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Abstract

Emergent material properties and shape transformations of fluctuating membranes with
adhered proteins

by

Christopher James Ryan

Doctor of Philosophy in Biophysics

with the Designated Emphasis in

Computational Science and Engineering

University of California, Berkeley

Professor Phillip Lewis Geissler, Chair

Many processes that occur at biological membranes have been shown to be remarkable dis-
plays of molecular coordination and shape transformation. Despite the apparent complexity
of these processes, investigations of simplified systems have successfully characterized many
ways that these materials can self-organize. Such studies established that proteins may ei-
ther bend membranes by binding to them along curved structural domains or by inserting
into them asymmetrically. One recent study, however, showed that generic clusters of small
membrane-adhered proteins that lack these features can nevertheless remodel membranes
into highly curved shapes.

In this manuscript we use theoretical and computational methods of statistical mechanics
to elucidate how a driving force for membrane curvature emerges from the steric effects among
such adhered proteins. First, we develop a basic thermodynamic model of the experimental
system referenced above, considering the energetic penalty of membrane bending for simple
shapes while also introducing the 2-dimensional pressure of the adhered protein layer. We
show that increasing the curvature of the underlying membrane effectively increases the area
of the adhered protein layer, lowering the associated pressure and entropically stabilizing the
composite system at nonzero curvatures. To generate quantitative predictions of curvature
as a function of adhered protein concentration, we model the protein layer as a hard disk fluid
and compare these results to experimental data. We also use overdamped Langevin dynamics
simulations, again considering only volume excluding interactions among proteins, to observe
shape transformations and fluctuations of such systems in more complex morphologies. We
extend our thermodynamic model to show that cylindrical curvature becomes more stable
than spherical curvature at protein densities higher than some critical value. This critical
value becomes smaller as membrane area increases, which supports experimental observations
and explains why tubules are unstable in simulated systems, which are much smaller.
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The development of a molecular simulation model for this research was a significant
effort, and we discuss this implementation in some detail. We build upon a coarse-grained
model previously developed in our research group, however we modify its original functional
forms to be smoothly varying and thus stable for dynamical integrators. We also develop
consistent coarse-grained models for adhered proteins and for a second lipid type. We then
discuss extensions developed for future studies, methods of analysis, and relaxation time
scaling for cylindrical configurations.

Finally, we show how the adhered protein layer effectively renormalizes the original ma-
terial properties of the underlying membrane. We begin by theoretically analyzing our com-
posite membrane-protein system in the regime of small but nonzero curvature fluctuations.
This analysis yields a form identical to the standard free energy of a bare membrane but
with effective expressions for the bending rigidity, surface tension, and spontaneous curva-
ture that are dependent on the density of adhered proteins. As protein density increases, the
effective bending rigidity and spontaneous curvature reduces until the system can become
unstable. We support these predictions with molecular simulation calculations of the type
discussed earlier.

These results exemplify the ideas discussed at the start of this manuscript, demonstrat-
ing how the emergent characteristics of seemingly complex membranes can sometimes be
remarkably folded back into the basic physics of these soft materials. Moreover, since a
membrane attachment region alone is sufficient for protein clusters to produce the results
presented throughout this work, these results could characterize a new and general way that
proteins modify and sculpt membranes during various essential cellular processes.
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Chapter 1

Adaptive and transformative

responses of biological membranes: a

review

Many cellular processes demonstrate biological membranes to be stable and highly orga-
nized despite the presence of considerable environmental and intracellular noise. Membranes
must nonetheless be poised for large-scale collective transformations in response to specific
small changes in their environments, such as vesicle formation in response to ligand-receptor
binding. Here, we review recent studies on reconstituted systems that have elucidated when
and how membranes achieve such diverse responses. Experiments show that cell-like or-
ganization can require surprisingly small sets of molecular components. The often simple
physical underpinnings of this remarkable adapability are underscored by theoretical stud-
ies that recapitulate emergent responses from microscopic models with minimal molecular
detail. Together, this body of work points to the possibility that even dramatic membrane
rearrangements in cells can be viewed as exploiting rich intrinsic susceptibilities of this mul-
tifaceted material.

1.1 Cellular processes require membranes to be

stable, tunable, and transformable

Cells engineer remarkable feats of organization in space and time in order to achieve the many
processes of life. We have a particularly clear view of such phenomena at membranes due
to their quasi 2-dimensional nature and microscopy technology for imaging surfaces. Such
studies have revealed processes like the immune response, endocytosis, and cell motility
to require membranes to be both robust to molecular noise and susceptible to large scale
transformations regarding lateral organization or 3-dimensional morphology.

Through combinations of theory and experiment on such reconstituted systems, a new
perspective on membrane organization is emerging: The unperturbed state of a simple lipid



CHAPTER 1. MEMBRANE ORGANIZATION REVIEW 2

Figure 1.1: Examples of molecular organization and curvature at biological membranes.
(left) caveoli, (middle) endoplasmic reticulum, (right) mitochondrion. (All images from [1].)

bilayer does not manifest the exotic features described above, either on average or in the
course of typical equilibrium fluctuations. It is membranes’ intrinsically strong nonlinear sus-
ceptibilities that permit access to extensive rearrangement through small changes in protein-
lipid interactions.

We outline here a view of membranes as remarkable materials in which small changes
may either subtly modify or dramatically transform their characteristics. Such changes
typically include local modifications in the concentrations of specific biomolecules associated
with various processes. Though many membrane-associated molecules have been identified
and characterized, a mechanistic and physical understanding of how their interactions lead
to organization is only beginning to be understood. We suggest that experiments using
reconstituted membranes and minimal sets of proteins may provide the most promising way
to identify the requirements for cell-like organization. Such results are often also amenable
to theoretical treatment that applies and extends the principles of soft matter physics.

1.2 Curvature sorting of biomolecules at membranes

Membranes are complex mixtures whose spatial heterogeneity has functional consequences
for cells. This heterogeneity is important at several scales, from the localization of specific
molecules in small domains to large-scale segregation. Though many proteins have been
implicated in this organization, including those that expend ATP or GTP, many membrane
components have been shown to be thermodynamically driven to regions of nonzero cur-
vature. Such regions may be imposed by the environment or the internal structure of the
cell. Recently, experiments using reconstituted systems have demonstrated that the curva-
ture sorting capacity of biomolecules can be measured and defined in terms of a membrane’s
linear susceptibilities.

Several molecular characteristics of proteins, lipids, and other biomolecules can cause
them to be localized to curved membranes [2, 3]. BAR family proteins provide prominent
examples of this. These proteins feature crescent-shaped domains and generally bind to the
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membrane along their inner curve. Proteins may also have a preferred membrane curva-
ture because they insert into the bilayer asymmetrically. This insertion leads to unequal,
unfavorable lipid packing effects between leaflets when the membrane is flat. Interestingly,
recent results showed that existence of membrane anchoring domains, regardless of attach-
ment chemistry, is sufficient for targeting proteins to regions of curvature [4, 5]. Furthermore,
the kinetics of membrane attachment was shown to rely primarily on membrane rather than
protein characteristics. This reliance is because non-flat membrane configurations increase
molecular fluctuations that open binding sites for protein attachment.

Optical microscopy can be used to examine concentration differences in heterogeneously
curved membranes. Such experiments typically feature some apparatus, such as an optical
trap, for mechanically pulling a narrow tubular tether from the surface of a giant unilamellar
vesicle (GUV) [6, 3] (see Figure 1.2, top). Curvature sensitive molecules with fluorescent
probes will sort between regions on the negligibly-curved GUV surface and the highly-curved
tether. Since photon intensity measurements directly correspond to flourophore concentra-
tion, the enrichment of labeled biomolecules on the tether can be measured.

Tian & Baumgart [7] used such experiments to test the curvature sorting capacities
of both lipids and proteins. Interestingly, theoretical analysis of these data showed that
entropic effects may be appreciable enough to prevent lipid sorting even when lipids feature
a preferred curvature. The authors note that previous experiments imply that cooperativity
among lipids can produce sorting in such cases [8]. The protein cholera toxin B, in contrast,
was shown to sense curvature significantly due to its shape and to also to affect the rigidity
properties of the membrane.

Sorting analyses by Tian & Baumgart and several others are based upon the standard
description of membrane bending mechanics [10, 11]. At lengthscales on the order of ∼10 nm
or greater, the membrane may be modeled as a continuum elastic sheet of negligible thick-
ness. Geometric arguments derived by Canham and Helfrich lead to the following curvature
(free) energy for a membrane of fixed topology [12, 13]:

Fbend =

�
dA

κ

2
[2H − c0]

2 (1.1)

The bending modulus, κ, describes the stiffness of the membrane and is composition de-
pendent. H is the mean curvature at a point on the membrane (geometrically defined as
1
2 [C1 + C2], where Ci = 1/Ri are the 2 principal curvatures). The spontaneous curvature
of the membrane, c0, defines the curvature at which this expression is minimized. It can
be non-zero when the two layers are compositionally asymmetric (i.e., they contain different
numbers of molecules or contain different mole fractions of molecules with nonzero curvature
preferences).

The relationship between curvature and other material properties, such as composition,
can often be understood in the context of equation 1.1. For example, the dependence of
the bending modulus, κ, on lipid tail saturation [14], cholesterol concentration [15], and
adhered protein density [16] has been characterized in experiment. Theoretical treatment of
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Figure 1.2: (top) An experimental image in which a tubule is pulled from a GUV by an optical
trap. The BAR family protein amphiphysin 1 (denoted amph1*) is enriched on the tubule due
to its high curvature (scale bar: 5 µm). (bottom, left) Fluorescence intensity measurements
that correspond to protein enrichment on the tubule may be related to theoretical expressions
to calculate curvature sorting constants. (bottom, right) Tubule pulling force and surface
tension can be monitored via the optical trap and micropipette suction, respectively, to
measure the effect of aphiphysin 1 binding on membrane bending mechanics. (All figures
from [9], plots show low density amph1* data).

additional material properties, such as molecular inclusions [17], has sometimes been shown
to reduce to a form equivalent to equation 1.1 with analytical expressions for an effective κ

[18, 19].
Coupling between curvature and composition can also be incorporated analytically by

expressing c0 as a linear combination of the spontaneous curvatures of a membrane’s con-
stituent molecules. For a membrane composed of lipids A and B, this corresponds to defining
c0 = cAφA+cBφB, where φi is a mole fraction and ci is the spontaneous curvature of molecule
i. The mixing free energy can be described by modeling the membrane as a lattice gas [10]
and molecular interactions can also be added. With a complete description of the free
energy of the system, chemical potentials (µ = (1/N)dF

dφ
) can be derived and used to fit

sorting data between two adjoining regions at equilibrium [20]. Similar treatments were also
used to explain pearling [21] and coiling [22] morphological transformations of a particular
reconstituted membrane system featuring a high concentration of adsorbed polymers.
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1.3 Membrane curvature generation by biomolecules

Many molecules that are targeted to curved membranes can also generate curvature when
bound in high density. Several ways that proteins generate membrane curvature have been
well-established [23]. Some employ “active” mechanisms that consume chemical energy in the
form of adenosine triphosphate (ATP) or guanosine triphosphate (GTP). Dynamin, which
coils around the necks of budding vesicles and hydrolyzes GTP to pinch them off the parent
membrane, is one well-studied example. Other proteins aid in curvature generation without
expending chemical energy [3]. Some achieve this by binding the membrane along an intrin-
sically curved structural region. The crescent-shaped protein amphiphysin and several other
BAR family proteins have been attributed to bending in this manner [24]. Protein structures
may also induce nonzero curvature via asymmetric insertion of the protein within the lipid
bilayer. This insertion leads to more crowding in one leaflet than the other, which can be
relieved by adopting some nonzero curvature. For membrane spanning proteins this effect
can be achieved by, e.g., having a cone-shaped native conformation. Similarly, membrane-
associated proteins like epsin1 [25] that adsorb from the cytosol have been attributed with
curvature generation by inserting part of their structure into the hydrophobic region of the
adjacent membrane leaflet. However, curvature generation by this “hydrophobic insertion”
effect alone requires typical hydrophobic insertions to cover 10-25% of the membrane [26].
For some proteins previously shown to bend membranes, appreciable bending would require
nearly complete coverage of the underlying surface.

Similar to curvature sorting studies described above, reconstitution experiments using
mechanically manipulated GUVs interpreted using linear response theories can be used to
measure the curvature induction capacity of proteins. Recent work by Sorre et al. used
this approach to identify the crossover between curvature-sensing and curvature-inducing
concentrations of amphiphysin [9] (see Figure 1.2). Their results showed that, at low densi-
ties, the BAR family protein amphiphysin was both highly enriched on membrane tubules
and also mechanically stabilized curvature. These data showed that the tether pulling force
was proportional to the square root of the membrane’s surface tension. This relationship
corresponded to a free energy model similar to the one we described above in which c0 in
equation 1.1 is modeled as a function of the mole fraction of curvature-inducing molecules.
At higher densities of adsorbed amphiphysin, however, the tether pulling force was linearly
proportional to the membrane’s surface tension. These data were well supported by a re-
vised model that additionally considered protein-protein and protein-membrane interactions
and predicted stronger mechanical effects. Experimental observations also showed that am-
phiphysin molecules oligomerized into tubule-spanning scaffolds in this regime.
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Figure 1.3: (top) Microscopic images showing lipid domain coarsening as the temperature
is lowered below the critical point (adapted from [35], each image is approximately 50 µm
wide). (bottom)This schematic shows how a hybrid lipids containing 1 saturated fatty acid
chain and 1 unsaturated fatty acid chain (h) can act as a line-active agents, stabilizing the
domain boundary between saturated (s) and unsaturated (u) lipids (adapted from [36]).

1.4 Lateral domain formation by line tension

renormalization and criticality

Molecular organization in biological membranes also occurs in regions that are not appre-
ciably curved. For example, antigen binding by T cell receptors leads to the aggregation of
characteristic lipids and signaling proteins that ultimately initiate lymphocyte activity [27,
28]. To explain how cells achieve such clustering, the concept of lipid rafts was introduced
[29, 30]. This hypothesis suggests that basic mixing thermodynamics is sufficient to cause
biomolecules associated with particular signaling pathways to be compartmentalized into
domains. Because lifetimes and size distributions of membrane domains are difficult to con-
clusively measure in vivo [31, 32], this idea remains somewhat controversial. Nevertheless,
numerous observations of signaling complexes containing biomolecules that favor demixing,
as well as successful in vitro reconstitution of lipid rafts [33], support this hypothesis as a
common structural motif.

