Lawrence Berkeley National Laboratory
LBL Publications

Title
Python-based in situ analysis and visualization

Permalink

bttgs:ééescholarshiQ.orgéucéitemg37w6s3zj

Authors
Loring, Burlen
Myers, Andrew
Camp, David

Publication Date
2018-11-11

DOI
10.1145/3281464.3281465

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/37w6s3zz
https://escholarship.org/uc/item/37w6s3zz#author
https://escholarship.org
http://www.cdlib.org/

Python-based In Situ Analysis and Visualization

Burlen Loring Andrew Myers

David Camp E. Wes Bethel

Lawrence Berkeley National Laboratory
Berkeley, CA
{BLoring, ATMyers,DCamp,EWBethel}@Ibl.gov

ABSTRACT

This work focuses on enabling the use of Python-based methods
for the purpose of performing in situ analysis and visualization.
This approach facilitates access to and use of a rapidly growing
collection of Python-based, third-party libraries for analysis and
visualization, as well as lowering the barrier to entry for user-
written Python analysis codes. Beginning with a simulation code
that is instrumented to use the SENSEI in situ interface, we present
how to couple it with a Python-based data consumer, which may be
run in situ, and in parallel at the same concurrency as the simulation.
We present two examples that demonstrate the new capability. One
is an analysis of the reaction rate in a proxy simulation of a chemical
reaction on a 2D substrate, while the other is a coupling of an AMR
simulation to Yt, a parallel visualization and analysis library written
in Python. In the examples, both the simulation and Python in situ
method run in parallel on a large-scale HPC platform.

CCS CONCEPTS

« Software and its engineering — Massively parallel systems;
» Theory of computation — Parallel computing models; « Com-
puting methodologies — Massively parallel algorithms; Mas-
sively parallel and high-performance simulations;

KEYWORDS
Python, in situ analysis, in situ visualization

ACM Reference Format:

Burlen Loring Andrew Myers E. Wes Bethel.

2018. Python-based In Situ Analysis and Visualization. In ISAV: In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV
’18), November 12, 2018, Dallas, TX, USA. ACM, New York, NY, USA, Article 4,
6 pages. https://doi.org/10.1145/3281464.3281465

David Camp

1 INTRODUCTION

There is an increasing interest in being able to leverage a large
and growing body of useful Python-based analysis and visualiza-
tion tools, and to take advantage of these capabilities in an in situ
context. While there is some limited progress in this area, our ap-
proach is infrastructure for a Python-based analysis endpoint in
the SENSEI in situ infrastructure. The idea is that a simulation code
is instrumented once with the SENSEI interface, and can then at
runtime switch between any number of different in situ "backends",

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

ISAV ’18, November 12, 2018, Dallas, TX, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6579-6/18/11...$15.00
https://doi.org/10.1145/3281464.3281465

and that the work we present here offers the possibility of new
in situ backends that are based on Python.

The contribution of this work is the design of a new Python-
based in situ back end for the SENSEI infrastructure, along with two
examples that show this methodology in use on a large-scale HPC
platform. These examples show diversity in terms of simulation
type, data model being generated, and the use of a combination
of user-provided Python analysis code as well as two different
popular third-party Python libraries for analysis and visualization.
In addition, we present results of a preliminary effort that aims
to shed light on a performance analysis of this new Python-based
in situ approach.

2 PREVIOUS WORK

Virtually all major in situ infrastructures, e.g., ADIOS [8], ParaView
Catalyst [3, 15], VisIt Libsim [5, 17], SENSEI [2] through Libsim and
Catalyst, and Ascent [6], provide some form of support for Python
use by employing one of two approaches. In one, a framework
exposes capabilities through a set of wrapped objects or functions
that can be used in Python programs. Frameworks that embed an
interpreter can then use Python code to configure in situ analysis
and processing. In the other, the framework provides a channel to
inject user supplied Python code directly into an analysis pipeline
written in C++. Here, user supplied Python codes have direct access
to simulation data and can apply the full gamut of Python analysis
capabilities to do the heavy lifting in the analysis.

