumu-
lants. The derivation applies to the general class of models consisting of an HSC stage, progenitor
stage, and mature cell stage, with arbitrary number of progenitor compartments and mature cell
compartments, including all structures depicted in Figure 2. In this class, each mature cell type m
is descended from only one progenitor compartment, so that its corresponding differentiation rate
νm is unique and well-defined. The subscript 0 indicates rates relating to HSCs, and we use indices
a ∈ A to denote progenitors, with mature cell types denoted by m ∈M. All intermediate progen-
itors are descended from the HSC compartment, and we use the notation {a→ m} if progenitor a
gives rise to type m mature cells, thus completely specifying a given branching model. The total
number of compartments or cell types is denoted by C, and we use the notation ei to represent the
vector of length C whose ith entry equals 1 and is 0 elsewhere.

From applying the process rates to the Kolmogorov backward equations, we can write pseudo-
generating functions defined as

ui(s) =
∑
k1

∑
k2

· · ·
∑
kC

ai(k1, . . . , kC)sk11 s
k2
2 · s

kC
C , (3)

9



where s is a vector of dummy variables. For our class of models, these are given by

u0(s) = λs20 +
∑
a∈A

νasa −

(
λ+

∑
a∈A

νa

)
s0,

ua(s) =
∑
m∈M

νmsasm1{a→m} + µa −

(
µa +

∑
m∈M

νm1{a→m}

)
sa ∀a ∈ A,

um(s) = um(sm) = µm − µmsm, ∀m ∈M.

Next, we can write the probability generating function (PGF) of the process, beginning with one
type 1 (HSC) particle, via a relation to the pseudo-generating function u1 as follows:

φ1(t; s) = E

 C∏
j=1

s
Xj(t)
j |X(0) = e1

 =
∞∑
k1=0

· · ·
∞∑

kC=0

Pre1,(k1,k2,...kC)(t)s
k1
1 s

k2
2 · · · s

kC
C

=
∞∑
k1=0

· · ·
∞∑

kC=0

[
1{k1=1,k2=...=kC=0} + a1(k1, . . . , kC)t+ o(t)

]
sk11 s

k2
2 · · · s

kC
C

= s1 + u1(s)t+ o(t). (4)

Analogously defining φi for processes beginning with one type i particle for each i = 1, . . . , C,
Equation (4) yields the relation

∂

∂t
φi(t, s) = ui(φ1(t, s), . . . , φC(t, s)).

Only expressions conditioning on one initial particle are required throughout, since each latent
process represents cells sharing a unique genetic barcode, which is always descended from a single
marked cell. Now, let Ml|k(t) denote the expected number of type l cells at time t, given one initial
type k cell. From definition of φi, we see that we can relate the probability generating functions to
these first moments via partial differentiation:

Ml|k(t) =
∂

∂sl
φk(t, s)|s1=s2=...=sC=1.

Similarly, we may further differentiate the PGF to derive second moments used toward variance
and covariance calculations. Define

Ukl|1(t) = E
[
Xk(Xl − 1{k=l})|X(0) = e1

]
,

with Ukl|i(t) defined analogously beginning with one type i particle. Then Ukl|j(t) =
∂2φj
∂sk∂sl

∣∣∣∣
s=1

.

This relationship via partial differentiation enables us to write a system of differential equations
governing the moments. Applying the multivariate chain rule and the Faà di Bruno formula,

∂

∂t
Mj|i(t) =

∂2φi
∂t∂sj

∣∣
s=1

=
∑
k

∂ui
∂sk

∂φk
∂sj

∣∣
s=1

, (5)

∂

∂t
Ujk|i(t) =

∂3φi
∂t∂sj∂sk

∣∣
s=1

=
∑
m=1

(
∂ui
∂φm

∂2φm
∂sj∂sk

)
+
∑
m,n=1

(
∂2ui

∂φm∂φn

∂φm
∂sj

∂φk
∂sk

) ∣∣
s=1

. (6)
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Notice equation (5) defines a system of ordinary differential equations (ODEs) determining the
mean behavior, whose solutions can be plugged in to solve the second system of equations (6)
governing second moments. These systems are subject to the initial conditions Mj|i(0) = 1{i=j},

Ujk|i(0) = 0 for all i, j, k. For simplicity we introduce the notation κij = ∂ui
∂sj

∣∣
s=1

: for instance,

κ00 = λ−
∑
a∈A

νa, κaa = −µa, κmm = −µm, κ0a = νa, κam = νm1{a→m} ∀a ∈ A,m ∈M.

The system for first moments is relatively straightforward: first, the means Mm|m(t) where
m ∈M are simply solutions to pure death equations, so that

Mm|m(t) = eκmmt = e−µmt.

These solutions can now be substituted into simple first moment equations conditional on beginning
with a marked progenitor: from (5), these equations are given by

∂

∂t
Mm|a(t) = κaaMm|a(t) + 1{a→m}κamMm|m(t),

and upon rearrangement are of the general form

d

dt
Mm|a(t) + P (t)Mm|a(t) = Q(t). (7)

Such a differential equation can be solved using the integrating factor method, multiplying both
sides e

∫
P (t)dt and rearranging for Mm|a(t). Solving, we obtain

Mm|a(t) = 1{a→m}
κam

κaa − κmm
(
eκaat − eκmmt

)
= 1{a→m}

νm
µm − µa

(
e−µat − e−µmt

)
.

Next, (5) again gives us mean equations conditional on beginning with one marked HSC:

∂

∂t
Mm|0(t) = κ00Mm|0(t) +

∑
a∈A

1{a→m}κ0aMm|a(t),

which clearly is also of the form (7). Thus, we can plug in the solutions we’ve obtained for Mm|a(t)
and solve the system using the same technique, yielding

Mm|0(t) = eκ00t
∑
a∈A

1{a→m}
κ0aκam

κaa − κmm

(
e(κaa−κ00)t − 1

κaa − κ00
− e(κmm−κ00)t − 1

κmm − κ00

)

= e(λ−
∑
a νa)t

∑
a∈A

1{a→m}
νaνm

µm − µa

(
e((

∑
a νa)−µa−λ)t − 1

(
∑

a νa)− µa − λ
− e((

∑
a νa)−µm−λ)t − 1

(
∑

a νa)− µm − λ

)
.

These expressions characterize the mean behavior of the system, and furthermore may now be
used toward solving for the second moments. We introduce for simplicity the additional notation
κi,jk := ∂2ui

∂sj∂sk

∣∣
s=1

; for instance, κ0,00 = 2λ. Further, the equations Umm|m(t) = κmmUmm|m(t),

and together with the initial condition are only satisfied by the trivial solution Umm|m(t) = 0 for all
final types m ∈ M. Now, many terms in equation (6) have zero contribution, and the remaining
equations in the system can be simplified to yield

d

dt
Umn|a(t) = 1{a→m}1{a→n}

(
∂ua
∂sa

∂2φa
∂sm∂sn

+
∂2ua
∂sa∂sm

∂φa
∂sn

∂φm
∂sm

+
∂2ua
∂sa∂sn

∂φa
∂sm

∂φn
∂sn

)
= 1{a→m}1{a→n}

(
κaaUmn|a + κa,amMn|aMm|m + κa,anMm|aMn|n

)
∀a ∈ A,m 6= n ∈M,
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d

dt
Umn|0(t) =

(
∂u0
∂s0

∂2φ0
∂smsn

+ 2
∂2u0
∂s20

∂φ0
∂sm

∂φ0
∂sn

+
∑
a∈A

1{a→m}1{a→n}
∂u0
∂sa

∂2φa
∂smsn

) ∣∣∣
s=1

= κ00Umn|0 + 2κ0,00Mm|0Mn|0 +
∑
a∈A

1{a→m}1{a→n}κ0aUmn|a ∀m 6= n ∈M.

Similarly,

d

dt
Umm|a(t) = 1{a→m}

(
∂ua
∂sa

∂2φa
∂s2m

+ 2
∂2ua
∂sa∂sm

∂φa
∂sm

∂φm
∂sm

+ 0

)
= 1{a→m}

(
κaaUmm|a + 2κa,amMm|aMm|m

)
∀a ∈ A,m ∈M,

d

dt
Umm|0(t) =

[
∂u0
∂s0

∂2φ0
∂s2m

+
∂2u0
∂s20

(
∂φ0
∂sm

)2

+
∑
a∈A

1{a→m}
∂u0
∂sa

∂2φa
∂s2m

] ∣∣∣
s=1

= κ00Umm|0 + κ0,00M
2
m|0 +

∑
a∈A

1{a→m}κ0aUmm|a ∀m ∈M.