The formation of membrane domains from an initially de-mixed state is generally as-
sociated with an interfacial free energy penalty. This driving force has been suggested to
originate from van der Waals attractions between tails, which are typically maximized when
lipids of the same species are clustered into domains and thus produce an enthalpic driving
force for molecular aggregation (i.e., “phase separation”) [34]. This penalty is parameterized
by the line tension λ, which is defined as the free energy cost per length unit of interface.
When this penalty is significant, strong phase separation of components is favored over
collections of domains despite the entropic driving forces toward mixing.

One way domain boundaries may be stabilized is by specialized proteins or lipids that
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selectively adsorb to this interface. Their effects can often be understood to reduce, or
“renormalize,” the line tension [37, 38]. This renormalization stabilizes distributions of small
clusters analogously to how surfactants stabilize oil and water mixtures in microemulsions.
The intramolecular characteristics of these line-active agents, or “linactants,” thus favor
both membrane environments separated by the boundary. Proposed boundary-active agents
include lipids with with one fully saturated hydrocarbon chain and one partially unsatu-
rated chain [39] (see Figure 1.3), such as POPC, or proteins with similar boundary-favoring
characteristics [40].

Prominent research using reconstituted systems recently characterized how critical phe-
nomena can reduce this interfacial penalty. Results from this theory show that line tension
for such systems is a function of temperature according to λ(T ) = λ0 |(T − Tc)/Tc|µ. Here,
T is temperature, Tc is the critical temperature below which domains form, λ0 = λ(T = 0),
and µ is a critical exponent. This relationship shows that as T → Tc, line tension vanishes
and domains may form at a negligible free energy cost. Remarkably, experimental mea-
surement of these critical exponents showed a striking quantitative correspondence between
bi-component membranes and the 2-dimensional Ising model [41, 35]. This theoretical model
was originally developed to describe the statistical mechanics of ferromagnets and has since
become a cornerstone in the general study of phase transitions.

Such results also are notable because values of Tc that have been identified are typically
near physiological temperatures. This property has been observed in membranes with few
components as well as extracts from various cells [30], suggesting that biological systems
might indeed exploit this inherent physics to organize molecules. At fixed temperature,
proximity to a critical point suggests that domain size distributions could also be sensitive
to changes in the mole fractions of molecular components. Mole fractions could therefore
be tuned by cellular processes to organize and disorganize signaling molecules. Physical
considerations similar to these may also prove useful for explaining molecular co-localization
and aggregation away from the membrane. Notable examples of such aggregation phenomena
include organelles comprised of liquid-like clusters of proteins and other biomolecules, like
the nucleolus and Cajal bodies, that dynamically organize and disperse without requiring
a membrane enclosure [42]. Criticality as a possible general motif of biological organization
and long-range correlation has been proposed, but is currently a matter of debate [43].

1.5 Nonlinear responses and dramatic

transformations

Though the above examples show membranes to be stable and adaptable to small changes,
similarly modest changes may also elicit dramatic large-scale transformations between dis-
tinct material states. These nonlinear responses may endow membranes with a switch-like
behavior that helps to form mesoscale structures and organelles. To identify minimal re-
quirements for such transformations, reconstituted systems of lipid bilayers and associated
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proteins have been particularly helpful.
Phase separation is one example of a large scale change in the material character of mem-

branes. As discussed above, this can be induced in laboratories by changing the temperature
of a system below its miscibility critical temperature Tc. In cells, however, this must be in-
duced at fixed temperature for phase separation to be an organizing principle. Results by
Hammond et al. used simplified model systems to show that the cross linking of membrane
components can induce such a fixed-temperature phase separation [44]. The model mem-
brane used contained sphingomyelin, cholesterol, phosphatidylcholine, and the ganglioside
GM1. Upon addition of cholera toxin B (CTB), which cross-links GM1 molecules, phase
separation between ordered and disordered domains occurred. Addition of this component
corresponded to a shifting of the Tc from 42 to 47◦C. Later experiments showed that CTB-
induced cross linking of GM1 in lipid extracts from plasma membranes can induce raft-like
domain formation at physiological temperatures [46]. In a similar manner, a minimal system
containing components of the actin cytoskeleton has also been shown to induce phase sepa-
ration at fixed temperatures [45]. These domains were enriched in phosphatidylinositol 4,5
bisphosphate (PIP2), a lipid involved in numerous signaling pathways, suggesting that actin
could be an important inducer of signaling-related organization in cells.

Large scale transformations of membranes also occur morphologically. Though we have
discussed above several established ways proteins may induce curvature, a new and general
mechanism for membrane remodeling by steric interactions among proteins is emerging. Re-
search by Stachowiak et al. used GUVs with high densities of adhered proteins to show
that, because curved membranes effectively increase the area of the adhered protein layer,
non-flat configurations are entropically stabilized (see Figure 2.1; further discussed in Chap-
ter 2). Each protein studied had different capacities for membrane bending, however none
had intrinsically curved structures nor hydrophobic insertion regions large enough to gener-
ate the high curvature observed. Three of the proteins studied were involved in membrane

Figure 1.4: (left) Upon exposure to high concentrations of cholera toxin B (CTB), GM1-
enriched domains phase separate from surrounding lipids on the surface of a GUV (from
[44], scale bar 5 µm). (right) A schematic showing how cytoskeleton proteins (green, yellow,
and blue) concentrate PIP2 (red) in the membrane and fosters phase separation (from [45]).
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remodeling processes like endocytosis or vesicle trafficking, suggesting that this mechanism
could be of general importance in cells. Ways that cytoskeletal interactions or clathrin scaf-
folds might modulate this effect remain unexplored, however these structures could serve
to concentrate membrane bending proteins at specified in regions and enhance bending by
this effect. (Post-translational modifications of membrane-adhered proteins could serve to
dynamically enhance or diminish this effect in biological processes.) (Later work showed that
this pressure can destabilize lipid domains [47].) These results thus parallel work discussed
in Section 1.2 regarding the minimal requirements for curvature sorting, together suggest-
ing that membrane attachment regions alone are generically sufficient for both membrane
curvature generation and targeting. Further physical analysis inspired by ideas from these
results constitutes much of the rest of this thesis.

Research in cell motility provides many of the most remarkable examples of dynamical
organzation between membranes and the cytoskeleton. One of the most well studied and
universal proteins that comprise this cytoskeleton is actin [48]. Actin monomers (G-actin)
freely diffuse and are typically bound to ATP. Hydrolysis of ATP releases energy and causes
conformational changes that allow monomers to polymerize into actin filaments. Actin fila-
ments (F-actin), along with associated proteins and lipids, assemble into various dynamical
composite structures that allow cells to generate forces, transport material within the cyto-
plasm, and transform into functional shapes. Examples of such structures include filopodia,
which are membrane-wrapped bundles of actin filaments used for cell motility. Actin and
many associated biomolecules have been biochemically characterized, however relatively few
composite actin-based structures are understood mechanically and kinetically.

Results by Liu et al. [49] showed that filopodia-like structures can emerge as a result of the
combined material properties of membranes and actin. The investigated system contained
giant unilamellar vesicles (GUVs) immersed in a solution containing G-actin monomers and
proteins required for actin polymerization. Measurements showed these structures to con-
tain ∼10 filaments per filopodium and to be stable against restoring forces on the order of
piconewtons.

Theoretical examination showed how membrane and actin mechanics together cause these
structures emerge. The bending mechanics of actin filaments is well described by the stan-
dard “wormlike chain” model of semiflexible polymers. The form of this energy is

Efil = kBT
lp

2

�
L

0

����
d
2
r(s)

ds2

����
2

ds (1.2)

where L is the contour length of the polymer and s is the arc length along the filament r(s).
The persistence length, lp, parameterizes the rigidity of the polymer and is approximately
15 µm for F-actin. First, the authors used numerical calculations of equations 1.1 and 1.2
above to show that the organization of actin filaments into bundles can stabilize this total
composite system. This is because bundled configurations appreciably lower the membrane
curvature energy, offsetting the energetic cost of filament bending (figure 1.5). Similarly, the
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membrane stabilizes filopodia against higher restoring forces than previously estimated [50]
because buckling requires the additional energetic cost of bending the membrane.

Figure 1.5: (left) thin actin protrusions emerge from dentritic actin networks outside of a
GUV, scale bar 5 µm (middle) actin filaments protruding into the membrane are bundled to
reduce membrane curvature energy (right) the membrane enclosing filament bundles provides
additional structural stability since buckling requires membrane bending (adapted from [49]).

Other recent studies have provided additional examples of the ability of actin to self-
organize with associated biomolecules. Lee et al. used a larger set of components to re-
constitute filopodium-like structures and dynamically monitor their assembly via TIRF mi-
croscopy [51]. These results suggested that early stages of filopodium formation might begin
via clustering of activator proteins related to Arp2/3-based actin branching. Other remark-
able self-assembly properties observed in actin-based systems show no apparent analogue in
cells. For example, reconstitution using components of the actomyosin system, which is re-
lated to muscle contraction, produced coherent flocking motions among filaments in clusters
20 to 500 µm in diameter [52, 53]. Similar experiments using microtubules produced lattices
of vortex-like structures approximately 400 µm in diameter [54]. Closer examination of re-
sults such as these might reveal biologically important assembly features as well as inspire
the design of novel nanomaterials.

Clathrin-mediated endocytosis is another eminent example of coordinated molecular or-
ganization and curvature control at biological membranes [55]. This process provides a means
for uptake of molecules like low-density lipoprotein (i.e., “good cholesterol”), iron, various
hormones, and other signaling molecules. Receptor molecules sit within an inward-curved
pit on the cell membrane ∼100-200 nm in diameter that is stabilized by various proteins
within the cell. Among these coat proteins is clathrin, a protein with 3 “heavy” chains
and 3 “light” chains that oligomerizes to form a lattice pattern along pit reminiscent of a
soccer ball. Upon binding of the receptor’s corresponding ligand, a sequence of steps occurs
that transforms this pit into a vesicle coated with proteins which dissociate upon full vesicle
formation. The vesicle is the transferred elsewhere in the cell for further activity. The entire
process takes about 1 minute.

Despite myriad proteins taking part in this process [56], pioneering experiments showed
that stable clathrin-coated pits with a well defined size distribution require only the proteins
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epsin & clathrin along with a lipid monolayer of brain lipids containing 10% phosphatidylinositol-
4,5-bisphosphate (PIP2) [25]. This report also showed that epsin alone is sufficient for trans-
forming low curvature vesicles composed of mammalian brain lipids into tubules ∼20 nm
in diameter. More recent work showed that complete budding, scission, and vesicle forma-
tion can occur with the additional inclusion of dynamin and chemical energy in the form
of GTP [57]. Though this identifies minimal requirements for an endocytosis-like process,
other proteins shown to regulate endocytosis in cells are still likely to play important roles.
Recent characterization of the timecourse of clathrin-mediated endocytosis in live cells could
help guide further reconstitution experiments to elucidate the contributions of the actin
cytoskeleton and BAR proteins [58].

1.6 Outlook

The examples above illustrate a particularly fruitful “bottom up” approach for understanding
diverse ways membranes adapt and transform in response to small changes. Along the
way, advances have been made in both experimental techniques and theoretical descriptions
based upon soft matter physics. Though we anticipate this approach will continue to reveal
minimal requirements for increasingly cell-like organizational features, several advances will
likely need to occur before such complexity can be reached.

Developing new reconstitution technologies to study phenomena at membranes will con-
tinue to be a fruitful but challenging task. One new technique that is particularly promising
creates highly customized giant unilamellar vesicles using microfluidic jetting [59]. This ap-
paratus provides a way of independently controlling lipid composition in each leaflet as well
the vesicle’s internal contents. Such techniques could be used for studying such composi-
tional effects as well as the effect of vesicle confinement, however, several control variables
in this method remain limited. Reconstituted systems can also be a powerful way for emu-
lating interactions between cells and their environment, as shown by recent work regarding
the effect of glycan network patterns on lipid domain formation [60].

Molecular simulation has proved to be an indispensable research tool for studying mem-
branes as well as myriad subfields of soft matter [61]. These techniques are typically used
when analytical descriptions are unattainable or too complex to be insightful. However, ac-
curate simulations of biological systems can come at considerable computational expense. To
this end, many “coarse-grained” models have been developed across that abstract chemical
detail to a substantial degree while retaining correct large scale thermodynamic properties
[62, 63, 64, 65, 66]. These models have enabled studies of large scale membrane remodeling
by curved proteins [67], vesicle formation and fusion [68], the effect of cholesterol on phase
behavior [69], and much more. Though each model is tuned to accurately reproduce various
thermodynamic properties, dynamical properties may not be accurately modeled. Accurate
coarse-grained methods for dynamical simulation of membranes are available for relatively
few cases [70] and atomistic simulations are often necessary [71]. Future advances that make
simulations more accurate and larger in scale will make them an increasingly valuable tool.
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Surface tension is another material property of membranes that is emerging as an im-
portant modulator of organization. Though there have been many demonstrations of this
importance in live cells [72], relatively few studies have used minimal reconstituted systems
and so we have not highlighted this here. In one recent in vitro study, however, Staykova
et al. used a controllable elastic surface that allowed an adhered membrane to be stretched
and compressed [73]. The researchers observed that the membrane could passively fuse or
generate adjacent vesicles in order to add or remove material from the membrane, without
the aid of proteins. This tension response is analogous to that seen in caveoli in cells [74].
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Chapter 2

Steric interactions among adhered

proteins drive membrane curvature

Here, we discuss the experimental results that inspired much of this work as well as our
analysis of these results using physical modeling and simulations. Throughout this chapter
and elsewhere in this manuscript, discussions of “adhered proteins” refer to proteins that
are bound to the surface of the membrane and interact with each other only through volume
excluding interactions. Unlike previously established curvature generating proteins discussed
in section 1.3, they do not contain any appreciable insertion into the bilayer or any intrinsic
structural curvature (unless otherwise noted). Our analysis therefore isolates the newly
discovered curvature driving force that emerges from steric interactions in the adhered protein
layer.

2.1 Background & Experiments

The majority of the research presented in this thesis was inspired by the experimental dis-
coveries of Stachowiak and coworkers regarding a new driving force for membrane curvature
generation by proteins [75, 76] (see Figure 2.1). In both of these studies, researchers pre-
pared giant unilamellar vesicles (GUVs) that phase separate into 2 distinct regions at the
experimental temperature. One region was much smaller, consisting of ∼ 10% of the surface
area. These GUVs were then exposed to high concentrations of small proteins that were
selected to bind tightly to the smaller domain. The proteins studied included epsin1, an
endocytosis-related protein previously associated with membrane bending [25], his-GFP, a
histidine-tagged green fluorescent protein engineered to bind to the membranes being stud-
ied, and others. For gel phase lipid domains (bending modulus κ ∼ 200 kBT ), the domain
was remodeled into a long, stable tubule. For liquid-disordered lipid domains (κ ∼ 20 kBT ),
more similar to those found in cells, highly curved and fluctuating fingerlike structures were
formed.

