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Abstract

Horizontal genetic transfer (HGT) is a common phenomenon in eukaryotic
genomes. However, the mechanisms by which HGT-derived genes persist
and integrate into other pathways remain unclear. This topic is of significant
interest because, over time, the stressors that initially favoured the fixation
of HGT may diminish or disappear. Despite this, the foreign genes may con-
tinue to exist if they become part of a broader stress response or other path-
ways. The conventional model suggests that the acquisition of HGT
equates to adaptation. However, this model may evolve into more complex
interactions between gene products, a concept we refer to as the ‘Inte-
grated HGT Model’ (IHM). To explore this concept further, we studied spe-
cialized HGT-derived genes that encode heavy metal detoxification
functions. The recruitment of these genes into other pathways could provide
clear examples of IHM. In our study, we exposed two anciently diverged
species of polyextremophilic red algae from the Galdieria genus to arsenic
and mercury stress in laboratory cultures. We then analysed the transcrip-
tome data using differential and coexpression analysis. Our findings
revealed that mercury detoxification follows a ‘one gene-one function’
model, resulting in an indivisible response. In contrast, the arsH gene in the
arsenite response pathway demonstrated a complex pattern of duplication,
divergence and potential neofunctionalization, consistent with the IHM. Our
research sheds light on the fate and integration of ancient HGTs, providing
a novel perspective on the ecology of extremophiles.

Cyanidiophyceae is a group of polyextremophilic red
algae that dominate geothermal environments, often

Horizontal genetic transfer (HGT), once deemed highly
unlikely in eukaryotes due to the presence of a nuclear
envelope and in many cases, a sequestered germline,
is now accepted as a common feature across the tree
of life (Van Etten & Bhattacharya, 2020). Yet, the mech-
anisms that drive HGT persistence and integration into
host pathways are poorly understood. The

comprising >90% of the biomass in these locations that
are characterized by high temperature, extremely low
pH, fluctuating light, high salt and high toxic heavy
metal content (Reeb et al.,, n.d.; Castenholz &
McDermott, 2010; Doemel & Brock, 1971; Seckbach,
1972; Van Etten, Cho, et al., 2023). These algae have
become models for studying eukaryotic HGT due to
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their simple genome structure (e.g., highly reduced
genome size, limited non-coding DNA and few introns)
and the presence of many adaptive HGTs acquired
from prokaryotes, including those that encode heavy
metal detoxification (Qiu et al., 2013; Rossoni
et al., 2019; Schénknecht et al., 2013; Schoénknecht
et al., 2014). Most of these genes are of ancient prove-
nance, with many acquired over a billion years ago in
the ancestor of this lineage. Whereas HGT in the pro-
karyotic domains is understood to be widespread and
continual (Jain et al., 1999; Koonin, 2016; Rivera
et al., 1998), only in recent studies has eukaryotic HGT
also been shown to be a common and continuous pro-
cess, for example, in grasses (Pereira et al., 2022), and
various microbial eukaryotes (Alsmark et al., 2013;
Huang, 2013; Nowack et al., 2016). Therefore, the prin-
ciples underlying the process of prokaryote HGT and
gene retention may also apply to eukaryotes. Analysis
of the transcription patterns, regulation, and integration
of HGTs into eukaryotic metabolic networks is needed
to address this issue.

In prokaryotes, genes for mercury and arsenic
detoxification are encoded in operons (Ben Fekih
et al., 2018; Boyd & Barkay, 2012; Yang et al., 2012),
the latter controlled by the ArsR transcriptional repres-
sor (Francisco et al., 1990). Many of the genes in these
operons were transferred via HGT into different eukary-
otic lineages (Chen et al.,, 2017; Marcet-Houben &
Gabalddn, 2010; Palmgren et al.,, 2017; Ribeiro &
Lahr, 2022). However, there is no evidence in any of
these cases that a whole operon was transferred or
retained; rather, single genes were likely to have been
acquired: that is, arsR is missing from these species,
the HGTs show no clear pattern of colocalization within
the genome, and the putative donor lineage of each
gene often differs, suggesting multiple, independent ori-
gins (see Discussion). The Cyanidiophyceae live in
association with many extremophilic prokaryotes,
sometimes in biofilms where HGT is hypothesized to
occur more frequently due to the proximity of organisms
(Alsmark et al., 2013; Lehr et al., 2007; Soucy
et al., 2015). Levels of heavy metals in geothermal hab-
itats have fluctuated greatly over time and pose a threat
to cells not able to detoxify these poisons (Chen
et al., 2017; Christakis et al., 2021; Fru et al., 2019; Zhu
et al.,, 2014). Across the phylogeny of Cyanidiophy-
ceae, a single protein from the bacterial mer operon,
MerA (mercury(ll) reductase), is implicated in the mer-
cury stress response and is present in every
sequenced genome, although it is the result of two
independent transfers among these taxa (Rossoni
et al.,, 2019). Likewise, there exist several genes in
Cyanidiophyceae that originated from the prokaryotic
ars operon that deal directly with arsenic: ArsA (arseni-
cal pump-driving ATPase), ArsB (arsenite efflux trans-
porter), ArsC (arsenate reductase), ArsM (arsenite

VAN ETTEN ET AL.

ke
it

methyltransferase) and ArsH (arsenical resistance pro-
tein). Previous phylogenetic work has demonstrated
the sporadic distribution of these prokaryote-derived
genes in the orders Galdieriales and Cyanidiales within
Cyanidiophyceae, suggesting they result from indepen-
dent acquisitions (Rossoni et al., 2019; Schénknecht
etal., 2013; see Figure 1).

In this study, we investigate the effects of mercu-
ric chloride (HgCl,) and sodium arsenite (NaAsO,) on
the transcriptional dynamics of HGT-derived mercury
and arsenic detoxification genes in two anciently
diverged Galdieria species. These results were used
to explore the evolutionary history of heavy metal
detoxification in Cyanidiophyceae, and the divergent
fates of HGT-derived genes in two distinct resistance
pathways.

Our results show that merA, which is part of a rela-
tively simple detoxification pathway (requiring a single
gene), has a putative stress-driven transcriptome
response. In contrast, the ars genes, which have dis-
tinct but related efflux and detoxification functions, have
complex, and often divergent stress-driven transcrip-
tomic responses, and are integrated into metabolic net-
works associated with diverse functions. For foreign
sequences to persist for millions or billions of years,
they must provide a long-term adaptive advantage at
(and after) acquisition. As environmental conditions
change over time, the selective pressures that drive the
acquisition of HGT-derived genes will likely fluctuate or
disappear, yet these genes may survive if they have
become integrated into other systems that are critical to
cell survival (Burch et al., 2023; Huang, 2013; Jones
et al.,, 2022). In other words, the standard model,
whereby HGT acquisition equals adaptation, which has
been frequently validated, may evolve into a more com-
plex set of gene interactions which we refer to here as
the ‘integrated HGT model’ (IHM). This latter outcome
is challenging to study in the absence of HGT-derived
genes involved in highly specialized functions
(e.g., metal detoxification), whereby their recruitment
into other pathways is easier to interpret and may be
explained by the IHM. We explore the predictions of
this model by studying the fate and integration
of ancient HGTs. These data lead us to propose a
hypothetical framework to explain how the arsenic
pathway functions among Cyanidiophyceae, thereby
providing a novel perspective on the ecology of
extremophiles.

