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Abstract 

There is an ongoing debate over the psychophysical functions 
that best fit human data from numerical estimation tasks. To 
test whether one psychophysical function could account for 
data across diverse tasks, we examined 40 kindergartners, 38 
first graders, 40 second graders and 40 adults’ estimates using 
two fully crossed 2 × 2 designs, crossing symbol (symbolic, 
non-symbolic) and boundedness (bounded, unbounded) on 
free number-line tasks (Experiment 1) and crossing the same 
factors on anchored tasks (Experiment 2). Across all 8 tasks, 
88.84% of participants provided estimates best fit by a mixed 
log-linear model, and the weight of the logarithmic 
component (λ) decreased with age. After controlling for age, 
the λ significantly predicted arithmetic skills, whereas 
parameters of other models failed to do so. Results suggest 
that the logarithmic-to-linear shift theory provides a unified 
account of numerical estimation and provides uniquely 
accurate predictions for mathematical proficiency. 

Keywords: cognitive development; numerical cognition; 
number-line estimation; psychophysical function 

Introduction 
In this paper, we aimed to address an ongoing debate on the 
psychophysical functions that link numbers to their 
magnitude estimates and to provide a unified framework for 
understanding seemingly-conflicting data from a variety of 
studies (Barth & Paladino, 2011; Cohen & Sarnecka, 2014; 
Opfer, Thompson, & Kim, 2016; Siegler & Opfer, 2003; 
Slusser, Santiago, & Barth, 2013). Specifically, we sought to 
test whether models that fit data from old research methods 
could accurately predict data from new methods that differed 
in small increments that were thought to be psychologically 
meaningful. Finally, we aimed to test whether models that 
best accounted for numerical magnitude estimates also 
provided the best predictors of educational outcomes. 

The classic theory about developmental change in 
numerical estimation is that the representation of numerical 
magnitudes follows a logarithmic-to-linear shift (Siegler & 
Opfer, 2003; Siegler, Thompson, & Opfer, 2009). Because 
this shift occurs for different numbers at different times (e.g., 
for 0-100 number-lines before 0-1000 number-lines), this 
change is thought to come from experiences that children 
have in school with symbolic numbers (Siegler & Opfer, 

2003). This account was originally based on a single version 
of the number-line task, which is the symbolic bounded free 
branch in the taxonomy in Figure 1.  

 

 
 

Figure 1: Taxonomy of number-line tasks. Branches 
connected by solid lines were examined in previous studies. 

Ones connected with dashed lines are new. 
 
Two alternative accounts were recently proposed. One is 

the proportional-judgment account, claiming participants 
adopt proportion judgment strategies when estimating 
numerical magnitudes (Barth & Paladino, 2011; Slusser et al., 
2013). The other is the measurement-skills account, claiming 
that data from number-line tasks arise from task-specific 
measurement skills (Cohen & Blanc-Goldhammer, 2011; 
Cohen & Sarnecka, 2014). Like the classic theory, these 
accounts also depended only on specific sets of number-line 
tasks (symbolic bounded anchored for proportional-judgment 
account; symbolic unbounded free for measurement-skills 
account (see Figure 1).  

1. Symbolic vs. Non-symbolic  
One potentially important variable is whether numerical 
magnitudes are presented symbolically or non-symbolically. 
For the log-to-linear shift account, this variable is important 
because symbolic numbers are presented to children in 
number-lines in school, on rulers, and in arithmetic lessons. 
Most studies have focused only on the symbolic magnitude 
estimates, though with different psychophysical functions 
being proposed (Barth & Paladino, 2011; Cohen & Sarnecka, 
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2014; Opfer et al., 2016; Siegler & Opfer, 2003; Slusser et 
al., 2013). 

In contrast, when Dehaene et al. (2008) presented Amazon 
indigene with non-symbolic numeric magnitudes, they found 
that a mixed log-linear model (MLLM, see Figure 2A) 
provided a better fit to number-line estimates than 
alternatives. Among these alternatives, however, the power 
models proposed by Slusser et al. (2013) and Cohen & Blanc-
Goldhammer (2011) were not included.  

