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 Metabolic syndrome (MetS) is an emerging global epidemic of public health importance. 

MetS is a syndrome characterized by having three of the following conditions: abdominal 

obesity, hypertension, high blood sugars, abnormal levels of triglycerides and low levels of high-
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density lipoprotein (HDL). It is well-established that environmental and lifestyle factors play a 

major role in the development of MetS, but a full understanding of the genetic variants that are 

involved in the disease pathogenesis is incomplete. To identify these genetic variants, we have 

conducted large-scale Genome Wide Association Studies (GWAS) on samples retrieved from the 

Database for Genotype and Phenotypes (dbGaP), a biomedical repository for individual level 

genotype and phenotype data. Extensive work has been performed on individual components of 

MetS, leveraging thousands of samples. In contrast, prior GWAS of MetS have largely utilized 

modest sample sizes. In this analysis, three different studies with a total of 10,000 MetS cases 

were used to discover novel genetic variants associated with MetS. For each study, an extensive 

quality control was performed to filter and harmonize these datasets. Variable harmonization for 

uniformity and genetic variant imputation for maximizing the number of Single Nucleotide 

Polymorphisms (SNPs) were also completed prior to the GWAS. After quality control and 

imputation, GWAS was performed separately on each dataset, and results were combined via 

meta-analysis. In this analysis, we identified four genome-wide significant variants (rs287,	

rs964184,	rs11076176,	rs247616) in the European ancestry subset and two genome-wide 

significant variants in the African ancestry subset (rs117729532,	rs115553887). 
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Chapter I 

Introduction 
 
 
Metabolic Syndrome Background and Definition 

 
 Metabolic syndrome (MetS), also known as syndrome X or insulin resistance syndrome, 

is characterized by having three out of five of the following conditions: abdominal obesity, 

hypertension, high blood sugars, and abnormal levels of triglycerides and low levels of high-

density lipoprotein (HDL). Individuals with MetS have a higher risk of developing 

cardiovascular disease (CVD) and Type II Diabetes (T2D). MetS imposes significant costs on 

the health care system. Each individual component of MetS may require substantial medical 

treatment and associated costs. As a result, each risk factor of MetS is said to increase an 

individual's healthcare bill by as much as 1.6-fold, or 2000 dollars per year, and each additional 

risk factor will increase this rate by another 24% [1]. To address this rapidly pressing issue, the 

International Diabetes Federation (IDF) established a uniform definition of MetS for clinical 

practice (Table 1 and Table 2). The IDF definition incorporates an ethnic-specific cutoff for the 

waist circumference values. The new IDF definition originally supports the fact that central 

obesity, which is assessed by the measurement of waist circumference, must be present in each 

case of MetS [2]. In 2009, this criteria was revised, and a joint statement released by 

International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, 

Lung, and Blood Institute; American Heart Association; World Heart Federation; International 

Atherosclerosis Society; and International Association for the Study of Obesity agreed that there 

should be no obligatory component, but that IDF's original cutoff points were to be used as a 

guideline for MetS [3]. In summary, having three out of the five conditions of high blood sugar,  
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 Table 1: International Diabetes Federation (IDF) definition for MetS 

 

 
 Table 2: Ethnic-Specific Values for Waist Circumference 

 

According to the new IDF definition, for a person to be defined as having the metabolic 
syndrome they must have: 
 
Any of the following 3 out of 5 factors. Central Obesity is the fifth factor and is defined in 
Table 2 with ethnic breakdowns. 
Raised 
triglycerides 

≥ 150 mg/dL (1.7 mmol/L) 
or specific treatment for this lipid abnormality 

Reduced HDL 
cholesterol 

< 40 mg/dL (1.03 mmol/L) in males 
< 50 mg/dL (1.29 mmol/L) in females 
or specific treatment for this lipid abnormality 

Raised blood 
pressure 

systolic BP ≥ 130 or diastolic BP ≥ 85 mm Hg 
or treatment of previously diagnosed hypertension 

Raised fasting 
plasma glucose 

(FPG) ≥ 100 mg/dL (5.6 mmol/L), 
or previously diagnosed type 2 diabetes  
If above 5.6 mmol/L or 100 mg/dL, OGTT is strongly recommended 
but is not necessary to define presence of the syndrome. 

Country/Ethnic Group Waist circumference 
Europids 
In the USA, the ATP III values (102 cm 
male; 88 cm female) are likely to 
continue to be used for clinical purposes. 

Male ≥ 94 cm 

Female ≥ 80 cm 

South Asians 
Based on a Chinese, Malay and Asian-
Indian population 

Male ≥ 90 cm 

Female ≥ 80 cm 

Chinese Male ≥ 90 cm 
Female ≥ 80 cm 

Japanese Male ≥ 90 cm 
Female ≥ 80 cm 

Ethnic South and Central Americans Use South Asian recommendations until more 
specific data are available 

Sub-Saharan Africans Use European data until more specific data are 
available 

Eastern Mediterranean and Middle 
East (Arab) populations 

Use European data until more specific data are 
available 
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blood pressure, waist circumference, triglyceride and low HDL is the current and accepted 

diagnosis for MetS. 

The establishment of MetS as a syndrome has been controversial ever since the original 

coining of the term "Syndrome X" in Reavan's 1988 Banting Lecture [4]. The validity of the 

syndrome has been questioned, as has its utility and whether the five components that underlie 

the MetS diagnosis indeed have biological or genetic interconnections. In addition to the 

common clustering of these conditions observed in clinical trials, principle components analysis 

that combine the risk factors of MetS "support the idea that the clustering or correlation among 

them is heritable and has a genetic basis" [5]. Additional evidence that supports the existence of 

MetS is the elevated risks of CVD and T2D in patients that fulfill syndrome criteria as opposed 

to those whom are diagnosed with only a single component. By tying together the interrelated 

concepts of insulin resistance, dyslipidemia and hypertension, MetS can help researchers better 

understand the common pathophysiological processes involved in these risk factors [6]. In 

conclusion, despite controversies in this topic, considering MetS as a specific disease entity is 

valid and important for research. Doing so promotes research into the genetic susceptibility of 

the syndrome and potential development of novel treatment approaches for both the syndrome 

and the individual components.  

 

Metabolic Syndrome Pathogenesis 
 
 Metabolic Syndrome has five different components, all of which have a unique 

contribution to MetS disease pathogenesis, and therefore CVD and T2D risk. The first 

component is high blood pressure, which is a medical condition in which blood pressure in the 

arteries is persistently elevated. This condition causes continuous force and damage on the walls 
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of the blood vessels. Once the walls are damaged, they become susceptible to cholesterol and 

calcium plaque formation. Undiagnosed plaque build-up can grow with time, eventually leading 

to blockages in the coronary arteries. These partial blockages are a standard characteristic of 

coronary artery disease and can cause chest pains known as Angina. In addition to this, high 

blood pressure also weakens and hardens blood vessels. When these weakened blood vessels 

rupture, a heart attack occurs. The rupturing of coronary arteries recruits blood clotting factors, 

known as platelets, that assist in clotting the ruptured vessels, thereby completely blocking the 

blood flow into the heart. Persistently high blood pressure leads to a cascade of atherogenic 

symptoms, which advance the development of heart failure and other complications.  

 The second criterion is high blood sugar in the bloodstream. High blood sugar is 

primarily the result of insulin resistance, where the cells do not correctly respond to insulin 

signaling to absorb circulating blood sugar. Elevated cholesterol and fat content in the body, 

along with habitually high intake of sugars, are thought to increase risk of insulin resistance. A 

harmful aftermath of having high blood sugars is reduced levels of the powerful vasodilator 

nitric oxide in blood vessels. The presence of nitric oxide relaxes blood vessels, so a rapid 

reduction increases blood pressure in the bloodstream, causing a variety of health problems such 

as coronary heart disease and chronic kidney disease. Furthermore, an individual with a fasting 

plasma glucose level of 126 milligrams per deciliter or higher is diagnosed with T2D, which is 

associated with an array of other metabolic disorders. 

 The third component is low levels of high-density lipoproteins (HDL). HDL are proteins 

that move fat around in the body. HDL cholesterols are known as the maintenance crew of the 

body because they scavenge the bloodstream to remove and recycle low-density lipoprotein 

(LDL), a form of "bad" cholesterol which has the primary function of delivering cholesterol to 
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the cell. A high-serum LDL can build up in blood vessels, resulting in plaque that blocks blood 

flow to essential organs of the body. Low levels of HDL are often observed with high levels of 

LDL, which are known to increase cardiovascular disease risks through plaque formation and 

build-up.   

 The last two criteria of MetS are high triglyceride levels and central obesity. 

Triglycerides are a form of fat either consumed or produced by the liver. The primary function of 

triglyceride is for energy storage and production. Triglycerides are stored within the adipose 

tissues of the body, and an excess amount of triglyceride storage causes central obesity because 

adipose tissues are stored in the abdominal area. Besides its contribution to central obesity, 

triglycerides, though not reported to directly increase atherosclerosis and cardiovascular disease 

rates, are important biomarkers for several types of atherogenic lipoproteins, and therefore are 

associated with CVD [7].  

 It is no surprise that obesity makes up an important component of MetS, as excessive 

body weight has long been known to be associated with a range of co-morbidities including 

cardiovascular diseases, diabetes and even some types of cancer. The biological mechanism that 

propels central obesity to cardiovascular risks is not fully understood. Adipose tissues have the 

main role of long-term energy storage in forms of fat. In one potential hypothesis, excess obesity 

results in phenotypic change in the tissue. This involves a low-grade chronic inflammation 

created by the expansion of the adipose tissues and other metabolic factors, including "excess 

fatty acids, hypoxia, and activation of the inflammasome" [8]. This inflammation process recruits 

an abundance of immune cells, including M1 macrophages and T lymphocytes, as a response to 

the cellular stress signal. These immune cells then release pro-inflammatory cytokines, which 

blunt the insulin signaling cascade and cause insulin resistance. From this point on, the onset of 
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T2D is eminent, and the consequences of having high blood sugar is a higher risk of 

cardiovascular disease or stroke. 

 

Metabolic Syndrome Risk Factors 
 
 Alcohol, smoking, physical activity and female gender are all significant risk factors that 

influence the occurrence of MetS cases. Alcohol usage has mixed associations with MetS, and 

has been reported to be both as a risk factor and a protective factor depending on the amount and 

type of alcohol consumed. Multiple observational studies have reported that a light/moderate 

alcohol usage have favorable effects, including reduced CVD risks and all-cause mortality. This 

protective effect is much more significant in wine drinkers than beer and liquor drinkers and 

nondrinkers. Research suggests that alcohol’s effect may differ by age and gender, with the most 

significant associations in women and individuals age of 70 or lower. In the PRevención con 

DIeta MEDiterránea (PREDIMED) trial, it was reported that wine drinker’s risk of MetS was 

reduced by 44%, and these individuals also “showed a lower risk of having abnormal [waist 

circumference], low HDL-C, high [blood pressure], and high fasting plasma glucose levels.” [9]. 

The protective factor of red wine might be due to its concentration of polyphenol, an organic 

chemical known to increase levels of HDL. Red wine has also been associated with glycemic 

control and an overall lower insulin resistance when consumed in moderate amounts. On the 

other hand, high alcohol intake has unfavorable effects in multiple components of MetS. A 

multiple logistic regression analysis by Kim et al. concluded that "alcohol consumption >5 g/day 

may contribute to abnormalities of MetS, including high glucose and blood pressure, 

hypertriglyceridemia, and low HLD cholesterol" [10]. 
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 In a meta-analysis of over 56,000 participants, Sun et al found that smokers have a 26% 

increased rate of Metabolic Syndrome [11]. Life Lines Cohort Study found the same association 

within both sexes indiscriminately [12]. Smoking may affect MetS risk through two important 

mechanisms. First, increased cortisol hormone production in smokers trigger a fight-or-flight 

response from the body, causing a flood of glucose to be released to supply an immediate energy 

source. The build-up of glucose and lack of insulin to convert these sugars into usable energy 

increases blood sugar content in the bloodstream. Cortisol release also causes the body to send 

signals to the brain to eat in order to supply the energy demands of cells. False hunger signals 

result in weight gain and other metabolic morbidities related to high triglycerides and an 

abnormal waist circumference. 