These results were surprising because they defied explanation by any previously proposed
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membrane bending mechanism. The means by which collections of proteins bend membranes
has been thoroughly studied [3, 23], and proteins like those studied by Stachowiak et al.
were thought to bend membranes solely by a hydrophobic insertion mechanism (see section
1.3). However, considerations of this effect alone would require such proteins to almost
ubiquitously cover the membrane. The authors demonstrated that this is highly unlikely
by developing a novel FRET assay to estimate the packing fraction (i.e., % area coverage)
of proteins on the membrane. This showed that, even in experiments where almost all
vesicle domains formed highly curved tubules, proteins typically covered up to only 50%
of the surface (see Figure 2.3). The authors proposed that the driving force for curvature
generation originated from crowding effects among the adhered proteins. Since the second
paper studied proteins and membrane compositions highly relevant to biological systems,
these results suggest that this steric effect could be an important driving force of curvature
for cellular processes.

2.2 Thermodynamic modeling

To explain how curvature was stabilized in this system we proposed that curved membranes
effectively increase the area of the protein layer, making such configurations entropically
favorable for the composite system. This can be supported with simple theoretical argu-
ments. For example, consider equation 1.1, the Helfrich free energy model, with respect to
a single-component membrane tubule of radius R (i.e., C1 = 1/R, C2 = 0, c0 = 0 nm−1) in
combination with an adhered protein layer,

F = Fmem + Fprot
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where γ is the surface tension and A is the membrane area. The area of the adhered protein
layer can be written as Ā = A
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the proteins sterically interact (see figure 2.2). Minimizing the free energy of this composite
system with respect to R gives an expression for the tubule radius at equilibrium, R0,
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Figure 2.1: Experimental results of Stachowiak et al. In these experiments various proteins,
such as epsin1, were tested for their ability to morphologically transform nearly-flat mem-
brane domains. Each protein tested had a high affinity for attachment to this lipid domain
and thus adhered to the GUV (giant unilamellar vesicle) in high concentration. Generally,
this layer of proteins remodeled the domain into a long tubule if the domain was in the gel
phase or into highly-curved shapes is the domain was fluid phase. Curved membranes are
thermodynamically stabilized in this system because they provide more space in the adhered
protein layer and are thus entropically favorable (schematics and first 2 images adapted from
[76]; last image adapted from [75]; scale bars are 10 µm for the middle images and 2 µm for
the bottom image).

where p = −
�

∂Fprot

∂Ā

�
is the 2-dimensional pressure across the adhered protein layer. Stability

relationships show that this pressure monotonically increases with the packing fraction of
adhered proteins [77]. (Note: throughout the thesis we consider the packing fraction of
proteins, η, instead of the density. The resulting statements are thus slightly more general
since they do not consider protein size or number density in order to effectively consider only
one parameter.)

We began to study the implications of equation 2.3 by considering only volume-excluding
steric interactions among proteins on the membrane surface. This simplification corresponds
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Figure 2.2: How entropic forces within the protein layer can drive curvature. (left) In a
simple depiction of this mechanism, consider a collection of proteins adhered to the surface
of a membrane. The proteins sterically interact with each other along the dotted line through
their centers, a distance l above the membrane. When the membrane is flat, this protein
layer has the same area as the underlying membrane. When the membrane is curved, this
area effectively increases, producing an entropic favorability that becomes more significant
at higher densities of adhered proteins. (right) For a cylinder, the area of the protein layer
as a function of tubule radius is Ā = 2πR̄L = 2π(R + l)L = A(1 + l

R
).

well with the characteristics of the proteins studied by Stachowiak et al., which are expected
to have no other significant interactions (GFP does dimerize, but only in an antiparallel
configuration). For spherical proteins adhered to a surface, this assumption physically corre-
sponds to the hard disk model of fluids from classical statistical mechanics [78]. An equation
of state for the pressure of this model, the Carnahan-Starling equation, is highly accurate
for this model’s liquid state. Though the hard disk model does freeze at η = 0.723, we have
no evidence that our system of proteins adhered to fluctuating membranes freezes in either
simulation or experiment.

Song, Mason, & Stratt give a form for the d-dimensional Carnahan-Starling equation of
state [79], which for d = 2 is

βp

ρ
= 1 + bρg(σ+) (2.4)

where
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Figure 2.3: Curvature generation mechanisms at play in Stachowiak et al. [75, 76]. The plot
on the right separately considers the curvature predicted by the protein steric interactions
(left, top) described by equation 2.3 and the curvature predicted by the hydrophobic insertion
method (left, bottom) as attained from continuum mechanical strain calculations [26]. This
shows that, while both likely play a role in the observed curvature generation, at high
membrane coverage the effect discovered by Stachowiak et al. becomes most significant.
The red dotted lines in the plot correspond to experimental measurements of adhered protein
packing fractions for systems like those seen in Figure 2.2. These denote the packing fractions
measured when 50% or 90% of vesicles, respectively, form tubules.

b =
σ
2
π

2

g(σ+) =
1− αη

(1− η)2

α = 2− 2

�
4

3
−

√
3

π

�

ρ = N/Ā is the number density, β = 1/kBT , and σ is the disk (or, protein) diameter.
Throughout this thesis, any reference to results using the Carnhan-Starling equation refer
to computations of equation 2.4 as a function of packing fraction.

Though cells feature systems that are considerably more complex, the bending mecha-
nism presented here could be of general importance in biological processes. The results of the
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2012 Stachowiak et al. report consider several unmodified cellular proteins adhered to lipid
bilayers rich in PIP2 (Phosphatidylinositol 4,5-bisphosphate), a lipid concentrated in mem-
brane regions of high activity. Furthermore, these results suggest that proteins with neither
curved structures nor large hydrophobic insertions can still appreciably bend membranes,
widening the scope of curvature inducers in cells. Though some biologists have misunder-
stood this effect to become extinguished under molecular scaffolds like clathrin [80], this
interpretation should not be valid as long as there are molecular fluctuations that favor area
expansion. In fact, scaffolds could instead be a way of concentrating proteins such that this
effect is enhanced.

2.3 Simulations of shape transformations by adhered

proteins

Though the theoretical statements above elegantly support the experimental results, many
aspects of these systems cannot be examined analytically. These include shape transfor-
mation pathways and the possible coupling of morphology and phase behavior within the
protein layer. To explore such research questions we applied and extended a coarse-grained
membrane model developed within our research group [66]. These developments are discussed
in detail in Chapter 3.

Early tests of this model were conducted by starting simulations with some packing frac-
tion η of proteins adhered to a flat domain of “membrane 2” particles, which are depicted
as red spheres in figures throughout this manuscript. (Membrane 2 particles feature a re-
pulsive potential between membrane 1 particles, which are depicted as white spheres, and
also specifically adhere to the coarse-grained protein model.) Simulations were integrated in
time using overdamped Langevin (i.e., Brownian) dynamics in a zero-tension ensemble (see
section 3.8.1). In all cases tested, the domain readily adopts curvature proportional to the
density of proteins adhered. Curvature can be partially driven by line tension due to small
system sizes (see Figure 2.4 and Section 3.5.2). Budding and vesicle formation processes are
observable beyond some density for systems of considerable size (see Figure 2.5). Though
simulations like these could provide insight into vesicle sculpting processes, our model does
not resolve individual lipids and thus cannot characterize the molecular rearrangements that
are likely to be important for vesicle detachment transitions in experimental systems.

We also performed exploratory tests in which a fixed amount of proteins was adhered
at various densities evenly to the surface of a small vesicle (see Figure 2.6). Simulations
were then run to observe the equilibrium morphologies into which these systems relaxed.
Interestingly, spherical vesicles with very high densities of proteins were not observed to
transform to higher curvatures, as predicted using theoretical arguments presented above.
However, when vesicles were begun in such configurations (in, e.g., a spherocylindrical shape),
high curvature was stable and these vesicles did not expand into spheres. This result provides
some evidence that shape transformations could involve free energy barrier crossing events



CHAPTER 2. EXPERIMENT & THEORY 19

Figure 2.4: Physically realistic values of line tension can drive curvature in small systems.
(left) This microstate from a membrane domain simulation with no proteins adhered exem-
plifies how appreciable curvature in the domain can become probable due to reductions in
line tension free energy. (right) With high densities of proteins adhered, higher curvatures
than those predicted by arguments discussed in section 2.2 can be achieved because the
cinching seen here reduces the domain boundary. Above, η = 0.32 when the membrane is
flat and changes with curvature throughout the trajectory.

in our model.
For all tests described above, as well as many others, we always observed membranes

adopting spherical curvature (i.e., curvature that is typically symmetric about a point on
the surface). These results are in contrast with the apparent observations from Stachowiak
et al., which seemed to show membranes adopting tubular membrane shapes. We discuss
this discrepancy in the following section.

2.4 Spherical vs. spherocylindrical curvature

Stachowiak et al.’s results appear to show tubules as the dominant morphology generated
in their systems. This preference is most clear in the earlier publication [75] where the
membrane protrusion has a distinct and stable directionality (see Figure 2.1). In the second
work, though morphologies are more complex, cryo-electron microscopy was used to observe
tubules below the diffraction limit of fluorescence microscopy. Despite these observations,
in simulation the spontaneous formation of tubular or spherocylindrical shapes remained
elusive.

To begin to understand the conditions under which tubules are more stable than spheres
we computed the total free energy of these shapes using our model,
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Figure 2.5: At considerably high densities of adhered proteins (here, η = 0.42 when the
membrane is flat and changes with curvature throughout the trajectory) vesicle formation
can be readily observed by the mechanism discussed here. This is aided somewhat by the
line tension driving force discussed in section 3.5.2. These screenshots also how display fluc-
tuation modes of a characteristic length scale amplify due to substantial membrane tension
during the vesicle formation trajectory.

F = Fmem(A,R) + Fprot(Ā, η)

=

�
dA

�
κ

2

�
1

R1
+

1

R2
− c0

�2
�
−

�
dĀ p (2.5)

For consistent shapes like spherocylinders or spheres, the curvature radius R is constant
over the membrane surface and the integrals above become simple expressions,

�
dA = Asphere = 4πR2

�
dA = Aspherocyl = 2πRL+ 4πR2

Similarly for the protein layer area, if we assume that the pressure is constant across the
protein layer surface,
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Figure 2.6: Observed final morphologies depend on starting configurations during the sim-
ulation period. (left) A vesicle with adhered proteins, started in a spherical configuration.�

Nprot

Amem
= 0.93 prots/σ2

�
. Assuming that this geometry is still approximately spherical, the

radius is ∼ 32.5 nm and the protein layer packing fraction is η ≈ 0.636. (right) A vesicle

with adhered proteins, started in a spherocylindrical configuration
�

Nprot

Amem
= 0.80 prots/σ2

�
.

Though these systems feature similar numbers of proteins per membrane area, they do not
reach similar configurations or curvatures during the simulation period. The spherical con-
figuration in particular displays a curvature lower than predicted given the high density of
proteins adhered. This may indicate that a sphere-to-spherocylinder transition requires a
rearrangement of particles that is improbable on the timescale observed.

�
dĀ = Āsphere = 4π(R + l)2

= 4π
�
R

2 + 2Rl + l
2
�

= Asphere

�
1 +

2l

R
+

l
2

R2

�

�
dĀ = Āspherocyl = Ātube + Āsphere

= 2π(R + l)L+ 4π(R + l)2

= Atube

�
1 +

l

R

�
+ Asphere

�
1 +

2l

R
+

l
2

R2

�

= (A+ 4πRl)

�
1 +

l

R

�

We can determine which geometry has lowest shape by determining a form for p in
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equation 2.5. However, we have 2 simultaneous equations for the pressure as a function of
curvature radius, which we must solve self consistently. The first comes from minimizing
equation 2.1 with respect to R0 and solving for p.

pspherocyl(R) =
κA

AlR− 4πlR3

psphere(R) =
4κ

σ (R + l)

The second arises because the pressure of the protein layer is dependent on its area Ā,
which is determined by geometry. We attain this by applying the Carnahan-Starling equation
once again to get pCS(η), where η is a function of the radius,

pspherocyl(R) = pCS

�
η(R) =

Npro Apro

A(1 + σ

R
+ σ2

R2 )

�

psphere(R) = pCS

�
η(R) =

NproApro

(A+ 4πRl)(1 + l

R
)

�

where Apro is the projected area of a single protein and we have noted that the packing
fraction η(R) = NproApro

Ā(R)
.

Using this simple model, we determined which of the 2 geometries has the lowest free
energy and then plotted the curvature radius of this geometry as a function of η (Figure 2.7).
Though this does not accurately predict observations in our simulation – spherocylinders
are seemingly predicted where only spherical shapes are observed – some useful trends are
evident. Most importantly, it shows that tubules become more stable as the system size
increases. This finding is reasonable because, for a spherocylinder with a given curvature
radius R, as Amem increases there is a higher ratio of cylindrical to spherical curvature in such
vesicles. Cylindrical morphologies are favorable since they have half of the mean curvature of
spherical morphologies (i.e., one of the principle curvatures in equation 1.1 is equal to zero).
This supports the observed discrepancy that tubules are harder to observe in simulations,
which are much smaller than experiments.
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Figure 2.7: Simple modeling suggests that spherocylindrical vesicles become more stable
than spheres as η and Amem increase and as κ decreases. The top 4 plots were made by
computing the total free energy for both spheres and tubules, then plotting the curvature
radius of the shape with the lowest free energy. Inset images in 3 of these upper plots
show simulations or experiments of system conditions corresponding to the plot parameters,
however these do not necessarily exhibit accurate agreement. Upper two images are from
Figure 2.6, center right image is from experiments in [75] (η unknown). In the bottom 2
plots, we use the methods above to predict morphological phase diagrams for κ = 20kBT
and 200kBT (typical fluid phase and gel phase rigidities) as a function of Amem and η.
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Chapter 3

Brownian dynamics simulations of

fluctuating membranes at large

lengthscales

3.1 Motivation

Numerical simulation has become an indispensable tool for examining the material properties
of membranes and other soft materials. Such techniques are commonly used when theoretical
models are challenging or impossible to analyze theoretically in ways that address research
questions of interest. Though there has been some success in the direct hydrodynamical
simulation of the approximated Helfrich free energy and other physical models [70], compu-
tational studies of membrane biophysics typically employ some form of molecular simulation
such as Metropolis Monte Carlo or molecular dynamics [61].