2. Bounded vs. Unbounded 
Another potentially important feature of number-line 
estimation is whether an upper endpoint is provided 
(bounded) or not (unbounded). Like symbols, the use of a 
numeric upper bound may make the task easier because it 
provides an additional reference point against which to 
estimate the target number.  On the other hand, Cohen and his 
colleagues have claimed that the unbounded task is actually 
easier because subjects need only to add incremental units, 
whereas the bounded task requires subtracting from the 
endpoint at the upper bound. For this reason, they suggested 
that extensions of cyclic models (CPMs, see Figure 2C) 
provide best fitting models for estimates in the bounded 
condition and that scallop power models (SPMs, see Figure 
2D) provides best fitting for estimates in the unbounded 
condition (Cohen & Blanc-Goldhammer, 2011; Cohen & 
Sarnecka, 2014). Though Cohen and colleagues did not 
include the mixed log-linear model among the alternatives 
tested, Kim and Opfer (in press) found the MLLM was a 
better predictor of estimates than CPMs and SPMs for 
symbolic bounded free and unbounded free number-line 
tasks.  

3. Free vs. Anchored 
A third potentially important variable is whether subjects are 
given the numeric magnitude of the half-way point on the 
number-line (anchored) or not (free). Like the use of an upper 
bound, Opfer et al. (2016) have argued that the anchored task 
provides an additional reference point that should increase 
linearity of estimates.  On the other hand, Slusser et al. (2013) 
have argued that the task reveals changes in proportional 
reasoning, and they showed that children's symbolic bounded 
anchored number-line estimates were better fit by one of 
three adapted cyclical power models (CPMs) (Hollands & 
Dyre, 2000) than a simple logarithmic model. Subsequent 
studies, however, found the MLLM provided a better fit to 
both symbolic bounded free and symbolic bounded anchored 
number-line estimates than mixtures of the CPMs (Opfer et 
al., 2016), which was called MCPM1 (see Figure 2B) in Kim 
and Opfer (in press)’s study. 
 

The Current Study 
In this study, we manipulated all three variables orthogonally 
to systematically test the mixed log-linear model against its 
competitors on 4 previously examined tasks and 4 novel 
tasks. Thus, we tested all the branches shown in Figure 1, 

with symbolic bounded free (SBF), symbolic unbounded free 
(SUF), non-symbolic bounded free (NBF), non-symbolic 
unbounded free (NUF) tasks in Experiment 1 and symbolic 
bounded anchored (SBA), symbolic unbounded anchored 
(SUA), non-symbolic bounded anchored (NBA), non-
symbolic unbounded anchored (NUA) tasks in Experiment 2. 
At the end of Experiment 2, we also administrated a battery 
of math tests, including addition and subtraction, to each 
subject to determine which model parameters best predicted 
addition and subtraction proficiency. This issue has 
educational significance, but it also tests the key cognitive 
process claim of the measurement-skills account, viz. that 
unbounded number-line estimates are easier than the bounded 
ones because they require addition skills rather than 
subtraction skills.  

 

 
 

Figure 2: Illustrations of predicted estimates from the 
mixed log-linear model (A), the mixed cyclic power model 

1 (B), the mixed cyclic power model 2 for bounded 
condition (C) and the mixed scallop power model for 

unbounded condition (D). 
 

Experiment 1: Free Numerical Estimation 

Methods 
Participants Participants were 40 kindergartners (M=5.98 
years; 47.5% female), 38 first-graders (M=7.13 years; 50% 
female), 40 second-graders (M=8.09 years; 57.5% female) 
and 40 adults (M=20.1 years; 50% female).  
Materials and procedure Participants were administered 
four different number-line tasks using a 2 (symbolic/non-

2944



symbolic) by 2 (bounded/unbounded) fully-crossed design 
Order of tasks was determined by a balanced Latin square.  