Both Libsim and Catalyst provide Python wrapped proxy objects
for control and configuration, but these do not have access directly
to data. In both, the control and configuration Python scripts can be
automatically generated by recording a series of actions in the GUL
Libsim’s Python features have been successfully used to control
and configure large scale in situ analysis [12]. With its server side
embedded interpreter and Python programmable filter, Catalyst has
the capability to run user provided Python code that is written to
map to VTK’s pipeline abstraction so as to have direct access to the
simulation data [11]. Ascent [6] is a many-core capable lightweight
in situ visualization and analysis infrastructure being developed
in conjunction with VTK-m [10]. In addition to providing access
to VTK-m’s many core accelerated algorithms, Ascent embeds a
Python interpreter and can run user provided code that has direct
access to the simulation’s data.

SENSEI [2] is a lightweight, generic in situ interface providing
normalized access to a diverse set of analysis back ends via a simple
API and rich data model, and that has been shown to scale to over
1M cores [1]. With no coding changes, a simulation instrumented
with the SENSEI interface has runtime-switchable access to multiple
in situ backends, such as Libsim, Catalyst, ADIOS, VTK-m, and a
host of others. The work in this paper details the design of a new

https://doi.org/10.1145/3281464.3281465
https://doi.org/10.1145/3281464.3281465

ISAV 18, November 12, 2018, Dallas, TX, USA

Python based analysis backend for SENSEI that gives user-provided
Python code direct access to simulation data for in situ analysis.

3 DESIGN AND IMPLEMENTATION

After a review of the SENSEI interface design (§3.1), we present the
design pattern (§3.2) for our Python in situ infrastructure, which is
part of the SENSEI infrastructure. This design pattern accommo-
dates embedding the Python interpreter (§3.2.1), accommodating
user-supplied Python code (§3.2.2), provides for runtime initializa-
tion of variables in the Python code (§3.2.3), accessing simulation
data from within the Python code (§3.2.4), parallel execution of
Python code (§3.2.5), and error handling (§3.2.6).

namespace sensei {
class PythonAnalysis :
{
public:

void SetScriptFile(const std::string &file);

void SetInitializeSource(const std::string &code);

public AnalysisAdaptor

int Initialize();

int Execute(sensei::DataAdaptor *da) override;
int Finalize() override;

b

}

Listing 1: The PythonAnalysis class.

3.1 The SENSEI In Situ Interface

SENSEI generically presents in situ methods to simulations through
its AnalysisAdaptor APIL Analysis codes then access simulation
data structures through SENSEI’s DataAdaptor APL A “bridge” code
integrates SENSEI into the simulation, manages the adaptors and
periodically invokes the analysis. Via an XML configuration file,
SENSEI enables the simulation to select between different analysis
back ends at run time.

SENSEI’s data model is based on the VTK data model. The VTK
data model supports a wide variety of mesh based data ranging
from unstructured finite element meshes to AMR hierarchies and
includes support for non-geometric data, such as tables, graphs,
and array collections. Critically, the VTK data model also supports
zero copy data transfer including zero copy mapping to and from
structure-of-arrays (SOA) and array-of-structures (AOS) layouts,
which enables simulations using one layout to work efficiently with
an analysis requiring the other.

3.2 Core Design Pattern

For our Python based in situ solution, called the PythonAanalysis,
we are primarily interested in SENSEI’s AnalysisAdaptor AP, which
consists of two virtual methods, Execute and Finalize, for which
we must provide implementations. Integration into SENSEI’s Confi-
gurableAnalysis, which selects the analysis back end at runtime via
a user provided XML configuration file, requires implementation of
anon-virtual Initialize method and a snippet of code to parse user
provided XML tags from which run time configuration is received.
The class for these is shown in Listing 1.

B. Loring et al.

3.2.1 Embedding Python. The PythonAnalysis embeds a Python
interpreter, which is used to run user provided analysis code. We
forward calls made to SENSEI’s C++ AnalysisAdaptor API to user
provided functions written in Python. This strategy allows us to
manage the compile and run time complexity associated with the
embedded interpreter in a way that is invisible to the simulation.
Our solution can be used from C, C++, and Fortran simulations
without those codes having any knowledge of Python internals.