EXPERIMENTAL PROCEDURES
RNA-seq experiments

Based on preliminary growth experiments summarized
in Appendix (see Preliminary growth experiments
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FIGURE 1

Distribution and expression of HGT-derived genes in the Cyanidiophyceae that are involved in arsenic and mercury

detoxification. (A) Cladogram of the 17 available genomes and the presence (coloured boxes) and copy number of relevant genes (number in
box). (B) Hypothetical prokaryotic cells showing schematic arsenic (top) and mercury (bottom) detoxification pathways. Each image includes all
enzymes; however, it is important to note that not all prokaryotes contain these genes. Below each hypothetical cell are examples of real
operons for each gene cluster. For arsenic, we have included the arsRABCD operon in the Escherichia coli plasmid and the arsRBCH operon in
Synechocystis sp. (Kalia & Joshi, 2009). For mercury, a hypothetical operon with all possible mercury genes is based on Boyd and Barkay
(2012), with genes found in all mer operons shown in light blue (and dark blue, MerA) and genes found in some operons in white. On the right of
these hypothetical cells (B and C) are schematic Galdieria depicting their mercury and arsenic resistance pathways. (C) Galdieria cells represent
the two possible detoxification pathways discussed in the paper for cultured cells (top) and in nature, based on community dynamics (bottom).
Note that the copy number of the genes encoding these enzymes varies between G. partita SAG21 and G. yellowstonensis 5572 (see left panel).

Image made in Biorender.com. HGT, horizontal genetic transfer.

methods and results and Figures A1-A5), 5mM
NaAsO, and 3 uM HgCl, were chosen as treatment
concentrations for the RNA-seq experiments. Galdieria
yellowstonensis 5572 and G. partita SAG21 (hereafter
5572 and SAG21; both of these species were formerly
classified as strains of G. sulphuraria; Park et al., 2023)
were acclimated in batch cultures to the control media
conditions for 1 month prior to the experiments. Twelve
500-mL flasks were prepared with either 2x modified
Allen medium with 25 mM glucose at pH 2 (control) or
this medium plus 5 mM NaAsO, or 3 uM HgCl, (treat-
ments) (Allen, 1959). At the start of the experiment, an
equal amount of algal biomass was added to each flask
(Figure A6) which was incubated at 42°C, 40 rpm, in
90 uE m2s~ " continuous white light. Sampling took
place at four-time points in 1 week: 1, 24, 72 and 168 h
(TP1-TP4), which was determined based on changes
in OD recorded during the preliminary experiments; see
Spreadsheet  S1: https://zenodo.org/doi/10.5281/
zenodo.8377091 and Figures A2—A5. During sampling,
flasks were removed from the incubator and briefly
placed in a biosafety cabinet where 50 mL aliquots from
each flask were added to 50 mL Falcon tubes, centri-
fuged at 4000 rpm for 5 min, and then the supernatant
was removed. The remaining cell pellets were flash-
frozen in liquid nitrogen and stored at —80°C.

Sample preparation and sequencing

Following completion of the experiments, samples were
homogenized via bead-beating (vortexed at the highest
speed for 10 min) with 0.5 mm silica beads. RNA was
extracted using the Qiagen (Hilden, Germany) RNeasy
Plant Mini Kit and cleaned using the Zymo (Orange,
California, USA) RNA Clean and Concentrator-25 kit.
Samples were checked for quality, purity, and concen-
tration using the Nanodrop 3000C and Qubit 2.0. They
were stored at —80°C and shipped on dry ice to the
Joint Genome Institute (JGI) in California, USA for
sequencing. There, plate-based RNA sample prep was
performed on the PerkinElmer Sciclone NGS robotic
liquid handling system using lllumina’s TruSeq
Stranded mRNA HT sample prep kit utilizing a poly-A
selection of mRNA following the protocol outlined by
lllumina in their user guide: https://support.illumina.
com/sequencing/sequencing_kits/truseqg-stranded-mrna.
html, and with the following conditions: total RNA start-
ing material was 1000 ng per sample and eight cycles
of PCR was used for library amplification. The prepared
libraries were then quantified using KAPA Biosystems’
next-generation sequencing library gPCR kit and run
on a Roche LightCycler 480 real-time PCR instrument.
Sequencing of the flowcell was performed on the
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lllumina NovaSeq sequencer using NovaSeq XP V1.5
reagent kits, S4 flowcell, following a 2 x 151 indexed
run recipe.

Differential expression analysis

Raw sequencing reads were filtered and trimmed using
the JGI QC pipeline (see Appendix JGI QC pipeline).
Interleaved quality trimmed reads were separated using
BBMap (Bushnell, 2014). The reference genomes for
5572 and SAG21 (Rossoni et al., 2019) were indexed,
reads were mapped to them using HISAT2 (Kim
et al., 2019), and transcripts were built using existing
gene models for SAG21 and 5572 with StringTie2
v2.2.1 (Kovaka et al., 2019). The performance of the
assemblies was assessed using gffcompare (Pertea &
Pertea, 2020). Compilation of gtf files into gene and
transcript count matrices was done using the prepDE.
py script available with StringTie2. Next, count matrices
were imported into RStudio 2022.02.3+492 using R
version 4.2.3 and differential expression (DE) analysis
was carried out using DESeqg2 v1.38.3 (Love
et al., 2014; R code in Code1, PCA plot of treatment-
time point clustering in Figure A7). Count matrices were
separately normalized by two methods, transcripts per
million (TPM) and ‘ratio of means’ (via DESeq2), so
that expression profiles for genes of interest could be
generated and compared (see Figure 2 and Spread-
sheet S2: https://zenodo.org/doi/10.5281/zenodo.

G. yellowstonensis 5572
1-hr  24-hr 72-hr 168-hr Exp

< -
gggg; Bl o 0.19 G2137 g % o +20
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8377091). The parameters used to call a gene DE
between conditions were p value <0.05 (FDR-adjusted)
and an absolute log, fold change (FC) of either 1, 1.5
or 2 (results for each were considered during analysis
and are highlighted in Spreadsheet S3: https://zenodo.
org/doi/10.5281/zenodo.8377091).

Weighted gene coexpression network
analysis

To gain a different perspective on the gene expression
data and to determine if, and how genes of interest are
integrated into native metabolic networks, we used the
weighted gene coexpression network analysis
(WGCNA) data-reduction technique (Chille et al.,
2021). WGCNA was run in RStudio, employing func-
tions from the following packages: DESeq2, genefilter,
RcolorBrewer, Biobase, GO.db, impute, ComplexHeat-
map, goseq, ClusterProfiler, simplifyEnrichment, tidy-
verse, flashClust, gridExtra, dplyr and WGCNA
(Langfelder & Horvath, 2008, 2012; R code in Codes
2 and 3). Data sets were filtered using the PoverA func-
tion in genefilter and checked for quality (Gentleman
et al., 2015). The smallest number of replicates was
three for SAG21 and two for 5572; thus, genes with
fewer than 10 counts in at least 3/48 SAG21 samples
(pOverA 0.0625, 10) and 2/475572 samples (pOverA
0.043, 10) were excluded from the analysis. Reads
were normalized using the variance stabilizing