In symbolic conditions, participants were presented with 
20 number-lines, with a number on each endpoint of the line. 
The to-be-estimated numerals were evenly sampled from 0 to 
30. On each trial, numbers were shown 2s followed by 
random-noise mask. In non-symbolic conditions, procedure 
was similar, except that endpoints of lines and to-be-
estimated numbers were dot arrays. Sizes of dots were 
controlled on 50% of trials, while areas covered by dots were 
controlled on the other 50%.  

In bounded conditions, endpoints of the line were 0 and 30 
(symbolic condition) or 0 and 30 dots (non-symbolic 
condition). In the unbounded condition, endpoints were 0 and 
1 (symbolic condition) or 0 and 1 dot (non-symbolic 
condition). The instructions for the unbounded condition 
were taken from Cohen and Sarnecka (2014). 

Results 
1. Logarithmic-to-linear-shift theory accurately 
predicted median estimates and individual differences. 
We first fit median estimates for all four number-line tasks 
and age groups using MLLM. Across all tasks and age groups 
(Figure 3), fit of MLLM was very high (R2 =.93 ~ 1). 
Analyses of the weight of logarithmic component (λ) revealed 
that with age, estimates changed from logarithmic patterns to 
linear ones, with λ decreasing from kindergartners to adults 
across all tasks (Figure 3). As expected, λ in non-symbolic 
conditions was higher than in symbolic ones. Also, λ in 
unbounded conditions was higher than in bounded ones 
regardless of symbolic format, which argues against the view 
that “the unbounded task requires less mathematical 
sophistication than the bounded task does” (Cohen and 
Sarnecka, 2014). To test whether individual performance 
revealed the same pattern, we computed λ for individual 
participants’ data and conducted a mixed ANOVA, with 
symbolic format and boundedness as within-participant 
factors and age group as a between-participant factor. Results 
showed a main effect of symbolic format, F(1,154)=74.19, 
p<.001, boundedness, F(1,154)=86.32, p<.001, and age 
group, F(3,154)=39.08, p<.001. An interaction between 
symbolic format and boundedness, F(1,154)=4.17, p<.05, 
indicated that the effect of symbols was greater for the 
bounded tasks.   

 To test whether logarithmicity of estimates represented a 
stable pattern of individual differences, we correlated 
individual participants’ λ among all tasks. Results showed 
that individual participant’s λ among all the four number line 
tasks positively correlated (with correlation coefficient .70 
(p<.001) between SBF and SUF tasks; .45 (p<.001) between 
SBF and NBF tasks; .35 (p<.001) between SBF and NUF 
tasks; .49 (p<.001) between SUF and NBF tasks; .39 between 
SUF and NUF tasks; and .54 (p<.001) between NBF and 
NUF tasks). 
 

 
 

 
Figure 3: Median estimates on 0-30 free number lines for 

different age groups. 
 
 

Table 1: Percent of participants best fit by MLLM for free 
number line tasks. K, kindergartners; 1, first graders; 2, 

second graders; A, adults. 
 

 
 
 
 
 
 
 
 

 
 

Table 2: Partial correlation between λ in MLLM and math 
score after controlling for age across the free number line 

tasks. 
 

 Partial correlation 
   Addition Subtraction 

MLLM       
 SBF λ -.40 *** -.27 *** 
 NBF λ -.27 *** -.19 * 
 SUF λ -.36 *** -.24 ** 
 NUF λ -.17 * -.17 * 
       

     Note. * p<.05, ** p<.01, *** p<.001 
 
2. Model comparison. We next compared the fit of MLLM 
to that of its competitors:  MLLM vs MCPM1 and MCPM2 
for the bounded conditions and MLLM vs MSPM for the 

 MLLM 
 K 1 2 A All 

SBF 95 89 83 68 84 
NBF 95 95 93 90 93 

      
SUF 100 100 100 100 100 
NUF 100 100 100 100 100 
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unbounded ones. The proportion of individual children who 
were best fit by the mixed log-linear model (MLLM) using 
AICc was calculated.  