 In terms of gender differences, many studies have shown that risk of developing MetS is 

significantly greater in females than in males. In a comparative study involving 500 patients, the 

prevalence of MetS in women and men corresponded to 29% and 23% [13]. Several factors may 

explain the increased risk of MetS in women vs. men, including pregnancy, oral contraceptive 

use and menopause. Jain et al.’s work on gender differences of MetS determined that increased 

waist circumference and hyperglycemia were larger contributors to the MetS criteria in women 

compared to men [13]. Pregnancy, oral contraceptives and menopause all promote increased 

central adiposity through fat distribution changes or weight gain.  

 A healthy routine of physical activity has proven to be one of the most effective 

treatments for MetS and T2D. Physical activity leads to enhanced energy consumption in the 

body, reducing the risk of abnormal ectopic storage of excessive energy in non-adipose tissues, 

such as the liver. Aerobic and resistance type exercises have also been shown to decrease the risk 

of T2D. In a large prospective study performed by Hemrich et al., incidence of diabetes 
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decreased by 6% as energy expenditure increased by 500 kcal. per week [14]. Additional 

evidence for improved glucose homeostasis from physical activity was shown in a randomized 

control trial that involved a lifestyle intervention of at least 150 minutes of physical activity per 

week. In a study performed by Diabetes Prevention Program Research Group involving 3,234 

non-diabetic patients with elevated fasting glucose, physical activity was found to be more 

effective than Metformin alone in reducing the onset of T2D [15]. Finally, physical activity has 

also been shown to reduce the risk of cardiovascular events, potentially through the improvement 

of lipid profile and anti-inflammatory factors. To study the effects of physical activity on 

dyslipidemia, Kraus et al. randomly assigned different levels of intensity and duration exercises 

to 111 subjects [16]. The study reported a decrease in concentration of LDL and an increase in 

concentration of HDL in the high-intensity high duration subjects. Work by Majka et al. suggests 

an inverse relationship between inflammatory agents such as high sensitivity C-reactive protein 

and physical activity [17]. This protective effect is the result of physical activity increasing anti-

inflammatory agents such as cytokine inhibitors and TNK receptors. Recall that inflammatory 

markers blunt the insulin signaling cascade, thereby speeding up the development of T2D. CRP 

is also associated with inflammation within blood vessel walls, promoting plaque buildup and 

CVD. 

 
Genetics of Metabolic Syndrome 
 
 The underlying genetic complexities of MetS stem from its numerous components, their 

interactions and interplay with numerous lifestyle and environmental risk factors. Though widely 

studied, the genetic architecture and origin of MetS is still not completely elucidated. Since MetS 

is a syndrome comprised of multiple underlying morbidities, two main hypotheses have been 

proposed to explain the development of MetS. McGarry's Banting Lecture in 2001 supported the 
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MetS obesity theory, in which obesity-associated metabolic dysfunctions "induce cellular stress 

that initiates and propagates an inflammatory cycle" [5]. In this hypothesis, accumulation of 

abdominal and ectopic fat leads to elevated fatty acids that blunt the insulin signaling cascade, 

therefore promoting the development of insulin resistance. The alternate theory, known as the 

insulin hypothesis, proposes that obesity is the result of insulin and leptin resistance. Though 

controversial, many studies have shown that components of insulin resistance, obesity, 

hypertension and dyslipidemia all have joint genetic contributions to MetS. In order to decode 

the genetic variability of MetS, we first consider GWAS that highlight genetic variants that are 

associated with disease endpoints of the individual component of MetS. Then, we can briefly 

review studies that look for pleiotropic genetic variants, or genes that influence multiple 

phenotypes. 

 Type II diabetes has been observed to have both a strong environmental and heritable 

component. Multiple twin studies have determined the heritability of T2D to be in the range of 

20%-80% [18]. IGF2BP2, otherwise known as insulin-like growth factor 2 mRNA binding 

protein 2, is one of the Mendelian genes that contribute to T2D development. This gene codes for 

a transcription factor that binds to an IGF2, or insulin-like growth factor, promoter region, 

thereby regulating the translational activity of this gene. IGF2 is a gene known for insulin 

receptor binding, metabolism and growth. Epigenetic changes to this gene can result in growth 

restrictions and susceptibility to diabetes. Another well-documented genetic variant is located on 

the CDKAL1 gene. In a Finnish study, Stancáková tested the insulin and glucose levels of two 

groups of participants: one of which had the "C" allele at the rs7754840 SNP location and 

another who did not have this allele. The result of the study showed that participants having the 
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"C" allele had lower first-phase insulin release in an IVGTT, or IV Glucose-Tolerance test, and 

also had a higher glucose area under the curve in an OGTT, or Oral Glucose Tolerance Test [19].  

 Hypertension is another MetS component with high heritability, with twin studies reports 

ranging from 30-70% [20]. Most of the SNPs associated with blood pressure can be divided into 

two categories: the SNPs that predispose an individual to hypertension and the SNPs that 

influence drugs that are usually used to treat hypertension, such as ACE inhibitors. One of these 

SNPs (rs4961) on the ADD1 gene is known to increase the risk of high blood pressure by 1.8 

times [21]. Another well-studied SNP (rs5186) is located in the 3' untranslated region of the 

angiotensin II receptor type 1 gene AGTR1. Being homozygote (C:C) for this SNP results in a 

7.3-fold increase in hypertension risk [22]. The AGTR1 gene produces a hormone that is a 

primary regulator of aldosterone secretion. Aldosterone is a hormone that is responsible for 

regulating sodium homeostasis, thereby controlling blood pressure and blood volume. Finally, 

two SNPs (rs1801253 and rs1801252) located in the ADRB1 gene are associated with affecting 

beta blocker therapy. In a study done by Johnson et al., the effect of beta blocker monotherapy 

was compared when given to participants with varying SNP genotypes [23]. Interestingly, 

individuals who were homozygous carriers of rs1801252 (A;A) and rs1801253 (C;C) logged an 

average of a fifteen point drop in blood pressure compared to only a less than one point drop in 

heterozygous carriers of rs1801252 (A;G) and rs1801253 (C;G).  

 Family studies have reported triglycerides to have a heritability estimate of around 40%, 

and over 30 single nucleotide polymorphisms have been reported to influence plasma 

triglyceride levels [24]. Recent large-scale meta-analysis attempts to address whether "common 

and rare variants in genes whose products are determinants of plasma triglycerides are also 

associated with clinical cardiovascular endpoints." [25]. A recent paper by Dron et al. pointed to 
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triglycerides, along with decreased levels of HDL, as being potentially causal for cardiovascular 

and stroke outcomes [25]. Two of these significant variants, rs7679 on the PCIF1 gene and 

rs2624265 located on chromosome 15, result in increased levels of serum triglyceride [26]. 

 The heritability estimates for plasma HDL cholesterol range from 40-60% and well over 

30 SNPs have been reported to be associated with influencing HDL levels [27]. A SNP 

(rs4149268) on the ABCA1 gene is associated with lower HDL levels [28]. The ABCA1 gene 

translates into a protein that acts as a cholesterol efflux pump, which removes excess lipids from 

the cell. Another SNP (rs2271293) that falls on the LCAT gene has a minor allele that is 

associated with decreased HDL, LDL, and triglycerides [26]. LCAT encodes for the extracellular 

cholesterol esterifying enzyme, which is responsible for the esterification and transportation of 

cholesterol. A mutation in this gene therefore reduces both HDL and LDL cholesterol levels. 

Many SNPs that are associated with HDL also relate to both LDL and triglycerides, which 

reinforces the idea of a close relationship between pathways that are involved in dyslipidemia.   

 Finally, results from recent genome-wide associations study confirm the numerous 

genetic interconnections between MetS and obesity, potentially through genes with pleiotropic 

effects. From family and twin studies, the range of heritability for adiposity phenotypes is 30-70% 

[5]. Though the biological mechanism for many of these variants remain unclear, a number of 

these SNPs are located on genes that are associated in the brain and hypothalamus, "suggesting a 

role for neuronal control in body weight regulation" [5]. An example of this would be the 

association of the NRXN3 gene with obesity. The NRXN3 gene is expressed in the brain and is 

involved in addiction, reward behavior and synaptic plasticity. Polymorphisms in this gene have 

been linked to genetic predisposition to drug addiction and obesity. Two polymorphisms 

(rs1121980 and rs9939609) in the FTO gene have been reported to be associated with early onset 
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obesity. The FTO gene, also known as the fat mass and obesity-associated gene, plays a major 

role in controlling feeding behavior and energy expenditure. In a study by John R. Speakman, 

researchers discovered that individuals carrying at-risk (A:T) and (A:A) alleles at rs9939609 

consumed between 125 and 280 kcal more each day than those carrying the protective (T:T) 

genotype [29].  

 MetS has an estimated heritability of around 30% [5]. Human genetic studies of MetS 

often attempt to find variants and gene loci that relate to one or more phenotypes. These genes 

that have penetrance on multiple phenotypes are known as having pleiotropic effects. An 

example of this is the NR3C1 gene, which has been associated with hypertension, obesity and 

insulin resistance [30]. The NR3C1 gene codes for the Glucocorticoid Receptor (GR), which is 

the receptor that cortisol binds to. GR is expressed in almost every cell of the body and is 

involved in the regulation of development, metabolism and immune response. Recall that the 

release of cortisol in smokers causes a rise in blood sugar and a fight-or-flight response, which 

triggers false hunger signals. Impairment of this cortisol receptor can contribute to the 

development of MetS in a similar manner, where the binding of cortisol and other 

glucocorticoids by an affected GR triggers a downstream reaction of risk factors. The ADIPOQ 

gene is another example of a pleiotropic gene, affecting multiple phenotypes such as diabetes, 

hypertension and dyslipidemia [31]. ADIPOQ is well known for producing a protein hormone 

that is localized in adipose tissues. These hormones are involved in regulating glucose levels and 

promoting fatty acid breakdown in the cell. Therefore, risk alleles presented on this gene that can 

potentially alter or impair its functions might have catastrophic consequences. For example, a 

deregulation of glucose levels in the bloodstream can lead to the onset of diabetes. Also, an 
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abnormal fatty acid build-up in the adipose tissues increases waist circumference and promotes 

dyslipidemia.  

 There have been extensive GWAS efforts to study MetS, but some key limitations exist 

in these studies. First, many studies suffer from modest sample size (N<2500), which poses the 

challenge of lacking power to detect significant variants. Another consequence of a small sample 

size is its inability to detect associations of rare variants. Lin et al., Zhu et al. and Zabeneh et al. 

have all performed a GWAS on MetS with less than 2,500 MetS case samples (1811, 545 and 

2,371, respectively) [47] [48] [49]. Another potential issue with the current MetS GWAS 

protocol is the definition of control samples. The standard case-control definitions, such as those 

in the studies listed above, define control samples with having zero to two metabolic abnormality. 

There have been no studies that differentiate between the benefit of establishing a strict super 

control definition (zero MetS criteria met) as opposed to the traditional normal control definition. 

The inclusion of controls with MetS disease components (1 or 2 of 5) may attenuate power of the 

genetic analyses. In our study, sample size is maximized by leveraging three dbGaP datasets for 

analysis. After this preliminary analysis, 350,000 European ancestry subjects from UK Biobank 

are planned to be added to a future GWAS. Finally, to better understand the effectiveness of 

different control definitions, both super and normal control criteria are used in the analysis. 

