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Approximate Quantum Circuit Synthesis using Block-Encodings

Daan Camps1, ∗ and Roel Van Beeumen1, †

1Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

One of the challenges in quantum computing is the synthesis of unitary operators into quantum
circuits with polylogarithmic gate complexity. Exact synthesis of generic unitaries requires an
exponential number of gates in general. We propose a novel approximate quantum circuit synthesis
technique by relaxing the unitary constraints and interchanging them for ancilla qubits via block-
encodings. This approach combines smaller block-encodings, which are easier to synthesize, into
quantum circuits for larger operators. Due to the use of block-encodings, our technique is not limited
to unitary operators and can also be applied for the synthesis of arbitrary operators. We show that
operators which can be approximated by a canonical polyadic expression can be synthesized with
polylogarithmic gate complexity under certain assumptions.

I. INTRODUCTION

Quantum computing holds the promise of speeding up
computations in a wide variety of fields [1]. After early
breakthroughs such as Shor’s algorithm [2] for factoring
and Grover’s algorithm [3] for searching, there have been
substantial developments in various quantum algorithms
over the past two decades. Noteworthy are the quantum
walk algorithm of Szegedy [4, 5], and the quantum linear
systems algorithm by Harrow, Hassidim, and Loyd [6].
These developments have lead to quantum linear systems
[7] and Hamiltonian simulation [8] algorithms inspired by
quantum walks. A unifying framework called the quan-
tum singular value transformation, which combines the
notion of qubitization [9] and quantum signal process-
ing [10] by Low and Chuang, was recently proposed by
Gilyén et al. [11, 12]. The quantum singular value trans-
formation can describe all aforementioned quantum al-
gorithms except factoring. Besides that, it has sparked
an interest in the use of block-encodings since they can
directly be used as input for a quantum singular value
transformation. A block-encoding is the embedding of a
–not necessarily unitary– operator as the leading princi-
pal block in a larger unitary

U =

[
A/α ∗
∗ ∗

]
⇐⇒ A = α (〈0| ⊗ I)U (|0〉 ⊗ I) .

In this paper, we propose the use of block-encodings,
not as a building block for quantum algorithms, but as
a technique for approximate quantum circuit synthesis
and, more generally, the synthesis of arbitrary operators
into quantum circuits. One of the major challenges on
noisy intermediate-scale quantum (NISQ) devices is the
limited circuit depth [13]. In general, exact synthesis
of generic unitary operators requires exponentially many
quantum gates [14–16]. The noise in NISQ devices limits
the circuit depth but also relaxes the need for exact syn-
thesis. In other words, we only need to approximate the

∗ DCamps@lbl.gov
† RVanBeeumen@lbl.gov

action of some n-qubit operator up to an error propor-
tional to the noise level. A polynomial dependence of the
circuit depth on n is necessary to obtain efficient quan-
tum circuits. Examples of other approximate synthesis
approaches have been proposed in [17–19].

We show that, under certain assumptions, an efficient
quantum circuit can be devised if the operator can be
ε-approximated by a canonical polyadic (CP) expression
[20, 21] with a number of terms that depends polylog-
arithmically on the operator dimension. CP decompo-
sitions have found applications in many scientific dis-
ciplines because they can often be computed approxi-
mately using optimization algorithms. However, their
calculation is an NP-hard problem in general. We also
demonstrate that the class of operators that we can effi-
ciently synthesize is a linear combination of terms with
Kronecker product structure, which is more general than
standard CP decompositions. We call these expressions
CP-like decompositions.

The proposed technique uses two operations to effi-
ciently combine block-encodings: the Kronecker product
of block-encodings and a linear combination of block-
encodings. This allows us to combine block-encodings of
small matrices into quantum circuits for larger operators.
We show that in practice the scheme requires at most a
logarithmic number of ancilla qubits and study the rela-
tion between the errors on the individual encodings and
the overall circuit. Finally, we provide an example of a
class of non-unitary operators that naturally have a CP-
like structure and can efficiently be encoded using the
proposed technique.