There are a great variety of coarse-grained models available for molecular simulation of
membranes [81]. At the highest levels of detail the membrane is resolved atomistically as
a collection of lipid molecules self-assembled into a bilayer and surrounded by water and
ions. However, the great computational cost of such models prohibit their use for many
applications. This challenge has influenced the development of other models that abstract
chemical detail at the cost of some physical properties. For example, coarse-grained lipid
models in which the carbon chains of lipids are represented as 1 tail typically show only
a liquid-solid phase transition, while more complex phase behavior is generally thought to
require 2-tailed coarse grained models. In general, common tests for coarse-grained models
verify that they obey the correct q-space dependence of height fluctuations modes, their me-
chanical properties are tunable, and they readily self-assemble due to modeled hydrophobic
effects.

To access the time- and length-scales necessary to study protein layer effects on membrane
bending mechanics we use a highly coarse-grained, solvent-free model recently developed in
our group [66]. The work presented here required considerable extension of this model as
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Figure 3.1: The membrane patch model of Pasqua et al. [66]. This meshless, solvent-free
membrane model consists of a single layer of particles defined by their position and orien-
tation. (left) Schematic showing a membrane particle 5 nm in diameter. Yellow shading
corresponds to the equatorial neighbor region, blue shading corresponds to the polar neigh-
bor region. (right) A vesicle configuration.

well as a non-trivial derivation of force terms for use with Brownian dynamics integrators.
This section describes these additions, and source code can be provided upon request.

Note, the respective membrane-membrane and protein-membrane potentials described
below contain parameters that have both the same name and meaning (e.g., ra, zb, etc).
For notational simplicity, when referring to these parameters I only specify which potential
these parameters belong to when this is ambiguous given the surrounding text. Otherwise,
additional specifiers are used (e.g., ra,pro, zb,mem, etc).

3.2 The membrane patch model

The solvent-free, meshless “membrane patch” model developed by Pasqua et al. was designed
to reproduce curvature fluctuation statistics using as few degrees of freedom as possible. The
model is thus suitable for studying large-scale remodeling processes similar to those seen
throughout cell biology and was inspired as an improvement upon a previous membrane
model by Drouffe et al. [82]. Each particle is a membrane spanning sphere representing a 5
nm×5 nm patch of bilayer and is characterized by an orientational and translation degree
of freedom. The basic form of the potential mimics the hydrophobic properties of bilayers.
Though the underlying N -body potential energy equation is heuristic and cannot be derived
from first principles, the large-scale bending mechanics of membranes emerges from these
interactions (as demonstrated in section 3.7.1). The emergence of well-defined large scale
material properties from heuristic microscopic interactions is a hallmark of many successful
membrane models.

To allow for fluidity among the constituent particles of the membrane the model employs
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an N -body potential rather than a pairwise potential. This potential has the following form,

U = UHC + �

N�

i=1

Aeq(n
(i)
eq )− Apol(n

(i)
pol) (3.1)

where U is the total potential energy of the system, UHC (“hard-core”) enforces the steric
constraint that no two particles overlap, N is the number of particles in the system, the
terms to the right of the summation sign (further described below) mimic the hydrophobic
penalty, and � is a parameter that scales the size of this penalty.

Together, the functions Aeq and Apol mimic the thermodynamic driving force influencing
the hydrocarbon tails of lipids to point away from the aqueous solvent and the charged
head groups of lipids to point toward the solvent (i.e., the hydrophobic effect). Given an
orientation vector that points toward the particle’s “North pole”, The Aeq term counts the
number of equatorial neighboring particles and contributes an energetic penalty if there are
too few. Similarly, the Apol term counts polar neighbors to energetically penalize any particles
preventing head groups from (implicit) solvent exposure (see Figure 3.1). In equations, this
leads to:

Aeq(neq) =

�
1− neq

n̄eq
, 0 ≤ neq ≤ n̄eq

0 , n ≥ n̄eq

Apol(npol) =

�
1− npol

n̄pol
, 0 ≤ npol ≤ n̄pol

0 , n ≥ n̄pol

The input parameters n̄eq and n̄pol correspond to threshold numbers of equatorial and po-
lar neighboring particles, respectively. If a particle has fewer than n̄eq neighbors along its
equatorial (i.e., hydrophobic) region, there is a positive energetic cost. This form penalizes
implicit solvent exposure to the hydrophobic region. This penalty increases linearly between
0 and 1 as neq decreases further from n̄eq. Similarly, if a particle has greater than 0 po-
lar neighbors, this is penalized linearly between 0 and 1 as this number grows from 0 to a
maximum of n̄pol.

Neighbor counting is achieved for each particle using the additional G and H functions,
which are dependent on interparticle distance and orientation respectively,

n
(i)
eq =

�

j �=i

Geq(r
2
ij
)Heq(z

2
ij
)

n
(i)
pol =

�

j �=i

Gpol(r
2
ij
)Hpol(z

2
ij
)

(3.2)
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where rij is the magnitude of the separation vector rij = rj − ri and zij = rij · êi/rij is
the normalized projection of particle i’s orientation vector êi onto the separation vector
rij. Below, the subscript indices i and j for these variables and others may be dropped for
notational simplicity.

Whether a particle j that is nearby to a particle i is classified as a “polar” or “equatorial”
neighbor is determined by the forms of G and H. The function G decays from 1 to 0 linearly
in r

2
ij
between r

2
a
and r

2
b
, where ra and rb are input parameters. The H function is similarly

designed, however it depends on the normalized projection of particle i’s orientation vector
onto the separation vector,

Geq(r
2) = Gpol(r

2) =






1 if r2 ≤ r
2
a

0 if r2 ≥ r
2
b

r
2
b−r

2

r
2
b−r2a

otherwise

Heq(z
2) = 1−Hpol(z

2) =






1 if z2 ≤ z
2
a

0 if z2 ≥ z
2
b

z
2
b−z

2

z
2
b−z2a

otherwise

Though the form and logic of these equations may not be immediately apparent in equations,
a clearer understanding may be achieved in illustrations (fig. 3.1) and plots (fig. 3.2).

3.3 Adapting the membrane patch potential for

dynamical integrators

The potential published by Pasqua et al. is not amenable to dynamical integrators (i.e.,
those required for molecular dynamics or Langevin dynamics simulations) because it is not
smoothly varying. Its forms for A, G, and H are instead piecewise discontinuous in their first
derivatives. Numerical errors accrue since these integrators require forces, the first spatial
derivative of the potential, to be computed and these forces are discontinuous with interpar-
ticle distance. (These integrators are typically based on expansions that are approximately
accurate only when the underlying force functions are slowly varying.)

Since the specific form of the original potential was chosen only for simplicity, we choose
here similar but smoothly-varying functions cubic in r and z to replace them,

Geq(r
2) = Gpol(r

2) =






1 if r ≤ ra

0 if r ≥ rb

− 2
(ra−rb)3

(r − rb)
2 �

r − 3ra−rb
2

�
otherwise

(3.3)
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Figure 3.2: The G and H functions nested in the membrane patch potential. The original
functions that comprise the model are piecewise and linear. Force equations derived from
them are thus discontinuous and unsuitable for molecular/Brownian dynamics. The cubic
equations that we replaced the original forms with are plotted here for comparison, along
with a Fermi-function adaptation of the original functional forms (right plots).

Heq(z) = 1−Hpol(z) =






1 if −za ≤ z ≤ za

0 if −zb ≥ z ≥ zb

− 2
(za−zb)3

(|z|− zb)
2 �|z|− 3za−zb

2

�
otherwise

(3.4)

These functions and their first derivatives are plotted in figure 3.2. Usage of these cubic
forms makes the derivatives for G and H piecewise continuous. Further similarity to the
original potential can be achieved using Fermi functions (f(x) = 1/(eβ(x−x0) + 1), where β

and x0 are parameters) within the original piecewise construction (see, again, figure 3.2),
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however this form appears to confer no significant advantage to the model (data not shown)
and might be less computationally efficient.

Aeq and Apol must also have piecewise continuous derivatives for numerical stability. We
adopt the following cubic forms for them, similar to those above:

Aeq(neq) =

�
2

n̄3
eq
(neq − n̄eq)

2 �
neq +

n̄eq

2

�
, 0 ≤ neq ≤ n̄eq

0 , n ≥ n̄eq

Apol(npol) =

�
2

n̄
3
pol

(npol − n̄pol)
2 �

npol +
n̄pol

2

�
, 0 ≤ npol ≤ n̄pol

0 , n ≥ n̄pol

In the original model, the hard core steric potential UHC may be implemented simply by
disallowing particle overlap during Metropolis Monte Carlo position updates. For dynamical
integrators, this may be replaced by the Weeks-Chandler-Anderson (WCA) potential [83]

UWCA =

�
4�

��
σ

r

�12 −
�
σ

r

�6�
+ � 0 ≤ r ≤ 2

1
6σ

0 otherwise

This potential is a truncated and shifted Lennard-Jones potential [61] that essentially retains
only steric repulsive interactions.

3.4 Deriving N-body force equations

To derive force equations suitable for dynamical computational integrators, we take the first
spatial derivative of the N -body potential given by equation 3.1 using the substituted equa-
tions discussed above. Since this derivation is non-trivial, we describe this in some detail

here. Below the notation ∇rij =
�

∂

∂x
x̂+ ∂

∂y
ŷ+ ∂

∂z
ẑ

�
is the first spatial gradient.

Translational force. The total translational force on particle i due to particle j has
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the following form,
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As we see shortly, the
�
∂A

∂n

�
terms above are dependent on n. This means that, before

any pairwise forces can be calculated, a loop over all particle pairs must be completed in
order to sum up equatorial and polar neighbors for all particles via the G and H equations
(more on this implementation in section 3.4.1).

Here, we derive forms for each term in the equation above. As before, we suppress nota-
tion for simplicity when such information is implicit in the discussion.
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where

r = rj − ri (3.8)

≡ (rx, ry, rz)

and
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(3.9)
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Similarly,
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∇rjiHpol = −∇rjiHeq

(3.13)

where

zij =
rij · êi
rij

(3.14)

Torque. Because each particle features an orientational degree of freedom, the potential
described above confers a torque about the center of mass of each particle. This torque can
be expressed as [84]

τi = êi ×∇êiUi

where êi is the unit vector specifying the orientation of particle i and∇êij =
�

∂

∂ex
êx +

∂

∂ey
êy +

∂

∂ez
êz

�
.

For the potential described above, we can write the following expressions for the terms con-
stituting this torque equation,
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∇êiUi =
�

i �=j
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∇êiUWCA + � (∇êiAeq −∇êiApol)

= �

��
∂Aeq

∂neq

��
∂neq

∂êi
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−
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∂Apol

∂npol

��
∂npol

∂êi
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(3.15)

The forms for ∂Aeq

∂neq
and ∂Apol

∂npol
were derived previously.

∂neq

∂êi
=

∂

∂êi
(Geq(r) Heq(z))

= Geq

�
∂Heq(z)

∂êi

�
+
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0

Heq
∂Geq(r)

∂êi

= Geq

�
∂Heq(z)

∂z

��
∂z

∂êi

�

The term ∂Heq(z)
∂z

was also derived previously. Finally,

∂z

∂êi
=

∂

∂êi

�
r · êi
r

�
=

r

r

which is equivalent to equation 3.6. Since Gpol = Geq and ∂Hpol(z)
∂z

= −∂Heq(z)
∂z

, the resulting
forms for both terms are thus

∂neq

∂êi
= Geq

�
∂Heq(z)

∂z

��
r

r

�

∂npol

∂êi
= −∂neq

∂êi

(3.16)

3.4.1 Algorithmic implementation & computational efficiency

To summarize the calculations necessary for force computation of the membrane-membrane
potential, the stepwise algorithm is described here.

(Part A) Count the neighbors (i.e., calculate neq and npol for each particle):
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for each particle i

for each neighbor j

1. Calculate the distance vector rij (eq. 3.8).

2. Calculate the normalized projections zi and zj of each particle’s orientation vector over
this interparticle separation (eq. 3.14).

3. Calculate Geq,i = Geq,j = Gpol,i = Gpol,j (eq. 3.3), Heq,i = 1 − Hpol,i, and Heq,j =
1−Hpol,j (eq. 3.4).

4. Increment the equatorial neighbor count, neq, and the polar neighbor count, neq (eq.
3.2).

endfor
endfor

(Part B) Calculate the pairwise forces

for each particle i

for each neighbor j

1. If saved, re-acquire the following quantities: rij, zi, zj, Geq,i = Geq,j = Gpol,i = Gpol,j,
Heq,i = 1−Hpol,i, Heq,j = 1−Hpol,j (this minimizes redundant calculation). Otherwise,
recalculate them.

2. Calculate ∇rijUWCA if rij < σ
1
6 (eq. 3.7).

3. Calculate ∇rijGeq,i = ∇rijGeq,j = ∇rijGpol,i = ∇rijGpol,j (eq. 3.12).

4. Calculate ∇rijHeq,i = −∇rijHpol,i and ∇rijHeq,j = −∇rijHpol,j (eq. 3.13).

5. Calculate ∇rijneq and ∇rijnpol for particles i and j, where:

∇rijneq,i = Geq,i ∇rijHeq,i +Heq,i ∇rijGeq,i

∇rjineq,j = Geq,j ∇rjiHeq,j +Heq,j ∇rjiGeq,j

∇rijnpol,i = Gpol,i ∇rijHpol,i +Hpol,i ∇rijGpol,i

∇rjinpol,j = Gpol,j ∇rjiHpol,j +Hpol,j ∇rjiGpol,j

6. Calculate ∂Aeq

∂neq
(eq. 3.10) and ∂Apol

∂npol
(eq. 3.11) for particles i and j.

7. Calculate the translational force from particle i to j, fij, and vice versa (eq. 3.5).
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8. Calculate ∂neq

∂ê and ∂npol

∂ê (eq. 3.16) for particles i and j.

9. Calculate the rotational force from particles i to j, and vice versa (eq. 3.15).

endfor
endfor

Though the model described above abstracts many degrees of freedom, the lengthscales
and timescales accessible using this model are nevertheless limited by available computational
resources. We have not tested this performance rigorously, and these limits do not deter
studies of many properties of membranes such as those analyzed in Chapter 4. However, for
some studies of processes that involve large scale shape transformations, we anticipate that
computational limits on system sizes may become an issue.