 

Research Aims and Goals 
 
 This project builds on the availability of large-scale individual level genotype and 

phenotype data from dbGaP, a biorepository that provides a wealth of research datasets with 

great potential for data mining and genetic studies. There are two main research goals in the 

project. The first main goal is to harmonize and quality control a large collection of dbGaP 
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datasets that have phenotype information of interest in order to prepare for current and future 

research studies. The second research aim is to use the quality-controlled datasets to study the 

disease components and pathogenesis of MetS. To do this, we ran multiple GWAS on relevant 

studies that measure MetS phenotypes to identify genetic variants associated with this disease. 

The MetS variants are likely to be pleiotropic, showing association with more than one MetS 

disease phenotypes, and can potentially guide development of new drug targets for disease 

treatment. In addition, pleiotropic SNPs can illuminate MetS disease pathophysiology by tying 

together multiple biological processes, which will greatly enhance our understanding of the 

disease. Many current studies of MetS have GWAS with moderate sample sizes. Moderate 

sample-sized GWAS often filter out the effects of rare variants because there are not enough case 

and control subjects that are representative of a particular rare SNP. In my research, I attempt to 

incorporate a large amount of study subjects in order to capture the effects of these low-

frequency variants, with minor allele frequencies down to 1%. 
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Chapter II 

     Materials and Methods 
 

Database for Genotype and Phenotype (dbGaP) 
 
 Database for Genotype and Phenotype (dbGaP) is a widely accessible biomedical 

biorepository containing troves of valuable individual-level genotype and phenotype information. 

These datasets have become a major resource for conducting genetic epidemiology research 

studies. dbGaP is a biomedical repository managed by the National Center for Biotechnology 

Information (NCBI), within the National Institute of Health, developed to "archive and distribute 

the data and results from studies that have investigated the interaction of genotype and phenotype 

in Humans" [32]. dbGaP facilitates research access by centralizing data from hundreds of studies 

and standardizing application process to restrict access to researchers with proper credentials. 

Although biorepositories like dbGaP benefit the scientific community greatly, the available data 

often cannot be used immediately. Since data is deposited from a variety of different research 

groups, data quality and its accompanying documentation is heterogeneous. For example, there is 

no consistent genotyping array technology that is used for the deposited genetic data. Instead, 

GWAS genetic data is genotyped on two major genotyping platforms (Affymetrix and Illumina) 

and a multitude of versions of genotyping arrays released over the past decade. Some groups 

provide raw genotype data, while others provide comprehensively quality-controlled data. Since 

the organization of key variables and tables are not uniform amongst studies, it can be difficult to 

extract the information needed for a research study. Therefore, a meticulous quality control of 

genetic data and data harmonization process must be considered prior to doing any type of 

analysis on the dbGaP datasets.  
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Quality Control Pipeline 
 
 To accomplish this goal, we undertook a complete and comprehensive review and 

revision of Dr. Salem's semi-automated quality control pipeline for whole-genome genotyping 

data. This process entails a thorough review of the code to check for errors, improvements to 

state-of-the-field computational tools and development of new scripts to increase performance 

and reduce computational load. The first step in this process was to update the paths of scripts 

used in the pipeline. Outdated programs were then replaced with faster and more efficient 

versions. In the pipeline, shell scripts were optimized and any redundant code was removed to 

increase computational efficiency. A summary of each quality control step after each run was 

incorporated to speed up manual data recording steps. With these changes, the updated code was 

five to ten times faster than the original code. Besides updating the quality control pipeline, tools 

were also developed to work with dbGaP data. To simplify these files, a data dictionary tool was 

developed to parse the phenotype files given in XML format into a concise table to aid with the 

variable harmonization process. A data harmonization tool was also developed to rename dbGaP 

variables and output a concatenated subset of the main data table.   

 The multi-step QC process results in the application of uniform quality control filters 

applied to raw genotype data. The quality control pipeline was run in a Linux environment using 

numerous bash shell scripts. In addition, custom Python, R and Perl were all utilized in the 

quality control process. Data manipulation of the genotype files was largely performed using 

PLINK. Other programs used in the pipeline include EIGENSTRAT for Principle Component 

Analysis and KING for unrelated subjects subsetting [33] [34]. The updated code is briefly 

described below. 
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Step 1 is the pre-processing step of the procedure. In this step, phenotype and genotype 

data retrieved from dbGaP are placed in secure servers. Phenotype files contain phenotypic 

variables of each subjects, such as weight or smoking information. Genotype files contain whole 

genome genotyping results for each individual. This file contains a range of 200,000 to 2.5 

million variants along with their location and allele information. After converting the files to 

PLINK format, genotype files go through a duplicates check to remove SNPs or subjects that 

have duplicate identifiers. Next, the genome build of the genetic variants is determined and 

variants that do not match this build are removed. A reference genome build is a widely used 

digital database assembled by scientists as a representative of a specific genome. As sequencing 

technology advances, the number and lengths of gaps in the reference genome decreases, 

fostering the advancement to a new genome build. Studies from dbGaP have used reference 

genome build HG16, HG17, HG18, and HG19, depending on when the subjects are genotyped. 

Besides labeling the genome build, another goal of this pipeline is to align all genomes to be 

HG19 build in order to simplify comparison and association tests. Next, case-control status and 

sex identifiers are checked to ensure correct labeling. HapMap subjects, which are reference 

samples often included on genotyping runs for comparison purposes, are filtered and removed. 

These individuals are also filtered and removed. Finally, variants with missing alleles are filtered 

out of genotyping files. The resulting file from Step 1 is utilized as input for Step 2.  

 Step 2 of the pipeline is run automatically, with manual review checks at the end of the 

run. In Step 2, the following quality control filters are applied. First, a sex check that compares 

reported sex with genotyped sex through using X and Y chromosome variants is applied. Any 

subjects that differ from their genotyped sex are filtered out in order to avoid potential bias. Next, 

subjects are divided into their respective self-reported racial/ethnic ancestry. Subject call rates 
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and variant call rates are also verified during this step. The variant call rates filter removes SNPs 

that have high rates of missingness (95% SNP call rate required). Similarly, the subject call rates 

filter removes subjects that do not have sufficient SNP information across all variants (98% 

subject call rate required). Chromosome-specific subject missingness filters, which removes 

subjects that are missing more than 5% of SNPs on a particular chromosome, is also 

implemented. Heterozygosity checks are run after call rate filters. This procedure estimates the 

total heterozygosity among the variants genotyped across the genome. Extreme low and high 

heterozygosity values are used to flag subjects with potential DNA quality issues, e.g. sample 

contamination (extreme high) or low quality DNA (low heterozygosity). Subjects with 

heterozygosity values more than four standard deviations from the mean value are noted as 

"extreme" and are filtered out. Figure 1 illustrates how this extreme heterozygosity is determined. 

After the heterozygosity checks, Rayner's Perl script titled "1000G Imputation preparation and 

checking" is used to check variant positions and compare allele frequencies against 

1000Genomes, a widely utilized reference genome. Rayner's script also updates variant genomic 

position information to HG19. Lifting over to the HG19 genome build provides uniformity 

across the datasets and ensures that all SNPs are located on the positive strand. Ambiguous or 

palindromic variants that cannot be resolved are also removed. Ambiguous SNPs are variants 

that have a major and minor allele indistinguishable on either strand of the chromosomes (e.g. 

A/T and C/G). For example, in 1000Genomes, a variant's minor allele is an 'A' with a 40% 

frequency rate. The alternative allele is a 'T' with a 60% frequency rate. In our study samples, the 

same variant's allele 'A' is labeled with a 45% frequency rate. Since this frequency is close to 

both the frequency of 40% and 60%, it would be difficult to tell whether the minor allele is 

labeled correctly, and since both strands contain A and T ambiguous alleles, the reference 
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Figure 1: Heterozygosity Plot 
 
This is the heterozygosity plot for the European samples in the MESA cohort. The procedure 
estimates the total heterozygosity across the variants genotyped in the genome. Values that are 
extremely high or low are removed. The solid blue line above shows the mean value of the plot 
and the dashed blue lines denote values four standard deviations from the mean. On the left of 
the blue line, five samples are above four standard deviations away from the mean, and are 
therefore removed. 
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genome does not help with distinguishing between minor and major allele frequency rates. These 

problematic alleles are removed by the Rayner Perl script. 

After the Perl script, an additional check involves checking if variant allele frequencies 

differ from the 1000Genomes reference by more than 20% for common variants (minor allele 

frequency greater than 2%) or 5% for rare variants (minor allele frequency less than 2%) is 

implemented. This step ensures that SNP frequencies do not differ significantly from the already 

established reference genome. The SNP frequency check is performed with different reference 

allele frequencies for each ethnic/racial group. At the end of Step 2, an Identity by State (IBS) 

analysis is ran and a manual check is required. IBS looks at nucleotide differences amongst a 

group of people and predicts any familial relationship within the group. It is important for 

individuals who are related to be identified since naive analysis GWAS will result in inflated 

significant estimates. IBS can also be utilized to identify problematic samples by detecting 

individuals with many spurious relationships to other individuals in the study. The spurious 

association is driven by excessive heterozygosity due to sample contamination or DNA 

degradation. These subjects are removed from the analysis. 

 In Step 3, a Principle Components Analysis (PCA) is performed on the wide set of 

variants. PCA is a machine-learning statistical data reduction technique where variables are 

summarized and simplified into what is known as their most important factors. In our example, 

every SNP is a variable, or a feature of a subject. A covariance matrix is made where correlations 

between all combinations of SNPs are calculated. Then, the eigenvalues and eigenvectors of the 

covariance matrix are calculated. The eigenvector is a vector that defines a direction in which 

points have the maximum variance when projected onto the vector. In another words, these new 

eigenvectors provide a new axis that allow us to better visualize the differences amongst the data 
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Figure 2: MESA EA IBS Cutoff Table 
 
This is the resulting table of the Identity by State analysis, which looks for nucleotide differences 
amongst a group of people to predict relatedness. The example is from the European ancestry 
samples of the MESA study. The IBS analysis shows that the highlighted subject pair has a 
spurious association with twelve people. In order to remove this association, one of the subject is 
removed.
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points. Eigenvalues correspond to the percentage of variance of each eigenvector. In the end, we 

are left with new variables that are constructed as a linear combinations of the initial variables. 

PCA1 and PCA2 explain a large amount of the variability of the initial points, and are often able 

to differentiate subjects into groups of continental ancestry. After calculating PCA, Step 3 

projects PCA1 and PCA2 values into the HapMap space. The International HapMap Project is an 

organization aimed to provide a reference haplotype map of the human genome [35].  The 

HapMap Project contains subjects from eleven population groups, representative of all 

continental ancestries with complete genome-wide genotype data. PCA is performed and 

graphed, and study subjects are projected onto the same space and any outliers are manually 

removed based on their self-reported ancestry. Figure 3 and Figure 4 show an example of the 

PCA check process. The PCA analysis generates a set of components that explain variability in 

genetic data and may capture the different allele frequencies that underlie continental ancestry. It 

is of utmost importance to ensure that the labeled ethnicity (in Step 2) is in accordance with their 

actual ethnicity. In addition, to address potential admixture (allele frequencies between 

racial/ethnic groups), another benefit of separating individuals by ancestry is the elimination of 

covariates. Specific ethnic/racial groups share common characteristics including population 

history, culture, and diet that can be accounted for if analysis is isolated within the group.  

 Step 4 of the QC pipeline consists of additional SNP and subject quality control checks. 