II. BLOCK-ENCODINGS

Since an n-qubit quantum circuit performs a uni-
tary operation, non-unitary operations cannot directly be
handled by quantum computers. One way to overcome
this limitation is by encoding the non-unitary matrix into
a larger unitary one, so called block-encoding [11, 12]. We
define an approximate block-encoding of an operator on s
signal qubits, As, in a unitary Un on n qubits as follows.
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Definition 1 Let a, s, n ∈ N such that n = a + s, and
ε ∈ R+. Then an n-qubit unitary Un is an (α, a, ε)-block-
encoding of an s-qubit operator As if

Ãs =
(
〈0|⊗a ⊗ Is

)
Un

(
|0〉⊗a ⊗ Is

)
,

and
∥∥As − αÃs

∥∥
2
≤ ε.

The parameters (α, a, ε) of the block-encoding are, re-
spectively, the subnormalization factor to encode matri-
ces of arbitrary norm, the number of ancilla qubits, and
the error of the block-encoding. Since ‖Un‖2 = 1, we

have that ‖Ãs‖2 ≤ 1 and ‖As‖2 ≤ α+ ε. Note that every
unitary Us is already a (1, 0, 0)-block-encoding of itself
and every non-unitary matrix As can be embedded in a
(‖As‖2, 1, 0)-block-encoding [22]. This does not guaran-
tee the existence of an efficient quantum circuit.

An equivalent interpretation of Definition 1 is that Ãs

is the partial trace of Un over the zero state of the ancilla
space. This naturally partitions the Hilbert space Hn

into Ha ⊗Hs. Given an s qubit signal state, |ψs〉 ∈ Hs,

the action of Un on |ψn〉 = |0〉⊗a ⊗ |ψs〉 ∈ Hn becomes

Un |ψn〉 = |0〉⊗a ⊗ Ãs |ψs〉+

√
1− ‖Ãs |ψs〉‖22 |φ

⊥
n 〉 ,

with (
〈0|⊗a ⊗ Is

)
|φ⊥n 〉 = 0,

∥∥|φ⊥n 〉∥∥2 = 1,

and |φ⊥n 〉 the normalized state for which the ancilla reg-

ister has a state orthogonal to |0〉⊗a. By construc-
tion, we see that a partial measurement of the an-
cilla register projects out |φ⊥n 〉 and results in (|0〉⊗a ⊗
Ãs |ψs〉)/‖Ãs |ψs〉‖2 with probability ‖Ãs |ψs〉‖22. In this
case, the ancilla register is measured in the zero state
and the signal register is in the target state Ãs |ψs〉, see
Figure 1. An inadmissible state orthogonal to the desired
outcome is obtained with probability 1− ‖Ãs |ψs〉‖22.

Using amplitude amplification, the process must be re-
peated 1/‖Ãs |ψs〉‖2 times for success on average. This
makes our proposed synthesis technique probabilistic.

|0〉⊗a

|ψs〉
Un

0

Ãs |ψs〉

FIG. 1. Quantum circuit for Un. The thick quantum wire
carries the signal qubits, the other are the ancilla qubits. If
the ancilla register is measured in the zero state, the signal
register is in the desired state Ãs |ψs〉.

III. COMBINING BLOCK-ENCODINGS

We introduce two operations on block-encodings that
in combination allow us to build encodings of larger oper-
ators from encodings of small operators. The first oper-
ation creates a block-encoding of a Kronecker product of

two matrices from the block-encodings of the individual
matrices. We denote a SWAP-gate on the ith and jth
qubits as SWAPi

j .

Lemma 1 Let Un and Um be (α, a, ε1)- and (β, b, ε2)-
block-encodings of As and At, respectively, and define
Sn+m =

∏s
i=1 SWAPa+i

a+b+i. Then,

Sn+m (Un ⊗ Um)S†n+m (1)

is an (αβ, a+b, αε2+βε1+ε1ε2)-block-encoding of As⊗At.

Lemma 1 shows how two individual block-encodings
can be combined to encode the Kronecker product of
two matrices. The method requires no additional ancilla
qubits and the approximation error scales as a weighted
sum of the individual errors up to first order. The oper-
ation requires only 2s additional SWAP operations.