For example, Figure 3.3 shows that a typical large simulation studied during this research
was ∼10−3 of the size of the corresponding experimental system. When a layer of adhered
proteins was added to the domain seen in this figure, this took 3 to 4 weeks to produce
configurations like those seen in Figure 2.5. Slow relaxation of curvature radii also prevented
one method of spontaneous curvature computation and inspired the analysis in Section 3.7.2.
Since we have predicted in Section 2.4 that system size is an important determinant of
membrane morphology, extensions to the simulation source code that optimize computation
or incorporate GPU acceleration could lead to increasingly relevant simulation studies.

3.5 Incorporating different lipid types

Though each membrane particle represents ∼100 lipid molecules (a discrete ∼ 25 nm2 patch
of membrane), it is both physically meaningful and investigatively useful to incorporate two
different lipid types in the model. Our main motivation was the better approximate the ex-
perimental conditions of Stachowiak et al. [75, 76], in which adhered proteins were confined
to a domain of one lipid type that was surrounded by a larger membrane composed of a
different lipid type. The morphological transformation observed in these studies depended
on the rigidity of this domain, which differed from its surroundings, and may have been
influenced by line tension at the domain boundary. We describe here the development and
analysis of this “mem1-mem2” interaction potential.

3.5.1 The model

To mimic the tendency of unlike lipids to disassociate, we first compute the original potential
described by Pasqua et al. (3.1) without modification to maintain hydrophobic properties.
Additionally, we introduce a heuristic pairwise repulsion between, e.g., particle types A and
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Figure 3.3: (left) A simulation of a membrane domain of particle type 2 surrounded by
membrane particles of type 1. The “mem1-mem2” interaction potential is described by
equation 3.17. The domain area is A ≈ 0.032µm2 and is typical of a large-sized simulation
studied here. (right) For comparison, an experimental image of a giant unilamellar vesicle
used in the experiment by our collaborators [75]. The domain area here is A ≈ 100µm2.

B (which are depicted as white particles and red particles, respectively, in figure 3.3). Since
the G(rij) function (equations 3.3) is already computed, we make use of this monotonically
decreasing function while using a different � parameter to control the scale of the pairwise
repulsion,

Ulin =

�
�lin

�
i<j

G(rij) if i and j are of different types
0 otherwise

(3.17)

The gradient may be computed straightforwardly to get terms needed to compute forces and
stress tensors. From this pairwise repulsion emerges a thermodynamic line tension that may
be computed by analyzing 1-dimensional interfacial fluctuations along the domain boundary
(see Subsection 3.5.2).

It should be noted that, since these terms are repulsive, sufficiently high vaules of �lin/kBT
may act to separate domains of particles A and B in space. This separation is conceptually
similar to the formation of a vapor bubble at a hydrophobic interface. To maintain the
tendency for A and B lipid types to demix while eliminating this issue, the repulsion term
between unlike particles could be replaced with an attraction between like particles, thus
leaving only attractive terms.



CHAPTER 3. MOLECULAR SIMULATION MODEL 38

3.5.2 Domain boundary fluctuations and line tension

measurements

As mentioned earlier, from the pairwise repulsion term emerges a line tension (λ). This
property is thermodynamically defined as the free energetic cost per unit length of this
domain boundary (e.g., λ = (∂F/∂L)N,V,T , for a membrane domain in the NV λT ensemble).
The line tension can be measured from interfacial fluctuations using methods analogous
to those used to measure the bending rigidity and surface tension (see Section 3.7.1 for
somewhat more discussion on these ideas). By defining the location (or, “height”) of this
domain boundary in reference to its average circular shape (a Monge gauge approximation
[10]; see Figure 3.4), the total line tension free energy of a domain boundary of length L may
be written

Fline =
λ

2

�
L

0

dx

�
1 + h2

x
(3.18)

expanding to second order, we can write equation 3.18 as

Fline =
λ

2

�
L

0

dx h
2
x
.

Using the definitions hq = 1
L

�
h(x) e−iqx and h(x) =

�
q
hq e

iqx for a forward and reverse
Fourier transforms, this free energy becomes

Fline =
λ

2
L

�
�

q

q
2
h
2
q

�
.

The free energy of each mode q is

Fline,q =
λ

2
Lq

2
h
2
q

1

2
kBT =

λ

2
Lq

2 �|hq|2�

where the last line is due to the equipartition theorem [77]. Rearranging,

�|hq|2� =
kBT

λLq2
.
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Figure 3.4: (top left) This schematic shows how domain boundary fluctuations are mapped
to a single dimension for Fourier analysis. Adapted from [35]. (top right) An screenshot
from a typical trajectory from which interfacial fluctuation data are gathered. The yellow
line gives the interpolated domain boundary. (It should be noted that this calculation
could be preformed slightly more straightforwardly for a linear, rather than circular, domain
interface.) (bottom left) An example of interfacial fluctuation measurements that are used
to calculate λ. Confer with Figure 3.12. (bottom right) The y-values of this plot give line
tension in units of piconewtons. This corresponds well with experimentally measured line
tensions for lipid domains, which tend to be on the order of 10−1 pN to 100 pN [34, 35].

This equation, which is analogous to equation 3.21, is what may typically be fit to
experimental or simulation data of interfacial fluctuations to calculate λ. These calculations
for our membrane model (see Figure 3.4) showed that �lin = 0.1 kBT in equation 3.17 yields
a line tension of approximately λ = 1.5 pN. This value corresponds well with typical line
tensions measured from experimental data [34, 35]. However, a main difference between
our simulations and experiments is that the system sizes tested computationally are much
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Figure 3.5: The protein-membrane potential was designed for this study to diffuse fluidly on
the membrane surface and features a neighbor counting scheme similar to the one embedded
in the membrane-membrane potential of Pasqua et al. [66]. The protein-protein potential
includes only volume excluding interactions. The diameter of each particle representing a
membrane patch (and, thus, also the membrane thickness) is dmem ≡ σ, the diameter of
protein particles are dmem = 2σ. The protein layer height l = (dmem + dmem)/2 = 1.5σ was
used for the analytical curve in Figure 4.2 and was verified numerically.

smaller. Because a much larger fraction of the system exists at the domain boundary, line
tensions of such values, despite their physical meaningfulness, can play a major role in
membrane bending observed (as discussed in Section 2.3).

3.6 The protein model

The protein-membrane potential was designed for consistency with the meshless membrane
model presented earlier this chapter. This N -body potential is minimized when the number
of membrane molecules with their polar faces toward the protein, npol,pro, is equal or greater
to some threshold value n̄pol,pro. This counting is performed between proteins and membrane
type 2 particles only (typically depicted as red in screenshots throughout this thesis); only
steric (WCA) interactions are retained between proteins and membrane type 1 particles.

3.6.1 N-body potential

The contribution of the protein-membrane potential to the total system energy over all Nprot

protein and Nmem membrane particles may be written
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UPM = �

Npro�

i

Apol

= �

Npro�

i

�
1− npol,pro

n̄pol,pro

�

= �

Npro�

i

�
1− 1

n̄pol,pro

Nmem�

j

Gij(rij) ·Hpol,mem(zmem)

�

Note that the equation above depends on zmem, which is determined by the membrane
particle orientation. This dependency helps to maintain that the protein is driven to be on
the membrane surface only.

Letting Hpol = 1−Heq = 1−H,

UPM = �

Npro�

i

�
1− 1

n̄pol,pro

Nmem�

j

Gij · (1−Hmem)

�

Taking the gradient to calculate the force between protein particle i and membrane
particle j,

−fij = ∇rijUPM = �∇rij

�
1− 1

n̄pol,pro

Nmem�

j

Gij(1−Hmem)

�

= − �

n̄pol,pro
∇rij (Gij(1−Hmem))

= − �

n̄pol,pro
((1−Hmem)∇rijGij)− (Gij∇rijHmem)

= − �

n̄pol,pro

�
(1−Hmem)

�
∂Gij

∂r

��
−
�
Gij

�
∂Hmem

∂zmem

��
∂zmem

∂r

��

The form of these forces is subtly different for the membrane particle and the protein
particle, respectively. To see this, let
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r = rij = rpro − rmem

= −rji

zmem =
rji · êmem

|r|

∂zmem

∂rmem
=

êmem

|r| − −r · êmem

|r|2

�
r

|r|

�

=
êmem

|r| +
rẑmem

|r|2

∂zmem

∂rpro
=

−êmem

|r| − −r · êmem

|r|2

�
−r

|r|

�

= − êmem

|r| − r · ẑmem

|r|2

The above concerns the translational gradient of the potential. For the orientational
gradient,

∇êUPM = −G

�
∂H

∂zmem

��
∂zmem

∂ê

�
+ (1−H)

�
∂G

∂r

�

�
�
��✒

0�
∂r

∂ê

�

= −G

�
∂H

∂zmem

��
∂zmem

∂ê

�

where

∂zmem

∂êmem
=

rji

|r| = −rij

|r|
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Figure 3.6: Adapting the protein-membrane potential to mimic hydrophobic insertion.

∂zmem

∂êpro
= 0

where the final equation equals zero because the orientation of protein particles is unaffected
by any part of the simulation. In other words, protein particles effectively have no orientation,
however we work this out here for completeness and to symbolize that protein orientations
are tracked in the simulation program.

3.6.2 Mimicking hydrophobic insertion

Though we have not tested this effect thoroughly in simulation, there has been much research
that suggests the hydrophobic insertion mechanism of proteins and other inclusions (see sec-
tion 1.3) is a significant driving force for membrane curvature [3]. This effect originates within
the bilayer, resulting from crowding among lipids. Hydrophobic insertion has been studied
both in continuum mechanics methods [26], which allow the stress caused by the insertion
to be relaxed throughout the material by bending, and using atomistic simulation [85]. Our
work indicates that steric effects within adhered protein layers may be more significant [75,
76], yet hydrophobic insertions may still play a functionally important cooperative role in
curvature induction. This role could be studied by extending the model development de-
scribed above. Though our membrane model does not resolve individual lipids, hydrophobic
insertion could still be mimicked by incorporating an additional function I of the following
form,
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I(zprot) =






0 zprot < 0
�bend(1− 2

a3
(zprot − a)2(zprot +

a

2)) 0 < zprot < a

�bend a < zprot < b

�bind − 2(�bend−�bind)
(b−c)3 (zprot − c)2(zprot − 3b−c

2 ) b < zprot < c

�bind c < zprot < 1

with a derivative

I(zprot) =






0 zprot < 0
−6�bend

a3
zprot(zprot − a) 0 < zprot < a

0 a < zprot < b

−6(�bend−�bind)
(b−c)3 (zprot − c)(zprot − b) b < zprot < c

0 c < zprot < 1

where a, b, c are cutoff parameters switching between the pieces and �bend, �bind are en-
ergy scales for the attractive and repulsive interactions (the heights of the higher and lower
plateaus, respectively). Here, the separation vector �rij points from the membrane particle
toward the protein, thus favorable binding happens when zij = 1 (the director and �rij point
in the same direction). The protein-membrane potential could then be constructed as

UPM(rij, zprot) =
�
Gij(rij)

��
Hpol(zmem)

��
I(zprot)

�

though this potential is tunable in cutoff parameters and energy scales, it is pairwise instead
of N -body. Other forms that retain the N -body character and neighbor counting scheme
could be formulated, at perhaps greater complexity.

3.6.3 Parameter choices: pathologies and practical

considerations

Our coarse-grained membrane-protein system has numerous independent, tunable parame-
ters. The majority of these have no intrinsic physical meaning. Furthermore, there are many
“good” choices for these parameters, leading to significant regions of parameter space that
cannot be optimized and should (but are not guaranteed to) give quantitatively equivalent
results for most physical properties of interest. However, some parameter values may be
pathological (i.e., lead to unphysical and unwanted effects) for subtle reasons.
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Figure 3.7: These histograms show distributions of n values for the protein-membrane po-
tential for a tubule configuration. (left) Though typical values of n are ∼ 4.5, the value for
n̄ = 5.5. Thus, this tubule is driven to increase its radius to increase n for particles in the
protein layer. (right) Though there is no qualitative difference in this histogram, it shows
that n for protein particles is easily above n̄. Thus, this does not lead to unphysical effects
on system curvature.

For example, the parameter n̄prot (the minimum number of polar membrane neighbors
that a protein requires to minimize the protein-membrane potential) must not be set too low
or else the protein may hover above the membrane surface. However, if it is set too high, this
potential creates a driving force for the surface to wrap around a membrane particle in order
to increase nprot. This driving force may not be strong enough to produce this observation
in simulation, however, and this unwanted effect might go unnoticed. However, if n̄prot is
typically unreachable by proteins on a surface (see Figure 3.7) this parameter choice will
bias against curvature via the mechanism we have sought to study. This bias occurs because
production of curvature away from the protein requires nprot to decrease. The parameter
n̄prot should thus be carefully chosen such that it can still be reached by a typical protein
even if the surface is substantially curved.

Other model parameters also have pathological regimes for subtle reasons. To test what
parameters are suitable for our model we ran sets of simulations that scan across seemingly
“good” regions of parameter space. Figure 3.8 shows an example of such a test, displaying
3 visible trends among these data. Analytic arguments (see Section 2.2) predicted that this
system will relax to a radius somewhat greater than its starting radius of R = 7.5σ. However,
results from the lower 2 lines are unphysical because n̄ is so low that proteins are permitted to
partially penetrate the membrane while maintaining n > n̄, increasing the membrane layer’s
density and favoring increases in Lz instead of those in Lx and Ly that are required for the
tubule radius to increase. The middle 4 lines are also unphysical because the membrane
and protein layers both have crystallized and nested into each other (see Figure 3.9). This
ordering occurs because the parameters of these simulations hold the proteins very close to
the membrane particles, templating the protein layer and frustrating fluid movement across
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Figure 3.8: Different choices of parameters for the protein-membrane potential lead to dif-
ferent behavior. In these simulations, a box-spanning membrane tubule of radius R = 7.5σ
is allowed to relax to lower curvatures. Clusters of similar looking trajectory data might
indicate problems with parameter choices.

the surface.
Finally, aside from avoiding the pathologies discussed above, the other consideration

when choosing parameters is computational efficiency. Choosing ra and rb to be small, but
not so small such that the aforementioned problems are encountered, reduces the amount of
computation done during pairwise loops within the simulation algorithm (since fewer pairs
will lie within these cutoffs). This aids in selection among parameter space that would
otherwise feature much effective degeneracy.

In general, parameter selections for the research presented here were chosen because (i)
both the protein layer and membrane layer particles appear to have fluid motion in visualized
trajectories, (ii) proteins did not unphysically crystallize (as in Figure 3.9), (iii) proteins do
not penetrate the membrane surface, (iv) in the data from Figures 3.8 and 3.10, tubule radii
trajectories were among the most slowly-relaxing (i.e., trajectories with fast-increasing R

suggest that the parameters choices resulted in n < n̄, thus unphysically biasing against
curvature), (v) and the lengthscale cutoff parameters ra and rb were small.