As illustrated in Table 1, estimates of 68% to 100% of 
participants were best fit by mixed log-linear model (MLLM) 
among all four free number line tasks. In the bounded 
condition, none of the MCPMs was the best fitting model for 
the majority of any age or task combination. In unbounded 
condition, we replicated the findings from Kim and Opfer (in 
press), with MLLM providing a better fit for 100% of 
participants’ estimates compared to MSPM. 
3. Predicting the mathematical performance. We next 
conducted partial correlation analysis between individual 
participant’s addition and subtraction performance (which 
were tested in Experiment 2) and the best-fitting parameter 
values from the models when controlling for age. The 
addition score was the sum score of simple and complex 
addition problems, and the subtraction score was the sum 
score of simple and complex subtraction problems.  

As shown in Table 2, the logarithmicity parameter λ of the 
MLLM predicted both addition and subtraction performance 
across all tasks after controlling for age. In contrast, the 
correlations among the model parameters of the MLLM 
competitors were very small, inconsistent, and not expected 
by the theories that generated the models. Specifically, for 
bounded conditions, the negative correlation between the 
absolute value of bs-1 of the MCPMs and math performance 
was found in only a few of number line tasks, with the 
absolute value of b2CPM-1 of MCPM1 negatively correlating 
with addition for the symbolic bounded free number line task 
(r(156)=-.18, p<.05), the absolute value of bSBCM-1 of 
MCPM2 negatively correlating with addition and subtraction 
for the non-symbolic bounded free task (r(156)=-.17, p<.05 
for addition; r(156)=-.17, p<.05 for subtraction). Also, only 
the absolute value of s-1 in MCPM2 negatively correlating 
with subtraction was found in symbolic bounded free task 
(r(156)=-.17, p<.05). For the unbounded condition, the 
negative correlation between the absolute value of bMSPM-1 in 
MSPM and addition was only found in symbolic unbounded 
free task (r(156)=-.18, p<.05). These finding suggests that 
MLLM uniquely predicts math performance, regardless of 
tasks or age groups. 

Experiment 2: Anchored Numerical 
Estimation 

Methods 
Participants Participants in Experiment 2 were the same as 
in Experiment 1. 
Materials and procedure Participants received the same 2 
(symbolic/non-symbolic) by 2 (bounded/unbounded) number 
line tasks as in Experiment 1, except that information was 
given about the location of 15 (or 15 dots) in each of the four 
tasks. Order of tasks followed a Latin square. After that, 200 
arithmetic problems were presented for participants to solve 
as quickly as possible: simple addition, simple subtraction, 
complex addition and complex subtraction. For simple 

addition problems, each of the addends was a one-digit 
number and the sum was no more than 10 (e.g., 5+3, 2+1). 
For simple subtraction problems, the difference was less than 
10 and both minuend and subtrahend were one-digit numbers 
(e.g., 9-3, 8-2). For complex addition problems, sums were 
bigger than 10 but less than 30, and addends were one- or 
two-digit numbers (e.g., 4+16, 14+15). For complex 
subtraction problems, differences were bigger than 10 but 
less than 30, with the minuend a two-digit number and the 
subtrahend one- or two-digit numbers (e.g., 16-5, 25-11).  

Results 
1. Logarithmic-to-linear-shift theory accurately 
predicted median estimates and individual differences. 
We first fit the median estimates for all four number line tasks 
and age groups using MLLM. As shown in Figure 4, across 
all tasks and age groups, the fit of MLLM was uniformly high 
(R2 = .93 ~ 1). Analyses of λ revealed that with age, estimates 
changed from logarithmic patterns to linear ones, with λ 
decreasing from kindergartners to adults (Figure 4). As with 
Experiment 1, λ in non-symbolic conditions were higher than 
in symbolic ones, and λ in unbounded conditions were higher 
than in bounded conditions regardless of symbol. We also 
computed λ for individual participants’ data. The mixed 
ANOVA results again showed a main effect of symbolic 
format, F(1,154)=83.17, p<.001, boundedness, 
F(1,154)=21.20, p<.001, and age group, F(3,154) =19.63, 
p<.001.  