Figure 2 shows the quantum circuit for a Kronecker
product of block-encodings. This reveals the observation
that in order to combine block-encodings into Kronecker
products, the signal qubits of the leading block-encoding
have to be swapped with the ancilla qubits of the second
block-encoding in such a way that the s+ t signal qubits
become the least-significant qubits in the combined cir-
cuit and that the mutual ordering of the signal qubits is
preserved.

Un

Um

a

s

b

t

(a) Kronecker product of 2 block-encoded matrices

a+ b

s+ t

Up

(b) Equivalent multi-qubit gate

FIG. 2. Block-encoding of the Kronecker product of 2 block-
encoded matrices: (a) quantum circuit for a = 3, s = 3, b = 2,
t = 2, and (b) equivalent multi-qubit gate Up with p = n+m.

Lemma 1 trivially extends to Kronecker products of
more than two block-encodings. Let Uni

be (αi, ai, εi)-
block-encodings of Asi for i ∈ {1, . . . , d}. Define n =∑

i ni, and Sn as a SWAP register that swaps all signal
qubits of each block-encoding Uni

to the least significant



3

qubits of the n-qubit unitary while preserving the mutual
ordering between the signal qubits. Then, ignoring the
second order error terms,

Sn (Un1
⊗ Un2

⊗ · · · ⊗ Und
)S†n (2)

is an (
∏

i αi,
∑

i ai,
∑

i εi
∏

k 6=i αk)-block-encoding of
As1 ⊗As2 ⊗ · · · ⊗Asd . In order for the subnormalization
factor and approximation error on the Kronecker prod-
uct not to grow too large, the subnormalization factors of
the individual block-encodings should be small enough.

The second operation used in the proposed technique
constructs a block-encoding of a linear combination of
block-encodings. To this end, we review the notion of a
state preparation pair of unitaries [12].

Definition 2 Let y ∈ Cm, with ‖y‖1 ≤ β, and define

yb =
[
yT 0

]T ∈ C2b , where 2b ≥ m. Then the pair of
unitaries (Pb, Qb) is called a (β, b, ε)-state-preparation-

pair for y if Pb |0〉⊗b = pb and Qb |0〉⊗b = qb, such that

2b−1∑
j=0

|β(p∗jqj)− yj | ≤ ε.

The following lemma is a known result [23], but we pro-
vide a sharper upper bound on the approximation error
compared to [12].

Lemma 2 Let Bs =
∑m−1

j=0 yjA
(j)
s be an s-qubit operator

and assume that (Pb, Qb) is a (β, b, ε1)-state-preparation-

pair for y. Further, let U
(j)
n be (α, a, ε2)-block-encodings

for A
(j)
s for j ∈ [m] and define the following select oracle

Wb+n =

m−1∑
j=0

|j〉 〈j| ⊗ U (j)
n +

2b−1∑
j=m

|j〉 〈j| ⊗ In.

Then,

Ub+n = (P †b ⊗ Ia ⊗ Is)Wb+n (Qb ⊗ Ia ⊗ Is),

is an (αβ, a+ b, αε1 + βε2)-block-encoding of Bs.

Lemma 2 shows that, if an efficient state prepara-
tion pair exists for the coefficient vector y, then we
can efficiently implement a linear combination of block-
encodings from the individual block-encodings. Figure 3
shows the corresponding quantum circuit. Note that this
operation requires b additional ancilla qubits. The ap-
proximation error again scales as a weighted sum of the
(maximum) error on the block-encodings and the error
on the state-preparation pair.

The combination of Lemma 2 and Eq. (2) shows that
we can directly construct a block-encoding of an s-qubit
operator of the form

Bs =

m−1∑
j=0

yj A
(j)
s1 ⊗A

(j)
s2 ⊗ · · · ⊗A

(j)
sdj
, (3)

...

...

...

Qb

U0 U1

. . .

. . .

. . .