The first check is the Hardy Weinberg Equilibrium (HWE) filter. HWE states that allele 

frequencies, in the absence of particular evolutionary influences, will remain constant. Though 

evolutionary factors might be present, we do not expect to see SNP genotypes to vary too much 

from HWE values and if they do, genotyping error is the most likely cause. Step 4 also checks 

for SNP missingness prediction by plate information, haplotype block and case control status if 
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Figure 3: MESA EA PCA Plots Before and After Outlier Removal 
 
Both of these plots are from the MESA European ancestry cohort. In these graphs, PCA1 is 
mapped against PCA2. PCA1 and PCA2 capture the most variability in the genetic variants and 
are able to differentiate continental ancestry. PCA's are projected onto HapMap space and 
HapMap samples are used as a reference to eliminate outliers. On the top graph (before outlier 
removal), most study samples (pink points) are clustered on the European HapMap samples 
(green points). Outliers of the main cluster are removed to reduce population admixture. The 
bottom graph uses the same color and coding scheme, except with outlier subjects removed. 
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Figure 4: MESA HM PCA Plot 
 
This PCA plot shows the Hispanic subset of the MESA cohort. The extent population admixture 
of individuals with Hispanic descent is shown in this plot. Genetically, these individuals overlap 
with multiple ethnic groups. For Hispanic samples like this one, we do not remove any 
individuals from the study. 
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available. This missingness check eliminates variants that are missing based on its association 

with a particular genotyping plate or a particular haplotype block. The last check in Step 4 is the 

Mendel Test, where individuals with documented family structures are leveraged to check for 

problematic genotype data. For this check, variants are removed if alleles are not compatible 

within a family, (e.g. child’s genotype is not compatible with parents, indicating a Mendelian 

error).  

 Step 5 is the last step for the Quality Control protocol. In Step 5, Principle Components 

are re-run with the final set of QC’ed subjects for later use as covariates in our GWAS. Final 

checks and file integrity storage are also performed in this step. Cohorts that have successfully 

underwent this quality control pipeline are ready for the next genotype imputation. 

 

Imputation 
 
 After the meticulous checks in the QC pipeline, variants are guaranteed to be of optimal 

quality for analysis and genotype imputation. Imputation is a statistical inference method to infer 

and assign unobserved genotypes. Whole genome genotyping is the process of genotyping SNPs 

based on a microarray designed to capture a certain predetermined number of variants. Since 

whole genome genotyping only captures a limited number of SNPs, imputation is used to impute 

in the missing information of ungenotyped variants. Imputation leverages the linkage 

disequilibrium (correlation) between genetic variants and haplotypes from a reference population 

to output probabilistic alleles that fill in for missing variants. Since imputation is computationally 

intensive, the process is performed on the NIH-funded Michigan Imputation Server [36]. The 

Michigan Imputation Server provides free imputation services with multiple reference panels and 

a phasing output option. Overall, imputation increases the power for genetic association studies 
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by increasing the number of variants and aids in the interpretation of results by including a 

complete set of variants for analysis. 

 
 
Variable Harmonization 
 
 When working with dbGaP data, variable and data tables come from all sources. Variable 

harmonization is necessary for case-control selection. For example, lab results are often reported 

in units that are not standardized across studies. For this project, HDL, LDL, triglycerides, and 

fasting glucose need to be converted into scientific units, e.g. milligrams per deciliter. Waist 

circumference is converted into centimeters. Another issue with variables is the naming 

conventions that are unique to each study. Since all studies use different names for these 

biomarkers, a uniform naming scheme is implemented across studies. Variable selection is also 

an issue, as most studies have either multiple variables for a single biomarker or confusing 

annotations for variables. Longitudinal studies are particularly challenging to work with because 

of the naming conventions and data tables that often change across the duration of the study. To 

work with these challenges, R Studios is used to merge tables and rename variables. Variables 

are also checked for missingness to ensure accurate measurements of all biomarkers. At the end 

of the harmonization process, all studies have a unique data table with consistent units and 

uniform variables ready for case-control selection. 

 

Genome Wide Association Study (GWAS) 
 
 Genome Wide Association Study (GWAS) is a statistical genetics analysis procedure that 

performs a hypothesis-free association analysis on hundreds of thousands of genome wide 

variants for the trait of interest. Essentially, a case-control GWAS compares allele frequencies 
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that differ significantly between a case group and a control group after covariate and ancestry 

adjustments. In our MetS case-control GWAS, case subjects are selected based on the criteria in 

Table 1 and Table 2. For control subjects, we used two definitions: a super control group and a 

normal control group, running separate GWAS for each case-control set. The super control group 

consists of individuals with no abnormalities in terms of the five MetS components, while 

normal controls have two or less criteria of MetS. GWAS is performed using SNPTEST, a 

program created at the University of Oxford [40]. 

 

Meta-Analysis 
 
 Meta-analysis is a statistical methodology to combine summary statistics from multiple 

studies into a single combined summary statistic. GWAS outputs a list of p-values, odds 

ratios/beta estimates, along with the effect allele and allele frequencies for each variant are 

required. The summary statistics parameters serve as input values for the meta-analysis. Meta-

analysis is performed using the program Metal [41]. Metal combines the effect size and standard 

errors from multiple cohorts into a single summary statistic that is comparable to performing the 

analysis with all cohorts combined. This program uses an inverse variance-weighted meta-

analysis technique where the directionality of p-values on effect alleles and non-effect alleles 

matter. This approach takes into account the direction of effect (beta) and weights based on 

sample size (inverse of standard error) to calculate the combined test statistic. 
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Chapter III 

Results 
 

Studies of Interest 
 
 In total, 113 studies and 306,898 subjects have been fully quality controlled and imputed. 

Table 3 shows a breakdown of the number of cohorts from each ethnicity. These studies, which 

all originate from dbGaP, are prepared for future GWAS analysis. Within this list of imputed 

cohorts, three studies of interest were selected for MetS analysis. The first cohort of participants 

is from the Multi-Ethnic Study of Atherosclerosis, or MESA [37]. MESA is a longitudinal family 

study that focuses on characteristics of subclinical cardiovascular disease and risk factors 

associated with it. MESA has 2,231 study samples of European ancestry (EA) and 1,573 study 

samples of African ancestry (AA) genotyped on the Affymetrix 6.0 array. The study contains 

822,855 SNPs from the EA cohort and 824,729 SNPs from the AA cohort after the quality 

control protocol. The second group of participants is from the Atherosclerosis Risk in 

Communities, or ARIC study [38]. ARIC is a longitudinal cohort study sponsored by the 

National Heart, Lung and Blood Institute (NHLBI). This project is a prospective epidemiology 

study designed to look at the etiology, risk factors and natural history of atherosclerosis. ARIC 

has 8,401 study samples of European ancestry and 2,678 participants of African ancestry. These 

subjects were genotyped on the Affymetrix 6.0 array. ARIC contains 696,934 EA variants and 

748,870 AA variants after QC. Cardiovascular Health Study (CHS) is the third and final study 

utilized in this project [39]. CHS is a longitudinal study focused on finding associations of risk 

factors with CVD and stroke. The study has 3,191 EA study samples and 562 AA study 

participants genotyped on the Illumina Human CNV370v1 array. This study has 314,705 EA 

SNPs and 317,863 AA SNPs. All three studies were imputed on the Michigan Imputation Server 
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Table 3: Quality Control and Imputation Progress 
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with the HRC (Version r1.1 2016) imputation panel, which is comprised of 64,940 haplotypes. 

After imputation, the MESA cohort had 41,626,293 EA SNPs and 41,626,596 AA SNPs. The 

ARIC cohort had 41,626,437 EA SNPs and 41,626,564 AA SNPs. The CHS cohort had 

41,583,825 EA SNPs and 41,583,826 AA SNPs.  

 

GWAS Summary 
 
 We performed a GWAS study on 18,636 samples (n=	13,823 of European and n=4813 

African ancestry) from three individual studies. Summary statistics for each cohort is reported in 

detail in Table 4 and Table 5. GWAS was performed stratified by racial groups (European and 

African American) for two case-control definitions (normal and super controls). The test statistic 

was filtered based on null values, genomic inflations and low-allele frequency values (effect and 

non-effect alleles must both have over ten total alleles). A meta-analysis was performed to 

combine and generate a single test statistic for each variant.  

 

European Ancestry: Cases and Normal Controls 
 
 GWAS of the European cases and normal control set of subjects identified four genome-

wide significant SNPs, reported in detail in Table 9. Genome-wide significant SNPs have a p-

value of less than 5x10-8. The first SNP (rs11076176) is located on the CETP gene and has a p-

value of 3.05x10-8. The CETP gene, also known as cholesteryl ester transfer protein, encodes a 

plasma protein that facilitates the transport of cholesteryl esters and triglycerides between 

lipoproteins. The second variant (rs247616) is located on intergenic regions of chromosome 16



31 
	

 

Table 4: Demographics, Case Control Breakdown, and Medication Status of Study Samples 
 

 
 
 
 
 
 
 
 

 MESA ARIC CHS 
 European 

Ancestry 
African 

Ancestry 
European 
Ancestry 

African 
Ancestry 

European 
Ancestry 

African 
Ancestry 

Subjects after 
Quality 

Control (N) 

2231 1573 8401 2678 3191 562 

Men 1189 842 4084 1031 1267 209 

Woman 1042 731 4317 1647 1924 353 

Metabolic 
Syndrome 

Cases 

1045 849 4813 1735 1453 242 

Metabolic 
Syndrome 

Super 
Controls 

700 304 2701 591 935 117 

Metabolic 
Syndrome 

Normal 
Controls 

1186 724 3588 942 1738 320 

Individuals on 
Hypoglycemic 

Medication 
(%) 

4.5% 13.4% 3.8% 14.6% 1.3% 3.9% 

Individuals on 
Anti-

Hypertensive 
Medication 

(%) 

33.5% 50.2% 23.0% 52.1% 36.4% 56.4% 

Individuals on 
Hypolipidemic 

medication 
(%) 

17.8% 15.6% 3.5% 1.4% 4.4% 5.7% 
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Table 5: Clinical Characteristic of Study Samples 

 
 
 

 

 

 

 

 

 Mean + SD 

 MESA ARIC CHS 

European 
Ancestry 

African 
Ancestry 

European 
Ancestry 

African 
Ancestry 

European 
Ancestry 

African 
Ancestry 

Age 62.8 + 10.2 62.3 + 
10.1 

54.4 + 5.7 53.4 + 5.8 72.4 + 5.4 72.6 + 5.5 

Waist 
Circumference 

(cm) 

98.3 + 14.1 101.2 + 
14.6 

96.4 + 13.2 99.4 + 
15.0 

93.3 + 12.8 98.5 + 
14.1 

Triglycerides 
(mg/dl) 

132.2 + 
89.3 

105.3 + 
71.0 

138.2 + 
91.5 

116.5 + 
87.3 

140.5 + 
74.4 

113.0 + 
54.3 

HDL 
Cholesterol 

(mg/dl) 

51.8 + 15.7 52.3 + 
15.3 

50.2 + 16.5 54.7 + 
17.2 

55.0 + 15.8 58.63 
+15.5 

Systolic Blood 
Pressure (mm) 

123.5 + 
20.1 

131.7 + 
21.8 

118.6 + 
16.9 

128.7 + 
21.2 

135.0 + 
21.5 

140.4 + 
21.0 

Diastolic 
Blood 

Pressure (mm) 

70.5 + 9.8 74.5 + 
10.3 

71.6 + 10.0 80.0 + 
12.3 

70.1 + 11.8 74.7 + 
10.2 

Fasting 
Glucose 
(mg/dl) 

91.5 + 21.6 100.3 + 
32.5 

105.3 + 
31.1 

118.7 + 
58.3 

107.8 + 
28.8 

117.7 + 
53.7 
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and has a p-value of 5.88x10-10. The third SNP (rs287) lies on the LPL gene on chromosome 8 

and has a p-value of 1.64x10-13. LPL, also known as lipoprotein lipase, encodes for an enzyme 

that hydrolyzes triglycerides in lipoproteins. Finally, the last significant SNP (rs964184) is 

located on the ZPR1 gene and has a p-value of 5.18x10-12. The ZPR1 gene encodes for a zinc 

finger protein. The zinc finger protein is known to interact with survival motor neuron proteins to 

enhance pre-mRNA splicing. We also generated Quantile-Quantile (QQ) plots to visually check 

for inflation. The QQ plot is a graphical technique used to verify if a set of test statistics comes 

from a certain distribution. For GWAS, we expect to see p-values that follow a uniform 

distribution with an inflated "tail" if true associations exist. The study's p-value is graphed on the 

y-axis against a uniform distribution of p-values on the x-axis. QQ plots in this study show a 

slight inflation, with genomic control variable of 1.011 (Figure 5, Pane 2). Manhattan plots in 

Figure 8 show thirty-six genome-wide suggestive SNPs, or variants that have a reported p-value 

of 1x10-5 or less. The Manhattan plot is a type of scatter plot for GWAS visualization that graphs 

the negative logarithms of the p-values on the y-axis with the chromosome positions on the x 

axis. The suggestive SNPs from the Manhattan plots are reported in Table 12.  