To test whether the logarithmic-to-linear-shift theory could 
also capture individual differences, we correlated individual 
participant’s λ among tasks. The results showed that 
individual participant’s λ among all the four number line 
tasks positively correlated (with correlation coefficient .81 
(p<.001) between SBA and SUA tasks; .61 (p<.001) between 
SBA and NBA tasks; .48 (p<.001) between SBA and NUA 
tasks; .54 (p<.001) between SUA and NBA tasks; .43 
(p<.001) between SUA and NUA tasks; and .61 (p<.001) 
between NBA and NUA tasks. 
2. Model comparison. We next examined whether MLLM is 
the best model compared to other competitors. According to 
the previous studies (Cohen & Sarnecka, 2014; Opfer et al., 
2016; Slusser et al., 2013), we compared the fit of MLLM, 
MCPM1, and MCPM2 on individual data for the bounded 
condition (which included SBA and NBA tasks). Since the 
unbounded anchored number-line tasks were new in this 
study, we compared the fit of all the four models for the 
unbounded condition (which included SUA and NUA tasks). 
The proportion of individual children who were best fit by the 
mixed log-linear model (MLLM) using AICc was calculated. 

As illustrated in Table 3, the estimates of 63% to 100% of 
participants were best fit by mixed log-linear model (MLLM) 
among all four anchored tasks across all age groups. 
Specifically, in the bounded condition, no matter what types 
of symbol were given, against to the proportional account and 
subtraction or division-skill account, none of the MCPMs 
was the best fitting model for the majority. In the unbounded 
condition, our results showed that estimates of 65% to 98%  
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Figure 4: Median estimates on 0-30 anchored number 

lines for different age groups.  
 
 

Table 3: Percent of participants best fit by MLLM for 
anchored number line tasks. K, kindergartners; 1, first 

graders; 2, second graders; A, adults. 
 

 MLLM 
 K 1 2 A All 

SBA 85 63 63 68 70 
NBA 93 97 100 93 96 

      
SUA 88 74 68 65 73 
NUA 98 97 95 93 96 

 
 
Table 4: Partial correlation between λ in MLLM and math 

score after controlling for age across the anchored number 
line tasks. 

 
 Partial correlation 
   Addition Subtraction 

MLLM       
 SBA λ -.29 *** -.20 * 
 NBA λ -.22 ** -.15  
 SUA λ -.30 *** -.22 ** 
 NUA λ -.24 ** -.20 * 

Note. * p<.05, ** p<.01, *** p<.001 
 

of participants were best fitting by MLLM when compared 
the fitting of all the four models. All these results suggest the 
logarithmic-to-linear-shift account for all the anchored 
numerical magnitude representation, regardless of 
boundedness or symbolic format. 
3. Predicting the mathematical performance. Similar with 
Experiment 1, we also conducted partial correlation analysis 

between individual participants’ addition and subtraction 
performance and the best-fitting parameter values from the 
models when controlling for age. As shown in Table 4, λ in 
the MLLM predicted both addition and subtraction 
performance across almost all the anchored number line tasks 
after controlling for age. However, for bounded condition, the 
negative correlation between the absolute value of bs-1 of the 
MCPMs and math performance was only found for the 
symbolic bounded anchored task, with absolute value of 
b2CPM-1 in MCPM2 negatively correlating with addition and 
subtraction (r(156)=-.26, p<.001 for addition; r(156)=-.26, 
p<.001 for subtraction). The finding suggests that MLLM 
uniquely predict math performance, regardless of tasks or age 
groups. 