Since we already have expressions for the means M·|·, these equations U·|a(t) each become a first
order linear ODE and can now each be solved individually. Indeed, they again take the form (7),
and we find

Umm|a(t) = 1{a→m}e
κaat

∫ t

0
2 · e−κaaxκa,amMm|a(x)Mm|m(x) dx,

Umn|a(t) = 1{a→m}1{a→n}e
κaat

∫ t

0
e−κaax

(
κa,amMn|a(x)Mm|m(x) + κa,anMm|a(x)Mn|n(x)

)
dx.

Replacing κ· with model-based rates, we integrate and simplify these expressions to obtain

Umm|a(t) = 1{a→m}
2ν2m

µm − µa
e−µat

[
µa − µm

µm(µa − 2µm)
− e−µmt

µm
− e(µa−2µm)t

µa − 2µm

]
Umn|a(t) = 1{a→m}1{a→n}

{
νmνn
µn − µa

e−µat
[

µa − µn
µm(µa − µm − µn)

− e−µmt

µm
− e(µa−µm−µn)t

µa − µm − µn

]
+

νmνn
µm − µa

e−µat
[

µa − µm
µn(µa − µm − µn)

− e−µnt

µn
− e(µa−µm−µn)t

µa − µm − µn

]}
.

Finally, we plug in these solutions into the differential equations beginning with an HSC gov-
erning U·|0(t), which now take on the same general form and again can be solved by the integrating
factor method:

Umn|0(t) = eκ00t
∫ t

0
e−κ00x

(
κ0,00Mn|0(x)Mm|0(x) +

∑
a∈A

1{a→m}1{a→n}κ0aUmn|a(x)

)
dx,

Umm|0(t) = eκ00t
∫ t

0
e−κ00x

(
κ0,00M

2
m|0(x) +

∑
a∈A

1{a→m}κ0aUmm|a(x)

)
dx.

At this stage, we see that these integrals have closed form solutions as well, since their integrands
only differ from the previous set of equations by including additional sums of exponentials from the
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U·|a(t) expressions. We omit the integrated forms in the general case for brevity, but remark that
while they appear lengthy, they are comprised of simple terms and can be very efficiently evaluated,
enabling use within iterative algorithms. For completeness, we include the explicit solutions to the
simplest model in the Appendix.

With closed form moment expressions in hand, we can readily recover variance and covariance
expressions and thus calculate model-based correlations. For instance,

Cov [X4(t), X5(t)|X(0) = e1] = U45|1(t)−M4|1(t)M5|1(t).

Because the initial state is uncertain, unconditional variances and covariances between mature
types can be computed by marginalizing over the initial distribution vector π, with details in the
Appendix. We thus arrive at the marginal expressions by applying the law of total (co)variance:

Var[Xi(t)] =
K∑
k=1

πkE[X2
i|k]−

K∑
k=1

π2k(E[Xi|k])
2)− 2

∑
j>k

πjπkE[Xi|j ]E[Xi|k]

=

K∑
k=1

πk[Uii|k(t) +Mi|k(t)]− π2kMi|k(t)
2 − 2

∑
j>k

πjπkMi|k(t)Mi|j(t). (8)

Cov[Xi(t), Xj(t)] =
K∑
k=1

πkE[Xi|kXj|k]−
K∑
k=1

π2kE[Xi|k]E[Xj|k]−
∑
k 6=l

πkπlE[Xi|k]E[Xj|l]

=
K∑
k=1

πkUij|k(t)− π2kMi|k(t)Mj|k(t)−
∑
k 6=l

πkπlMi|k(t)Mj|l(t). (9)

3.3 Moments of observed read counts

Analytic expressions for the covariances and variances of the latent branching process enable cal-
culation of pairwise correlations between latent mature cell populations, but it remains to relate
these expressions to the correlations between read counts, ψmn(θ; Y), appearing in our loss func-
tion. Computing these correlations requires applying the laws of total variance and covariance to
the moment expressions obtained for the latent branching process. Conditioning the previously
derived expressions moment expressions on the multivariate hypergeometric sampling distribution,
we obtain the following expressions comprising ψmn(θ; Y):

Cov(Ym, Yn) =
bmbn
BmBn

Cov(Xm, Xn), (10)

Var(Ym) =
bm(Bm − bm)

Bm(Bm − 1)
E(Xm)− bm(Bm − bm)

B2
m(Bm − 1)

E(X2
m) +

b2m
B2
m

Var(Xm).

3.4 Implementation

We implemented our methods in R package branchCorr, available at https://github.com/jasonxu90/
branchCorr. Software includes algorithms to simulate and sample from the class of stochastic
compartmental models, to compute model-based moments given parameters, and to estimate pa-
rameters by optimizing the loss function objective. We provide a vignette that steps through
smaller-scale versions of all simulations in this paper.
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Figure 3: Performance of loss function estimator on synthetic data from model with five mature
types and two progenitor compartments, i.e. model (c) or (d). While we see outlier influence,
median estimates are accurate despite the parameter rich setting. Detailed medians, median ab-
solute deviations, and standard errors corresponding to the plotted estimates are included in the
Appendix.

4 Results

4.1 Simulation study

To assess our methods, we examine the performance of our loss function estimator on simulated
data, generated from several hematopoietic tree structures in our branching process framework.
Specifically, we consider models with three or five mature types with varying progenitor structures
displayed in Figure 2. For each model, we simulate 400 independent datasets, each consisting of
20, 000 realizations representing distinct barcode IDs, from the continuous-time branching process
model. True rates for simulating these processes were chosen such that summing over the 20, 000
barcodes, the total populations of each mature cell type are relatively constant after time t = 2,
since true cell populations should be fairly constant for scientific realism. Note that while total
populations are stable, individual barcode trajectories display a range of heterogeneous behaviors,
with many trajectories becoming extinct and others reaching very high counts. This reflects the
behavior we see in the real dataset.

From each of these synthetic datasets, we then produce an observed dataset by drawing samples
of fixed size from the complete data according to the multivariate hypergeometric distribution,
mimicking experimental sampling noise. Observations are recorded at irregular times over a two
year period similar to the span and frequency of the experimental sampling schedule. Parameter
estimation is then performed on these observed datasets.

To minimize the loss function objective, we use the general optimization implementation in
package nlminb. Optimization is performed over 250 random restarts per observed dataset. We
constrain rates to be non-negative, and include a simple log-barrier constraint to enforce that the
overall growth of the HSC reserve is non-negative. In models with more than one progenitor cell, the
initial distribution vector is constrained to a probability simplex. Rather than specifying additional
hard constraints in the optimization problem, we use a multinomial logistic reparametrization
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Figure 4: Pairwise correlation curves between five mature cell compartments descended from one
common progenitor (left) or two distinct progenitors (right) calculated based on our point esti-
mates. Solution curves from best fitting parameter estimates are almost indistinguishable from
those corresponding to true parameters in both cases. Note that in the two-progenitor model,
pairwise correlations among mature cell types display two distinct clusters of behavior, and that
negative correlations are possible.

so that each initial distribution parameter varies freely in R; see Appendix for details. Finally,
we remark that optimization over all free parameters leads to mild identifiability problems—in
particular, pairs of mature differentiation rates and death rates are often only identifiable up to
a ratio. This is unsurprising: the correlations comprising the objective function are invariant to
scale, so we would expect parameters to be distinguishable only up to a multiplicative constant.
To remedy this, we choose to fix the death rates µi at their true value, supplying information that
provides a sense of scale to infer all other parameters. Indeed, this is also justifiable in practice:
mature cell types are observable in the bloodstream, and information about their behavior, i.e.
average lifespans, is available in the scientific literature.

Correlation profiles from estimated parameters corresponding to the results in the tables above
are displayed in Figure 4. Visually, we see the curves are very close to those corresponding to true
parameters. We also note clear qualitative differences between models, with the two-progenitor
model exhibiting two clear groupings of correlation profiles and exhibiting low and negative corre-
lations.

Model misspecification In the following simulation experiments, we examine the performance
of the estimator in under- and over-specified models. We do so by fitting incorrect models, assuming
the data are generated from a model with one common progenitor or with three intermediate
progenitors, to the data simulated from the two-progenitor model which we have fitted in the
previous section. Recall that in the true model, mature types 1, 2, and 3 are descended from
progenitor a, while the others are from progenitor b. Estimates reported in Figure 3 have near zero
median relative error, and we note the median value of the objective function (2) at convergence
was 2.78× 10−4, with median absolute deviation 1.31× 10−4 and standard deviation 2.47× 10−4.