Um−1

P †bb

a

s

(a) Linear combination of m block-encodings

b+ a

s

Ub+n

(b) Equivalent multi-qubit gate

FIG. 3. Block-encoding of linear combinations of block-
encodings: (a) quantum circuit where the gray control nodes
for Um−1 encode the bitstring for m − 1, and (b) equivalent
multi-qubit gate.

if
∑dj

i=1 si = s for j ∈ [m], i.e., all terms in the sum
in Eq. (3) are of the same dimension, and if we have a

block-encoding U
(j)
ni for each A

(j)
si where j ∈ [m], and

i ∈ {1, . . . , dj}.
To quantify the subnormalization factor, the number of

ancilla qubits, and the approximation error in the block-

encoding for Eq. (3), we assume that each U
(j)
ni is an

(α
(j)
i , a

(j)
i , ε

(j)
i )-block-encoding for A

(j)
si . Let

α(j) =
∏
i

α
(j)
i , a(j) =

∑
i

a
(j)
i , ε(j) =

∑
i

ε
(j)
i

∏
k 6=i

α
(j)
k ,

for j ∈ [m]. Then, using Eq. (2), we can combine these
into (α(j), a(j), ε(j))-block-encodings for each term

A(j)
s = A(j)

s1 ⊗A
(j)
s2 ⊗ · · · ⊗A

(j)
sdj
.

Notice that while the number of signal qubits has to be
the same for each term in the linear combination, we do
not assume the same number of ancilla qubits here. If we

define a = maxj a
(j), then each block-encoding for A

(j)
s

can simply be extended to a ancilla qubits by adding
additional ones at the top of the register. This does not
change the leading block of the unitary.

Finally, denote α = maxj α
(j) and ε1 = maxj ε

(j) to
be the maximum subnormalization factor and the max-
imum approximation error over all terms. By invoking
Lemma 2, we can construct a unitary Ub+n that is an
(αβ, a+ b, αε2 + βε1)-block-encoding of Bs from Eq. (3).
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The subnormalization factors α(j) ≤ α can be incorpo-
rated in the vector y encoding the coefficients of the linear
combination.

By incorporating the SWAP registers from Eq. (2) in
the select oracle of Lemma 2, generalized Fredkin gates
[24] are introduced. Fredkin gates are difficult to realize
experimentally [25] and can be avoided if every Kronecker
product of the block-encodings in the linear combination
uses the same SWAP register. In this case, the select
oracle becomes

Wb+n = (Ib ⊗ Sn) W̃b+n

(
Ib ⊗ S†n

)
,

where

W̃b+n =

m−1∑
j=0

|j〉 〈j| ⊗ Ũ (j)
n +

2b−1∑
j=m

|j〉 〈j| ⊗ In,

with Ũ
(j)
n = U

(j)
n1 ⊗ . . . U

(j)
nd .

IV. DISCUSSION

Our technique combines block-encodings of small ma-
trices to create block-encodings of larger operators that
can be represented as in Eq. (3). This decomposition is
closely related to the CP decomposition of a tensor [20]
and allows for more generality. The sizes of the individ-
ual block-encoded matrices can differ in each term of the
linear combination but they must all have the same size
when combined into a Kronecker product.

Optimization algorithms, such as for example alter-
nating least squares, have been successfully used to com-
pute approximations to CP decompositions in many ap-
plications. Even though exact CP decompositions are
NP-hard to compute in general. The optimization algo-
rithms can be extended to accommodate for the different
sizes of block-encodings in each of the terms and could
incorporate the flexibility in size of the terms in their
objective. They can be used as such for approximate
quantum circuit synthesis. As NISQ devices suffer from
noise [13], the approximate nature of algorithms for CP-
like decompositions can be exploited to obtain shorter
circuits for less precise decompositions with fewer terms.
Under a given noise level, the error on the approximate
CP-like decomposition can be balanced with the error
on the individual block-encodings to find a tradeoff with
short circuit depth.

One of the major challenges with using block-
encodings is the introduction of an ancilla register. This
removes the constraint of strictly unitary approximations
and allows for linear combinations, but at the same time
it introduces a probabilistic nature in the synthesis pro-
cess and requires that the circuit is repeatedly executed
until success.

The asymptotic gate complexity of the resulting quan-
tum circuit synthesis technique depends on two fac-
tors: the number of terms m in the CP-like decompo-

sition in Eq. (3) and the gate count of each individ-
ual block-encoding. If we assume that in Eq. (3) m is
O(poly(s)), then b is O(polylog(s)) and quantum circuits
with O(poly(s)) gates for the state-preparation unitaries
always exist [26]. Also the select oracle Wb+n of Lemma 2
can in this case be implemented with O(poly(s)) gates in
the ancilla register [27].