Discussion 
Our experiments indicate that the logarithmic-to-linear shift 
account provides a unified framework that can account for 
data coming from a broad array of numerical estimation 
tasks. Specifically, we found a mixed log-linear model was 
the best fitting model for the vast majority (88.84%) of 
children and adults. This finding held regardless of whether 
the symbolic format was symbolic or non-symbolic, whether 
the task was bounded or unbounded, and whether an 
additional reference was given or not. These results replicate 
those reported in Opfer et al. (2016) and Kim and Opfer (in 
press), as well as extending them to 4 novel number-line 
tasks. Finally, we found that with education, individuals 
acquire more substantial prior experience with symbolic 
numbers than non-symbolic dots, with more logarithmic 
compression shown in non-symbolic than symbolic 
condition. Also, the additional reference points (either 
midpoints or bounded endpoints) can increase the linearity of 
estimates. Thus, the classic number line task (SBF) is not an 
outlier in eliciting logarithmic pattern of estimates. Of the 
eight tasks, the highest logarithmicity was observed in 
kindergartners’ estimating non-symbolic unbounded free 
(NBF) task and the lowest was in SBA.  

Our results also showed that the logarithmic weight (λ) was 
not fixed, but depended on the developmental history and 
prior experiences of the subject, leading to lower λ values 
from kindergartners to adults. These findings met the 
overarching principle of the logarithmic-to-linear shift 
theory, which holds that the representation of numerical 
magnitude will change from the logarithmic pattern to linear 
one with age and experience (Opfer et al., 2011; Opfer & 
Siegler, 2007; Siegler & Booth, 2004; Siegler & Opfer, 2003; 
Thompson & Opfer, 2008).  

Finally, individual differences were stable across the eight 
tasks: children whose estimates were more logarithmic in one 
task were also more logarithmic in the other seven tasks, 
r(156)=.35 ~ .81, p<.001. This would not be expected if the 
eight tasks elicited radically different estimation strategies, 
and it suggests that the logarithmic-to-linear theory provides 
an accurate picture for mental representation of all kinds of 
numerical estimations. 
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Implications for alternative accounts 
   Broadly, our results undercut key claims of the proportion-
judgment and measurement-skills accounts. A key claim of 
the proportion-judgment account is that developmental 
change involves a change in the degree of bias and use of 
implicit reference points. In this view, the degree of bias (β) 
was thought to gradually converge on 1, and more reference 
points would be utilized by the participants, “from an 
unbounded power to a one-cycle proportional to a two-cycle 
proportional version of the model” (Slusser et al., 2013, p.5). 
If these views were correct, the weights for 0-cyclic power 
model (w1) and 1-cyclic power model (w2) in MCPM1 would 
be expected to decrease with age and the weight for 2-cyclic 
power model (w3) would be expected to increase –at the very 
least among the bounded tasks in Experiment 1 and 2. 
However, we found no support for this developmental pattern 
among any of our eight tasks. Additionally, there was no 
stable pattern of individual differences in the degree of bias 
and use of reference points. Given the relatively poor fits of 
these models, this lack of predictive power might not be 
surprising, but it does warrant caution about the 
psychological meaning of the parameter values. 

Our results also provide robust evidence against the 
measurements-skills account. First, according to Cohen and 
Sarnecka (2014), “the implicit addition needed for the 
unbounded task is less mathematically sophisticated than the 
implicit subtraction needed for the bounded task, [therefore] 
children should perform better on the unbounded task at a 
younger age” (p. 1643). Against this contention, we found 
greater accuracy for bounded than unbounded tasks 
regardless of age, symbolic format, or provision of anchors. 
Far from being easier, the unbounded tasks were more 
difficult and actually yielded the highest logarithmicity 
scores. Even more critically, the parameter values of the 
models associated with this account (subtraction and scallop 
bias) were thought to track general subtraction and addition 
skill. If so, one would expect them to predict subtraction and 
addition skill when subjects actually performed subtraction 
and addition. However, we found no evidence that this was 
the case.  Again, given the relatively poor fits of these models, 
its lack of predictive power should not be surprising.  
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