Model parameters typically needed to be modified according the properties of the system
being simulated. Experience, as well as data seen in Figures 3.8 and 3.10, has shown that
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Figure 3.9: Unphysical crystallization occurs when lengthscale parameters of the protein-
membrane potential are too small, driving protein particles to sit between membrane particles
like eggs in an egg carton (as seen in the cross section image, left). Though pure systems
of hard disks and hard spheres are widely known to crystallize beyond some critical packing
fraction [86], the ordering in the protein layer seen above is an artifact which results using
these parameters because the membrane is resolved as a discrete set of bilayer-spanning
spheres. Though we anticipated that the protein layer would crystalize at high packing
fractions using the “good” parameters discussed below, analogously to the pure hard disk
system, this was not observed.

when σprot = 2σmem good choices of parameters for the protein-membrane potential are
{za = 0.2, zb = 1.5, ra = 1.2, rb = 3.0, n̄ = 3} and {za = 0.2, zb = 1.5, ra = 1.2, rb =
3.5, n̄ = 4.5}, and the former set was used for data in Section 4 that is in preparation for
publication. When σprot = 1σmem, good choices of parameters for the protein-membrane
potential are {za = 0.2, zb = 0.4, ra = 1.2, rb = 2.25, n̄ = 3.25}.

3.7 Computational analysis of model properties

3.7.1 Bending rigidity computation

The bending rigidity, which is specified as κ in the Helfrich free energy (eq. 1.1), is a funda-
mental material property of membranes. This property is typically measured in molecular
simulation by fitting this free energy expression to height fluctuation statistics of a nearly
flat membrane above the xy-plane (a parameterization is known in differential geometry as
the Monge gauge [10]). To second order, this expression may be written
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Figure 3.10: Parameter trace results for σprot = 2σmem. Good choices of parameters for the
protein-membrane potential are {zb = 1.5, rb = 3.0, n̄ = 3} or {zb = 1.5, rb = 3.5, n̄ = 4.5}.
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F =

�
dx

�
dy

�
κ

2

�
∇2

h(x, y)
�2

+
γ

2
[∇h(x, y)]2

�
(3.19)

In Fourier space, equation 3.19 may be written

F =
1

2Ap

�

q

�
κq

4 + γq
2
� ���ĥq

���
2

(3.20)

where Ap is the projected area of the membrane onto the xy-plane and we have defined for
forward and reverse Fourier transforms to be ĥq =

�
Ap

dr h(r)e−iq·r and h(r) = 1
Ap

�
q ĥqe

iq·r,
respectively, and where r is a coordinate in the xy-plane. By applying the equiparition
theorem [77], equation 3.20 tells us that the mean squared height fluctuations of each mode
may be written as

�
|ĥq|2

�
=

kBTAp

κq4 + γq2
(3.21)

This equation may be used to calculate κ and γ by fitting data gathered from nearly-flat,
fluctuating membrane simulations. To do this, uncorrelated samples of this surface are fit
to an evenly-spaced grid in xy-plane, transformed via Fast Fourier transform (using, e.g.,
FFTW), and then plotted on a log-log scale as a function of q. For a successful membrane
model, these data will fit the righthand side of equation 3.21 and κ may be extracted from
the y-intercept of a linear fit (see Figure 3.12). This relationship breaks down in the high
q (low-wavelength) regime because the fundamental approximation of this model – that the
membrane is a continuum sheet – is no longer valid.

Figure 3.11: A nearly membrane surface fluctuating above the xy-plane, characterized by
the height function h(x, y). This parameterization is sometimes known as the Monge gauge.
(Adapted from Brown [87].)
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Figure 3.12: Fourier transformed height fluctuation statistics on a log-log scale. These data
can be fit to equation 3.21 to extract the bending modulus (κ) and the surface tension (γ).

The bending rigidity may also be measured from molecular simulation using a virial
equation of state [88]. This calculation is not available to some membrane models, such
as the commonly-used triangulated mesh model [89, 90], because force equations cannot
be derived from such potentials. However, for our meshless model this method provides a
straightforward and generally faster way to calculate κ than the Fourier method described
above.

The tensile force expression we use to extract κ from the virial expression was originally
derived to calculate this quantity experimentally from membrane tubules [91]. In such exper-
iments, a pipette or optical trap is used to pull a membrane tubule from a giant unilamellar
vesicle. The relationship between R, κ, and the tensile force measured by this apparatus can
be derived from the free energy (eq. 1.1) of a tubule as

fz =

�
∂F

∂Lz

�

A

=

�
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�
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2R2

��
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∂R

∂Lz

�

A

=

�
−κA

R3

��
− A

2πL2
z

�

=
2πκ

R
(3.22)

In simulations, this tensile force can be calculated from z-direction stress via fz =
σzzLxLy, where σzz is available from the virial equation [92],
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Figure 3.13: (top) Snapshots of a membrane tubule simulation used to calculte κ. Here,
�R� = 7.5σ, Lz = 25σ, and Nmem = 803. (bottom left) This shows running averages of
σzz computed using equation 3.23. Stress in the x and y direction converges to 0, however,
z-direction stress converges to a nonzero value. Confer with Figure 3 from [88]. (bottom
right) tensile force calculations, here for a bare membrane, accurately correspond to κ over a
variations of tubules radius. These data at R = 2.5 σ do not map to equation 3.22 because
the tubule has ruptured. The tubule configuration cannot be sustained because the radius
is approaching the natural coarse-graining length scale of the model.

σzz = ρkBT +
1

V

�
�

(i,j)

f
(i,j)
z

r
(i,j)
z

�
(3.23)

It is worth noting that this form is typically presented as valid for pairwise potentials [92].
Our membrane-membrane and membrane-protein potentials are fundamentally N -body, and
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Figure 3.14: Tubule relaxation trajectories. These tests were intended to measure R0 for
various protein densities by letting the tubule radii relax, however this happened very slowly
for reasons described in this section. The key of this plot gives Nprot for each simulation,
and the corresponding colored straight lines are the R0 values each of these simulations were
predicted to relax to given the equation R0 = κ/pl (see section 2.2).

it is not immediately clear if equation 3.23 is valid and the previous force calculations (see
section 3.4) can be straightforwardly applied. Though we do not show this here, it can be
verified somewhat laboriously that 3.23 is usable for our model without modification.

3.7.2 Relaxation time of cylindrical morphologies

In our earliest work for this project, we supported the experimental observations of Sta-
chowiak and coworkers by showing that the equilibrium radius R0 = κ/pl (see Section 2.2,
[76]). To test this prediction, some of our first simulations studied box-spanning tubule
configurations, letting the Lz dimension of the box (and thus the tubule radius) relax. Such
tests effectively simulate a tensile force fz = 0 ensemble, using box-scaling Monte Carlo
moves described in section 3.8.1.

However, these proved to be extremely slow, computationally intensive simulations (see
Figure 3.14). To understand why we observed slow relaxation in this coarse-grained degree
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of freedom we looked at its relaxation properties using the overdamped Langevin equation,
allowing us to understand its scaling with time (t). Note, in the analysis below we are looking
at the simplest case, where Npro = 0.

From equation 1.1, we have for a tubule with c0 = 0,

F = A

�
κ

2

1

R2
κ

�
+ γA

−
�
∂F

∂R

�

A

=
Aκ

R3

thus we may write our overdamped Langevin equation

0 = R̈(t) = −γṘ(t) +

�
∂F

∂R

�

A

+ ξ(t)

γṘ(t) =
Aκ

R3(t)
+ ξ(t). (3.24)

This equation is nonlinear due to the Gaussian noise term, ξ(t). However, we can analyze the
average t-scaling of this equation straightforwardly since doing this causes this noise term to
vanish. The resulting differential equation once averaged is of the following form and may
be solved analytically to give the t-scaling,

ḟ(t) =
1

f 3(t)

f
3(t)ḟ(t) = 1

1

4

d

dt
f
4(t) = 1

d

dt
f
4(t) = 4

f
4(t) = 4t+ c

f(t) = (4t+ c)1/4

Since R = R0 at t = 0, we have

�R(t)� ∼
�
4t+ (R0)

4
�1/4

We used Euler integration to numerically simulate equation 3.24 and compare with our
analytic scaling result for �R(t)�. By setting a convenient choice of units (energy scale
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1
4 , where c0 = (R0)

4, for long timescale tubule
radius relaxation dynamics. Early timescale dynamics are qualitatively different, however
this is expected since the molecular simulation relaxes via particle position fluctuations and
the other is approximated as and exact cylinder. (left) Euler-integrated numerical solution
to our Langevin representation of R0 relaxation dynamics. (right) Molecular simulation of
R0 relaxation dynamics.

� = kBT , length scale l =
√
A, time scale τ = γ

A

kBT
) and reduced parameters (κ∗ = κ

kBT
,

γ
∗ = 1, R∗ = R√

A
) the previous equation (with the ∗ implied) reduces to

Ṙ(t) =
κ

R3(t)
+ ξ(t)

These results are plotted with molecular simulation data in Figure 3.15. Both show
R ∼ (t+ c0)

1
4 , where c0 = (R0)

4, at long timescales.

3.8 Other features of the custom simulation program

3.8.1 Constant tension ensemble

Biological membranes, as well as those used in simplified experiments, are typically con-
sidered to exhibit zero or vanishing surface tension (γ). Thermodynamically, this property
means that such membranes should feature significant fluctuations in area with substantial
probability.

Since real biological membranes are not a continuum, however, practical implementation
of a physically meaningful γ in computer simulations is non-trivial. In fact, this parameter is
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perhaps best thought of as a chemical potential, since area fluctuations in a molecular mate-
rial typically require fluctuations in molecule number. (Alternatively, such area fluctuations
could come about due to fluctuations in area-per-lipid while keeping molecule number fixed.
However such area-stretching comes at high energetic cost for typical membrane and even
small increases can lead to rupture [48].)

A common way to implement a constant tension ensemble in molecular simulation is
to allow for fluctuations in the projected area of the membrane, Ap, which is typically the
xy-plane [93, 62]. In practice, after many particle position updates (via Monte Carlo or
molecular dynamics algorithms) a value λ is chosen on some random interval. This variate
is used to scale the box dimensions as (λLx,λLy,

1
λ2Lz) = (L�

x
, L

�
y
, L

�
z
). Particle positions

are rescaled accordingly as well. After computing the new potential energy of the system,
U(r�N ;λ�), the probability that a Monte Carlo move is accepted is

Pacc(λ → λ
�) =

exp
�
−β

�
U(r�N ;λ�)− γA(λ�)

��

exp {−β [U(rN ;λ)− γA(λ)]}

For all research presented in this thesis, simulations requiring a constant tension ensemble
were done using γ = 0 kBT/σ

2. In this case, the above expression simply reduces to

Pacc(λ → λ
�) = exp {−β∆U}

where ∆U = U(r�N ;λ�)− U(rN ;λ).

3.9 Additional extensions

Here we describe additional aspects of the simulation program that have been developed and
could be applied in future studies, including investigations of several systems presented in
Chapter 1.

3.9.1 BAR proteins

Our earliest efforts aimed to study the shape transforming effects of collections of BAR (Bin-
Amphiphysin-Rvs) family proteins [24]. These proteins are often associated with endocytosis,
vesicle trafficking throughout the cell, and cell motility processes at the actin-membrane
interface. The crystal structure of one protein in this family, Drosophila amphiphysin [94],
suggested that these proteins typically generate curvature by binding to the membrane along
the inner face of a crescent shape (see Figure 3.9.1). Since then many more members have of
this family have been experimentally discovered, and intensive simulations analyzed detailed
molecular representations of how these proteins couple to the underlying membrane [85, 95,
96, 97].
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Figure 3.16: BAR family proteins and curvature generation (left) The protein structure of
the the BAR domain of Drosophila amphiphysin [99]. The electrostatic equipotential surface
in the lower image shows a high concentration of positive charge along the inner face, which
is through to aid in binding and bending membranes rich in negative multivalent Phos-
phatidylinositol 4,5-bisphosphate (PIP2) lipids. (right) This schematic shows how assembly
features of FBAR proteins could allow these clusters to adapt to different curvatures and to
possibly aid in vesicle neck constriction during endocytosis [100].

We sought to study the effects of large clusters of BAR proteins on the membrane sur-
face in order to bring insight into how these assemblies might generate robust, diverse, and
tunable membrane shapes. To achieve such large lengthscales I constructed a BAR protein
model with orientational degrees of freedom consistent with the meshless membrane de-
scribed throughout this chapter (see Figure 3.9.1). Bond length and bond angle constraints
were handled by the SHAKE algorithm [98] and the protein-membrane potential was similar
to the one described earlier in this chapter. After development of this model, however, we
turned our attention to modeling the experimental of Stachowiak and coworkers [75, 76] and
never returned to these tests.

3.9.2 Actin-membrane interactions

Another feature that was implemented in the simulation program but not studied was actin-
membrane interactions. Actin filaments are important for motility, structural support, and
other reasons in cells (as discussed in Section 1.5).

Actin filaments at large lengthscales are typically modeled using the “wormlike chain”
(WLC) model for semiflexible polymers. In simulation, this model may be represented by a
series of particles connected by segments (or “bonds”). Each unit segment vector ti corre-
sponds to a tangent to the underlying curve of the semiflexible polymer being represented.
This model may be defined as [11]
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Figure 3.17: Implementing BAR family proteins in simulation using the membrane patch
model of Pasqua et al. [66]. (left) This schematic shows how a simple model of a BAR family
protein was implemented in the simulation program. The SHAKE algorithm was used to
maintain distance constraints between neighboring particles and non-neighboring particles,
modeling bonds and bond angles respectively. Variations in “curviness” could model various
members of the BAR protein family, and the orientational protein-membrane potential was
implemented as in section 3.6.2. (right) A snapshot of coarse-grained BAR molecules above
a membrane surface.
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which, using a finite difference approximation, may be written
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where θ is the deviation of the angle between tangent vectors ti and ti−1, s is the segment
length, and lp is the persistence length (i.e., the stiffness of the polymer). By applying the
law of cosines (θ = arccos(u · v/||u|| ||v||)), corresponding force terms may be written
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This potential was implemented in the molecular simulation program, with filament par-
ticle diameters of 7 nm. However, as with the BAR proteins, this was put aside in order to
study the results of Stachowiak and coworkers.
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Chapter 4

Adhered proteins renormalize the

material properties of membranes

Though a basic physical description of membranes has been well-established, there remains
great interest in studying complex membranes relevant to biological systems. Here we ana-
lyze an extension to this basic description to include a common biological motif – a layer of
proteins adhered to the membrane surface – and find that this system is equivalent to the
basic description but with renormalized expressions for the bending rigidity, spontaneous
curvature, and surface tension. All three expressions are functions of the packing fraction
of adhered proteins, and at high packing fractions the system can become unstable. We
examine these predictions in greater detail numerically using molecular simulation. Previ-
ously published experiments support our result for the renormalized bending rigidity and
also observe our predicted curvature instability regime at high protein density. Our findings
and others suggest that additional biological features may be physically understood in the
context of such fundamental models, helping to characterize elementary features of processes
like endocytosis and cell motility.