 

European Ancestry: Cases and Super Controls 
 
 For the European cases and super control set of subjects, QQ plots in Figure 5, Pane 1, 

show slight inflation with the genomic control variable of 1.014. Like the normal controls, there 

are also four genome-wide significant SNPs, reported in Table 5. The normal control subset was 

able to capture the same four genome-wide significant SNP as the super control subset. However, 

super controls reported more suggestive SNPs than the normal controls. The first genome-wide 
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significant SNP (rs11076176) that fall on the CETP gene has a p-value of 3.91x10-8. The second 

variant (rs247616) is on an intergenic region and has a p-value of 2.95x10-8. The third SNP 

(rs287) is on the LPL gene and has a p-value of 2.16 x10-13. The final SNP (rs964184) is on the 

ZPR1 gene and has a p-value of 1.13x10-12. Manhattan plots in Figure 6 show forty-one genome-

wide suggestive SNPs, which are reported in Table 10.  

 

African Ancestry: Cases and Normal Controls 
 
 Figure 5, Pane 4, shows the QQ plots for the cases and normal control subjects with 

African ancestry. With the genomic control variable of 0.983, the graph shows a slight deflation. 

As seen in the Manhattan plots in Figure 9, only one SNP (rs117729532) reached genome-wide 

significance with the p-value of 1.05x10-8. This SNP is also duplicated as a genome-wide 

significant variant in the cases and super control subset. Cases and normal controls were able to 

capture sixty-nine suggestive signals listed in Table 13. 

 

African Ancestry: Cases and Super Controls 
 
 Lastly, the QQ plots shown for cases and super controls for subjects of African ancestry 

are shown in Figure 5, Pane 3. There is a minor inflation with genomic control variable of 1.01. 

There were two SNPs that reached genome-wide significance, shown in the Manhattan plot in 

Figure 7. The first SNP (rs117729532), with a p-value of 2.28x10-9, is on chromosome 7 and 

belongs to a non-coding transcript variant. This SNP resides on an uncharacterized gene known 

as LOC107986717. The second SNP (rs115553887) has a p-value of 4.38x10-8 and resides on the 

RBM20 gene. The RBM20 gene codes for a protein that regulates the splicing of the TTN gene. 

There were 150 variants that were genome-wide suggestive, which are listed in Table 11. 
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Figure 5: QQ Plots 
 
The QQ plot is a graphical technique that visualizes expected versus observed p-value 
distributions of a GWAS. Note: p-values on x- and y-axis are reported in negative logarithm 
scale. Pane 1 shows the QQ plots and genomic control variable in the European cases and super 
controls subset. Pane 2 shows the plot for the European cases and normal controls subset. Pane 3 
shows the plot for the African cases and super controls subset. Pane 4 shows the plot for the 
African cases and normal controls subset.
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Figure 6: Manhattan Plot: European Ancestry, Cases and Super Controls 
 
A Manhattan Plot is a scatter plot used to display p-values from a GWAS. The x-axis represents 
the linearized genomic position while the y axis represents the negative logarithm of the p-values. 
Four points reach genome-wide significance (top threshold line) in this plot: rs287 on 
chromosome 8, rs964184 on chromosome 11, rs11076176 on chromosome 16 and rs247616 on 
chromosome 16. These points have a p-value of less than 5x10-8. Forty-one points reach genome-
wide suggestive (bottom threshold line) in this plot. These points have a p-value of less than 
1x10-5. 
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Figure 7: Manhattan Plot: African Ancestry, Cases and Super Controls 
 
Two loci reach genome-wide significance (top threshold line) in this plot: rs117729532 on 
chromosome 7 and rs115553887 on chromosome 10. These points have a p-value of less than 
5x10-8. 150 points reach genome-wide suggestive (bottom threshold line) in this plot. These 
points have a p-value of less than 1x10-5. 
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Figure 8: Manhattan Plot: European Ancestry, Cases and Normal Controls 
 
Four loci reach genome-wide significance (top threshold line) in this plot: rs287 on chromosome 
8, rs964184 on chromosome 11, rs11076176 on chromosome 16 and rs247616 on chromosome 
16. These points have a p-value of less than 5x10-8. Thirty-six points reach genome-wide 
suggestive (bottom threshold line) in this plot. These points have a p-value of less than 1x10-5. 
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Figure 9: Manhattan Plot: African Ancestry, Cases and Normal Controls 
 
One locus reached genome-wide significance (top threshold line) in this plot: rs117729532 on 
chromosome 7. This point has a p-value of less than 5x10-8. Sixty-nine points reach genome-
wide suggestive (bottom threshold line) in this plot. These points have a p-value of less than 
1x10-5. 
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          Table 6: Genome-Wide Significant Variants for European Cases and Super Controls 

CHR SNP Gene EA Freq EA Beta StdErr P-value OR 

8 rs287 LPL A 0.748 0.237 0.0323 2.16E-13 1.27 

11 rs964184 ZPR1 C 0.8606 -0.2877 0.0404 1.13E-12 0.75 

16 rs11076176 CETP T 0.8348 -0.2131 0.0388 3.91E-08 0.81 

16 rs247616 Intergenic T 0.3236 -0.1659 0.0299 2.95E-08 0.85 

    
          Table 7: Genome-Wide Significant Variants for European Cases and Normal Controls 

CHR SNP Gene EA Freq EA Beta StdErr P-value OR 

8 rs287 LPL A 0.7455 0.2108 0.0286 1.64E-13 1.23 

11 rs964184 ZPR1 C 0.8616 -0.2477 0.0359 5.18E-12 0.78 

16 rs11076176 CETP  T 0.8355 -0.1914 0.0346 3.05E-08 0.83 

16 rs247616 Intergenic T 0.3339 -0.1639 0.0265 5.88E-10 0.85 
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   Table 8: Genome-Wide Significant Variants for African Cases and Super Controls 
CHR SNP Gene EA Freq EA Beta StdErr P-value OR 

7 rs117729532 LOC107986717 A 0.9734 2.3672 0.3961 2.28E-09 10.67 

10 rs115553887 RBM20 A 0.0189 -2.1996 0.4018 4.38E-08 0.11 

	
   Table 9: Genome-Wide Significant Variants for African Cases and Normal Controls 

CHR SNP Gene EA Freq EA Beta StdErr P-value OR 

7 rs117729532 LOC10798671  A 0.9709 1.1885 0.2077 1.05E-08 3.28 
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    Table 10: Genome-Wide Suggestive Variants for European Cases and Super Controls 
CHR SNP Gene EA Freq EA Beta StdErr P-value OR 

1 rs72662344 Intergenic C 0.2618 -0.1495 0.0331 6.47E-06 0.86 
1 rs564021270 Intergenic A 0.0046 -1.2447 0.2723 4.84E-06 0.29 
2 rs142316818 Intergenic A 0.005 -1.2963 0.2718 1.85E-06 0.27 
2 rs2740590 G6PC2 A 0.158 0.1856 0.0391 2.05E-06 1.2 
2 rs145888022 Intergenic A 0.0104 -0.7185 0.161 8.12E-06 0.49 
2 rs142610152 VWC2L T 0.0098 -0.9244 0.2075 8.36E-06 0.4 
3 rs142562516 Intergenic C 0.0089 -1.0535 0.219 1.51E-06 0.35 
4 rs186595162 Intergenic T 0.0044 -1.2392 0.2801 9.66E-06 0.29 
4 rs73085842 Intergenic A 0.8929 -0.2026 0.0455 8.63E-06 0.82 
5 rs274646 Intergenic A 0.2461 -0.1459 0.0326 7.57E-06 0.86 
6 rs6942072 Intergenic A 0.3136 -0.1583 0.0299 1.14E-07 0.85 
6 rs1778258 Intergenic T 0.1414 0.1863 0.0403 3.77E-06 1.2 
6 rs117485832 CEP162, MRAP2 T 0.0044 -1.4313 0.3175 6.53E-06 0.24 
7 rs77118159 PHF14 A 0.9817 0.5188 0.113 4.40E-06 1.68 
7 rs17712441 Intergenic C 0.0334 -0.3705 0.0818 5.95E-06 0.69 
7 rs138277611 DNAAF5 A 0.0114 -1.0872 0.2397 5.76E-06 0.34 
7 rs1208090 Intergenic A 0.5484 0.1415 0.0302 2.80E-06 1.15 
8 rs287 LPL A 0.748 0.237 0.0323 2.16E-13 1.27 
8 rs80283638 Intergenic T 0.9719 0.3994 0.0879 5.58E-06 1.49 
8 rs2885164 Intergenic A 0.0386 0.3264 0.0728 7.31E-06 1.39 
8 rs148800856 LINC01289 T 0.0116 -0.7456 0.154 1.29E-06 0.47 
9 rs139751296 PTPRD T 0.0143 -0.6621 0.1486 8.33E-06 0.52 

10 rs4021528 Intergenic T 0.3125 0.1573 0.032 8.70E-07 1.17 
10 rs12765306 PLXDC2 T 0.0292 -0.4092 0.0858 1.83E-06 0.66 
10 rs118171930 Intergenic T 0.977 0.5027 0.1036 1.23E-06 1.65 
11 rs117182743 GALNT18 A 0.0192 -0.4906 0.1075 5.03E-06 0.61 
11 rs964184 ZPR1 C 0.8606 -0.2877 0.0404 1.13E-12 0.75 
11 rs7925256 PAFAH1B2 T 0.0902 0.2223 0.0494 6.95E-06 1.25 
12 rs7925256 DENND5B A 0.8322 0.1787 0.0393 5.31E-06 1.2 
12 rs145305667 Intergenic T 0.992 1.2207 0.2379 2.87E-07 3.39 
13 rs76345073 Intergenic T 0.0286 -0.4276 0.093 4.22E-06 0.65 
14 rs8004913 GALNT16 T 0.8536 -0.2066 0.0396 1.88E-07 0.81 
15 rs11073147 Intergenic A 0.455 -0.1321 0.0276 1.77E-06 0.88 
15 rs58293302 LOC105370873 A 0.2016 -0.1773 0.0379 2.86E-06 0.84 
15 rs117222771 NTRK3 A 0.9738 0.4309 0.0963 7.64E-06 1.54 
16 rs58293302 Intergenic T 0.3236 -0.1659 0.0299 2.95E-08 0.85 
16 rs11076176 CETP T 0.8348 -0.2131 0.0388 3.91E-08 0.81 
16 rs6416820 RBFOX1 T 0.1117 -0.2002 0.0452 9.44E-06 0.82 
18 rs113185854 Intergenic T 0.015 -0.6019 0.1275 2.34E-06 0.55 
21 rs77084313 Intergenic A 0.1059 -0.2073 0.0461 6.92E-06 0.81 
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    Table 11: Genome-Wide Suggestive Variants for African Cases and Super Controls 
CHR SNP Gene EA Freq EA Beta StdErr P-value OR 