3.2.2 User supplied analysis code. The PythonAnalysis forwards
calls from SENSEI’s C++ AnalysisAdaptor API to three user pro-
vided Python functions: Initialize, Execute, and Finalize. The
three functions are contained in a script file that is passed as an
argument to the PythonAnalysis class. During initialization, the
PythonAnalysis class reads the user Python script file on rank 0,
and then broadcasts that script to all other ranks. No specific action
is required on the part of the user Python code for this to happen.
The function signatures are shown in Listing 2.

def Initialize():

your initialization code here
return

def Execute(dataAdaptor):
your in situ analysis code here
return

def Finalize():
your tear down code here
return

Listing 2: Python user interface, were user supplied Python
code.

3.2.3 Runtime configuration. We have exposed the PythonAnalysis
through SENSEI’s ConfigurableAnalysis. The ConfigurableAnalysis
allows users to select one of the analysis back ends at run time via
an XML configuration file. Example XML is shown in listing 3.

<sensei>
<analysis type="python" script_file="area_above.py"
enabled="1">
<initialize_source>
threshold=1.
mesh="mesh"'
array='data'
cen=1
</initialize_source>
</analysis>
</sensei>

Listing 3: ConfigurableAnalaysis XML for the PythonAnalysis.

In order to avoid hard-coding runtime parameters that might
be vastly different between different simulation runs, we provide
a second channel called initialization source to inject and execute
source code into the interpreter. This channel is only used for
initialization, and as a result, is only run once at start up. This
channel can be used to set global variables that control execution
of the user defined analysis script. Once the initialize source has
been run, the user provided Initialize function is invoked.

Python-based In Situ Analysis and Visualization

3.24 Accessing data during analysis. During a simulation run, the
simulation periodically invokes the analysis back end passing a
data adaptor instance, which enables the analysis to access the data
it needs from the simulation. In our case, when the C++ imple-
mentation’s Execute override is called, it creates a SWIG wrapped
instance of the data adaptor passed to it, builds an argument list
containing the wrapped adaptor instance, and invokes the user
supplied Python Execute function. The Python analysis code uses
the wrapped data adaptor to query metadata and then selectively
access data objects containing the desired set of arrays. The data
adaptor returns a VTK-wrapped vtkDataObject instance. The user
Python code makes use of VTK’s numpy_support module to access
simulation data. This is shown in Listing 4.

3.25 Parallel analysis. In a parallel analysis, the user-provided
Python code may need to use MPI for interprocess communication.
SENSEI uses an isolated MPI communication space, which can
be overridden by the simulation if desired. The communicator is
accessible in the Python script via a global variable named comm.

Since many parallel simulations make use of ghost zones, the
corresponding analysis methods will require access to them for
their computations. SENSEI has adopted the ghost zone convention
now used by both ParaView and VisIt[7, 16]. SENSEI’s DataAdaptor
provides methods for querying the presence of ghost zones and
accessing mask arrays identifying them. Listing 4 shows an exam-
ple of using the ghost zone mask array to do selective analysis
computations.

3.2.6 Error handling. Error reporting and handling in Python is
typically accomplished via exceptions. In our C++ code, after every
invocation of user provided sources we check for a Python excep-
tion using the Python C-API. When one is detected we obtain the
Python stack, construct an informative error report, and return an
error code giving the simulation a chance to shutdown or disable
the failing analysis.

4 RESULTS

We focus our evaluation of the new PythonAnalysis capability in
the following ways. First, we show that the new method is usable by
parallel simulations, and the examples in the following subsections
show operation, in situ and in parallel, at up to 4096-way concur-
rency on two large HPC platforms, Cori and Edison, at NERSC, by
two different codes and with two different Python-based in situ
backends. Second, each of these case studies show use of both a
custom user-analysis method written in Python as well as use of
popular third-party Python libraries. Third, we present results of a
preliminary effort that aims to shed light on a performance anal-
ysis of this new Python-based in situ approach. Finally, we show
the ability to accommodate a diversity in data models, where one
producer generates a uniform, structured mesh, while the other
generates an Adaptive Mesh Refinement (AMR) mesh.