The fitted correlation curves in under- and over-specified progenitor structures are displayed
in Figure 5, with detailed tables containing estimates again included in the Appendix. We also
examine the behavior when fitting a model with fewer compartments by “lumping” similar mature
types together. To this end, we consider grouping mature types 2 and 3 together, and types
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Figure 5: Fitted correlation curves corresponding to misspecified model estimates. Data are gen-
erated from a true model with two distinct progenitors and the true correlation profiles are the
same as those displayed in the right panel of Figure 4. While we see a generic lack of fit in the
three-progenitor model, notice that specifying one common progenitor fails to exhibit negative
correlations necessary to explain the data. On the other hand, “lumping” mature compartments
but properly specifying progenitor structure results in reasonable performance, as evident in the
rightmost panel.

4 and 5 together, thus fitting a model with three total mature cell compartments, but with a
progenitor structure consistent with the true model. Results in Figure 5 suggest it is reasonable
to group cells with shared lineages together, resulting in a much milder effect on model fit than
progenitor structure misspecification. Such a grouping strategy can be important toward avoiding
overfitting a model to real data when some degree of model misspecification is inevitable, and will
be advantageous in settings where limited data requires aggregation to fit a simpler model with
fewer parameters.

4.2 Cell lineage barcoding in rhesus macaques

Having validated our method on simulated data from the model, we are ready to analyze the
data from the lineage barcoding experiments from [Wu et al., 2014]. We consider barcoding data
collected from a rhesus macaque over a 30 month period following transplantation. We consider
only sampling times at which uncontaminated read data for each of the five cell types (granulocyte,
monocyte, T, B, and Natural Killer) are available, and as in the original study, apply a filter so
that we consider only clones exceeding a threshold of at least 1000 read counts at any time point.
After restricting by these criteria, our dataset consists of 9635 unique barcode IDs, with read data
available at eleven unevenly spaced sampling times.

As inputs to the loss function estimator, we fix death rates, reported below, at biologically
realistic parameters based on previous studies [Hellerstein et al., 1999, Zhang et al., 2007, Kaur
et al., 2008]. Parameters of the multivariate hypergeometric sampling distribution are informed
by circulating blood cell (CBC) data recorded at sampling times. These include Bm(t), the total
population of type m cells in circulation at time t across all barcodes, and bm, the constant number
of type m cells in the sample at each observation time. Finally, the initial barcoding level for
HSCs π1 is informed by levels of green fluorescent protein (GFP) positivity, which stabilize after 3
months. Because only HSCs have long-term regenerative capacity, the stable GFP marking level
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Figure 6: Dashed lines depict fitted correlations to read data in models (a) and (b) assuming one
early progenitor compartment. GCSF mobilization dates are marked by vertical red lines. Solid
lines connect the empirical correlations.

suggests the proportion of barcoded cells that were marked at the HSC stage as opposed to a later
progenitor stage. While the GFP levels are observable and available to us, we will also infer π1
independently of the GFP data in model (a) as additional validation.

We estimate the remaining rate parameters and initial barcoding distribution using the loss
function estimator in all models displayed in Figure 2. Fitted pairwise correlation curves from
estimates obtained loss function optimization with 2000 random restarts in models with one multi-
potent progenitor compartment are displayed in Figure 6: there are three such curves in the model
with three mature compartments, with ten possible pairs among the model consisting of all five ma-
ture types in the plot on the right. The raw data correlations are also displayed as solid lines, and
we comment that at a qualitative level, there is visible separation into three clusters of correlation
profiles among the five mature cell groups, consistent with the choice of three lumped compart-
ments in the simpler model (a). Notably, empirical correlations between NK cells and any other
cell type are significantly lower than all other pairwise correlations. This supports the main result
in the pilot clustering-based analysis in the original study [Wu et al., 2014], reporting on distinctive
NK lineage behavior, from a new perspective. In both plots, fitted curves successfully follow the
shape of observed correlations over time, and we observe that the largest error occurs at the 6.5
month sample, coinciding with the application of granulocyte-colony stimulating factor (GCSF), a
technical intervention that perturbs normal hematopoiesis in the animal. The corresponding plots
for models with multiple progenitors are included in the Appendix.

Next, we display a visual comparison of intermediate differentiation rates normalized as fate
decision probabilities in Figure 7 and fitted self-renewal rates in Figure 8 across models. The com-
plete set of parameter estimates (used to generate fitted curves in Figure 6) and their corresponding
confidence intervals are reported in the Appendix. Confidence intervals are produced via 2500 boot-
strap replicate datasets. Nonparametric bootstrap resampling was performed over barcode IDs as
well as over read count sampling, to account for variation across stochastic realizations and from
sampling noise.
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Figure 7: Comparison of fitted intermediate differentiation rates parametrized as fate decision
probabilities. Displayed are the bootstrap estimates of normalized commitment rates to each mature
compartment i, ν̂i∑

j ν̂j
, in each model displayed in Figure 2 (a)-(f) fitted to rhesus macaque data.
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Figure 8: Comparison of fitted self-renewal rates λ̂ and 95% confidence intervals across all models
displayed in Figure 2 (a)-(f). Point estimates with lowest objective value (best estimates) are
marked by red diamonds, while bootstrap confidence intervals and medians are plotted in black.
The confidence interval around λ̂ from model (a) overlaps with the interval obtained in previous
telomere analyses focusing on HSC behavior in primates [Shepherd et al., 2007], while the interval
from model (b) is very close and in reasonable range. The other models, which do not feature a
multipotent common progenitor, result in less biologically plausible estimates.

18



Rate estimates are parametrized as number of events per five days: for instance, the fixed death
rates µ = (0.4, 0.04, 0.3) in the lumped model correspond to half-lives of about eight days among
granulocytes and monocytes, three months for T and B cells, and two weeks in NK cells. In all
models with five mature compartments, we fix death rates at µ = (0.8, 0.3, 0.04, 0.08, 0.4).

Previous studies of HSC dynamics in nonhuman primates based on telomere analysis [Shep-
herd et al., 2007] estimate the HSC self-renewal rate at once every 23 weeks, with 11-75 week
range, corresponding to an estimate of λ̃ = 0.0310, with interval (0.0095, 0.0649) when translated
to our parametrization. As we see in Figure 8, these findings coincide with our estimates and con-
fidence intervals for λ̂ in models with one multipotent progenitor compartment. While other rates
pertaining to intermediate cell stages and initial barcoding level are quantities that have not been
previously estimated, our results suggest that granulocytes and monocytes are produced much more
rapidly than T, B and NK cells, and that individual progenitor cells are long-lived and can each
produce thousands of these mature cells per day—biologically reasonable results that are newly
supported from a statistical modeling perspective. Finally, we remark that the GFP data stabilize
at around 13%. This level indicates the proportion of marked cells with long-term proliferative
potential, suggesting the remaining 87% of barcoded cells are marked downstream at a progenitor
stage. Holding out this information in Model 2(a), we estimate the initial progenitor marking level
86.1%, consistent with the GFP data as additional model validation.

In models (c)–(f) with multiple specialized, oligopotent progenitors compartments, we utilize
the GFP data to fix the total progenitor marking level at 87% and estimate the proportion marked
in each progenitor compartment. However, Supplementary Table C-8 shows that best estimates in
these models lie on the boundary of the probability simplex. Along with wider confidence intervals,
higher objective values, and less biologically plausible parameters, these results indicate a poorer
model fit, reminiscent of the results discussed in the model misspecification experiments in Section
4.1.

While it may initially seem intuitive that a richer model with more compartments should result
in a better fit, the models with multiple progenitors implicitly assume the loss of lineage potential
by restricting the types of mature cells that can be produced by each distinct progenitor. This may
be a source of model misspecification. Indeed, recent studies dispute traditional assumptions about
hematopoietic structures prescribing restricted differentiation pathways. For instance, Kawamoto
et al. [2010] challenge the classical notion of a specialized myeloid progenitor, showing that lympho-
cyte progenitors (i.e. T, B, NK) can also give rise to myeloid cells (Gr and Mono). Recent in vitro
studies of human hematopoiesis suggest multipotence of early progenitors [Notta et al., 2016] may
only occur in mature systems, and argue that oligopotent behavior is only observed in early stages
of development. Such oligopotent behavior in the specialization of progenitor cells is investigated
in models (c)–(f), whose lack of fit to the data support these recent findings.