G. partita SAG21
1-hr  24-hr  72-hr  168-hr  Exp

TP1 TP2 TP3 T

FIGURE 2 Differential gene expression profiles, normalized via the ratio of means (DESeq2 normalization method) for each arsenic or
mercury gene of interest. The left heatmap is Galdieria yellowstonensis 5572 and the right heatmap is G. partita SAG21. Colours within the
heatmaps indicate log, fold change (L2FC) values for genes at the indicated time points (TP1-TP4), that is, comparing treatment (i.e., arsenite or
mercury) to control cultures. Significant (p.q <0.05) FC values are black and in bold, whereas nonsignificant values are in grey. The grayscale
heatmap to the right of each L2FC heatmap shows variation in the magnitude of (normalized) read counts averaged across both control and
treatment libraries. This gradient indicates which genes (regardless of differential expression) are generally most highly expressed.
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transformation (vst) in DESeq2 after confirming all size
factors were less than 4 (one replicate As_R-
NA_5572_EXP_4D was 5.17, but we did not exclude
it). After this, the count data were log-transformed. A
principal component analysis (PCA) based on sample-
to-sample distances was performed on the vst-
transformed gene counts for each genome using the
plotPCA function in DESeq2 (Figures A8 and A9), and
an unrooted hierarchical tree (Figure A10) was used to
visualize experiment-wide patterns in gene expression
and to check for outliers using the R stats hclust ‘aver-
age’ function. To assess gene expression adjacency,
we constructed a topological overlap matrix similarity
network using the WGCNA pickSoftThreshold function,
displaying soft threshold values from 1 to 20. Soft
thresholding powers of 8 for SAG21 and 12 for 5572
were chosen (scale-free topology fit index of 0.8 and
0.65, respectively) and used to construct a topological
overlap matrix similarity network using a signed adja-
cency (Figures A11 and A12). Modules were identified
from this network using the dynamicTreeCut function,
with the settings of deepSplit = 2, and minimum mod-
ule size = 30 (Figure A13). The modules were used for
expression plotting, module-trait correlation (Figures
A14-A16) and network visualization in Cytoscape
v3.10.0 (Shannon et al., 2003; Figure 3).

The final step of this analysis was to generate a
heatmap that showed modules with significant up- or
downregulation in both experimental conditions (for
each genome; Figure A17). We also generated a
matrix with genes (nodes), their annotations, and
which module they belong to; see Spreadsheet S4:
https://zenodo.org/doi/10.5281/zenodo.8377091. This
includes information on time point significance for
each gene (and p values), as well as module member-
ship (MM) values per gene in each module (and accom-
panying p values). For downstream analysis, any gene-
module correlation that had an adjusted p value >0.05
was discarded. We also subsequently filtered each
dataset by MM, using a cutoff value of 0.8. Thus, only
those genes (nodes) most significantly correlated with
their assigned module were retained for analysis. Edge
weight thresholds vary across the literature and depend
more on the dataset and network than the threshold
value itself (Yan et al., 2018). In this case, using Cytos-
cape, edge weight thresholds were selected for each
module independently by determining which cutoff
results in unconnected singletons, and then reducing
the cutoff by 1% until a streamlined but representative
network was produced. Figure 3 (and Figure A18)
shows genes from Figure 2 that met these thresholds.

Phylogenetic analysis of HGTs

For each arsenic and mercury detoxification-related
gene, amino acid sequences were retrieved from all
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available Cyanidiophyceae genomes and used to
query the NCBI nr database using diamond blastp
v2.1.2.156 (Buchfink et al., 2021). All BLAST hits with
<40% identity and an e-value >1e—10 were discarded.
Next, the (often tens of thousands of hits to the nr data-
base) were taxonomically downsampled to produce a
smaller, more computationally tractable, representative
set that could be used for phylogenetic analysis. A cus-
tom script v0.1 was used to retrieve at most, two
highest-scoring subject sequences per phylum per
query sequence based on the taxonomy assigned to
the subject sequences in NCBI. The set of down-
sampled sequences for each set of proteins was
aligned using MAFFT-linsi v7.490 (Katoh & Standley,
2013) and maximum likelihood (ML) trees were con-
structed in IQ-TREE v1.6.12 using automated model
selection and node support estimated from 1000 ultra-
fast bootstrap replicates (Hoang et al., 2018; Nguyen
etal., 2015).

ArsH protein visualization

To allow structural and functional analysis of ArsH pro-
teins, we aligned all SAG21 and 5572 amino acid
sequences, along with those from three bacteria includ-
ing Paracoccus denitrificans, which has one of the only
resolved ArsH protein structures in PDB (7PLE;
Sedlacek et al., 2022). We built the multiple sequence
alignment (MSA) using CLUSTAL O v.1.2.4 (Sievers
etal., 2011).

RESULTS
Differential expression analysis

DESeq2 analysis resulted in sets of differentially
expressed genes (DEGs) for each treatment and
accompanying time point. All DEGs for various FC
values are shown in Table 1, with the full list of DESeq2
output available in Spreadsheet S3: https://zenodo.org/
doi/10.5281/zen0d0.8377091. Table 1 indicates that
the magnitude of the arsenite response, in terms of dif-
ferential transcription, is about 10-fold greater than that
of mercury in both Galdieria species. MerA showed the
highest degree of differential upregulation (i.e., it had
the highest FC value) across both genomes at TP1
(FC = +3.32 in SAG21, FC = +5.82 in 5572) followed
by an immediate return to baseline once (presumably)
the mercury was detoxified (Figure 2). The ars genes
generally show constitutive expression, except arsH
(and putatively arsM), which we discuss below. All
arsenic and mercury-related genes of interest and their
differential and overall expression profiles and FC
values (black or white if significant [p,q < 0.05]) are
shown in Figure 2.
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FIGURE 3 Networks for heavy metal genes of interest based on WGCNA analysis. On the left are genes from Galdieria partita SAG21 and
on the right are from G. yellowstonensis 5572. Note that not all genes from Figure 2 are explored here. Genes were excluded if they did not pass
module membership (>0.8) filtering. The small insets on the top right of each box indicate the filtered whole module and the larger networks are
the subnetworks of all genes directly connected to each gene of interest at the specified edge weight threshold. Nodes represent genes and
edges represent linkage determined by WGCNA. Nodes are coloured based on shared function. A full list of modules and their functional trends
can be found in Figure A18. WGCNA, weighted gene coexpression network analysis.

Heavy metal transport and methylation

In addition to the merA and ars genes that were the tar-
gets of this study, we identified other HGTs involved in

transport and methylation that are possible contributors
to heavy metal detoxification and were included in the
phylogenetic analysis. In 5572 and SAG21, we identi-
fied one and two MIP family aquaglyceroporins,

02622971
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HORIZONTAL GENE TRANSFERS IN EXTREMOPHILIC RED ALGAE

TABLE 1

(A) Genes upregulated (treatment vs. CTRL).

B o 7 of 42

2 2

Differential expression results summary of the data generated in DESeqg2. (A) shows the number of upregulated DEGs in both
species across both conditions and (B) shows the downregulated DEGs.