4.1 Case Study 1: Parallel Rendering with Yt

In this first case study, we use the PythonAnalysis adaptor to enable
the in situ visualization of an AMR-based simulation using yt [14], a
Python-based visualization and analysis toolkit for volumetric data
that has been used in domains such as astrophysics, seismology,

ISAV ’18, November 12, 2018, Dallas, TX, USA

import numpy as np, matplotlib.pyplot as plt
from vtk.util.numpy_support import *
from vtk import vtkDataObject, vtkCompositeDataSet

default values of control parameters
threshold = 0.5

mesh = "'

array = ''

cen = vtkDataObject.POINT

out_file = 'area_above.png'

times = []

area_above = []

def pt_centered(c):
return ¢ == vtkDataObject.POINT

def Execute(adaptor)
get the mesh and arrays we need
dobj = adaptor.GetMesh(mesh, False)
adaptor.AddArray(dobj, mesh, cen, array)
adaptor.AddGhostCellsArray(dobj, mesh)
time = adaptor.GetDataTime()

compute area above over local blocks

vol = 0.

it = dobj.NewIterator()

while not it.IsDoneWithTraversal():
get the local data block and its props
blk = it.GetCurrentDataObject()

get the array container
atts = blk.GetPointData() if pt_centered(cen) \
else blk.GetCellData()

get the data and ghost arrays

data = vtk_to_numpy(atts.GetArray(array))

ghost = vtk_to_numpy(atts.GetArray('vtkGhostType'))
compute the area above

ii = np.where((data > threshold) & (ghost == 0))
vol += len(ii[@])#*np.prod(blk.GetSpacing())

it.GoToNextItem()
compute global area
vol = comm.reduce(vol, root=0, op=MPI.SUM)

rank zero writes the result

if comm.Get_rank() == 0:
times.append(time)
area_above. append(vol)

def Finalize():

if comm.Get_rank() == 0:
plt.plot(times, area_above, 'b-', linewidth=2)
plt.xlabel('time')
plt.ylabel('area')
plt.title('area Above
plt.savefig(out_file)

return 0

'%(threshold))

Listing 4: Example of accessing simulation data and ghost
zone data. Analysis that computes the area where a field ex-
ceeds a threshold.

nuclear engineering, molecular dynamics, and oceanography. Yt
uses Numpy arrays to represent the data on a given patch and heav-
ily leverages Cython [4] for expensive tasks such as pixelization,
box intersections, and volume rendering. To enable in situ visual-
ization using SENSEI we created a new code frontend for Yt that
maps between the VTK-based data model returned by SENSEI’s

ISAV 18, November 12, 2018, Dallas, TX, USA

area

B. Loring et al.

Area Above 1.00

800000

600000 -

400000 -

200000 4

time

Figure 1: The reaction rate on a planar substrate as computed in the miniapp is shown here at simulation time 1, including an
iso-line of 1 in black (left). At each time step the in situ analysis computes the area of the substrate where the reaction rate is
greater or equal to 1. The area is accumulated and plotted at the end of the run (right).

Projected Comp 0 ey

Figure 2: A slice through the simulation domain made with
Yt showing the advection of scalar field through a vortex-
like velocity field. The over-plotted boxes represent the
AMR patches used for parallel domain decomposition.

data adaptor and the internal classes used by Yt to represent AMR
hierarchies.

For most operations on patch-based AMR data, Yt uses demand-
driven data access along with a grid-based approach to domain
decomposition, in which each MPI process is assigned a set of AMR
patches to work on. To enable in situ visualization with SENSEL we
simply instructed Yt to use the same communicator and box-process
assignment mapping as the running simulation. This ensured that
whenever Yt’s plotting routines tried to access the Numpy arrays
corresponding to a given patch, that data would already exist in
memory without the need for additional communication.

For the simulation code, we used AMReX, a software framework
for parallel block-structured AMR calculations. We added SENSEI
instrumentation to AMReX’s AMR library, exposing information

about the state variables and AMR Hierarchy. To test both the
analysis and data adaptors, we ran the simulation for 236 time
steps on 256 cores on Cori, using a base grid of 1282 and 3 levels of
refinement with a refinement ratio of 2. Each time step, we used
Yt to generate a slice through the simulation in situ and saved the
resulting image to disk. An example slice is shown in figure 2.