4.1 Introduction

Biological membranes are complex materials that must remodel, self-organize, and mechan-
ically change in order to partake in myriad cellular processes. High-level observation by
increasingly powerful optical techniques continue to reveal new roles that membranes play in
motility [101], endocytosis [102], and other functions. Meanwhile, molecular-scale data re-
garding several proteins essential to these functions have identified structural characteristics
that aid in organization and bending [3]. It nevertheless remains challenging to character-
ize how complex systems containing many interacting proteins mechanically couple to the
underlying membrane at the mesoscale.

One common motif among many of biological processes is the clustering of proteins
from the cytosol to the membrane surface in considerable density. Such systems have been
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recently shown using reconstituted experimental systems to form highly curved tubule-like
morphologies in a generic manner [75, 76]. As described in Chapter 2, we supported these
results by showing theoretically that the area upon which adhered proteins sterically interact
increases as curvature of the underlying membrane becomes larger in this system, producing
an entropic driving force for curvature stabilization.

To more deeply characterize such systems, we extend here the basic physical description of
membranes by generically modeling the effects of a layer of adhered proteins. This analysis
results in a form equivalent to the original free energy equation with terms for effective
parameters that are functions of the 2-dimensional pressure within this layer. To support
these results, we use a hard disk fluid equation of state to express these parameters as
functions of protein density and compare these predictions to numerical calculations attained
using molecular simulation [61]. For at least one of these parameters, κeff, experimental data
that support our result have been published previously [16].

Though these analytic and numerical results consider only steric (volume-excluding) in-
teractions among proteins, we expect these expressions to apply to more generic protein-
protein interactions as well. Furthermore, our results are aligned with other theoretical
treatments of membrane systems that yield expressions for renormalized material parame-
ters [19, 18, 17, 103, 104, 105, 106], many of which have also been supported experimentally
[107, 108, 109]. Such developments suggest that novel extensions to the basic material de-
scriptions of membranes will continue to provide a powerful way to understand the physics
of increasingly complex and cell-like systems.

4.2 Analytical results

The standard free energy for a membrane of area A and a mean curvature H at each point
on this surface may be written [13, 10],

Fmem =

�
dA

�
κ

2
(2H − c0)

2 + γ

�
. (4.1)

Curvature is geometrically defined as the inverse radius of a circle osculating the surface at a
given point [10]. Our treatment of the protein layer (see Appendix A), which models adhered
proteins as hard spheres interacting on a surface parallel to the membrane, yields effective
expressions for the bending rigidity (κ), surface tension (γ), and spontaneous curvature (c0)
as a function of the 2-dimensional “pressure” of this protein layer,

κeff = κ− pl
2 (4.2)

γeff = γ − p (4.3)

c0,eff = c0 +
pl

κ
(4.4)
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where p = − (∂Fprot/Aprot)A is the pressure of the adhered protein layer and l is the distance
between this layer and the underlying membrane. (The form for c0 = 1/R0,eff is equivalent to
our previously published result [76] but arrived at differently). This pressure is conceptually
equivalent to that of a 2-dimensional fluid and increases monotonically with protein density.

As with bare membranes, the free energy of our composite system may be written in
Fourier space as

F =
1

2Ap

�

q

q
2
�
κeffq

2 + γeff

� ���ĥq

���
2

(4.5)

This expression shows that this system will be unstable for any fluctuation mode q such that
κeffq

2 + γeff < 0, or when q <
�

(γ − p)/(κ− pl2). As we discuss later, this form predicts
that long-wavelength fluctuations become unstable first as the density of adhered proteins
increases, and eventually the system can be unstable at all modes. To test these and other
predictions, we turned to molecular simulation of large scale coarse-grained membrane mod-
els.

4.3 Simulations of bending modulus and surface

tension renormalization

We first intended to test these κeff and γeff predictions using the membrane patch model
developed by Pasqua et al. and extended in Chapter 3. However, the calculations decribed
below proved exceedingly difficult because at high densities the protein particles had a strong
tendency to penetrate and rupture the membrane. Instead, group member Julian Weichsel
incorporated a similar model for steric protein interactions into a widely used network model
for fluctuating membranes [89, 90]. We include his results here for κeff and γeff calculations
to more completely present support for the analytic predictions.

We estimated κeff and γeff by fitting height fluctuation statistics to the Fourier transform
of equation 4.7 [10] (see Appendix B),

�
|ĥq|2

�
=

kBTA
κq4 + γq2

where ĥq =
�
A
h(x)exp(iq · x)dx is the Fourier transform of the membrane height and q is

a 2-dimensional wavevector.
Using these simulations we observed the three instability regimes predicted by equation

4.5 above (see Figure 4.1). For low packing fractions of adhered proteins, all membrane
fluctuation modes around the flat state are stable. At intermediate packing fractions, the
large wavelength modes become unstable. Since the projected area is fixed and the area is
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Figure 4.1: Renormalization of the bending modulus, κeff, and surface tension, γeff (data from
simulations by Julian Weichsel). (top left) �|hq|2� spectrum of the membrane height fluctua-
tions around its flat state versus the corresponding mode q without adhered proteins (upper)
and including adhered proteins (lower). The effective bending rigidity and surface tension
are determined by fitting the small and long wavelength fluctuation regime respectively (solid
line). The dashed line for comparison corresponds to a case without adhered proteins and
vanishing surface tension. (top right) Renormalization of the bending rigidity and surface
tension (inset) as functions of packing fraction of adhered proteins for κ = 10 kBT (trian-
gles) and 20 kBT (circles). Dashed and solid lines are the theoretical expectations. (bottom)
Wavelength dependent instability regimes versus packing fraction of adhered proteins.

fluctuating but finite, these fluctuations are still constrained around the flat state and do not
amplify indefinitely. However, as packing fraction increases more modes become unstable
until the membrane fluctuations around the flat state become unstable at all wavelengths.
At this point simulations typically display a small and highly curved membrane protrusion,
as seen in Figure 4.4.

4.4 Simulations of spontaneous curvature

renormalization

To measure the dependence of the effective spontaneous curvature, c0,eff, on protein density,
we used the “meshless” (i.e., non-triangulated) coarse grained membrane model [66]. This
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model was recently developed in our group to study fluctuations and shape transformations
of membranes at large scales while retaining properties such as hydrophobic effects, rupture
tensions, fluidity, and self-assembly. Here, we combine this model with a consistent model
for adhered proteins (described in Chapter 3) to straightforwardly calculate c0,eff from simu-
lations of box-spanning membrane tubules of radius R held at a fixed length Lz (see Figure
4.4 & Appendix B). For a membrane with c0 = 0 and γ ≈ 0, the tensile force parallel to the
axis of this tubule is

fz = 2πκ

�
1

R
− c0

�
= 2πκ

�
1

R
− pl

κ

�
. (4.6)

The second equality above can be attained by inserting c0,eff = c0 + pl/κ (eq. 4.4), which
results from our treatment in Appendix A. This result may also be attained via fz =
(∂Ftot/∂Lz)A, where Ftot = Fmem + Fprot and Fmem = κA/2R2 is the Helfrich free energy of
a membrane tubule.

Since our system consists of particles with a well-defined interaction potential, this force
can be computed from the z-component of the virial stress tensor, σzz, along with simulation
box dimensions Lx and Ly via fz = σzzLxLy [88]. Since R is fixed and κ may be calculated
using equation 4.6 with no adhered proteins, these data together can be used to calculate
c0,eff as a function of protein packing fraction, η. As shown in Figure 4.2, this calculation
is in good agreement with the curve calculated using the Carnahan-Starling equation for
hard disk fluids, with a somewhat more modest response. This result is consistent with our
calculations for κeff and γeff.

4.5 Discussion

Here, we derived and showed numerically how clusters of adhered proteins on membranes can
be physically understood in the context of the basic physics of soft materials. As mentioned
before, our bending modulus renormalization result is supported experimentally by previ-
ously published research [16] (see Appendix C). In this work, Settles et al. used an optical
trap to extend a membrane tube from a giant unilamellar vesicle and related the tensile force
to protein concentration using an expression similar to equation 4.6. In fact, these authors
interpret their data using famous result for κeff that is similar to our own [17]. However, their
form posits a phenomenological linear coupling between composition and curvature instead
of modeling the system based on more physical grounds.

In a similar spirit to our work here, another recent study [110] used coarse-grained molec-
ular simulation to test established theoretical predictions about how generalized polymers
anchored to membranes renormalize material parameters [103, 104]. Both the theoretical and
computational studies showed that higher densities of these polymers increase c0,eff. How-
ever, in contrast to our findings, anchored polymers were shown to effectively stiffen, rathe
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Figure 4.2: Renormalization of spontaneous curvature, R0,eff. In the key, κ̃ = κ/kBT is a
reduced bending modulus, “sim” corresponds to molecular simulation data, and “CS eqn”
plots equation 4.4 using the 2d Carnhan-Starling equation for pressure [79] and l = (dprot +
dmem)/2 = 7.5nm. (inset) raw data of tensile force computed as fz = σzzLxLy as a function
of packing fraction of proteins. (main) Both the tensile force data and analytical curve are
plotted via equation 4.6.

than soften, κeff. This disagreement suggests intriguing fundamental differences between
these two simplified models – hard disks on a manifold and generalized anchored homopoly-
mers – regarding how material properties emerge from steric interactions. Moreover, further
study could bring insight to the effects of membrane-adhered proteins which may be partially
disordered and are not well-approximated by either of these extremes.

Though we have modeled protein-protein interactions here using only volume-excluding
steric considerations, biological macromolecules typically interact in a more complex manner.
Such interactions can be experimentally measured for isotropic solutions of proteins using
small angle scattering techniques [111], and these data could bring additional physical detail
to further modeling studies. Collections of proteins may also cross-link or self assemble into
heterogeneous and sometimes curved structures, such as clathrin coated pits [102]. Though
our work and others’ suggest how fluctuations can entropically stabilize such structures,
more complex models could elucidate how the more specialized proteins mechanically couple
to the membrane to elicit specific biological processes.

4.6 Appendix A: Deriving κeff, γeff, and c0,eff

Here, we derive expressions for the renormalized material parameters as functions of adhered
protein density. (eqs. 4.2, 4.3, 4.4). The underlying membrane is described using the Helfrich
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Hamiltonian (eq. 4.1) in the often-studied approximate form for a fluctuating surface above
the xy-plane,

Fmem =

�
dx

�
dy

�
κ

2

�
∇2

h(x, y)− c0

�2
+

γ

2
[∇h(x, y)]2

�

=

�
dx

�
dy

�
κ

2
H

2 − κc0H +
γ

2
[∇h(x, y)]2

�
(4.7)

+ const.

where H ≈ ∇2
h(x, y) is the mean curvature in the Monge gauge [10] for a membrane with

small but nonzero height fluctuations. Here and below, the symbol ‘≈’ signifies either a
Taylor expansion to second order in membrane curvature or a finite difference approximation.

To determine how the area of the protein layer depends on the curvature of the underlying
membrane, consider this membrane surface to be parameterized by a square grid in the xy-
plane with small spacing δ. The protein layer may be considered to be a parallel surface
defined by a set of points {ln̂(i,j)}, where n̂(i,j) is a unit normal vector to the membrane
surface at the (i, j)th grid point and l is the height of the protein layer above the membrane.
The area of the protein layer is the sum of the areas of each rectangular patch defined by
these points.

Consider one surface patch that has corners at P1, P2, and P3. The area of this patch is
equal to |r12 × r13|, where rmn is a vector pointing from Pm to Pn. The vector r12 may be
expressed as

r12 = P1 − P2

= δx̂+ ẑ[h(x+ δ, y)− h(x, y)] + l[n̂(x+ δ, y)− n̂(x, y)]

≈ δx̂+ ẑ[δhx] + l[n̂(x+ δ, y)− n̂(x, y)] (4.8)

The normal vector is defined as

n̂(x, y) =
ẑ −∇h(x, y)�
1 + |∇h(x, y)|2

≈ ẑ −∇h(x, y)

where

∇h(x+ δ, y) =x̂hx(x+ δ, y) + ŷhy(x+ δ, y)

≈∇h(x, y) + x̂δhxx(x, y) + ŷδhxy(x, y).

Thus the difference between normal vectors in equation 4.8 may be expressed as

n̂(x+ δ, y)− n̂(x, y) = −x̂δhxx − ŷδhxy



CHAPTER 4. PARAMETER RENORMALIZATION 66

Using the following expressions

r12

δ
≈ x̂(1− lhxx) + ŷ(−lhxy) + ẑ(hx)

r13

δ
≈ x̂(−lhxy) + ŷ(1− lhyy) + ẑ(hy)

The patch area can be expressed as

|r12 × r13| =δ
2
�

|∇h(x, y)|2 + (1− lH + l2K)2

≈δ
2

�
1 +

1

2
|∇h(x, y)|2 − lH + l

2
K +

1

2
l
2
H

2

�

where H = ∇2
h(x, y) is the mean curvature and K = hxxhyy−hxy is the Gaussian curvature

(expressed using the notation hx = ∂h/∂x).
Summing over all patches (i, j),

Aprot =
�

(i,j)

δ
2

�
1 +

1

2
|∇h(xi, yi)|2 − lH(i,j) + l

2
K(i,j) +

1

2
l
2
H

2
(i,j)

�

= Amem +

�
dx

�
dy

�
1

2
|∇h(x, y)|2 − lH + l

2
K +

1

2
l
2
H

2

�
(4.9)

For a surface of fixed topology, the Gauss-Bonnet theorem shows that
�
dx

�
dy K will

integrate to the same value for any configuration. Thus, we can write the free energy of the
protein layer as a function of curvature as

Fprot =

�
∂Fprot

∂A

�
∆A

= (−p) (Aprot − Amem)

=

�
dx

�
dy

�
−pl

2

2
H

2 + plH − p

2
|∇h|2

�

The total free energy of the composite system is thus

F = Fmem + Fprot

=

�
dx

�
dy

�
κ

2
H

2 − κc0H +
γ

2
[∇h(x, y)]2

�
+

�
dx

�
dy

�
−pl

2

2
H

2 + plH − p

2
|∇h(x, y)|2

�

=

�
dx

�
dy

�
κ− pl

2

2
H

2 − (κc0 − pl)H − γ − p

2
|∇h(x, y)|2

�
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This result is of the same form as equation 4.7 but with renormalized parameters given by
equations 4.2, 4.3, and 4.4).