Organism TP1 TP2 TP3 TP4

P Condition

FC (+) 2] [1.5] 1] 2] 1.5| 1] 2] 11.5] 1] 2] 1.5| 1]
Genes upregulated (treatment vs. CTRL)

5572 NaAsO, 200 317 558 58 94 198 24 45 101 27 47 76
SAG21 NaAsO, 290 503 832 67 103 193 164 311 698 123 188 341
5572 HgCl, 11 19 49 9 9 10 14 20 25 4 4 6
SAG21 HgCl, 29 58 132 64 112 167 12 14 24 10 13 16
(B) Genes downregulated (treatment vs. CTRL)

Organism . TP1 TP2 TP3 TP4

- Condition

FC (-) 2] 11.5] 1] 2] 11.5] 1] 2] 11.5] 1] 12| 11.5] 1|
Genes downregulated (treatment vs. CTRL)

5572 NaAsO, 17 37 147 18 37 161 66 98 158 12 24 41
SAG21 NaAsO, 27 73 366 55 105 204 250 395 663 91 140 244
5572 HgCl, 14 25 91 4 6 9 45 62 95 5 6 11
SAG21 HgCl, 9 12 26 18 28 44 17 20 44 13 16 22

Note: For each time point, DEGs with log,-fold change (FC) of +1, 1.5 and 2 are shown. The mercury response is roughly one order of magnitude less than the

arsenite response based on the quantities of DEGs shown in this table.
Abbreviation: DEG, differentially expressed gene.

respectively, that are likely importing arsenite based on
their differential upregulation at TP1 and subsequent
downregulation at later time points (Figure 2), and their
previous identification as HGTs in related isolates
(Rossoni et al., 2019; Schonknecht et al., 2013). Two
methyltransferases in SAG21 (G1984 and G1958)
show patterns under arsenite stress that may indicate
they provide this function, albeit in a manner that is
more difficult to interpret than the arsH gene expression
patterns. Specifically, both the SAG21 methyltrans-
ferases are upregulated at TP2 in the control cultures
and decline thereafter, whereas G1984 peaks at TP3
and stays high at both TP2 and TP3. Therefore, these
genes may act as methylating agents of Ars(lll) to
MAs(IIl) (Figures 1 and 2; see also Schdnknecht
et al., 2013). We have also listed some putative arsM
candidates (annotated as ‘methyltransferase type 11°).
These genes were identified by Cho et al. (2023) as
putative arsM homologues via orthogroup analysis.
However, due to the phylogenetic breadth of this gene
family and the well-conserved nature of methyltransfer-
ase activity, it is difficult to determine, using sequence
data alone, which of these genes may be acting as
arsM. Whereas they show differential expression at
TP2 or TP3 in both algal species (Figure 2), the FC
values are largely nonsignificant, and they have
extremely low MM based on the WGCNA analysis (see
below). In contrast, the SAM-dependent methyltrans-
ferases are more strongly correlated with arsH expres-
sion. Gene knockdown experiments are needed to
assess the function of the putative ArsM-encoding

genes in these Galdieria species. All of these genes
and their copy numbers in the Cyanidiophyceae tree
are shown in Figure 1A.

Coexpression networks link arsenic HGTs
to diverse metabolic functions

We used WGCNA to identify groups of coexpressed
genes and focused on networks that include arsenic
and mercury-related HGTs. Each algal species (5572
and SAG21) was analysed separately, and the
response from both the arsenite and mercury experi-
ments was taken together to inform per-genome coex-
pression. In this analysis, modules refer to clusters of
230 closely interconnected genes in a coexpression
network. Clusters of 30 were chosen as the threshold
because this value resulted in discrete gene clustering
based on TOM-based similarity for both genomes
(Figure A12). This value has been established as
being suitable by Langfelder and Horvath in other data
sets that included taxonomically diverse species
(Langfelder & Horvath, 2008; Langfelder &
Horvath, 2012; Langfelder & Horvath, 2016). For 5572
and SAG21, 27 and 20 modules were identified
(respectively; Figures A13—A17). Of these, only Tur-
quoise, RoyalBlue, Black, Blue, Cyan, Tan and Brown
in SAG21 and DarkGreen, Yellow, Tan, Blue, Cyan
and LightYellow in 5572 include the target HGT
genes. As shown in Figure 3 (and Figure A18), each
of these modules is associated with characteristic
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functions, some more frequent in the module than
others.

In SAG21, the arsA gene falls into the black module
with many other ATPases, namely the ‘archaeal
ATPases’ (Schonknecht et al., 2013). However, the
SAG21 arsA gene is on the periphery of this module
and has lower connectivity than the other ATPase
genes. This suggests that SAG21 arsA may retain the
ATPase function, but has a specialized role, putatively
to allow arsenite efflux (Rosen et al., 1990). Interest-
ingly, in 5572, arsA is not associated with the other
ATPases, but rather with genes involved in transcrip-
tion, translation, signal transduction, protein degrada-
tion and organelle-associated functions. The SAG21
arsB gene is in the Blue module which primarily com-
prises heat shock, transport and translation-associated
proteins. One arsB paralogue in 5572 (G706) is in the
Blue module which has a similar functional profile to
the module containing the SAG21 copy (also Blue).
The other two 5572 arsB paralogues (G983 and
G1659) are in the Yellow and Tan modules, respec-
tively, which comprise genes associated with signal
transduction, photosynthesis, transport, protein and
lipid degradation, and unknown functions. Four arsH
genes from SAG21 are in the Turquoise module which
is composed almost exclusively of genes encoding
ribosomal proteins and genes with translation-
associated functions, although G286 is not tightly linked
to many other genes and G1846 is associated with a
more diverse array of functions including photosynthe-
sis (see below). The fifth arsH paralogue (G2659) is in
the RoyalBlue module which is dominated by
photosynthesis-related genes. In 5572, the only arsH
paralogue to pass filtering (G2956; homologue of
G2659 in SAG21) is in the DarkGreen module, which is
largely comprised of ‘dark’ genes with unknown func-
tion. In SAG21, two SAM-dependent methyltransferase
HGTs (G1984 and G1958) are in the Cyan and Tan
modules, respectively. Both modules are composed pri-
marily of genes associated with redox processes, RNA
and protein metabolism, and energy generation.
G. yellowstonensis 5572 also has two homologues:
G4419 and G4470, although the latter is annotated as
dimethylglycine N-methyltransferase. Both genes are in
the LightYellow module (although G4419 did not pass
MM filtering) which is composed of genes encoding oxi-
doreductase and those involved in post-translational
modification, lipid synthesis, and cell cycle regulation.
Only one MIP family aquaglyceroporin (G714 in SAG21
[Brown module]) had adequate MM (>0.8) across both
genomes. This gene is coexpressed with a handful of
dark genes, oxidoreductases, cell signalling and trans-
port genes, as well as others related to DNA and RNA
processes. Finally, arsC was analysed as a type of
control for our experiment, because the arsenite added
to these algae should not have triggered a marked
response in the arsC gene which functions to detoxify

VAN ETTEN ET AL.

arsenate (see Unabridged description of WGCNA
results for details). The arsC gene in SAG21 (G2556) is
in the Magenta module, which is composed of genes
with a variety of functions. The two arsC paralogues in
5572 are in the Brown module which is dominated by
ribosomal protein genes.