We emphasize that our method enables joint estimation of the initial barcoding distribution
and intermediate process rates, including those relating to unobservable intermediate progenitor
stages, given scale information via known mature cell death rates. The models we can consider are
much more detailed and parameter-rich than those in previous statistical studies of hematopoiesis.
We also note that while estimates are biologically plausible, they are obtained with an inevitable
level of model misspecification, and rigorous approaches to model selection and to goodness of fit
will be crucial to having more confidence in the validity of such model-based inference attempts.
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5 Discussion

Our estimation procedure is the first method to our knowledge that enables parameter estimation
in stochastic models including HSC, progenitor, and mature cell stages for time series data from
hematopoietic lineage tracking experiments. Further, we show via simulation that the generalized
loss function approach is very accurate when applied to data simulated from this class of models.
Results from fitting experimental data have scientific bearing, newly estimating parameters such
intermediate differentiation rates and initial marking levels in a multistage stochastic model. Our
analysis confirms the major finding of Wu et al. [2014] — a distinct differentiation history of NK
cells — from a newly statistical perspective using pairwise correlations. While we do not provide
a rigorous approach to model selection in this paper, our exploration of several models suggests
that non-restricted multipotent progenitor compartments provide a better fit to the data than
models requiring an ordered differentiation through defined intermediaries. This supports recent
findings from in vitro studies of human hematopoiesis [Notta et al., 2016] that challenge fundamental
assumptions in the classical model of hematopoiesis.

We note that there are several limitations inherent to modeling hematopoiesis with a Markov
branching process model. The assumptions of linearity and rate homogeneity imply a possibility
of unlimited growth, and extending analysis to allow nonlinear effects such as feedback loops mod-
ulating the regulatory behavior as the system grows near a carrying capacity is merited. Similarly,
the Markov assumption can be relaxed to include arbitrary lifespan distributions—age-dependent
processes are one example falling under this model relaxation, and have been applied to analyzing
stress erythropoiesis in recent studies [Hyrien et al., 2015]. Further phenomena such as immigra-
tion or emigration in a random environment may be considered in future studies: it is known that
some cells we study in the peripheral bloodstream move in and out of tissue, for instance. While
such extensions are mathematically difficult, they are trivial modifications to implement in simu-
lation, and various forward simulation approaches or approximate methods such as approximate
Bayesian computation (ABC) [Marjoram et al., 2003, Toni et al., 2009] may provide a promising
alternative. Indeed, a Bayesian framework would allow existing prior information available from
previous studies about average lifespans of mature blood cells to be incorporated without fixing
these parameters.

The fully generative framework and accompanying method of inference additionally enable
simulation studies and sensitivity analyses, and can be adapted to developing model selection
tools. The larger scientific problem of inferring the most likely lineage pathway structure directly
translates to the statistical problem of model selection. Many model selection approaches essentially
build on parameter estimation techniques, balancing model complexity and goodness of fit by
penalizing the number of model parameters via regularization. While model selection is generally
difficult to perform in a loss function minimization framework, future work can investigate various
penalization strategies applied to this class of models [Tibshirani, 1996, Fan and Li, 2001], or with
shrinkage priors in a Bayesian setting [Park and Casella, 2008, Griffin and Brown, 2013]. Model
selection using ABC is an active and rapidly developing area of research; see for instance [Toni
et al., 2009, Liepe et al., 2014, Pudlo et al., 2016].

Modeling attempts using more parameter-rich models enabling more pathways or including
additional cell fate events such as asymmetric division [Fong et al., 2009] should expect to be met
with challenges related to overparametrization and identifiability, as well as added computational
and mathematical complexity. However, such efforts and corresponding tools for model selection
will be crucial in further progress toward understanding the structure of hematopoiesis. Finally, it
should be noted that our results already support recent studies that challenge canonical multi-stage
models of hematopoiesis [Kawamoto et al., 2010, Perié et al., 2014, Notta et al., 2016], and exploring
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a general class of models with quantitative model selection tools will lend a rigorous foundation to
these insights, crucial toward a detailed understanding of the structure of hematopoiesis.

The class of models we consider and their available moment expressions are general in that an
arbitrary number of intermediate progenitors and mature compartments can be specified, but have
several limitations. First, we feature three stages of cell development in our model, and future
work may extend this to include additional stages. Second, our modeling assumptions only allow
for each mature cell to be descended from one progenitor compartment, which limits the ability to
investigate fully connected and nested models. Nonetheless, we are now able to perform parameter
estimation in a much more detailed model than previous statistical studies, while accounting for
missing information and experimental noise. Such models commonly arise in related fields such as
chemical kinetics, oncology, population ecology, and epidemiology, and our methodology contributes
broadly to the statistical toolbox for inference in partially observed stochastic processes, a rich area
of research that still faces significant challenges.
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Appendix

Consistency of loss function estimator

There are many variations on proofs of consistency and asymptotic normality for z-estimators or
GMM estimators [Hansen, 1982, Pakes and Pollard, 1989, Van der Vaart, 2000]. Our consistency
result is perhaps most similar to a version given by Theorem 3.1 in [Pakes and Pollard, 1989],
showing that consistency holds generally for any vector θ̂N that minimizes the norm ‖G(·)‖ of a
random, vector-valued function under the following conditions:

(i) ‖GN (θ̂N )‖ ≤ op(1) + inf
θ∈Θ
‖GN (θ)‖,

(ii) GN (θ0) = op(1),

(iii) sup
‖θ−θ0‖>δ

‖GN (θ)‖−1 = Op(1) for each δ > 0.

Heres θ0 denotes the true data-generating parameters and is assumed to provide a global minimum
to G. A set of random variables Zn = op(1) if Zn converges to zero in probability, while Zn = Op(1)
if the set is stochastically bounded, i.e. for any ε > 0, there exists finite M such that Pr(|Zn| >
M) < ε for all n.

The first condition restricts us to estimators θ̂N that nearly minimize ‖GN (·)‖. Condition (ii)
requires that under the true value, GN (θ0) converges to zero, which together with (i) implies that
GN (θ̂N ) must also approach zero. Finally, condition (iii) is an identifiability assumption, stating
that small values of ‖GN (θ)‖ can only occur near θ0; this now forces θ̂N to approach θ0. Note that
our consistency result must also assume the identifiability condition (iii); we remark that we do not
need to impose any smoothness assumptions, nor do we require that G(θ0) = 0. The formulation
is repeated below:

Theorem 5.1 Assume the observed process Y(t) has finite first and second moments. Let GN (θ) =
ψ(θ; Y)− ψ̂(Y), where ψ(θ; Y) is a vector of correlations defined in Section 3.1 of the main text.
We assume the true parameter θ0 is identifiable, i.e. sup

‖θ−θ0‖>δ
‖GN (θ) − G(θ0)‖−1 = Op(1) for

each δ > 0. Then
{
θ̂N

}
converges in probability to θ0, where θ̂N = argminθ L(θ; Y), L(θ; Y) =

‖GN (θ)‖22, and N is the number of independent processes or rows in Y.

Proof We begin by establishing almost sure convergence of GN (θ) = ψ(θ; Y) − ψ̂(Y) over the
parameter domain Θ; here the dependence on N enters as the number of rows in the data matrix
Y. Because ψ, ψ̂ are finite-length vectors, it suffices to establish convergence component-wise for
any indices j,m, n. Almost sure convergence of the empirical term ψ̂(Y) is standard as its entries
are sample Pearson correlation coefficients: we first equivalently write ψ̂mn in the form

ψ̂jmn(Y) =

∑N
p=1 y

p
m(tj)y

p
n(tj)− ym(tj)yn(tj)√∑N

p=1(y
p
m(tj)− ym(tj))2

√∑N
p=1(y

p
n(tj)− yn(tj))2

.

The Strong Law of Large Numbers ensures almost sure convergence of each term appearing above:∑N
p=1 y

p
m(tj)y

p
n(tj)

a.s.−−→ E [Ym(tj)Yn(tj)], and for any n as well as m, ym(tj)
a.s.−−→ E [Ym(tj)],∑N

p=1(y
p
m(tj)− ym(tj))

2 a.s.−−→ Var [Ym(tj)]. Applying the Continuous Mapping Theorem with the

function f(a1, a2, a3, a4, a5) = a1−a2a3√
a4
√
a5

yields that ψ̂jmn(Y)
a.s.−−→ ρ(Ym(tj)Yn(tj)), where ρ(Ym(tj)Yn(tj))
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denotes the true correlation between Ym(tj), Yn(tj). Next, the remaining term ψ(θ; Y) consists of
model-based correlations at each observation time tj parametrized by θ (both suppressed in the
notation below), and recall from the main text that each correlation in its components is comprised
of the expressions

Cov(Ym, Yn) =
bmbn
BmBn

Cov(Xm, Xn),

Var(Ym) =
bm(Bm − bm)

Bm(Bm − 1)
E(Xm)− bm(Bm − bm)

B2
m(Bm − 1)

E(X2
m) +

b2m
B2
m

Var(Xm).