To get an estimate for the complexity of the synthesis
of the individual block-encodings, we consider the edge

case where every block A
(j)
si is a 2 × 2 matrix. In this

case, each block can be encoded as the leading block of a
two qubit unitary, which adds one ancilla qubit for every
signal qubit. Since every two qubit unitary can be syn-
thesized with at most three CNOT-gates [28], the synthe-
sis of all blocks individually requires at most 3ms CNOT
gates. The Kronecker products and linear combination of
the blocks only add O(poly(s)) CNOT-gates, leading to
an overall O(poly(s)) CNOT complexity. Furthermore,
the synthesis of ms two-qubit unitaries requires fewer
classical resources than the synthesis of larger blocks and
the total number of required ancilla qubits is O(s).

For the proposed technique to be efficient, it is cru-
cial to have CP-like decompositions with O(poly(s))
terms and with all individual block-encodings either
small enough to be synthesized efficiently with small-
scale synthesis algorithms or having a certain structure
that admits an efficient synthesis. The strength of the
technique lies in the ability to combine small-scale block-
encodings to build larger operators.

We stress that unitariness of Bs is not required because
of the embedding as a block-encoding and that even if Bs

is unitary, the individual terms in Eq. (3) clearly are not
unitary. One class of matrices that naturally exhibit the
form of Eq. (3) are the Laplace-like operators [29]

d∑
j=1

M (1) ⊗ · · · ⊗M (j−1) ⊗ L(j) ⊗M (j+1) ⊗ · · · ⊗M (d),

and they can directly be encoded from block-encodings
of the individual terms. For example in the Laplace op-
erator itself, all M (j) are identities and L(j) = L for
j ∈ {1, . . . , d}. In this case we only need one block-
encoding of L, which is repeated d times, to encode the
full operator. This is an improvement over the d2 block-
encodings that are required in general.

V. CONCLUSIONS

In this paper we showed how block-encodings of small
matrices, which are easier to synthesize, can be com-
bined together to create block-encodings of larger op-
erators with CP-like structure. Under the assumption
of O(poly(s)) terms in the decomposition and small in-
dividual block-encodings, this scheme has a polynomial
dependence on the number of signal qubits both for gate
complexity and ancilla qubits.
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Further research is required to study the class of op-
erators with CP-like structure and operators that can
be well-approximated in this form. The modification of

optimization algorithms for CP decompositions [20] to
admit decompositions like Eq. (3) is another interesting
research direction.
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to show that Sn+m recovers the correct order by swapping the s signal qubits:

Sn+m

(
|0〉⊗a ⊗ Is ⊗ |0〉⊗b ⊗ It

)
=

s∏
i=1

SWAPa+i
a+b+i

(
|0〉⊗a ⊗ Is ⊗ |0〉⊗b ⊗ It

)
,

=

s−1∏
i=1

SWAPa+i
a+b+i SWAPa+s

a+b+s

(
|0〉⊗a ⊗ Is ⊗ |0〉⊗b ⊗ It

)
,

=

s−1∏
i=1

SWAPa+i
a+b+i

(
|0〉⊗a ⊗ Is−1 ⊗ |0〉⊗b ⊗ I1 ⊗ It

)
,

= . . .

= |0〉⊗a ⊗ |0〉⊗b ⊗ Is ⊗ It.

Taking the Hermitian conjugate yields(
〈0|⊗a ⊗ Is ⊗ 〈0|⊗b ⊗ It

)
S†n+m = 〈0|⊗a ⊗ 〈0|⊗b ⊗ Is ⊗ It.