1 rs116612854 Intergenic T 0.0172 -1.3698 0.306 7.60E-06 0.25 
1 rs114058333 Intergenic T 0.0145 -1.4003 0.3138 8.13E-06 0.25 
1 rs59797519 Intergenic T 0.9788 1.0199 0.2288 8.27E-06 2.77 
1 rs72985317 Intergenic T 0.0214 -1.0221 0.2274 6.98E-06 0.36 
1 rs113675722 Intergenic A 0.0207 -1.0598 0.2398 9.90E-06 0.35 
1 rs188888281 Intergenic A 0.0134 -1.4898 0.3297 6.22E-06 0.23 
1 rs12038715 RYR2 T 0.2309 -0.3661 0.0773 2.15E-06 0.69 
1 rs80130145 RYR2  T 0.0151 -1.3471 0.3018 8.07E-06 0.26 
1 rs10909951 MEGF6  T 0.2137 0.381 0.0841 5.84E-06 1.46 
1 rs45510693 TNFRSF25  C 0.0173 -1.3875 0.3139 9.85E-06 0.25 
1 rs202049535 PLEKHG5  T 0.9835 1.4392 0.3215 7.56E-06 4.22 
1 rs1686341 Intergenic A 0.5217 0.2551 0.0566 6.63E-06 1.29 
1 rs58469176 SSX2IP  A 0.0152 -1.4022 0.3129 7.44E-06 0.25 
2 rs80353771 PECR T 0.0916 -0.4923 0.1056 3.16E-06 0.61 
2 rs2098566 LINC01317 T 0.224 -0.3365 0.0668 4.69E-07 0.71 
2 rs115261557 Intergenic T 0.9714 0.9596 0.2068 3.49E-06 2.61 
2 rs113998642 Intergenic A 0.0299 -1.2497 0.2469 4.16E-07 0.29 
2 rs76699442 Intergenic T 0.9701 1.2516 0.247 4.04E-07 3.5 
2 rs191383538 Intergenic T 0.0299 -1.2535 0.2471 3.92E-07 0.29 
2 rs142388955 Intergenic A 0.9701 1.2541 0.2471 3.88E-07 3.5 
2 rs115767024 Intergenic C 0.0299 -1.2547 0.2472 3.84E-07 0.29 
2 rs115764561 Intergenic A 0.0299 -1.2611 0.2474 3.43E-07 0.28 
2 rs116132520 Intergenic T 0.0299 -1.2619 0.2474 3.37E-07 0.28 
2 rs142723182 Intergenic A 0.0299 -1.2634 0.2473 3.25E-07 0.28 
2 rs76160666 Intergenic A 0.0299 -1.264 0.2472 3.17E-07 0.28 
2 rs116619331 Intergenic A 0.0299 -1.2641 0.2472 3.16E-07 0.28 
2 rs116475445 Intergenic T 0.9701 1.2643 0.247 3.09E-07 3.54 
2 rs114898961 Intergenic T 0.0299 -1.2643 0.247 3.06E-07 0.28 
2 rs115812434 Intergenic T 0.9699 1.2526 0.2463 3.67E-07 3.5 
3 rs73869641 RASA2 A 0.0378 -0.7569 0.1691 7.60E-06 0.47 
3 rs73869652 RASA2 A 0.047 -0.7363 0.1518 1.24E-06 0.48 
3 rs56233244 RASA2 T 0.9659 0.8136 0.1824 8.21E-06 2.26 
3 rs4437106 Intergenic T 0.5862 -0.2786 0.0567 8.83E-07 0.76 
3 rs35262984 LPP  A 0.2096 0.3368 0.0723 3.16E-06 1.4 
3 rs73888515 OSTN  A 0.0259 -1.0223 0.229 8.03E-06 0.36 
3 rs112883499 ERC2 T 0.934 0.5201 0.1159 7.17E-06 1.68 
3 rs116663894 GRM7 T 0.8429 -0.3567 0.0792 6.70E-06 0.7 
3 rs114179158 LINC02008 A 0.9046 0.4721 0.1046 6.40E-06 1.6 
4 rs4648057 NFKB1 T 0.047 -0.752 0.169 8.58E-06 0.47 
4 rs4648109 NFKB1  C 0.0411 -0.816 0.1816 6.99E-06 0.44 
4 rs77605772 ELOVL6 C 0.9824 1.3839 0.3088 7.42E-06 3.99 
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    Table 11: Genome-Wide Suggestive Variants for African Cases and Super Controls (cont’d, 2 of 4) 
CHR SNP Gene EA Freq EA Beta StdErr P-value OR 

4 rs77987747 Intergenic T 0.9803 1.6855 0.3479 1.27E-06 5.4 
4 rs17006188 FGF2 T 0.0309 -0.8462 0.1915 9.92E-06 0.43 
4 rs72966662 Intergenic T 0.0315 -0.7721 0.1748 9.99E-06 0.46 
4 rs4689939 Intergenic T 0.1377 0.3886 0.0809 1.54E-06 1.47 
4 rs17827152 Intergenic A 0.0701 -0.6132 0.1231 6.39E-07 0.54 
4 rs563732848 Intergenic A 0.9772 1.222 0.2715 6.79E-06 3.39 
4 rs73199427 Intergenic A 0.0335 -0.7585 0.1669 5.53E-06 0.47 
5 rs1363414 LOC105378237 A 0.7376 -0.2905 0.0633 4.39E-06 0.75 
5 rs10041838 ADAMTS12 T 0.9521 0.6215 0.1406 9.83E-06 1.86 
5 rs12332388 ADAMTS12 A 0.9517 0.6287 0.1399 7.02E-06 1.88 
5 rs9968625 LINC01339 T 0.0825 -0.5305 0.1069 6.94E-07 0.59 
6 rs115183512 MTCH1 C 0.9721 0.8885 0.2008 9.69E-06 2.43 
6 rs149076725 Intergenic T 0.9819 1.4461 0.3002 1.46E-06 4.25 
6 rs1936820 ME1 T 0.1767 -0.3347 0.0724 3.75E-06 0.72 
6 rs191630648 ME1 A 0.8369 0.3442 0.0751 4.53E-06 1.41 
7 rs117729532 Intergenic A 0.9734 2.3672 0.3961 2.28E-09 10.67 

7 rs76836910 
CTTNBP2, 

LOC105375469 
T 0.0139 -1.7437 0.3703 2.49E-06 0.17 

7 rs62433165 none A 0.0153 -1.8758 0.3909 1.60E-06 0.15 
7 rs78672236 HIPK2 A 0.1057 0.4272 0.0961 8.80E-06 1.53 
7 rs12537629 CHN2 A 0.0174 -1.2833 0.2852 6.79E-06 0.28 
8 rs116248526 TOP1MT T 0.0221 -1.0575 0.2246 2.49E-06 0.35 
8 rs115216114 TOP1MT C 0.9747 0.916 0.2065 9.22E-06 2.5 
8 rs185167231 RHPN1 A 0.0183 -1.4143 0.2896 1.04E-06 0.24 
8 rs60457759 RHPN1 T 0.9805 1.3669 0.2816 1.21E-06 3.92 
8 rs192827394 RHPN1 T 0.0149 -1.4565 0.3213 5.82E-06 0.23 
8 rs138549292 RHPN1 T 0.0168 -1.5066 0.3218 2.84E-06 0.22 
8 rs149793922 ZC3H3 T 0.0125 -1.8866 0.4088 3.93E-06 0.15 
8 rs75551077 Intergenic C 0.1314 -0.3741 0.0829 6.34E-06 0.69 
8 rs62474695 CSMD1 A 0.0166 -1.7243 0.3642 2.20E-06 0.18 
9 rs4135186 TXN T 0.0154 -1.8939 0.4287 9.96E-06 0.15 
9 rs113812899 Intergenic A 0.9323 0.5743 0.1253 4.58E-06 1.78 
9 rs184434626 PNPLA7 A 0.0142 -2.3601 0.4788 8.25E-07 0.09 

10 rs74156619 HPSE2 T 0.9045 0.5043 0.1009 5.86E-07 1.66 
10 rs6584411 Intergenic A 0.3963 0.2673 0.0565 2.20E-06 1.31 
10 rs115553887 RBM20 A 0.0189 -2.1996 0.4018 4.38E-08 0.11 
10 rs14606 ADAM12 C 0.9641 0.8899 0.1936 4.30E-06 2.43 
10 rs191806961 Intergenic A 0.0163 -1.3683 0.2983 4.50E-06 0.25 
10 rs528494547 Intergenic A 0.0259 -0.9343 0.2091 7.86E-06 0.39 
10 rs186850483 Intergenic T 0.022 -1.2356 0.2597 1.95E-06 0.29 
10 rs78548751 Intergenic T 0.9788 1.2385 0.2601 1.91E-06 3.45 
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       Table 11: Genome-Wide Suggestive Variants for African Cases and Super Controls (cont’d, 3 of 4) 
CHR SNP Gene EA Freq EA Beta StdErr P-value OR 

10 rs2505128 
JCAD, 

LOC101929256 
A 0.0437 -0.6631 0.1489 8.48E-06 0.52 

10 rs141327348 Intergenic A 0.9777 1.0492 0.2195 1.76E-06 2.86 
10 rs60804070 Intergenic A 0.0229 -1.0209 0.2193 3.22E-06 0.36 
10 rs72791504 Intergenic A 0.0167 -2.0584 0.4337 2.08E-06 0.13 
11 rs3816360 ARNTL T 0.4666 -0.2641 0.0549 1.50E-06 0.77 
11 rs142441721 Intergenic A 0.0135 -1.5495 0.3495 9.27E-06 0.21 
11 rs112614723 Intergenic A 0.9838 2.0166 0.4448 5.79E-06 7.51 
11 rs193019036 Intergenic A 0.9596 0.7165 0.1524 2.59E-06 2.05 
11 rs11237567 Intergenic C 0.9603 0.7259 0.1527 1.98E-06 2.07 
11 rs11237568 Intergenic A 0.0398 -0.7227 0.152 1.97E-06 0.49 
11 rs116356381 Intergenic A 0.0372 -0.7061 0.1549 5.15E-06 0.49 
11 rs10219155 Intergenic A 0.0371 -0.7045 0.1549 5.44E-06 0.49 