4.2 Case Study 2: Proxy Reaction Rate Analysis

In this case study, the simulation, or data source, is the oscillator
miniapp that is part of the SENSEI software distribution, available at
the SENSEI project website [13]. We configured this miniapp with
256 randomly positioned and initialized harmonic oscillators on a
163842 plane. This configuration serves as a proxy for a simulation
of a chemical reaction on a 2D substrate where the output represents
the reaction rate. Data generated by the miniapp at simulation time
1 is shown on the left of Figure 1 including an iso-line of 1. We ran
this miniapp at four concurrency levels (512, 1024, 2048 and 4096
cores) on Edison for 100 timesteps, and invoked the in situ analysis
method at each timestep. For each simulated time step we calculate
the area of the domain where the reaction rate exceeds a given
threshold, here set to 1, and accumulate the value over all timesteps.
At the end of the run we use matplotlib to generate the x-y plot
shown in the right of Figure 1, which shows the time-evolving area
computation. The complete analysis code for this example is shown
in Listing 4, and it uses the XML configuration shown in Listing 3.

4.3 Preliminary Performance Analysis

One well justified concern with using interpreted-language tools
such as Python on HPC systems is the potentially high cost of
startup, which is due to the need to load many different shared
libraries and packages in an on-demand fashion. A common so-
lution to this problem is to stage the needed files on a locally
mounted filesystem, such as the approach described by MacLean et
al., 2017 [9]. While solving this problem is well beyond the scope
of this paper, we have collected some preliminary performance
numbers for our second case study in which we vary the number of

Python-based In Situ Analysis and Visualization

Total Run Time

---- ideal
=0~ measured

1000 A
900
800

700
600

500

400

Time (seconds)

300

200 S

512 1024 2048 4096
Number of Cores

Figure 3: Total run time as a function of compute cores.

Average Initialize, Execute and Finalize Time

102 J
=0~ |Initialize
=0O- Execute ~— 2
=0~ Finalize — ___z====="
101 <4
o
°
=
o
o
?
@ 100 4
E
[
10*1 4
— — 5 O/O

512 1024 2048 4096
Number of Cores

Figure 4: Average initialization time as a function of com-
pute cores.

compute cores from 512 up to 4096 in 4 runs. In each run, in addition
to the total run time, we measure the time spent in the Initialize, Ex-
ecute, and Finalize methods. Measurements are made from the C++
layer in the ConfigurableAnalysis class so that all of the relevant
overhead, such as Python interpreter initialization, script loading,
and conversions of data structures from C++ to Python, is captured.

Figure 3 shows total run time as a function of compute cores
(solid blue line). We observe that scaling is less than ideal as in-
dicated by deviation from the perfect scaling line (dashed black
line). Figure 4, which shows the average initialize (red line), execute
(green line), and finalize (cyan line) time as a function of compute
cores, sheds some light on the situation. With increasing compute
cores the average finalize time is approximately flat, the average
execute time increases slightly, however, the average initialization
time increases linearly. Doubling the number of compute cores

ISAV ’18, November 12, 2018, Dallas, TX, USA

nearly perfectly doubles initialization times across the range of
cores used here.

While this performance data is helpful in understanding the
one-time and recurring runtime costs of a modest-sized case study,
there are a number of interesting questions that remain. These
include the relative performance difference of Python-based and
compiled-language in situ methods in terms of both runtime and
memory footprint. Such a study would be useful, and is beyond the
scope of this paper.

5 CONCLUSION

Our work enables in situ use of a rapidly growing body of Python-
based analysis and visualization methods. SENSEI’s new Python-
Analysis can accommodate user-supplied Python code as well as
use of third-party Python libraries for analysis and visualization.
We have demonstrated this capability with two different example
simulation codes and two different sets of Python-based analysis,
running at modest concurrency on a modern HPC platform. This
work serves as a starting point for others who desire to create, use,
and deploy Python based in situ methods, and part of the open
source SENSEI software distribution [13].

Future work will focus on studying and improving performance
at scale, as well as development and deployment of new Python-
based in situ methods for use by computational science projects.