Phylogenetic analysis of HGTs

ML trees for each arsenic and mercury-related protein
are shown in Figure A19 (the ArsH tree is also in
Figure 4). The hallmark of determining if a gene or pro-
tein is the result of HGT is if the gene tree shows phylo-
genetic incongruence with the species tree for the
organism within which it resides. These phylogenies
support single acquisitions of genes encoding ArsB,
ArsC, ArsH, ArsM, aquaglyceroporins and SAM-
dependent methyltransferases, and multiple acquisi-
tions of genes encoding MerA and ArsA. In the ArsA
and MerA phylogenies, there are multiple, distinct
monophyletic Cyanidiophyceae clades with non-
eukaryote outgroups. In the ArsA phylogeny, three
Cyanidiales proteins group within the Verrucomicrobia
clade, indicating the first transfer, whereas all other
ArsA proteins are monophyletic (including some
other protists) with various Asgard archaea forming the
outgroup. The same pattern is seen in the MerA phy-
logeny with all Cyanidiales proteins sharing monophyly
with Nitrospirae bacteria as the outgroup and then all
Galdieriales proteins sharing monophyly with Candida-
tus Hydrogenedentes bacteria as the outgroup. All
other proteins show monophyly with non-eukaryotes as
the outgroup, rather than other algae that would appear
sister to Cyanidiophyceae in the species tree.

ArsH comparison

We built an MSA (Figure 4B) of ArsH proteins to com-
pare paralogues in each species. The catalytic regions
and folding structure (Sedlacek et al., 2022) were used
to determine if the ArsH copies in each species are
functional. This analysis identified two clades of arsH
genes in Galdieria which likely originated from a dupli-
cation in the common ancestor of this lineage
(Figure 4A). The first clade (Figure 4A, clade 1) is in
single copy among isolates, with relatively long
branches. The second clade (Figure 4A, clade 2)
shows extensive gene duplications, with relatively short
branch lengths between the genes within and between
isolates, suggesting strong purifying selection. Within
clade 2, the SAG21 genes G1846 and G1510 are posi-
tioned with the other paralogues from this isolate; how-
ever, they have significantly longer branch lengths and
have lost conserved residues of the NADP™ binding
site, which may lower the efficacy of this enzyme
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There are multiple heavy metal detoxification path-
ways in Cyanidiophyceae. It has been widely hypothe-
sized that the merA gene has been transferred multiple
times into the Cyanidiophyceae lineage, for example,
once each in the Cyanidiales and Galdieriales clades
(Figure A19F; Cho et al., 2023; Rossoni et al., 2019;
Schonknecht et al., 2013) and that it performs its func-
tion without the need for other genes in the prokaryote
mercury detoxification pathway (Figure 1). The latter
idea is consistent with our results because merA fol-
lows a pattern of marked differential expression at the
onset of mercury(ll) exposure that is characteristic of a
gene that is responding to an acute stressor (Figure 2)
and in the WGCNA analysis, mercury(ll) reductase has
low MM (<0.8), which demonstrates that it is not tightly
coexpressed with other genes (Spreadsheet S4:
https://zenodo.org/doi/10.5281/zenodo.8377091). These
results suggest that mercury detoxification (i.e., merA)
in Galdieria is a direct response to the presence of this
toxin, which is likely to be functionally independent of
other organismal processes.

Unlike mercury, the arsenic pathway is more com-
plex and does not only involve detoxification, but also,
active and passive transport (efflux). Galdieria isolates
encode different arsenic-related genes in varying copy
numbers (Figure 1), with none of the genomes
sequenced thus far encoding all ars operon genes.
The absence of the arsR (the operon repressor) gene
from all sequenced isolates, the lack of colocalization
(i.e., neighbours of each other) of ars genes within the
genomes of these species, and the phylogenetic anal-
ysis (Figure A19) support independent (non-operon)
acquisitions of genes encoding ArsB, ArsC, ArsH,
ArsM, aquaglyceroporins and methyltransferases, and
multiple independent acquisitions of ArsA. This sug-
gests that arsenic detoxification has a complex evolu-
tionary history in this group and does not likely result
from a single HGT event involving a prokaryotic donor.
Arsenite compounds, such as the sodium arsenite in
our experiment, likely enter the cell via aquaporins
(e.g., MIP family aquaglyceroporins), bidirectional
transmembrane channel proteins that indiscriminately
take up a variety of solutes, including metalloids
(Mukhopadhyay et al., 2014; Yang & Rosen, 2016).
After gaining entry, the arsenite can encounter one of
two fates. First, it can remain chemically static and be
effluxed from the cell via the ArsA-ArsB complex,
wherein ArsA is the pump-driving ATPase that pro-
vides energy to ArsB, the transport protein, that
extrudes the arsenite (Yang et al., 2012). ArsA and B
homologues in both genomes show constitutive
expression, although one arsA (G2037) and one arsB
(G983) gene in 5572 share a highly similar pattern of
increased expression at later time points, suggesting
that the two proteins encoded by these genes are the
ArsA-B complex and their expression is linked
(Figure 2).

VAN ETTEN ET AL.

In addition, arsenite can be methylated by ArsM or
potentially, another methyltransferase (e.g., SAM-
dependent methyltransferase) (Figure 1, right panel),
converting it into the more toxic MAs(lll) which can then
be oxidized by ArsH, an NADPH-dependent FMN oxi-
doreductase, to less toxic MAs(V) or various other
organoarsenicals that can diffuse out of the cell
(Nowack et al, 2016; Qin et al, 2009; Yang &
Rosen, 2016). These observations suggest that arsenic
detoxification, either via efflux or chemical modification
in Galdieria is responsive to the presence of arsenite
compounds; however, each set of genes is also func-
tionally associated with other diverse organismal pro-
cesses (Figures 3 and A18). Taken together, these
results show that all genes encoding arsenite and mer-
cury metabolic pathways in these two algae are of HGT
origin; however, the response to mercury is more direct,
whereas the arsenite response is complex and difficult
to elucidate based on transcriptomic data alone. It is
also possible that in the natural environment, arsenic
detoxification is a communal process (see below).
Analysis of environmental metatranscriptomic and/or
metaproteomic data is needed to test this hypothesis.

The lifecycle of an HGT

Genes encoding processes related to arsenic or mer-
cury tolerance fall under the category of ‘operational’
genes, because they carry out specific functions, such
as detoxification or metabolism. In contrast, ‘informa-
tional’ genes function as part of tightly linked protein—
protein interaction and signalling networks such as
transcription and translation (Jain et al., 1999;
Schoénknecht et al., 2014). The ‘complexity hypothesis’
posits that operational genes have higher transferability
because they are modular and do not rely on a network
of accessory genes to achieve their function (Jain
et al.,, 1999). Furthermore, the ‘continual horizontal
transfer hypothesis’ proposes that, in prokaryotes, the
HGT of operational genes is continuous over time and
argues against a few ancient instances of many trans-
fers at once (Rivera et al.,, 1998). Both hypotheses
were originally posited for prokaryotes, but aspects
hold true for HGT events in Galdieria (and likely most
eukaryotes, however, more research is needed in this
area). Specifically, the functions encoded by these
genes are operational and have multiple, independent
origins (Figure A19). The recently proposed ‘simplicity
hypothesis’ (Jones et al., 2022) is also relevant to our
study. This hypothesis invokes connectivity, defined as
the extent of protein—protein interactions of the transfer-
able gene product in its native genome, and suggests
that the connectivity of a transferable gene (which will
vary over time due to environmental constraints)
will control its rate of fixation post-HGT. The evolution
of high connectivity would render genes less
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transferable, whereas the opposite would hold for
genes with low connectivity (Figure 5).