12 rs36203374 
TBX3, 

LOC105370000 
A 0.9459 0.6589 0.1458 6.20E-06 1.93 

12 rs11616110 KSR2 A 0.6823 0.2652 0.06 9.81E-06 1.3 
12 rs57763252 LINC02376 A 0.1077 0.4625 0.0983 2.55E-06 1.59 
12 rs12826896 Intergenic A 0.9765 1.0443 0.2257 3.72E-06 2.84 
12 rs10848575 ADIPOR2 A 0.6588 -0.2792 0.0584 1.75E-06 0.76 
12 rs80233242 SLCO1B1 A 0.9818 1.4914 0.3329 7.46E-06 4.44 
12 rs138302352 Intergenic T 0.0221 -1.0143 0.2295 9.90E-06 0.36 
12 rs140528976 PTPRQ A 0.0206 -1.1834 0.2674 9.66E-06 0.31 
13 rs114535481 FAM155A C 0.0202 -1.2709 0.2831 7.12E-06 0.28 
13 rs78673614 Intergenic A 0.2248 -0.3386 0.0685 7.61E-07 0.71 
14 rs193050452 Intergenic C 0.0365 -0.8066 0.1742 3.66E-06 0.45 
14 rs77811189 Intergenic A 0.037 -0.8167 0.1737 2.57E-06 0.44 
14 rs116771708 Intergenic A 0.0222 -1.1085 0.2494 8.79E-06 0.33 
14 rs116243311 Intergenic T 0.9779 1.1095 0.2494 8.62E-06 3.03 
15 rs146103401 Intergenic A 0.9851 1.4626 0.3257 7.08E-06 4.32 
15 rs113365583 SMAD3 T 0.0206 -1.1663 0.2557 5.07E-06 0.31 
15 rs111902897 SMAD3 T 0.9799 1.1921 0.2578 3.77E-06 3.29 
15 rs74395789 CEMIP T 0.0135 -2.3903 0.5024 1.96E-06 0.09 
15 rs145596139 Intergenic T 0.9825 1.5787 0.3566 9.55E-06 4.85 
15 rs114035855 Intergenic A 0.0148 -1.4071 0.3019 3.15E-06 0.24 
16 rs148171727 WWOX T 0.9416 0.6663 0.1377 1.29E-06 1.95 
16 rs9923417 MAF T 0.0419 -0.7448 0.1637 5.35E-06 0.47 
16 rs75735313 MAF A 0.0417 -0.7378 0.1643 7.09E-06 0.48 
16 rs7202443 LOC102724084 A 0.6467 -0.2756 0.0585 2.48E-06 0.76 
16 rs4889144 LOC102724084 A 0.7147 0.2796 0.0629 8.80E-06 1.32 
16 rs57154787 LOC105369246 T 0.8835 0.4333 0.0973 8.49E-06 1.54 
16 rs58421241 LOC105369246 A 0.116 -0.443 0.0975 5.57E-06 0.64 
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        Table 11: Genome-Wide Suggestive Variants for African Cases and Super Controls (cont’d, 4 of 4) 
CHR SNP Gene EA Freq EA Beta StdErr P-value OR 

17 rs28497626 DCAKD A 0.8813 0.4032 0.0875 4.12E-06 1.5 
17 rs145149232 ZNF652 A 0.9725 0.9217 0.2083 9.62E-06 2.51 
17 rs140603527 METRNL A 0.9755 1.3851 0.3104 8.11E-06 4 
17 rs145502883 METRNL A 0.0362 -1.2345 0.2543 1.21E-06 0.29 
17 rs147171466 Intergenic A 0.0348 -1.1439 0.2474 3.77E-06 0.32 
17 rs111915469 Intergenic T 0.9664 1.3306 0.2682 7.00E-07 3.78 
18 rs145989159 Intergenic A 0.9572 0.7387 0.1667 9.30E-06 2.09 
18 rs142959114 Intergenic A 0.0143 -1.4392 0.3256 9.86E-06 0.24 
18 rs35042968 LOC339298 A 0.9826 1.3583 0.2709 5.32E-07 3.89 
19 rs7249029 CACNA1A A 0.0517 -0.6395 0.1448 9.97E-06 0.53 
19 rs139297424 ZNF420 A 0.0182 -1.2278 0.252 1.10E-06 0.29 
20 rs73909514 LINC01430 T 0.9705 1.0755 0.2331 3.97E-06 2.93 
20 rs73909522 SERINC3 T 0.985 1.356 0.3068 9.89E-06 3.88 
20 rs191592101 PKIG T 0.0161 -1.3606 0.3003 5.90E-06 0.26 
20 rs61208911 PKIG A 0.0163 -1.3821 0.3021 4.76E-06 0.25 
20 rs76224531 PKIG A 0.9842 1.425 0.3044 2.84E-06 4.16 
20 rs73909541 PKIG A 0.0157 -1.3967 0.303 4.04E-06 0.25 
20 rs73909542 PKIG T 0.0166 -1.3281 0.2988 8.81E-06 0.26 
20 rs73909543 PKIG T 0.0163 -1.3838 0.3023 4.69E-06 0.25 
20 rs73909544 PKIG A 0.0153 -1.4228 0.3048 3.05E-06 0.24 
20 rs73909545 PKIG C 0.0158 -1.4496 0.3065 2.24E-06 0.23 
20 rs59434057 PKIG A 0.0158 -1.4572 0.3058 1.89E-06 0.23 
20 rs192774638 PKIG T 0.9839 1.4289 0.3008 2.03E-06 4.17 
20 rs147389339 PKIG A 0.0157 -1.4466 0.3015 1.60E-06 0.24 
20 rs187300129 ADA T 0.0141 -1.4129 0.3147 7.14E-06 0.24 
20 rs73909565 ADA A 0.9836 1.492 0.3031 8.56E-07 4.45 
21 rs9979730 Intergenic A 0.9816 1.8305 0.3552 2.55E-07 6.24 
21 rs183747783 LOC105372787 T 0.9758 1.1606 0.253 4.50E-06 3.19 
21 rs192507448 Intergenic A 0.017 -1.5219 0.303 5.09E-07 0.22 
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   Table 12: Genome-Wide Suggestive Variants for European Cases and Normal Controls 
CHR SNP Gene EA Freq EA Beta StdErr P-value OR 

1 rs112046192 ZFYVE9 T 0.119 -0.1839 0.0414 8.93E-06 0.83 
1 rs6699744 LOC105378797  A 0.3625 -0.1229 0.0261 2.39E-06 0.88 
1 rs11165720 TGFBR3  A 0.0916 0.2002 0.0428 2.96E-06 1.22 
2 rs485094 ABCB11 A 0.3495 -0.1146 0.0259 9.63E-06 0.89 
3 rs14256251 Intergenic C 0.009 -0.8968 0.1976 5.65E-06 0.41 
5 rs725151 Intergenic T 0.2811 -0.1269 0.0278 4.84E-06 0.88 
5 rs9687846 C5orf67  A 0.1939 0.1414 0.0314 6.62E-06 1.15 
6 rs9358901 Intergenic T 0.669 0.13 0.0261 6.12E-07 1.14 
7 rs9358901 PHF14 A 0.0877 -0.2066 0.0436 2.17E-06 0.81 
7 rs41733 TBXAS1  T 0.9849 0.5097 0.1053 1.29E-06 1.66 
8 rs78824412 Intergenic T 0.0645 -0.2441 0.0536 5.23E-06 0.78 
8 rs7825304 TUSC3  A 0.5453 -0.1128 0.0247 4.87E-06 0.89 
8 rs287 LPL A 0.7455 0.2108 0.0286 1.64E-13 1.23 
8 rs189491454 Intergenic T 0.9958 1.3229 0.2771 1.81E-06 3.75 
8 rs2068449 LINC00534  T 0.9346 -0.2573 0.0505 3.54E-07 0.77 
9 rs571166782 RC3H2  T 0.0103 0.7932 0.1673 2.13E-06 2.21 
9 rs1339254 PCSK5  A 0.696 0.1228 0.0268 4.47E-06 1.13 

10 rs11193189 SORCS1  T 0.0344 0.3239 0.0733 9.82E-06 1.38 
10 rs11597169 ADARB2 A 0.4917 -0.1168 0.0252 3.59E-06 0.89 
11 rs964184 ZPR1 C 0.8616 -0.2477 0.0359 5.18E-12 0.78 
11 rs7925256 PAFAH1B2  T 0.0897 0.1953 0.0439 8.77E-06 1.22 
12 rs71455663 DENND5B  A 0.8313 0.1598 0.0346 3.91E-06 1.17 
13 rs76345073 Intergenic T 0.0295 -0.4113 0.0804 3.09E-07 0.66 
14 rs10135742 Intergenic C 0.018 0.4732 0.0983 1.48E-06 1.61 
14 rs8004913 GALNT16  T 0.8538 -0.1734 0.0353 9.01E-07 0.84 
14 rs148743949 Intergenic T 0.0111 0.6488 0.1414 4.49E-06 1.91 
15 rs724541 PCSK6  C 0.3747 0.1132 0.0255 8.95E-06 1.12 
15 rs11073147 Intergenic A 0.4558 -0.1092 0.0245 8.37E-06 0.9 
15 rs58293302 LOC105370873  A 0.203 -0.1736 0.0334 1.98E-07 0.84 
16 rs247616 Intergenic T 0.3339 -0.1639 0.0265 5.88E-10 0.85 
16 rs11076176 CETP  T 0.8355 -0.1914 0.0346 3.05E-08 0.83 
16 rs2019697 JPH3  A 0.1151 -0.1725 0.0388 8.52E-06 0.84 
20 rs116974458 DOK5  A 0.0492 0.3054 0.0645 2.16E-06 1.36 
20 rs34048310 CDH4  T 0.08 -0.2108 0.0472 7.80E-06 0.81 
21 rs77448271 Intergenic C 0.9623 0.3066 0.0688 8.27E-06 1.36 
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      Table 13: Genome-Wide Suggestive Variants for African Cases and Normal Controls 
CHR SNP Gene EA Freq EA Beta StdErr P-value OR 

1 rs115921440 Intergenic A 0.0181 -1.08 0.24 6.13E-06 0.34 
1 rs75683367 Intergenic C 0.9819 1.07 0.24 7.49E-06 2.92 
1 rs114888382 Intergenic A 0.982 1.07 0.24 7.68E-06 2.92 
1 rs116202393 Intergenic A 0.0174 -1.05 0.23 6.16E-06 0.35 
1 rs10909951 MEGF6  T 0.2089 0.36 0.07 8.00E-08 1.43 
1 rs77105791 Intergenic C 0.1012 -0.35 0.07 1.36E-06 0.7 
2 rs112984974 DTNB  T 0.0876 0.37 0.08 9.90E-06 1.44 
2 rs111522539 TTC27  T 0.9659 0.58 0.13 8.51E-06 1.78 
3 rs9849539 FHIT  A 0.5622 -0.24 0.05 5.17E-06 0.78 
3 rs6771732 FHIT  T 0.7183 -0.24 0.05 1.12E-06 0.78 
3 rs17063440 FHIT  T 0.8938 0.33 0.07 7.08E-06 1.39 
4 rs78117133 Intergenic T 0.9672 -0.58 0.13 9.23E-06 0.56 
5 rs337093 Intergenic A 0.1414 0.32 0.07 1.40E-06 1.37 
5 rs4151699 PCDHGA1  C 0.0216 -0.76 0.17 8.66E-06 0.47 
5 rs294966 LINC01933  T 0.7085 -0.22 0.05 5.03E-06 0.8 
5 rs80243942 MAST4  A 0.0934 0.35 0.08 6.96E-06 1.42 
7 rs117729532 Intergenic A 0.9709 1.19 0.21 1.05E-08 3.28 
8 rs10096633 Intergenic T 0.4222 -0.21 0.04 1.72E-06 0.81 
9 rs62577134 Intergenic C 0.614 0.2 0.05 9.24E-06 1.23 
9 rs10972570 DOCK8  C 0.572 -0.22 0.05 1.55E-06 0.81 
9 rs1273673 CNTNAP3  A 0.9278 0.48 0.11 9.20E-06 1.62 
9 rs2774154 CNTNAP3  T 0.0712 -0.48 0.11 8.24E-06 0.62 
9 rs9407144 CNTNAP3  A 0.9297 0.49 0.11 8.53E-06 1.62 
9 rs2480985 CNTNAP3  A 0.9302 0.49 0.11 8.44E-06 1.63 