While these expressions are formally independent of the number of processes N , the constant Bm
should grow with N as it denotes the total number of barcoded type m cells; this can be understood
as the multivariate hypergeometric sampling distribution limiting to a multinomial distribution. In
this case, algebraic manipulations yield the pointwise limit

ψmn →
bmbnCov(Xm, Xn)√

bm(bmVar(Xm)− E(X2
m))
√
bn(bnVar(Xn)− E(X2

n))
.

Thus, the random vector GN as a whole converges almost surely to a deterministic limit function
G. Notice that implicitly if θ0 are the true data-generating parameters under a correctly specified
model, then

ψ̂jmn(Y)
a.s.−−→ ψjmn(θ0; Y) = ρ(Ym(tj)Yn(tj)),

so that G(θ0) = 0. However, nowhere do we need the assumption that G(θ0) = 0, and so we
will refer to the limiting value as G(θ0) since the proof applies in non-idealized settings where the
minimum of ‖G(θ)‖, ‖G(θ0)‖ > 0.

Because GN
a.s.−−→ G on Θ, Egorov’s theorem implies that GN converges uniformly to G al-

most everywhere: that is, for any δ > 0, there exists a set Sδ ∈ Θ such that P (Sδ) < δ, and

sup
θ∈Θ\Sδ

‖GN (θ)−G(θ)‖ P−→ 0. Therefore, since δ is arbitrarily small,

sup
θ∈Θ
‖GN (θ)−G(θ)‖ P−→ 0.

Now, we are given an optimization procedure that produces estimators θ̂N minimizing ‖GN‖ by
assumption, allowing us to write the first inequality in the series of relations

‖GN (θ̂N )‖ ≤ op(1) + inf
θ∈Θ
‖GN (θ)‖ ≤ op(1) + ‖GN (θ0)‖ = op(1) + ‖G(θ0)‖. (A-1)

The second inequality holds as the infimum ranges over θ0. Next, since GN converges uniformly,

it is certainly true that in particular GN (θ0)
P−→ G(θ0), establishing the final equality. Subtracting

the leftmost and rightmost sides of (A-1) from ‖G(θ̂N )‖ yields

‖G(θ̂N )‖ − ‖GN (θ̂N )‖ ≥ ‖G(θ̂N )‖ − ‖G(θ0)‖ − op(1);

rearranging and again invoking uniform convergence of GN reveals

‖G(θ̂N )‖ − ‖G(θ0)‖ ≤ ‖G(θ̂N )‖ − ‖GN (θ̂N )‖+ op(1)

≤ sup
θ∈Θ
‖GN (θ)−G(θ)‖+ op(1)

P−→ 0. (A-2)
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Finally, the identifiability assumption allows us to find a number M such that for δ > 0 and ε > 0,

lim sup Pr

[
sup

‖θ−θ0‖>δ
‖GN (θ)−G(θ0)‖−1 > M

]
< ε.

From (A-2) and since ‖G(θ0)‖ ≤ ‖G(θ̂N )‖, we may write

Pr
[
‖G(θ̂N )−G(θ0)‖−1 > M

]
→ 1,

and thus for large enough N we have with probability at least 1− 2ε,

‖G(θ̂N )−G(θ0)‖−1 > M ≥ sup
‖θ−θ0‖>δ

‖GN (θ)−G(θ0)‖−1,

guaranteeing that θ̂N is within δ of θ0. Explicitly,

lim sup
N→∞

Pr
[
‖θ̂N − θ0‖ > δ

]
≤ 2ε.

Since δ, ε can be chosen to be arbitrarily small, the result follows that θ̂N
P−→ θ0. �

We remark that identifiability was assumed, rather than proved, because a formal assessment of
identifiability is nontrivial due to the nonlinear moment expressions ψ(·) arising in our estimator.
We instead provide strong empirical evidence in simulation studies supporting identifiability .

Derivation of second moments

Here we explicitly derive the second moments of the simplest instance in our class of branching
models of hematopoiesis. The derivation considers a four-type model with one progenitor and
two mature types (Figure 2 (a) ignoring the third mature compartment). We also derive the
marginalized moment expressions after incorporating the sampling distribution.

From applying the process rates to the Kolmogorov backward equations, we can write pseudo-
generating functions defined

ui(s1, s2, s3, s4) =
∑
j

∑
k

∑
l

∑
m

ai(j, k, l,m)sj1s
k
2s
l
3s
m
4 . (A-3)

For the model depicted in Figure 2 (b), these are given by

u1(s1, s2) = λs21 + ν0s2 − (λ+ ν0)s1,

u2(s2, s3, s4) = ν1s2s3 + ν2s2s4 + µ0 − (µ0 + ν1 + ν2)s2,

u3(s3) = µ1 − µ1s3; u4(s4) = µ2 − µ2s4.

Next, we can write the probability generating function (PGF) of the process, beginning with one
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type 1 particle, which is related to the pseudo-generating function u1 as follows:

φ1(t; s1, s2, s3, s4) = E

 4∏
j=1

s
Xj(t)
j |X(0) = (1, 0, 0, 0)


=
∞∑
k=0

∞∑
l=0

∞∑
m=0

∞∑
n=0

Pr(1,0,0,0),(k,l,m,n)s
k
1s
l
2s
m
3 s

n
4

=
∞∑
k=0

∞∑
l=0

∞∑
m=0

∞∑
n=0

[
1{k=1,l=m=n=0} + a1(k, l,m, n)t+ o(t)

]
sk1s

l
2s
m
3 s

n
4

= s1 + u1(s1, s2, s3, s4)t+ o(t). (A-4)

We may analogously define φi for processes beginning with one type i particle, for each i = 1, . . . , 4.
We have from Equation (A-4) the relation

∂

∂t
φi(t, s1, . . . , s4) = ui(φ1(t, s1, . . . , s4), . . . , φ4(t, s1, . . . , s4)).

Now, let Ml|k(t) denote the expected number of type l cells at time t, given one initial type k
cell. From definition of φi, we see that we can relate the probability generating functions to these
first moments via partial differentiation:

Ml|k(t) =
∂

∂sl
φk(t, s1, . . . , s4)|s1=s2=s3=s4=1.

Similarly, we may further differentiate the PGF to derive second moments used toward variance
and covariance calculations. Define

Ukl|1(t) = E
[
Xk(Xl − 1{k=l})|X(0) = (1, 0, 0, 0)

]
,

with Ukl|i(t) defined analogously beginning with one type i particle. Then Ukl|j(t) =
∂2φj
∂sk∂sl

∣∣∣∣
s=1

,

and by the Faà di Bruno formula,

∂3φi
∂t∂sj∂sk

=
4∑

m=1

(
∂ui
∂φm

∂2φm
∂sj∂sk

)
+

4∑
m,n=1

(
∂2ui

∂φm∂φn

∂φm
∂sj

∂φk
∂sk

)
.

This relation allows us to write a system of non-homogeneous, linear ordinary differential equations
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(ODEs) governing second order moments:

∂

∂t
U33|1(t) = (λ− ν0)U33|1(t) + ν0U33|2(t) + (2λ)M2

3|1(t),

∂

∂t
U44|1(t) = (λ− ν0)U44|1(t) + ν0U44|2(t) + (2λ)M2

4|1(t),

∂

∂t
U34|1(t) = (λ− ν0)U34|1(t) + ν0U34|2(t) + (2λ)M3|1(t)M4|1(t),

∂

∂t
U34|2(t) = −µ0U34|2(t) + ν1M4|2(t)M3|3(t) + ν2M3|2(t)M4|4(t),

∂

∂t
U33|2(t) = −µ0U33|2(t) + ν1U33|3(t) + 2ν1M3|2(t)M3|3(t),

∂

∂t
U44|2(t) = −µ0U44|2(t) + ν2U44|4(t) + 2ν2M4|2(t)M4|4(t),

∂

∂t
U33|3(t) = −µ1U33|3(t),

∂

∂t
U44|4(t) = −µ2U44|4(t),

all with initial conditions (·)k,l(0) = 0. We immediately see that U33|3(t) = U44|4(t) = 0, and
upon a series of solutions and substitutions, we successively solve the system of ODEs, yielding the
following explicit solutions:

U33|2(t) = 2
ν21

(µ2 − µ0)

[
e−(µ0+µ2)t

µ2
− e−2µ2t

µ0 − 2µ2
+

(µ0 − µ2)e
−µ0t

µ2(µ0 − 2µ2)

]
,

U44|2(t) = 2
ν22

(µ2 − µ0)

[
e−(µ0+µ2)t

µ2
− e−2µ2t

µ0 − 2µ2
+

(µ0 − µ2)e
−µ0t

µ2(µ0 − 2µ2)