These hypotheses, however, do not consider the
effects that ecology can have on the acquisition and
retention of HGTs. Specifically, under the simplicity
hypothesis, it would be expected that the ars genes,
which are all required for detoxification of arsenic,
would be harder to transfer than merA given that they
have developed higher connectivity in the recipient
organism, that is, Galdieria. Here, we refer to MM from
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the WGCNA analysis as a rough proxy for connectivity.
However, in contrast to merA, ars genes have a convo-
luted evolutionary history in Cyanidiophyceae. The
acquisition and retention of these genes are likely
dependent not only on their connectivity with other
genes in the recipient organism but also on their inter-
action with genes encoded by other taxa in the environ-
ment. That is, the acquisition of, for example, ars
genes, may depend on how efficiently that function can
be done by co-habiting taxa. If part of a pathway can be
performed by other organisms, then selection would
not drive the acquisition of this function in a naive
organism. As the environment and community (and by
extension functional) composition of an environment
changes, then selection would drive the acquisition of
different genes, and potentially, loss of existing genes
that have functions that can be performed by other
organisms in the community.

The integrated HGT model

The IHM extends the simplicity and complexity hypoth-
eses to eukaryotes, which have traits distinct from most
prokaryotes, such as larger genomes where HGTs may
survive intact and undergo low background expression
and fixation if they are selectively advantageous, poten-
tially followed by gene duplication and divergence

FIGURE 5 The Integrated HGT Model (IHM). We show the fates
of two different types of HGTs. The top panel shows HGT from
prokaryote to eukaryote following the introduction of an acute stressor
(its concentration over time is represented by the black gradient). To
combat this stressor requires a multigene response. This can be
accomplished by one organism possessing an operon or by splitting
up these genes among different organisms that provide some
redundancy and preserve gene product functions in the pathway.
Over time, the ongoing shared community response to the stressor
reduces selective constraints on the stress-responsive HGTs,
allowing them to gain new functions, possibly via duplication and
divergence. The reduced selective pressures also allow connectivity
to increase, and the HGT-derived genes integrate into host metabolic
networks that may or may not have functions related to the original
purpose. The stressor may diminish or fluctuate over time but having
the HGTs connected to large networks of proteins hinders loss. Over
time, diversification will increase, and new selective pressures related
to new functions will ensue. This scenario is represented by our
arsenic data. The bottom panel shows HGT from prokaryote to
eukaryote following the introduction of an acute stressor (brown
gradient) that requires a single gene response. This gene will be
retained while the stressor persists; however, the response is not
divisible, and therefore, this gene does not integrate into host
metabolic networks. If the stressor diminishes over time, the lack of
connectivity of the HGT gene products to other proteins will prevent
its preservation and the accumulation of mutations may lead to
pseudogenization. If the stressor returns but the HGT is no longer
functional, the organism will perish. Alternatively, the eukaryote may
once again acquire the gene from a prokaryote in a cycle of gain/loss
that ultimately preserves the function in the ecosystem. Image made
in Biorender.com. HGT, horizontal genetic transfer.
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(De Clerck et al., 2018; Schénknecht et al., 2014; Van
Etten & Bhattacharya, 2020). We postulate that as in
prokaryotes, operational genes with low connectivity
in the donor tend to be transferred more often, with
changes in connectivity post-transfer impacting their
fates. However, these prokaryote-driven frameworks do
not account for the processes of retention and integra-
tion of HGTs that we propose with the IHM. The IHM is
based on our findings in two detoxification pathways
which lead us to consider how community-level
response to environmental stressors may lessen selec-
tive constraints on HGTs, allowing them to explore
functional space and thus integrate into new metabolic
networks (Figure 5). However, to better understand the
linkage of ars HGTs to algal gene expression networks,
future studies should explore the responses of these
networks to other environmental changes such as light,
temperature, pH or oxidative stress. These results may
enlarge upon the functions encoded by these genes
when compared to their origin function in donor pro-
karyotes. In the case of increased connectivity following
an HGT event, as is evident for the ars genes in Gal-
dieria, the IHM suggests that due to duplications, HGT-
derived gene copies may not only become connected
to other proteins in recipient metabolic networks but
may take on new functions. This is the result of lowered
selective constraints on these genes, possibly due to
their presence and expression in other microbes in the
environment. These new functional connections reduce
the likelihood that this HGT will be lost and thus, inte-
gration leads to preservation, duplication and puta-
tively, novel functions (Figure 5, top panel).
Conversely, in the case of merA, a single, presumably
non-divisible gene is responsible for facilitating
response to the chemical stressor and thus, the HGT
remains less connected and is easier to gain and lose,
if the stressor disappears. The latter can lead to extinc-
tion if the stressor reappears or alternatively, a subse-
quent merA HGT rescues the lineage. The IHM
predicts that genes with low connectivity may show
multiple rounds of gain and loss based on the pres-
ence/absence of the stressor (Figure 5, bottom panel).
This scenario is supported by the multiple merA gene
acquisitions in Cyanidiophyceae, and the complex evo-
lutionary history of ars genes which is likely the result of
variable selective pressure from changes in community
functional composition (Figure A19).

The curious case of ArsH

The arsH gene family in Cyanidiophyceae was likely
the result of a single HGT event that underwent a dupli-
cation early in the evolution of the lineage (Figure 4).
ArsH is found primarily in bacteria, where it forms part
of some, but not all, prokaryotic ars operons (Paez-
Espino et al.,, 2009). In some organisms, ArsH is
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hypothesized to be an integral part of the arsenite
detoxification toolkit; however, its role in this pathway is
indirect and sometimes enigmatic. ArsH can reduce O,
to H>O,, which can then oxidize trivalent forms of arse-
nite compounds to pentavalent forms such as MAs(V),
which are less toxic and gaseous and can thus diffuse
out of the cell (Chen et al., 2015; Ye et al., 2007). Alter-
natively, as shown in Pseudomonas putida, ArsH may
play a more accessory role by quenching oxidative
stress caused by exposure to arsenic-containing salts
or other types of redox stressors via the reduction of
FMN by NADPH (Paez-Espino et al., 2020). All Gal-
dieria species encode two paralogues of this gene
(termed clades 1 and 2 in Figure 4). Clade 1 has
remained a single copy in all genomes, whereas clade
2 has duplicated in some genomes, such as SAG21
(four copies) but not 5572. In SAG21, the four clade
2 homologues share an identical expression pattern
with a marked transcriptional peak at TP3, coincident
with SAM-dependent methyltransferases and the puta-
tive arsM gene. All clade 2 paralogues from SAG21 are
grouped into the same WGCNA module (Turquoise,
Figure 3) and are strongly coexpressed with
translation-associated and ribosomal protein-encoding
genes. This may indicate increased protein turnover
caused by arsenic stress or alternatively, that ArsH is
taking on a second function that is linked with well-
conserved informational genes that thus, aids in the
preservation of the HGT. This is an example of
increased connectivity driving altered function (IHM).
Furthermore, the two SAG21 clade 2 paralogues
(G1846 and G1510) have long branch lengths com-
pared to other members of the clade (Figure 4A) and
have a weaker transcriptomic response (i.e., are
expressed in much lower numbers) upon arsenite
exposure. This may be evidence of weakened selective
constraints on these genes that are likely undergoing
neofunctionalization. These two genes have the high-
est connectivity to native genes in the network
(Figure 3). The MSA (Figure 4B) supports this idea,
showing that both genes have lost conserved residues
of the NADP™ binding site and G1846 has an altered
phosphate binding motif for FMN.