4.7 Appendix B: Simulation Details

Meshless membrane model with proteins. To calculate c0,eff, we used a meshless mem-
brane model designed by Pasqua et al. [66]. This potential was modified to include slowly-
varying functional forms so that force functions varied continuously with their dependent
variables, as described in Chapter 3. This allowed us to simulate the model using Brownian
Dynamics in the NV T ensemble [84] and to compute fz using a virial expression (eq. 4.6).
We verified that this modification reproduced all properties of the model in its original form.

We used the following values for the protein-membrane potential: n̄ = 3, za = 0.2,
zb = 1.5, ra = 1.2, zb = 3, � = 25 kBT , dmem = 5 nm, and dprot = 10 nm. For the membrane-
membrane potential we used the same parameters as those studied in the original paper and
selected za in order to simulate the membrane rigidities κ = 10.5 kBT and κ = 22.72 kBT .
Protein-protein interactions were modeled as WCA spheres [83] to retain only repulsive,
volume-excluding interactions.

4.8 Appendix C: Experimental measurement of κeff

softening

After deriving our result above for renormalized material parameters, we found good exper-
imental support for our κeff prediction in previous research. In particular, Settles et al. [16]
used a membrane tether apparatus to measure the bending rigidity of tubules while varying
the amount of Sar1 adhered to the surface (see Figure 4.5). Sar1 is a vesicle trafficking
protein that has been shown previously to associate with curved membranes. This was also
among the collection of proteins experimentally shown by Stachowiak et al. [76] to bend
membranes via the protein-protein crowding mechanism (which was discussed in section 2
and inspired the work in this thesis).

Settles et al. used an optical trap to pull a tether from a giant unilamellar vesicle and
measured κeff via the tensile force using an equation similar to equation 3.22. As they
increased the concentration of Sar1 in solution they observed κeff to lower until the system
reached a point of instability (i.e., the bending rigidity appear to become negative and the
system lowered its free energy by becoming increasingly curved).

To understand this softening, these researchers applied a popular result of Leibler [17] to
derive what they thought was an effective bending rigidity,

fzR

2π
= κeff(R)

= κ− ΛφR
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Figure 4.3: Coarse grained models. Here d are particle diameters and l is the height of
the protein layer. (left) Triangulated mesh membrane model [89, 90], extended to include
an adhered protein model. (right) The meshless membrane model we used was developed
by Pasqua et al. [66] to study membrane height fluctuations and shape transformations
at large lengthscales. This N -body potential allows fluid motion of particles within the
surface, and the blue triangles represent each particle’s orientation vector. The protein-
membrane potential was designed for this study to diffuse fluidly on the membrane surface.
The protein-protein potential includes only volume excluding interactions. The diameter of
each particle representing a membrane patch (and, thus, also the membrane thickness) is
dmem = 5 nm, the diameter of protein particles are dprot = 10 nm. The protein layer height
l = (dmem+dprot)/2 = 7.5 nm was used for the analytical curve in Figure 4.2 and was verified
numerically.

where φ is a molar concentration of membrane inclusions and Λ is a phenomenological
parameter that linearly couples to φ in a form for the curvature free energy. However, κeff

here is dependent on a term that linearly couples to R, which is more like a spontaneous
curvature. Rearranging the above equation,

fz = 2πκ

�
1

R
− Λφ

κ

�

This result is similar to our own equation 4.6 with pl
2 replaced by a phenomenological

linear coupling. It was originally derived to understand curvature instabilities in red blood
cells similar to those seen by Settles et al.. The molecules that induced this instability
were suggested to generate curvature by some hydrophobic insertion mechanism like the one
discussed in section 1.3. However, our own expression for the effective bending rigidity (4.2)
is of a similar form and has more physical meaning. Furthermore, the characteristics of Sar1
suggest that a hydrophobic insertion mechanism is unlikely to be significant (as discussed
by Stachowiak et al. [76]). The forms we derived for other material parameters also suggest
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Figure 4.4: Molecular simulation snapshots. (top) These 3 screenshots correspond to the 3
regimes in Figure 4.1 – when no mode is instable, when large wavelength modes are unstable,
and when all modes are unstable and a membrane bud forms. (bottom) The tensile force
was computed in the z-direction (blue arrow) using fzz = σzzLxLy and then related to c0

using equation 4.6. Here, �R� = 37.5 nm, Lz = 125 nm, Nmem = 803, and Nprot = 146.

that there are additional physical effects beyond κeff softening that characterized the system
they studied, further conveying the rich physics that these systems display.
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Figure 4.5: The results of Settles et al. [16] support our prediction that κeff softens as protein
density increases. (left) This illustration shows the optical trap from which researchers
extended membrane tethers and measured κeff form average values of tensile force. (middle)
This plot shows that as protein density in solution (assumed to correlate with bound protein
density) increases, κeff decreases until the system becomes unstable. (right) An image of the
curvature instability seen when κeff would be predicted by the trend to become negative.
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Chapter 5

Conclusions & Future Work

The work presented in this manuscript provides a basic physical understanding for a recently
discovered mechanism for membrane curvature generation by adhered proteins. Furthermore,
this research also exemplifies how two simple models that have been analyzed for decades
– fluctuating membranes and hard sphere fluids – can produce surprising and meaningful
physical results when studied as a composite system.

We have made many simplifying assumptions in order to elucidate the basic physics of
our system, and further investigation of more specified systems could provide interesting
findings. For example, incorporating biologically inspired protein-protein interactions such
as attractions, repulsions, patchy potentials, or softness could yield surprising examples
of self assembled structures. Remarkable self-organization is a hallmark of cellular life,
and physical characterizations of such processes could aid in technological applications of
nanoscale assembly.

We have also simplified our study by letting a single membrane particle, which repre-
sents a 25nm2 patch of bilayer, be characterized by a single fixed lipid composition. Though
our molecular simulation model is indeed highly coarse-grained, it is still amenable to in-
corporation of a fluctuating compositional degree of freedom for each particle. This feature
might allow for more realistic simulations of how compositional fluctuations of important
intra-membrane molecules, like PIP2, couple to both adhered protein concentrations and
curvature stabilization.

With additions such as those discussed above and in Section 3.9, two promising applica-
tion areas of our simulation tools would be the systems highlighted in Chapter 1 – aspects
of clathrin-mediated endocytosis (CME) and filopodium formation. Both are appealing be-
cause they have been thoroughly studied in reconstituted systems and thus minimal sets of
components have been largely identified [112, 57]. This information has already allowed for
some theoretical studies of aspects of CME [113, 114, 115], yet there are many open questions
about how coupled fluctuations of membranes and protein clusters lead to robust clathrin
cage assembly. Reduced physical models have also been used to study the mechanical proper-
ties of filopodia by our research group [49, 116] and others [50], however little published work
exists about the emergence of filopodia from coupled actin and membrane fluctuations. In
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both of CME and filopodium formation, as well as many other processes, BAR proteins have
been implicated as playing important roles in curvature generation and stabilization. These
effects could be studied in our coarse-grained simulations using the model discussed earlier.
Though all these possibilities lead to a very large design space for molecular simulation stud-
ies, data from biology could help direct these tests. Such considerations could then lead to
large scale studies of cell-like organization processes at an optimal level of coarse-graining.
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[89] J.-S Ho and A Baumgärtner. “Simulations of Fluid Self-Avoiding Membranes”. en.
In: Europhysics Letters (EPL) 12.4 (June 1990), pp. 295–300.

[90] G Gompper and D M Kroll. “Network models of fluid, hexatic and polymerized mem-
branes”. en. In: Journal of Physics: Condensed Matter 9.42 (Oct. 1997), pp. 8795–
8834.

[91] L. Bo and R.E. Waugh. “Determination of bilayer membrane bending stiffness by
tether formation from giant, thin-walled vesicles”. In: Biophysical Journal 55.3 (1989),
pp. 509–517.

[92] Rudolph J.E. Clausius. “On a mechanical theorem applicable to heat”. In: Philosoph-
ical Magazine Series 4 40.265 (1870), pp. 122–127.

[93] Maddalena Venturoli and Berend Smit. “Simulating the self-assembly of model mem-
branes”. en. In: PhysChemComm 2.10 (Jan. 1999), p. 45.

[94] Brian J Peter et al. “BAR domains as sensors of membrane curvature: the am-
phiphysin BAR structure.” In: Science (New York, N.Y.) 303.5657 (Jan. 2004), pp. 495–
9.

[95] Gary S Ayton, Philip D Blood, and Gregory A Voth. “Membrane Remodeling from
N-BAR Domain Interactions : Insights from Multi-Scale Simulation”. In: Biophysical
Journal 92.10 (2007), pp. 3595–3602.

[96] Carsten Mim et al. “Structural basis of membrane bending by the N-BAR protein
endophilin.” In: Cell 149.1 (Mar. 2012), pp. 137–45.

[97] Edward Lyman, Haosheng Cui, and Gregory a Voth. “Water under the BAR.” In:
Biophysical journal 99.6 (Sept. 2010), pp. 1783–90.

[98] J Ryckaert, G Ciccotti, and H Berendsen. “Numerical integration of the cartesian
equations of motion of a system with constraints: molecular dynamics of n-alkanes”.
In: Journal of Computational Physics 23.3 (Mar. 1977), pp. 327–341.

[99] Joshua Zimmerberg and Stuart McLaughlin. “Membrane Curvature: How BAR Do-
mains Bend Bilayers”. In: Current Biology 14.6 (Mar. 2004), R250–R252.

[100] William Mike Henne et al. “FCHo Proteins Are Nucleators of Clathrin-Mediated
Endocytosis.” In: Science (New York, N.Y.) 1281 (May 2010).

[101] Enas Abu Shah and Kinneret Keren. “Mechanical forces and feedbacks in cell motil-
ity.” In: Current opinion in cell biology 25.5 (Oct. 2013), pp. 550–7.

[102] Gary J Doherty and Harvey T McMahon. “Mechanisms of endocytosis.” In: Annual
Review of Biochemistry 78 (Jan. 2009), pp. 857–902.

[103] R. Lipowsky. “Bending of Membranes by Anchored Polymers”. In: EPL (Europhysics
Letters) 30.4 (May 1995).

[104] Christin Hiergeist and Reinhard Lipowsky. “Elastic Properties of Polymer-Decorated
Membranes”. en. In: Journal de Physique II 6.10 (Oct. 1996), pp. 1465–1481.



REFERENCES 80

[105] Wokyung Sung and SeungKyun Lee. “The soft-mode instability of a membrane in-
duced by strong polymer adsorption”. en. In: Europhysics Letters (EPL) 68.4 (Nov.
2004), pp. 596–602.

[106] Grace Brannigan and FLH Brown. “A consistent model for thermal fluctuations and
protein-induced deformations in lipid bilayers”. In: Biophysical journal 90.5 (2006),
pp. 1501–1520.

[107] E. Evans and W. Rawicz. “Elasticity of “Fuzzy” Biomembranes”. In: Physical Review
Letters 79.12 (Sept. 1997), pp. 2379–2382.

[108] P. Girard, J. Prost, and P. Bassereau. “Passive or Active Fluctuations in Membranes
Containing Proteins”. In: Physical Review Letters 94.8 (2005).

[109] M. Faris et al. “Membrane Tension Lowering Induced by Protein Activity”. In: Phys-
ical Review Letters 102.3 (Jan. 2009), pp. 1–4.

[110] HaoWu, Hayato Shiba, and Hiroshi Noguchi. “Mechanical properties and microdomain
separation of fluid membranes with anchored polymers”. en. In: Soft Matter 9.41 (Oct.
2013), p. 9907.

[111] Dmitri I Svergun and Michel H J Koch. “Small-angle scattering studies of biological
macromolecules in solution”. In: Reports on Progress in Physics 66.10 (Oct. 2003),
pp. 1735–1782.

[112] GP Vigers, RA Crowther, and BM Pearse. “Three-dimensional structure of clathrin
cages in ice.” In: The EMBO journal 5.3 (Mar. 1986), pp. 529–534.

[113] R. Nossal. “Energetics of Clathrin Basket Assembly”. In: Traffic 2.2 (2001), pp. 138–
147.

[114] Wouter K. den Otter, Marten R. Renes, and W.J. Briels. “Asymmetry as the Key to
Clathrin Cage Assembly”. In: Biophysical Journal 99.4 (Aug. 2010), pp. 1231–1238.

[115] Shafigh Mehraeen et al. “Impact of defect creation and motion on the thermodynamics
and large-scale reorganization of self-assembled clathrin lattices”. en. In: Soft Matter
7.19 (May 2011), p. 8789.

[116] Sander Pronk, Phillip L. Geissler, and Daniel A. Fletcher. “Limits of Filopodium
Stability”. In: Physical Review Letters 100.25 (2008).


	Contents
	List of Figures
	Adaptive and transformative responses of biological membranes: a review
	Cellular processes require membranes to be stable, tunable, and transformable
	Curvature sorting of biomolecules at membranes
	Membrane curvature generation by biomolecules
	Lateral domain formation by line tension renormalization and criticality
	Nonlinear responses and dramatic transformations
	Outlook

	Steric interactions among adhered proteins drive membrane curvature
	Background & Experiments
	Thermodynamic modeling
	Simulations of shape transformations by adhered proteins
	Spherical vs. spherocylindrical curvature

	Brownian dynamics simulations of fluctuating membranes at large lengthscales
	Motivation
	The membrane patch model
	Adapting the membrane patch potential for dynamical integrators
	Deriving N-body force equations
	Algorithmic implementation & computational efficiency

	Incorporating different lipid types
	The model
	Domain boundary fluctuations and line tension measurements

	The protein model
	N-body potential
	Mimicking hydrophobic insertion
	Parameter choices: pathologies and practical considerations

	Computational analysis of model properties
	Bending rigidity computation
	Relaxation time of cylindrical morphologies

	Other features of the custom simulation program
	Constant tension ensemble

	Additional extensions
	BAR proteins
	Actin-membrane interactions


	Adhered proteins renormalize the material properties of membranes
	Introduction
	Analytical results
	Simulations of bending modulus and surface tension renormalization
	Simulations of spontaneous curvature renormalization
	Discussion
	Appendix A: Deriving eff, eff, and c0,eff
	Appendix B: Simulation Details
	Appendix C: Experimental measurement of eff softening

	Conclusions & Future Work
	References