]
,

U34|2(t) =
ν1ν2

(µ2 − µ0)

[
e−(µ0+µ1)t

µ1
− e−(µ1+µ2)t

µ0 − µ1 − µ2
+

(µ0 − µ2)e
−µ0t

µ1(µ0 − µ1 − µ2)

]
+

ν1ν2
(µ1 − µ0)

[
e−(µ0+µ2)t

µ2
− e−(µ1+µ2)t

µ0 − µ1 − µ2
+

(µ0 − µ2)e
−µ0t

µ2(µ0 − µ1 − µ2)

]
,

U33|1(t) = e(λ−ν0)t
{
2

ν0ν
2
1

µ1 − µ0

[
(µ0 − µ1)e

(ν0−λ−µ0)t

µ1(µ0 − 2µ1)(ν0 − λ− µ0)
− e(ν0−λ−µ0−µ1)t

µ1(ν0 − λ− µ0 − µ1)
− e(ν0−λ−2µ1)t

(µ0 − 2µ1)(ν0 − λ− 2µ1)

+
µ1 − µ0

µ1(µ0 − 2µ1)(ν0 − λ− µ0)
+

1

µ1(ν0 − λ− µ0 − µ1)
+

1

(µ0 − 2µ1)(ν0 − λ− 2µ1)

]
+

2λν20ν
2
1

(µ1 − µ0)2

[
e(ν0−λ−2µ0)t)

(ν0 − λ− µ0)2(ν0 − λ− 2µ0)
− 2e(ν0−λ−µ0−µ1)t

(ν0 − λ− µ0)(ν0 − λ− µ1)(ν0 − λ− µ0 − µ1)

+
2(µ0 − µ1)e

−µ0t

µ0(ν0 − λ− µ1)(ν0 − λ− µ0)2
+

e(ν0−λ−2µ1)t

(ν0 − λ− µ1)2(ν0 − λ− 2µ1)
+

2(µ1 − µ0)e
−µ1t

µ1(ν0 − λ− µ1)2(ν0 − λ− µ0)

+
(µ1 − µ0)

2e(λ−ν0)t

(λ− ν0)(ν0 − λ− µ1)2(ν0 − λ− µ0)2
− 1

(ν0 − λ− µ0)2(ν0 − λ− 2µ0)

+
2

(ν0 − λ− µ0)(ν0 − λ− µ1)(ν0 − λ− µ0 − µ1)
− 2(µ0 − µ1)

µ0(ν0 − λ− µ1)(ν0 − λ− µ0)2

− 1

(ν0 − λ− µ1)2(ν0 − λ− 2µ1)
− 2(µ1 − µ0)

µ1(ν0 − λ− µ1)2(ν0 − λ− µ0)

− (µ1 − µ0)
2

(λ− ν0)(ν0 − λ− µ1)2(ν0 − λ− µ0)2)

]}
,
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U44|1(t) = e(λ−ν0)t
{
2

ν0ν
2
2

µ2 − µ0

[
(µ0 − µ2)e

(ν0−λ−µ0)t

µ2(µ0 − 2µ2)(ν0 − λ− µ0)
− e(ν0−λ−µ0−µ2)t

µ2(ν0 − λ− µ0 − µ2)
− e(ν0−λ−2µ2)t

(µ0 − 2µ2)(ν0 − λ− 2µ2)

+
µ2 − µ0

µ2(µ0 − 2µ2)(ν0 − λ− µ0)
+

1

µ2(ν0 − λ− µ0 − µ2)
+

1

(µ0 − 2µ2)(ν0 − λ− 2µ2)

]
+

2λν20ν
2
2

(µ2 − µ0)2

[
e(ν0−λ−2µ0)t)

(ν0 − λ− µ0)2(ν0 − λ− 2µ0)
− 2e(ν0−λ−µ0−µ2)t

(ν0 − λ− µ0)(ν0 − λ− µ2)(ν0 − λ− µ0 − µ2)

+
2(µ0 − µ2)e

−µ0t

µ0(ν0 − λ− µ2)(ν0 − λ− µ0)2
+

e(ν0−λ−2µ2)t

(ν0 − λ− µ2)2(ν0 − λ− 2µ2)
+

2(µ2 − µ0)e
−µ2t

µ2(ν0 − λ− µ2)2(ν0 − λ− µ0)

+
(µ2 − µ0)

2e(λ−ν0)t

(λ− ν0)(ν0 − λ− µ2)2(ν0 − λ− µ0)2
− 1

(ν0 − λ− µ0)2(ν0 − λ− 2µ0)

+
2

(ν0 − λ− µ0)(ν0 − λ− µ2)(ν0 − λ− µ0 − µ2)
− 2(µ0 − µ2)

µ0(ν0 − λ− µ2)(ν0 − λ− µ0)2

− 1

(ν0 − λ− µ2)2(ν0 − λ− 2µ2)
− 2(µ2 − µ0)

µ2(ν0 − λ− µ2)2(ν0 − λ− µ0)

− (µ2 − µ0)
2

(λ− ν0)(ν0 − λ− µ2)2(ν0 − λ− µ0)2)

]}
,

U34|1(t) = e(λ−ν0)t
{
ν0ν1ν2
µ2 − µ0

·
[

(µ0 − µ2)e
(ν0−λ−µ0)t

µ1(µ0 − µ1 − µ2)(ν0 − λ− µ0)
− e(ν0−λ−µ1−µ0)t

µ1(ν0 − λ− µ1 − µ0)

− e(ν0−λ−µ1−µ2)t

(µ0 − µ1 − µ2)(ν0 − λ− µ1 − µ2)
+

µ2 − µ0

µ1(µ0 − µ1 − µ2)(ν0 − λ− µ0)

+
1

µ1(ν0 − λ− µ1 − µ0)
+

1

(µ0 − µ1 − µ2)(ν0 − λ− µ1 − µ2)

]
+

ν0ν1ν2
µ1 − µ0

[
(µ0 − µ1)e

(ν0−λ−µ0)t

µ2(µ0 − µ1 − µ2)(ν0 − λ− µ0)
− e(ν0−λ−µ2−µ0)t

µ2(ν0 − λ− µ2 − µ0)

− e(ν0−λ−µ1−µ2)t

(µ0 − µ1 − µ2)(ν0 − λ− µ1 − µ2)
+

µ1 − µ0

µ2(µ0 − µ1 − µ2)(ν0 − λ− µ0)

+
1

µ2(ν0 − λ− µ2 − µ0)
+

1

(µ0 − µ1 − µ2)(ν0 − λ− µ1 − µ2)

]
+

2λν20ν1ν2
(µ1 − µ0)(µ2 − µ0)

·
[

e(ν0−λ−2µ0)t

(ν0 − λ− 2µ0)(ν0 − λ− µ0)2
− e(ν0−λ−µ0−µ2)t

(ν0 − λ− µ0)(ν0 − λ− µ2)(ν0 − λ− µ0 − µ2)

+
(µ0 − µ2)e

−µ0t

µ0(ν0 − λ− µ0)2(ν0 − λ− µ2)
− e(ν0−λ−µ0−µ1)t

(ν0 − λ− µ0)(ν0 − λ− µ1)(ν0 − λ− µ0 − µ1)

+
e(ν0−λ−µ1−µ2)t

(ν0 − λ− µ1)(ν0 − λ− µ2)(ν0 − λ− µ1 − µ2)
+

(µ2 − µ0)e
−µ1t

µ1(ν0 − λ− µ1)(ν0 − λ− µ2)(ν0 − λ− µ0)

+
(µ0 − µ1)e

−µ0t

µ0(ν0 − λ− µ0)2(ν0 − λ− µ1)
+

(µ1 − µ0)e
−µ2t

µ2(ν0 − λ− µ1)(ν0 − λ− µ2)(ν0 − λ− µ0)

+
(µ1 − µ0)(µ2 − µ0)e

(λ−ν0)t)

(λ− ν0)(ν0 − λ− µ0)2(ν0 − λ− µ1)(ν0 − λ− µ2)
− 1

(ν0 − λ− µ0)2(ν0 − λ− 2µ0)

+
1

(ν0 − λ− µ0)(ν0 − λ− µ2)(ν0 − λ− µ0 − µ2)
− µ0 − µ2

µ0(ν0 − λ− µ0)2(ν0 − λ− µ2)

+
1

(ν0 − λ− µ0)(ν0 − λ− µ1)(ν0 − λ− µ0 − µ1)
− 1

(ν0 − λ− µ1)(ν0 − λ− µ2)(ν0 − λ− µ1 − µ2)

+
µ0 − µ2

µ1(ν0 − λ− µ1)(ν0 − λ− µ2)(ν0 − λ− µ0)
+

µ1 − µ0

µ0(ν0 − λ− µ0)2(ν0 − λ− µ1)

+
µ0 − µ1

µ2(ν0 − λ− µ1)(ν0 − λ− µ2)(ν0 − λ− µ0)
− (µ1 − µ0)(µ2 − µ0)

(λ− ν0)(ν0 − λ− µ0)2(ν0 − λ− µ1)(ν0 − λ− µ2)

]}
.
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Marginalized variance and covariance derivation

Because the initial state is uncertain, the variances and covariances of X3, X4 can now be computed
by marginalizing over the initial barcoding state. The marginalized means follow trivially by
linearity and the law of total expectation: for instance,

E[X3(t)] = πE [X3(t)|X(0) = (1, 0, 0, 0)]+(1−π)E [X3(t)|X(0) = (0, 1, 0, 0)] = πM3|1+(1−π)M3|2.