10 rs12254439 Intergenic A 0.899 -0.35 0.08 3.20E-06 0.7 
11 rs647837 JAM3 A 0.8251 0.28 0.06 1.90E-06 1.32 
11 rs140764785 Intergenic A 0.0258 -0.71 0.16 6.98E-06 0.49 
11 rs140764785 Intergenic A 0.0256 -0.72 0.16 5.32E-06 0.49 
11 11:39461416 Intergenic A 0.9744 0.72 0.16 5.63E-06 2.05 
11 rs185285210 Intergenic T 0.9752 0.71 0.16 7.07E-06 2.04 
11 rs114768081 NARS2  A 0.9423 0.47 0.1 1.58E-06 1.59 
11 rs111716430 Intergenic A 0.0588 -0.47 0.1 8.57E-07 0.62 
11 rs11237554 NARS2  T 0.9425 0.47 0.1 1.30E-06 1.6 
11 rs116558162 NARS2  A 0.0527 -0.49 0.1 1.27E-06 0.61 
11 rs193019036 Intergenic A 0.9575 0.5 0.11 9.40E-06 1.65 
11 rs11237567 Intergenic C 0.9581 0.5 0.11 8.13E-06 1.66 
11 rs11237568 Intergenic A 0.0421 -0.5 0.11 9.29E-06 0.61 
12 rs149395900 Intergenic A 0.0183 -1.02 0.23 6.14E-06 0.36 
13 rs9577723 Intergenic A 0.6404 0.21 0.05 3.29E-06 1.24 
15 rs113365583 SMAD3  T 0.0221 -0.76 0.16 2.28E-06 0.47 
15 rs111902897 SMAD3  T 0.9781 0.8 0.16 8.30E-07 2.22 
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       Table 13: Genome-Wide Suggestive Variants for African Cases and Normal Controls (cont’d, 2 of 2) 
CHR SNP Gene EA Freq EA Beta StdErr P-value OR 

15 rs112275953 SMAD3  C 0.0216 -0.79 0.18 9.59E-06 0.45 
15 rs4965328 Intergenic A 0.7111 -0.24 0.05 2.00E-06 0.79 
16 rs2908872 Intergenic C 0.0717 -0.39 0.09 6.97E-06 0.68 
16 rs3095659 Intergenic T 0.9283 0.4 0.09 3.67E-06 1.5 
16 rs2908887 Intergenic T 0.0717 -0.4 0.09 3.84E-06 0.67 
16 rs2908885 Intergenic C 0.0717 -0.4 0.09 3.97E-06 0.67 
16 rs147862874 Intergenic A 0.0718 -0.39 0.09 5.53E-06 0.67 
16 rs147862874 Intergenic C 0.072 -0.4 0.09 5.05E-06 0.67 
16 rs58096694 Intergenic T 0.9278 0.38 0.09 9.59E-06 1.46 
16 rs78373567 Intergenic A 0.9288 0.39 0.09 5.59E-06 1.48 
16 rs116642730 Intergenic T 0.0712 -0.39 0.09 5.95E-06 0.68 
16 rs60856989 Intergenic C 0.9288 0.39 0.09 6.11E-06 1.48 
16 rs16946828 Intergenic T 0.0713 -0.4 0.09 3.34E-06 0.67 
16 rs113904604 Intergenic A 0.0714 -0.4 0.09 5.32E-06 0.67 
16 rs16946830 Intergenic A 0.0712 -0.39 0.09 6.19E-06 0.67 
16 rs57154787 LOC105369246  T 0.8835 0.34 0.07 4.25E-06 1.41 
16 rs58421241 LOC105369246  A 0.1156 -0.34 0.08 4.83E-06 0.71 
17 rs530570910 CSNK1D  A 0.0424 -0.63 0.14 7.40E-06 0.53 
18 rs142959114 Intergenic A 0.0149 -1.23 0.27 5.48E-06 0.29 
18 rs139568633 WDR7  T 0.025 -0.67 0.15 9.31E-06 0.51 
18 rs116833222 WDR7  A 0.9735 0.68 0.15 3.62E-06 1.97 
18 rs7237665 WDR7  A 0.0273 -0.68 0.14 2.48E-06 0.51 
18 rs115684400 WDR7  T 0.9731 0.67 0.15 4.54E-06 1.95 
18 rs306218 Intergenic T 0.2434 -0.24 0.05 9.97E-06 0.79 
19 rs8100892 ZNF69  T 0.5858 -0.21 0.05 4.55E-06 0.81 
20 rs6027272 C20orf197  T 0.6164 -0.23 0.05 1.90E-06 0.8 
22 rs186190745 ATP6V1E1  A 0.0359 -0.57 0.12 4.53E-06 0.57 
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Chapter IV 

Discussion 
 

European Ancestry 
 
 Both super and normal controls captured four identical genome-wide significant signals. 

The first signal (rs287) is located on the LPL gene, also known as lipoprotein lipase. In the 

STAMPEED Consortium, six different SNPs located on the LPL gene were associated with HDL, 

waist circumference, blood pressure, MetS, triglyceride and glucose levels [42]. The LPL gene 

encodes a protein called lipoprotein lipase that is found in adipose tissues. The primary function 

of lipoprotein lipase is to break down triglycerides for the body to use as a source of energy. 

Mutations that change the expression levels of this gene can halt this process, causing a buildup 

of triglycerides in the blood stream and in some cases, hyperlipidemia. The rs287 variant found 

in our GWAS analysis is located on the intron portion of the gene. Even though introns are 

spliced out during translation, intronic mutations can still affect gene expression when the 

sequence falls on a splicing site or enhancer region. Therefore, an impaired expression of LPL 

caused by rs283 can potentially lead to one or multiple components of MetS. 

 The second genome-wide significant SNP (rs964184) is located on the three prime un-

translated region of the ZPR1 gene. This specific variant has been cited for its association with 

plasma lipid levels along with CVD. In Kati Kristiansson et al.'s GWAS study in four Finnish 

cohorts, rs964184 is found to be associated with MetS status in all four studies [43]. ZPR1 is a 

regulatory protein for signal transduction and cell proliferation. The ZPR1 gene is in proximity 

with the apolipoprotein APOA5 locus, which is known for playing an important role in regulation 

of plasma triglyceride and HDL. Alleles in variants of ZPR1 "may alter the metabolism of 

triglycerides, HDL cholesterol or glucose through the interaction with APOA5" [44]. 
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 The third significant SNP (rs11076176) is an intron variant located on the CETP gene. 

CETP, or cholesteryl ester transfer protein, has a main function of transferring cholesteryl esters 

and triglycerides between the lipoproteins. In a multi-ethnic analysis of lipid-associated loci, 

Musunuru et al. tested around 50,000 polymorphisms in 25,000 European Americans and found 

two CETP polymorphisms that are associated with HDL [45]. Although the exact mechanism is 

unknown, a defect in this gene is known to cause Hyperalphalipoproteinemia, a condition 

characterized by increased HDL levels. 

 The last significant variant (rs247616) is located in the intergenic region of chromosome 

16. Though not directly located on a gene, this variant is upstream of the CETP gene and have 

been associated with HDL cholesterol levels. The mechanism of this upstream regulation has yet 

to be established, but Suhy et al. proposed a model based on their transcription factor binding 

predictions [46]. In this model, rs247616 makes up the enhancer region of the CETP gene, and 

highly conserved transcription factors YBX1 and CEBPA are unable to bind to the minor allele of 

this variant, thereby causing a change in CETP expression.  

 

African Ancestry  
 
 The first genome-wide significant signal was shared by both normal controls and super 

controls. This SNP (rs117729532) is a 2KB upstream variant of an uncharacterized gene known 

as LOC107986717. More information regarding this uncharacterized gene is needed to establish 

any relationship between the upstream variant and MetS disease endpoints. The second variant 

was only present in the cases versus super control subset. This SNP (rs115553887) is an intronic 

variant located on the RBM20 gene. The RBM20 gene encodes a protein that binds RNA and 

regulates splicing. Mutations to this gene can cause Familial Dilated Cardiomyopathy, a genetic 
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form of heart disease where heart muscles of one chamber become thin and weakened, causing 

the open area of the chamber to become enlarged. RBM20 is responsible for creating a protein 

that splices TTN, which is a gene that provides instruction for making titin. Titin provides 

flexibility and stability of muscles cells, including cardiomyocytes. Though not directly related 

to MetS, this variant relates to similar key cardiovascular endpoints as Metabolic Syndrome. 

More fine mapping of this variant must be done to observe the true associations between this 

variant and MetS.    

 

Results Comparison 
 
 For European ancestry samples, both super and normal control's QQ plots (Figure 5) 

show a slight inflation. Distributions of the GWAS p-values should follow a uniform distribution 

until the end where truly significant SNPs inflate p-values. In our case, a small inflation can be a 

sign of the residue effects of population stratification in our samples. For variant discovery, super 

controls and normal controls both tagged four genome-wide significant SNPs. For suggestive 

SNPs, super controls were able to find a few more variants compared to the normal controls. 

This might suggest a modest advantage of using the super control criteria. 

 Compared to the QQ plots for subjects of European ancestry, the African ancestry plots 

in Figure 5 show lower genomic control variables, with the cases and normal controls having a 

deflated value below the line of identity. The reduction in power in these studies can be 

attributed to the smaller sample sizes. Cases and super controls resulted in two genome-wide 

significant SNPs as opposed to the one SNP found in cases and normal control. As for suggestive 

SNPs, cases and super controls once again had more results than cases and normal controls, with 

150 and sixty-nine variants respectively. The strict criteria of super controls might decrease 
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sample size, but overall, it does make a stronger comparison between the case and control 

subsets. This might potentially be the reason why cases and super controls have more success in 

finding significant signals.  

 

Conclusion 
 
 In summary, the dbGaP biorepository is an invaluable resource that contains raw 

phenotype and genotypes information suitable for all types of genetic studies. Unfortunately, the 

resource is underutilized due to issues with how the data is made available to researchers. With 

proper quality control of genotype files and processing of phenotype files, it is possible to 

leverage these data for high quality research and analyses. In order to explore the pathogenesis 

and genetic variants of MetS, three dbGaP studies of MESA, ARIC and CHS were used to 

perform a GWAS. Two sets of criteria were used for control selection in order to explore the best 

threshold for this process. For the results, super controls performed better in terms of variant 

finding power than the widely-used normal controls. Four genome-wide significant SNPs (rs287,	

rs964184,	rs11076176,	rs247616) were detected in the European subset after the meta-analysis. 

Two genome-wide significant SNPs, (rs117729532,	rs115553887), were found in the African 

subset.  

 

Future Directions 
 
 There are several future directions and objectives that can be used to extend this project. 

First, it is important to enlarge our sample size as much as possible to increase variant detection 

power. Besides adding on more studies from dbGaP, subjects from the biorepository UK 

Biobank will also be harmonized and incorporated into future GWAS runs. In addition to adding 
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samples, it would be interesting to rerun tests on male and female specific subsets in order to find 

variants specifically significant for a gender. The incorporation of super control versus normal 

control showed that super controls were superior in detecting significant variants. Another idea 

for future tests is to run super cases, which are subjects with all five components of MetS. 

 Next, a variety of post-GWAS tools can be run to increase the interpretability of our 

results. After assigning a nearest gene to significant variants, a gene set enrichment and pathway 

analysis can be run to see if a differentially expressed set of genes are associated with a certain 

biological pathway or molecular function. Web Gestalt is a web tool that finds associations with 

disease phenotypes given a list of genes. Depict is another web tool that highlights enriched 

pathways and predicts most likely causal genes. Finally, a network analysis can be run to observe 

how key components of these related biological pathways interact. 

 Another future objective is to make dbGaP datasets and genotypic data more accessible 

to fellow researchers. One of the objectives in Salem Lab is to release the quality control pipeline 

as a web tool to resolve the convoluted issue of QCing datasets. It would also be informative to 

release a paper regarding the navigation of dbGaP datasets, website and data tables to provide 

tips and tools for harmonizing these studies. 
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