The SAG21 clade 1 arsH paralogue (G2659) has an
expression pattern that has deviated from the other four
copies (Figure 2), suggesting it has undergone neo-
functionalization. This idea is supported by the WGCNA
results, which for SAG21 place this gene in the Royal-
Blue module (rather than Turquoise) that is composed
of a majority of photosynthesis-related genes, linking it
to cellular processes distinct from detoxification but still
relevant to the redox stress response (Figure 3). More-
over, three of the RoyalBlue photosynthesis genes are
transketolases in the pentose phosphate pathway,
which is responsible for producing NADPH (Solovjeva
et al., 2020). ArsH is a NADPH-dependent oxidoreduc-
tase, therefore this finding may represent a novel,
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beneficial function that is independent of arsenite
detoxification and consistent with the IHM. In 5572,
arsH was placed in the smaller DarkGreen module that
is largely comprised of dark genes of unknown function,
indicating that this copy may also have taken on a
novel function that cannot yet be discerned (Figure 3).

Open questions

Our study leaves several key questions open that will
require the use of newly developed genetic tools for
Galdieria (Hirooka et al., 2022). Importantly, the gene
expression data do not allow us to determine if Gal-
dieria species are using extrusion and/or detoxification
pathways for arsenite detoxification because the rele-
vant genes are all expressed. Organisms grown in
monoculture provide a narrower perspective on physiol-
ogy that may not reflect natural conditions (Figure 1C,
‘Galdieria in monoculture’). Wild Cyanidiophyceae
coexist with many other microbes, often in biofilms, in
extreme habitats. It is possible that in nature, Galdieria
spp. primarily tolerate arsenite through their functional
and conserved efflux system (ArsAB), whereas a differ-
ent microbe (one with clear ArsM activity,
e.g., Cyanidioschyzon sp., which lacks most of the
other ars genes; Yang & Rosen, 2016) methylates envi-
ronmental arsenite to MAs(lll), which reenters Galdieria
cells where ArsH can aid in detoxification (Figure 1C,
‘Galdieria in nature’). As in endosymbiosis, where
genetic drift results in gene loss, genetic transfer and
genome reduction of the endosymbiont, we see
extreme genome reduction in all Cyanidiophyceae
(Miyagishima & Tanaka, 2021; Qiu et al., 2013). This
pattern invokes the Black Queen Hypothesis, whereby
gene loss ‘in free-living organisms may leave them
dependent on cooccurring microbes for lost metabolic
functions’ and ‘can provide a selective advantage by
conserving an organism’s limiting resources, provided
the gene’s function is dispensable’ (Lee et al., 2022;
Morris et al., 2012). Implicating the Black Queen
Hypothesis lends support to the eukaryote-based IHM
because the community-level response leads to the
sharing of common goods and conserves gene product
functions on an ecosystem scale, which may foster
longer-term stability. Therefore, within eukaryotes, it is
insufficient to ascribe adaptive significance to HGTs
based only on their role in prokaryotes. Investigation of
their integration into host metabolic networks may more
fully capture the role of HGTs in driving biodiversity and
adaptation within the eukaryotic tree of life.
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APPENDIX

Preliminary growth experiments methods and
results
Methods

To determine concentrations of sodium arsenite
(NaAsO,) and mercuric chloride (HgCl,) that would
likely elicit a transcriptional response from which the
organism would recover a welled plate experiment was
devised. About 2mL of each algal strain
(G. sulphuraria 5572 and SAG21; hereinafter 5572 and
SAG21, respectively) in 2x modified Allen medium with
25 mM glucose (pH 2) was pre-diluted and then added
to each well to ensure constant concentration across
the plate (Allen, 1959). NaAsO, and HgCl, were then
added differentially to each plate column (four wells per
column; quadruplicate) to achieve the desired concen-
trations which were as follows: 10 uM, 30 pM, 50 pM,
100 pM, 300 pM, 500 pM, 1 mM, 3 mM, 5 mM, 10 mM,

G. sulphuraria 5572

VAN ETTEN ET AL.

30 mM, 50 mM and 100 mM for NaAsO,; and 10 nM,
30 nM, 50 nM, 100 nM, 300 nM, 500 nM, 1 uM, 3 uM,
5pM and 7.5 pM for HgCl,. Each set of experiments
also included a control in which algae were grown in
media without treatment and a blank that was media
with no algae or treatment. Each day, photos were
taken with the plates under controlled lighting, and opti-
cal density measurements were taken using a BioTek
Synergy 4 microplate reader. Specifically, measure-
ments of ODggg, ODggg and OD;sy were recorded
simultaneously for each well. Furthermore, subsamples
from each condition were observed under the micro-
scope every 2 days, and micrographs were taken on
Day 7. The experiments were all run at the same time
and lasted 7 days. Visual summary data can be seen in
Figure A1 below which shows photos of a single repli-
cate per day, select OD;5q values (from Days 0, 3 and
7), and select micrographs. Full charts of all ODs can
be found in Spreadsheet S1 (https://zenodo.org/doi/10.
5281/zen0do.8377091) and the growth curves from

G. sulphuraria SAG21
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FIGURE A1 Visual summary data for preliminary growth experiments in Galdieria sulphuraria 5572 (left) and G. sulphuraria SAG21 (right)

treated with NaAsO,, (top) and HgCl, (bottom). The same well from each condition was photographed each day and used to make this composite
picture. Below the well photos are select optical density (OD) data, specifically OD75o, measurements shown for Days 0, 3 and 7. Below the OD
graphs are select micrographs taken at the end of the experiment.
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FIGURE A2 Galdieria sulphuraria 5572 sodium arsenite treatment quadruplicate average OD for (A) ODggg, (B) ODggs and (C) OD7so. OD,

optical density.
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FIGURE A4 Galdieria sulphuraria 5572 mercuric chloride treatment quadruplicate average OD for (A) ODggo, (B) ODggs and (C) OD75. OD,

optical density.
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FIGURE A5 Galdieria sulphuraria SAG21 mercuric chloride treatment quadruplicate average OD for (A) ODggo, (B) ODggs and (C) OD+s5o.

OD, optical density.

each experiment are below as Figures A2—A5. Based
on colour changes of the cultures, OD fluctuations and
visual inspection under the microscope, 5 mM NaAsO,
and 3 pM HgCl, were chosen as treatment concentra-
tions for the RNA-seq experiments.

Results

For mercuric chloride, both SAG21 and 5572 were
resistant to all concentrations of mercury; however,
visual inspection of the cells and slight declines in
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FIGURE A6 RNA-seq experimental setup. For safety reasons, all arsenite experiments were run at the same time and all mercury
experiments were run at the same time but at different times. This means that for each of these experiments and each strain involved, there was
a control group and treatment group (i.e., there is not a shared control group between the two sets of experiments). Both sets of experiments
followed an identical run and sampling protocol. Each sampling effort was undertaken by a team of three people, involved 12 flasks at a time,
and took under 15 min from start to finish to ensure the minimal effect of the sampling procedure on transcription.

growth rate (measured via OD) indicated potentially slo-
wed growth at 5 and 7.5 pM. For sodium arsenite treat-
ment, both strains were resistant to arsenite toxicity
through 5 mM concentrations. 5572 perished at 10 mM
after 3 days and SAG21 perished at the same concen-
tration after 1 day. Despite the slightly higher resistance
of 5572, OD measurements showed a slowed growth
rate for Day 3 at all concentrations =300 uM. See below
for the comprehensive results of these experiments.