Dropping the dependence on t for notational simplicity, we use the law of total variance and law
of total covariance to obtain the marginalized variance expressions

Cov(X3, X4) = π2(U34 −M3|1M4|1) + (1− π)2(V34 −M3|2M4|2)

+ π(1− π)(U34|1 + U34|2 −M3|2M4|1 −M3|1M4|2)

Var(X3) = π(U33|1 +M3|1) + (1− π)(U33|2 +M3|2)

− π2M2
3|1 − (1− π)2M2

3|2 − 2π(1− π)M3|1M3|2

Var(X4) = π(U44|1 +M4|1) + (1− π)(U44|2 +M4|2)

− π2M2
4|1 − (1− π)2M2

4|2 − 2π(1− π)M4|1M4|2. (A-5)

We now include the details behind Equation (A-5) and derive the expressions in the general
case with K progenitors. Applying the law of iterated variance, the total variance for a type i
mature cell population is given by

Var[Xi(t)] = E[Var[Xi(t)|X(0)]]︸ ︷︷ ︸
(1)

+ Var[E[Xi(t)|X(0)]]︸ ︷︷ ︸
(2)

.

We drop the dependence on t in intermediate steps for simplicity, and adopt the notation

E(X2
i|1) = E

[
X2
i |X(0) = (1, 0, 0, . . . , 0)

]
,

and similarly use E[Xi|j ] for expectations of Xi(t) conditional on beginning with one initial type j
particle at t = 0. With these conventions, the outer expectation over initial barcoding probability
(1) simplifies to

E[Var[Xi|X(0)]] = E
{

E[X2
i |X(0)]− [E[Xi|X(0)]]2

}
= π1E(X2

i|1) + . . .+ πKE(X2
i|K)− π1

[
E(Xi|1)

]2
+ . . .+ πK

[
E(Xi|K)

]2
=

K∑
k=1

πkE
(
X2
i|k

)
−

K∑
k=1

πk
[
E
(
Xi|k

)]2
.

Next, it is straightforward to expand (2) as

Var[E[Xi|X(0)]] = E{E[Xi|X(0)]}2 − (E{E[Xi|X(0)]})2

=

K∑
k=1

πk
[
E
(
Xi|k

)]2 − [ K∑
k=1

πkE(Xi|k)

]2
.

Combining these simplifications (1) + (2), we arrive at the total variance expression marginalized
over initial state:

Var[Xi(t)] =

K∑
k=1

πkE[X2
i|k]−

K∑
k=1

π2kE
[(
Xi|k

)]2 − 2
∑
j>k

πjπkE[Xi|j ]E[Xi|k]. (A-6)
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Analogously to (A-5) for the four-type model, this expression is directly related to the closed form
solutions we obtain from solving the systems of moment differential equations. In terms of moment
expressions, (A-6) becomes

Var[Xi(t)] =
K∑
k=1

πk[Uii|k(t) +Mi|k(t)]−
K∑
k=1

π2kMi|k(t)
2 − 2

∑
j>k

πjπkMi|k(t)Mi|j(t).

The marginal covariance expressions are then obtained exactly analogously, applying the law of
total covariance instead of the law of total variance. The covariances are given by

Cov[Xi(t), Xj(t)] =

K∑
k=1

πkE[Xi|kXj|k]−
K∑
k=1

π2kE[Xi|k]E[Xj|k]−
∑
k 6=l

πkπlE[Xi|k]E[Xj|l]

=
K∑
k=1

πkUij|k(t)−
K∑
k=1

π2kMi|k(t)Mj|k(t)−
∑
k 6=l

πkπlMi|k(t)Mj|l(t).

Given these marginalized variance and covariance expressions, incorporating the hypergeometric
sampling distribution to obtain covariance and variance between read data Y applies identically
by the equations in the main paper.

Unconstrained parametrization of initial barcoding vector:

For models with multiple progenitor types, the initial barcoding probabilities must be represented
as a vector π = (π1, . . . , πk) where π1 denotes the probability of starting as an HSC, and πi
denotes the probability of starting as a type i progenitor for i = 2, . . . ,K. These parameters πi are
naturally constrained to a probability simplex, but in practice we reparameterize by borrowing from
a technique used in multinomial logistic regression by defining a set of variables γi := ln (πi/πK)
for i = 1, . . . ,K − 1. Then notice πi = πKe

γi for all i ≤ K − 1, and letting πK = 1
1+

∑K−1
i=1 eγi

, we

ensure the simplex constraint that
∑K

i=1 πi = 1. This enables us to equivalently consider the vector
γ = (γ1, . . . , γK−1) as parameters instead of π, and because γi vary freely in R, we no longer need
to add a constraint to the optimization problem.

Detailed simulation results

Here, we include detailed tables of true parameters used to initiate simulation as well as median
estimates, median absolute deviations, and standard deviations corresponding to the simulation
study design discussed in section 4.1 for all model structures depicted in Figure 2. Some models
depicted in Figure 2 are identical in simulation study — for instance, models (c) and (d) have
no difference when final types are arbitrary. We also note that estimates reported in Table C-3
correspond to the results plotted in Figure 3 in the main text.
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λ νa µa ν1 ν2 ν3 πa
True 0.0280 0.0200 0.0080 36 15 7 0.9000

Median 0.0283 0.0194 0.0086 34.84 14.18 6.624 0.8959
MAD 0.0008 0.0009 0.0021 6.31 2.797 1.167 0.0201

SD 0.0008 0.0010 0.0021 10.33 4.623 1.993 0.0199

Table C-1: Results of estimation on synthetic data from a model with three mature types and
one common progenitor compartment, i.e. Model (a) in Figure 2 of the main text, in terms of
medians, standard deviations (SD), and median absolute deviations (MAD). With fixed death
rates at µ1 = 0.24, µ2 = 0.14, µ3 = 0.09, estimates are very close to true parameters used to
simulate the data. Recall πa denotes the proportion barcoded as progenitors, while π1 = 1− πa is
the proportion marked at the HSC stage.

λ νa µa ν1 ν2 ν3 ν4 ν5 πa
True 0.0285 0.0200 0.0080 36.00 15.00 10.00 20.00 7.000 0.9000
Median 0.0284 0.0200 0.0076 37.16 15.54 10.35 20.69 7.246 0.9021
MAD 0.0007 0.0011 0.0016 5.851 2.568 1.693 3.399 1.178 0.0153
SD 0.0025 0.0019 0.2800 11.84 3.568 2.504 4.574 1.994 0.0465

Table C-2: Model with five mature types and one common progenitor compartment, i.e. Model (b)
in Figure 2. Death rates fixed at µ1 = 0.26, µ2 = 0.13, µ3 = 0.11, µ4 = 0.16, µ5 = 0.09.

λ νa νb µa µb ν1 ν2 ν3 ν4 ν5 πa πb
True 0.0285 0.0130 0.0070 0.0050 0.0040 36 15 10 20 7 0.60 0.30
Med. 0.0286 0.0130 0.0069 0.0045 0.0043 38.01 16.29 10.92 19.64 6.65 0.6333 0.2706
MAD 0.0005 0.0008 0.0006 0.0021 0.0013 13.35 5.826 3.894 2.240 1.277 0.1399 0.1194
SD 0.0006 0.0007 0.0007 0.0019 0.0012 17.61 7.828 5.241 5.347 1.925 0.1388 0.1255

Table C-3: Model with five mature types and two distinct progenitor compartments, i.e. Model
(c) in Figure 2. In this model, progenitor a gives rise to type 1 and 2 mature cells, and b produces
type 3, 4, and 5 type cells. Estimates remain accurate in this parameter rich setting with multiple
progenitor compartments. These correspond to estimates plotted in Figure 3 in the main text.