Combining this with Eq. (A1) shows

Ãs ⊗ Ãt =
(
〈0|⊗a ⊗ Is ⊗ 〈0|⊗b ⊗ It

)
S†n+mSn+m (Un ⊗ Um)S†n+mSn+m

(
|0〉⊗a ⊗ Is ⊗ |0〉⊗b ⊗ It

)
,

=
(
〈0|⊗a ⊗ 〈0|⊗b ⊗ Is ⊗ It

)
Sn+m (Un ⊗ Um)S†n+m

(
|0〉⊗a ⊗ |0〉⊗b ⊗ Is ⊗ It

)
,

such that Eq. (1) has Ãs ⊗ Ãt as principal leading block. The subnormalization and approximation error of Ãs ⊗ Ãt

satisfy: ∥∥As ⊗At − αβÃs ⊗ Ãt

∥∥
2
≤
∥∥(αÃs + ε1Is

)
⊗
(
βÃt + ε2It

)
− αÃs ⊗ βÃt

∥∥
2
,

=
∥∥αÃs ⊗ ε2It + ε1Is ⊗ βÃt + ε1Is ⊗ ε2It

∥∥
2
,

≤ αε2
∥∥Ãs

∥∥
2

+ βε2
∥∥Ãt

∥∥
2

+ ε1ε2,

≤ αε2 + βε1 + ε1ε2,

where we used that ‖As‖2 ≤ α‖Ãs‖2 + ε1, and ‖Ãs‖2 ≤ 1 and analogous results for Ãt. This completes the proof. �

Appendix B: Proof of Lemma 2

Proof. We have that the leading s-qubit block of Ub+n is given by

B̃s =
(
〈0|⊗b ⊗ 〈0|⊗a ⊗ Is

)
Ub+n

(
|0〉⊗b ⊗ |0〉⊗a ⊗ Is

)
,

=
(
〈0|⊗b ⊗ 〈0|⊗a ⊗ Is

) (
P †b ⊗ Ia ⊗ Is) Wb+n (Qb ⊗ Ia ⊗ Is

) (
|0〉⊗b ⊗ |0〉⊗a ⊗ Is

)
,

=
(
〈0|⊗b P †b ⊗ 〈0|

⊗a ⊗ Is
)
Wb+n

(
Qb |0〉⊗b ⊗ |0〉⊗a ⊗ Is

)
,

=
(
p†b ⊗ 〈0|

⊗a ⊗ Is
)
Wb+n

(
qb ⊗ |0〉⊗a ⊗ Is

)
.

Under the assumptions of the lemma, this yields

B̃s =

m−1∑
j=0

p†b |j〉 〈j| qb ⊗ (〈0|⊗a ⊗ Is)U (j)
n (|0〉⊗a ⊗ Is) +

2b−1∑
j=m

p†b |j〉 〈j| qb ⊗ 〈0|
⊗a |0〉⊗a ⊗ Is,

=

m−1∑
j=0

p†b |j〉 〈j| qb ⊗ Ã
(j)
s +

2b−1∑
j=m

p†b |j〉 〈j| qb ⊗ 〈0|
⊗a |0〉⊗a ⊗ Is,

=

m−1∑
j=0

p∗jqj Ã
(j)
s +

2b−1∑
j=m

p∗jqj Is.



7

By Definition 1 and Definition 2, we get that

∥∥∥Bs − αβB̃s

∥∥∥
2

=

∥∥∥∥∥
m−1∑
j=0

yjA
(j)
s − αβ

m−1∑
j=0

p∗jqj Ã
(j)
s − αβ

2b−1∑
j=m

p∗jqj Is

∥∥∥∥∥
2

,

=

∥∥∥∥∥
m−1∑
j=0

yjA
(j)
s − αβp∗jqj Ã(j)

s − α

2b−1∑
j=m

βp∗jqj Is

∥∥∥∥∥
2

,

≤ αε1 +

∥∥∥∥∥
m−1∑
j=0

yj(A
(j)
s − αÃ(j)

s )

∥∥∥∥∥
2

+ α

∥∥∥∥∥
2b−1∑
j=m

yj Is

∥∥∥∥∥
2

,

≤ αε1 + βε2.

The penultimate inequality approximates all βp∗jqj terms by yj in the two sums. The error of each individual

approximation is bounded by ε1, such that the total error is bounded from above by αε1 as ‖Ã(j)
s ‖2 ≤ 1 and ‖Is‖2 = 1.

The last term in the penultimate line is equal to zero by Definition 2. The final equality directly follows from the
block-encoding property and ‖y‖1 ≤ β. �
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