JGI QC pipeline

Using BBDuk (Bushnell, 2014), raw reads were evalu-
ated for artefact sequence by kmer matching
(kmer = 25), allowing one mismatch, and the detected
artefact was trimmed from the 3’ end of the reads. RNA
spike-in reads, PhiX reads and reads containing any
Ns were removed. Quality trimming was performed
using the phred trimming method set at Q6. Finally, fol-
lowing trimming, reads under the length threshold were
removed (minimum length 25 bases or 1/3 of the origi-
nal read length—whichever is longer).

Unabridged description of WGCNA results
Coexpression networks show most heavy metal
HGTs are linked to central metabolism

In SAG21, the arsA gene (encoding the arsenical
pump-driving ATPase) falls into the black coexpression
module with many other ATPases, namely the
‘archaeal ATPases’ identified by Schénknecht et al.
(2013) and further characterized by Rossoni

et al. (2019). However, the SAG21 arsA gene is on the
outside of this module and has lower connectivity to the
other genes in this group than the other ATPases have
to each other, suggesting it still has its ATPase function
but is specialized, in this case to power arsenite
(or alternatively, antimonite) efflux (Rosen et al., 1990).
Interestingly, in 5572, arsA is not associated with the
other ATPases but is coexpressed with genes of vari-
ous functions related to transcription, translation, signal
transduction, protein degradation and organelle pro-
cesses. SAG21 only contains one arsenic transporter
gene (arsB) in its genome which is in the blue module.
Here, it is coexpressed with genes encoding mainly
heat shock, transport and translation-associated pro-
teins. One arsB paralogue in 5572 (G706, coinciden-
tally also in the blue module) shares a similar functional
coexpression profile, whereas the other two paralogues
(G983 and G1659) are in the yellow and tan modules,
respectively, and are coexpressed with genes that
encode a variety of functions such as signal transduc-
tion, photosynthesis, transport, protein and lipid degra-
dation, and unknown functions.

Three arsH genes from SAG21 that passed filtering
(G286 had low module membership and was excluded)
were almost exclusively coexpressed with genes
encoding ribosomal proteins or translation-associated
functions. The fifth arsH paralogue (G2659) in SAG21
is in the RoyalBlue module and is coexpressed mostly
with photosynthesis genes. In the 5572 strain, the only
arsH paralogue (of the two encoded in the genome) to
pass filtering was G2956 (homologous to G2659 in
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FIGURE A7 PCA plots showing TreatmentTimeGroup clustering for differential expression data. From DESeq2; see Code 1 file. PCA,

principal component analysis.

SAG21) which was placed in the DarkGreen module
and is coexpressed with a smaller network of genes
that are almost exclusively dark genes of unknown
function. In SAG21, the Cyan and Tan modules contain
G1984 and G1958 (respectively), the two
SAM-dependent methyltransferase HGTs. Both are
coexpressed mainly with genes associated with redox
processes, RNA and protein metabolism, and energy
generation. This is consistent with 5572 which also has
two methyltransferases homologous to those men-
tioned above: G4419, another SAM-dependent methyl-
transferase, and G4470, annotated as dimethylglycine
N-methyltransferase. Both genes fall into the LightYel-
low module; however, G4419 did not pass module
membership filtering. G4470 is associated with genes
that encode oxidoreductases and are involved in post-
translational modification, lipid synthesis and cell cycle
regulation. Only one MIP family aquaglyceroporin
(G714 in SAG21 [brown module]) had adequate mod-
ule membership (>0.8) across both genomes. This
gene is coexpressed with a handful of dark genes, oxi-
doreductases, cell signalling and transport genes, as
well as others related to DNA and RNA processes.
Finally, arsC was analysed as its expression can be

interpreted as a type of control for our experiment
because adding arsenite to these algae should not
have triggered a marked response in the arsC gene as
it only functions to detoxify arsenate. ArsC is only pre-
sent in 5572 (in two copies, G299 and G388). G388 is
still expressed constitutively in high numbers and G299
is expressed in lower numbers but shows some differ-
ential expression, despite no arsenate being present to
induce a specific transcriptional response. Whereas
arsC in both genomes does get assigned to a WGCNA
module and pass all filtering steps (magenta in SAG21
and brown in 5572), neither of those modules was
significantly upregulated based on the WGCNA
module-trait  association heatmaps  generated
(Figure A17). Furthermore, there is not a clear func-
tional pattern in either of these modules, that is,
magenta has many different functions, and brown is
largely translation-associated but has such high con-
nectivity (even when stringently filtered) that it is hard to
parse out meaningful functional information. This indi-
rectly supports the results found for those modules dis-
cussed above that had statistically significant
(p > 0.05) module-trait eigencorrelations and the func-
tional suppositions ascribed to them.
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FIGURE A8 These figures show a heatmap of sample-to-sample distances for (A) Galdieria sulphuraria 5572 experiments and
(B) G. sulphuraria SAG21 experiments. To understand the sample labels: As and Hg indicate arsenite and mercuric chloride treatments,
respectively. The number indicates the treatment group and the letters A, B, C and D correspond to time points 1, 2, 3 and 4, respectively.
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FIGURE A9 PCA plots for samples in (A) 5572 and (B) SAG21 experiments. PCA, principal component analysis.
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Choosing a soft-thresholding power: analysis of network topology B. The soft thresholding power (B) is the number to which

the coexpression similarity is raised to calculate adjacency. The function pickSoftThreshold performs a network topology analysis. The user
chooses a set of candidate powers; however, the default parameters are suitable values. Choice of soft power threshold for (A) 5572 and
(B) SAG21. For 5572, a value of 12 was chosen, and for SAG21, a value of 8 was chosen. This is based on where the graph begins to plateau.
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(A) Gene Clustering on TOM-based dissimilarity (B) Gene Clustering on TOM-based dissimilarity
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FIGURE A12 Gene clustering based on TOM-based dissimilarity for (A) 5572 and (B) SAG21. TOM is a ‘topological overlap measure’.
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FIGURE A13 Gene dendrograms with corresponding module colours for (A) 5572 and (B) SAG21.
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(B) Gene dendrogram and module colors - SAG, Hg
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FIGURE A13 (Continued)
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FIGURE A16 Heatmap representing module-trait associations for (A) 5572 and (B) SAG21.
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FIGURE A17 Final heatmaps showing module-trait eigengene correlation. (A) SAG21 and (B) 5572. Bold values in the heatmap boxes
indicate statistically significant (p < 0.05) correlations for the treatment time group (x-axis). If an arsenic or mercury HGT of interest fell into a
module (colour, y-axis) that had a significant correlation for any time point, we investigated further; see Figures 3 and A20. HGT, horizontal
genetic transfer.
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ArsA - arsenical pump-driving ATPase
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FIGURE A19 Single amino acid phylogenies for all HGTs of interest. See methods for how they were built. All Newick tree files can be
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HGT sequences fall within these unrelated species clades. HGT, horizontal genetic transfer.
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FIGURE A20 Geographic and phylogenetic isolation of SAG21 and 5572. As shown on the left, SAG21 is from Yangmingshan National

Park in Taiwan and 5572 is from Yellowstone National Park in the United States. On the right is an un-rooted, alignment-free whole-genome k-

mer-based phylogeny of all sequenced Cyanidiophyceae, based on the Newick tree file from Van Etten, Cho, et al. (2023) and Van Etten,

Stephens, and Bhattacharya (2023).
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