Model misspecification experiments

Tables C-5 and C-6 display the estimates obtained under over specified and misspecified models,
along with objective values of the loss function at converged estimates; these correspond to total
`2 loss between fitted and observed correlations. Note that these estimates correspond to the
correlation plots displayed in Figure 5 in the main text.
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λ νa νb νc µa µb µc ν1
True 0.0500 0.0280 0.0140 0.0070 0.0080 0.0060 0.0020 40.0000

Median 0.0539 0.0303 0.0150 0.0075 0.0091 0.0058 0.0034 40.7977
MAD 0.0081 0.0047 0.0032 0.0016 0.0038 0.0072 0.0041 11.8020

SD 0.0143 0.0080 0.0052 0.0024 0.0037 0.0060 0.0053 18.0492

ν2 ν3 ν4 ν5 πa πb πc
True 18.0000 14.0000 20.0000 8.0000 0.5500 0.2000 0.1500

Median 18.1527 17.7127 26.4716 10.6550 0.5595 0.2017 0.1578
MAD 5.0599 7.8044 9.4919 5.7547 0.0412 0.0120 0.0106

SD 7.0998 6.6657 8.8583 157.5674 0.0369 0.0159 0.0137

Table C-4: Synthetic data from a model with five mature types and three oligopotent and unipotent
progenitors, i.e. Model (f) in Figure 2. Death rates fixed at µ = (0.24, 0.13, 0.12, 0.18, 0.1). While
the standard deviation reveals influence of extreme outliers on the estimate or ν4, median estimates
are again accurate in a parameter rich model, and reasonably stable in terms of MAD.

λ νa νb νc µa µb µc ν1
Med. 0.19365 0.05938 0.05475 0.00002 0.01136 0.19085 0.00056 56.89686
MAD 0.06633 0.02942 0.02433 0.00003 0.01683 0.28294 0.00083 38.64162

SD 0.07195 0.03583 0.03360 0.00015 0.59207 0.95299 0.00226 238.53322
ν2 ν3 ν4 ν5 πa πb πc Objective

Med. 22.10742 16.70475 33.70443 11.65951 0.00121 0.00038 0.83830 2.90319
MAD 14.61860 9.40493 19.63489 5.62197 0.00179 0.00057 0.07087 0.75504

SD 11.94989 7.67183 15.40404 5.04462 0.01796 0.00948 0.08250 1.08521

Table C-5: Model fit in overspecified case with three progenitors: note that the objective value is
higher than the correct specification, and note that the estimates seem more spread apart than the
correctly specified inference while representative of the overall shape of true correlation profiles.

λ νa µa ν1 ν2 ν3 ν4 ν5 πa Objective

Med. 0.131 0.00468 0.0332 71.1 30.0 20.6 0.000 0.000 1.000 21.358
MAD 0.0091 0.0041 0.0123 29.9 12.7 7.87 0.00000 0.00000 0.00001 0.221

SD 0.0096 0.0078 0.0149 23.7 9.91 6.43 0.00000 0.00000 0.00001 0.227

Table C-6: Underspecified model fit. Interestingly, this model seems to correctly identify that types
1, 2, 3 are linked from a common progenitor, but because one shared progenitor is not compatible
with the observed correlations, and in particular cannot explain negative correlations between types
from distinct lineages, the model assigns almost zero mass to rates ν4, ν5 of producing the other
mature types. The solution seems to be strongly a boundary solution with all barcoded cells starting
in the progenitor compartment, resulting in a very poor objective function value.
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λ νa νb µa µb ν1 ν2 ν3 π2 π3 Obj.
Med. 0.0286 0.0130 0.0080 0.0077 0.0014 31.43 21.32 46.57 0.533 0.358 9.093× 10−5

MAD 0.0007 0.0009 0.0011 0.0022 0.0020 6.595 5.097 29.47 0.1096 0.1009 4.629× 10−5

SD 0.0067 0.0043 0.0028 0.0026 0.0022 22.31 21.54 63.07 0.1791 0.1943 6.950× 10−5

Table C-7: Results corresponding to three grouped mature cell compartments with correctly spec-
ified progenitor structure. Note the objective value here is orders of magnitude lower than the
five-type models with misspecified progenitor structures, suggesting that lumping mature types is
a justifiable model simplification compared to the tradeoff of specifying a richer model with flawed
assumptions on the intermediate structure.

Tables of complete estimated parameters fitted to lineage barcoding data

Par (a) (b) (c) (d) (e) (f)

λ̂ 0.0593 0.0867 0.4360 0.3644 0.2271 0.3198
ν̂a 1.00e-6 1.80e-7 0.4090 0.3521 0.1446 0.0033
ν̂b 0.0257 0.0121 0.0725 0.3131
ν̂c 0.0101 0.0033
µ̂a 7.95e-6 0.0367 1.150 4.096 0.7037 0.1449
µ̂b 4.023 3.699 4.022 1.253e-3
µ̂c 3.602 1.434
ν̂1 2042.0 1486.3 1305.5 866.1 1896.8 1959.09
ν̂2 434.7 1764.3 201.4 391.3 221.3 560.4
ν̂3 147.4 74.0 113.6 264.4 112.3 127.5
ν̂4 326.4 448.7 299.5 417.1 287.9
ν̂5 17.9 17.0 54.1 79.3 104.2
π̂a 0.861 0.87∗ 0.870 0.870 0.0 0.0
π̂b 0.0 0.0 0.0 0.870
π̂c 0.870 0.0

Loss 0.4071 1.653 3.465 3.330 3.836 2.91

Table C-8: Parameter estimates for all models displayed in Figure 2. Model (a) has fixed deaths
(0.6, 0.04, 0.4). All other models have fixed death rates (0.8, 0.3, 0.04, 0.08, 0.4).
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Par (a) (b) (c) (d) (e) (f)

λ̂ (0.003, 0.109) (0.077, 0.163) (0.196, 1.168) (0.207, 0.640) (0.132, 0.752) (0.174, 0.449)
ν̂a (0.0, 0.004) (0.0, 0.001) (0.085, 1.148) (0.131, 0.611) (0.014, 0.617) (0.074, 0.396)
ν̂b (0.006, 0.168) (0.006, 0.112) (0.015, 0.486) (0.021, 0.154)
ν̂c (0.000, 0.019) (0.000, 0.010)
µ̂a (0.0, 0.002) (0.028, 0.046) (0.000, 3.879) (0.267, 3.603) (0.0, 2.854) (0.246, 2.651)
µ̂b (0.434, 4.022) (0.437, 4.102) (0.447, 4.023) (0.811, 4.543)
µ̂c (0.102, 4.103) (0.283, 4.100)
ν̂1 (956.0, 2239.9) (830.1, 1838.6) (627.7, 1482.2) (613.3, 1487.3) (600.9, 1495.0) (615.7, 1474.2)
ν̂2 (52.0, 488.7) (1021.9, 2055.3) (131.8, 521.4) (135.6, 344.6) (187.9, 477.2) (255.9, 448.7)
ν̂3 (39.7, 148.2) (60.7, 99.8) (30.6, 294.6) (134.5, 305.0) (4.279, 291.3) (126.3, 297.8)
ν̂4 (275.2, 470.7) (146.2, 558.7) (126.4, 297.4) (127.8, 321.7) (128.2, 295.7)
ν̂5 (10.1, 44.65) (3.786, 9.559) (1.137, 10.63) (6.488, 84.9) (26.4, 74.0)
π̂a (0.017, 0.861) (0.87, 0.87) (0.0, .0.599) (0.0, .598) (0.0, 0.038) (0.000, 0.001)
π̂b (0.0, 0.999) (0.0, 0.999) (0.0, 1.0) (0.999, 1.0)
π̂c (0.0, 1.0) (0.000, 0.000)

Loss (0.352, 0.696) (1.485, 2.341) (2.591, 4.771) (2.472, 4.489) (3.092, 5.763) (2.566, 4.777)

Table C-9: Corresponding 95% confidence intervals produced via nonparametric bootstrap of 2500
replicate datasets. Recall sum of progenitor barcoding proportions fixed to be 0.87 for models
(b)-(f).

Additional fitted correlation profiles fitted to lineage barcoding dataset
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Figure C-9: Fitted curves for real data to model with two progenitors, corresponding to model (c)
displayed in Figure 2. The “misgrouped” fitted curves apparent after 23 months visually suggest
the misspecification in designating specialized oligopotent progenitors.
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Figure C-10: Fitted curves for real data in model with three specialized progenitors, i.e. model (e)
in Figure 2. Again, a misgrouping is visually apparent in fitted curves after 23 months
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