ACKNOWLEDGEMENT

This work was supported by the Director, Office of Science, Office
of Advanced Scientific Computing Research, of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231, through the
grant “Scalable Analysis Methods and In Situ Infrastructure for
Extreme Scale Knowledge Discovery”, program manager Dr. Laura
Biven. This research used resources of the National Energy Research
Scientific Computing Center, a DOE Office of Science User Facility
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

ISAV 18, November 12, 2018, Dallas, TX, USA

REFERENCES

[1] Utkarsh Ayachit, Andrew Bauer, Earl P. N. Duque, Greg Eisenhauer, Nicola

[10

[11

[12

[13

[14

[15
[16

[17

]

]

]

Ferrier, Junmin Gu, Kenneth Jansen, Burlen Loring, Zarija Luki¢, Suresh Menon,
Dmitriy Morozov, Patrick O’Leary, Michel Rasquin, Christopher P. Stone, Venkat
Vishwanath, Gunther H. Weber, Brad Whitlock, Matthew Wolf, K. John Wu,
and E. Wes Bethel. 2016. Performance Analysis, Design Considerations, and
Applications of Extreme-scale In Situ Infrastructures. In ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis
(5C16). Salt Lake City, UT, USA. https://doi.org/10.1109/SC.2016.78 LBNL-
1007264.

Utkarsh Ayachit, Brad Whitlock, Matthew Wolf, Burlen Loring, Berk Geveci,
David Lonie, and E. Wes Bethel. 2016. The SENSEI Generic In Situ Interface.
In Proceedings of In Situ Infrastructures for Enabling Extreme-scale Analysis and
Visualization (ISAV 2016). Salt Lake City, UT, USA. https://doi.org/10.1109/ISAV.
2016.13 LBNL-1007263.

Andrew C. Bauer, Berk Geveci, and Will Schroeder. 2015. The ParaView Catalyst
User’s Guide v2.0. Kitware, Inc.

Stefan Behnel, Robert Bradshaw, Lisandro Dalcin, Mark Florisson, Vitja Makarov,
and Dag Sverre Seljebotn. [n. d.]. Cython: C-extensions for Python. http://www.
cython.org. Last accessed: Aug 2018.

Hank Childs, Eric Brugger, Brad Whitlock, Jeremy Meredith, Sean Ahern, David
Pugmire, Kathleen Biagas, Mark Miller, Gunther H. Weber, Hari Krishnan,
Thomas Fogal, Allen Sanderson, Christoph Garth, E. Wes Bethel, David Camp,
Oliver Riibel, Marc Durant, Jean Favre, and Paul Navratil. 2012. VisIt: An End-
User Tool for Visualizing and Analyzing Very Large Data. In High Performance
Visualization—Enabling Extreme-Scale Scientific Insight, E. Wes Bethel, Hank
Childs, and Charles Hansen (Eds.). CRC Press/Francis-Taylor Group, Boca Ra-
ton, FL, USA, 357-372. http://www.crcpress.com/product/isbn/9781439875728
LBNL-6320E.

Matthew Larsen, James Ahrens, Utkarsh Ayachit, Eric Brugger, Hank Childs, Berk
Geveci, and Cyrus Harrison. 2017. The ALPINE In Situ Infrastructure: Ascending
from the Ashes of Strawman. In Proceedings of the In Situ Infrastructures on
Enabling Extreme-Scale Analysis and Visualization (ISAV’17). ACM, New York,
NY, USA, 42-46. https://doi.org/10.1145/3144769.3144778

Dan Lipsa and Berk Geveci. 2015. Ghost and Blanking (Visibility) Changes.
https://blog kitware.com/ghost-and-blanking-visibility-changes/. Last accessed:
Aug 2018.

Qing Liu, Jeremy Logan, Yuan Tian, Hasan Abbasi, Norbert Podhorszki, Jong Youl
Choi, Scott Klasky, Roselyne Tchoua, Jay Lofstead, Ron Oldfield, et al. 2014. Hello
ADIOS: the challenges and lessons of developing leadership class I/O frameworks.
Concurrency and Computation: Practice and Experience 26, 7 (2014), 1453-1473.
Colin A. MacLean, HonWai Leong, and Jeremy Enos. 2017. Improving the Start-
Up Time of Python Applications on Large Scale HPC Systems. In Proceedings of
the HPC Systems Professionals Workshop (HPCSYSPROS’17). ACM, New York, NY,
USA, Article 2, 8 pages. https://doi.org/10.1145/3155105.3155107

K. Moreland, C. Sewell, W. Usher, L. Lo, J. Meredith, D. Pugmire, J. Kress, H.
Schroots, K. Ma, H. Childs, M. Larsen, C. Chen, R. Maynard, and B. Geveci.
2016. VTK-m: Accelerating the Visualization Toolkit for Massively Threaded
Architectures. [EEE Computer Graphics and Applications 36, 3 (May 2016), 48-58.
https://doi.org/10.1109/MCG.2016.48

Cory Quammen. 2015. Scientific Data Analysis and Visualization with Python,
VTK, and ParaView. In Proceedings of the 14th Python in Science Conference (SCIPY
2015).

Oliver Riibel, Burlen Loring, Jean-Luc Vay, David P. Grote, Remi Lehe, Stepan
Bulanov, Henri Vincenti, and E. Wes Bethel. 2016. WarplIV: In Situ Visualiza-
tion and Analysis of Ion Accelerator Simulations. IEEE Computer Graphics and
Applications 36, 3 (May 2016), 22-35. https://doi.org/10.1109/MCG.2016.62 Se-
lected for presentation in IEEE VIS session of selected Computer Graphica and
Applications Papers. LBNL-1005718.

SENSEI Project Team. 2018. SENSEI: Scalable in situ analysis and visualization,
Project website. http://www.sensei-insitu.org. Last accessed August 2018.

M. J. Turk, B. D. Smith, J. S. Oishi, S. Skory, S. W. Skillman, T. Abel, and M. L.
Norman. 2011. yt: A Multi-code Analysis Toolkit for Astrophysical Simulation
Data. The Astrophysical Journal Supplement Series 192, Article 9 (Jan. 2011),
9 pages. https://doi.org/10.1088/0067-0049/192/1/9 arXiv:astro-ph.IM/1011.3514
Utkarsh Ayachit. 2015. The ParaView Guide: A parallel visualization application.
Kitware, Inc.

Visit Users Website. 2012. Representing ghost data. http://www.visitusers.org/
index.php?title=Representing_ghost_data. Last accessed: August 2018.

Brad Whitlock, Jean M. Favre, and Jeremy S. Meredith. 2011. Parallel in Situ
Coupling of Simulation with a Fully Featured Visualization System. In Proceedings
of the 11th Eurographics Conference on Parallel Graphics and Visualization (EGPGV
’11). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 101-109.
https://doi.org/10.2312/EGPGV/EGPGV11/101-109

B. Loring et al.

https://doi.org/10.1109/SC.2016.78
https://doi.org/10.1109/ISAV.2016.13
https://doi.org/10.1109/ISAV.2016.13
http://www.cython.org
http://www.cython.org
http://www.crcpress.com/product/isbn/9781439875728
https://doi.org/10.1145/3144769.3144778
https://blog.kitware.com/ghost-and-blanking-visibility-changes/
https://doi.org/10.1145/3155105.3155107
https://doi.org/10.1109/MCG.2016.48
https://doi.org/10.1109/MCG.2016.62
http://www.sensei-insitu.org
https://doi.org/10.1088/0067-0049/192/1/9
http://arxiv.org/abs/astro-ph.IM/1011.3514
http://www.visitusers.org/index.php?title=Representing_ghost_data
http://www.visitusers.org/index.php?title=Representing_ghost_data
https://doi.org/10.2312/EGPGV/EGPGV11/101-109

	Abstract
	1 Introduction
	2 Previous Work
	3 Design and Implementation
	3.1 The SENSEI In Situ Interface
	3.2 Core Design Pattern

	4 Results
	4.1 Case Study 1: Parallel Rendering with Yt
	4.2 Case Study 2: Proxy Reaction Rate Analysis
	4.3 Preliminary Performance Analysis

	5 Conclusion
	References

