
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Using Brain-Machine Interfaces to Study Motor Cortical Population Activity

Permalink
https://escholarship.org/uc/item/380070zf

Author
Khanna, Preeya

Publication Date
2017
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/380070zf
https://escholarship.org
http://www.cdlib.org/


Using Brain-Machine Interfaces to Study Motor Cortical Population Activity

by

Preeya Khanna

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Joint Doctor of Philosophy

with University of California, San Francisco

in

Bioengineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Jose M. Carmena, Chair

Professor Richard Ivry

Professor Robert Knight

Professor Joshua Berke

Fall 2017



Using Brain-Machine Interfaces to Study Motor Cortical Population Activity

Copyright 2017

by

Preeya Khanna



1

Abstract

Using Brain-Machine Interfaces to Study Motor Cortical Population Activity

by

Preeya Khanna

Joint Doctor of Philosophy

with University of California, San Francisco in Bioengineering

University of California, Berkeley

Professor Jose M. Carmena, Chair

Motor actions constitute the way in which we interact with the world, and are driven by

millions of neurons in our distributed motor system. Studying how patterns of activity

in motor cortical populations of neurons give rise to withholding movement, generating

fast and accurate movements, and generating sequences of movements is the topic of this

thesis. One challenge in studying how patterns of population activity support features

of movement is that population patterns are di�cult to manipulate in experiments with

current neuroscience techniques. Current methods allow for anatomically-specific and cell-

specific activation or inhibition, but do not, for example, allow for the careful manipulation

of correlated versus uncorrelated activity pattern. We turn to closed-loop brain-machine

interfaces as tools to perturb population activity patterns and to study the consequences

of these perturbations on motor behavior.

The first part of this thesis focuses testing how tightly linked a specific feature of motor

cortical local field potential signals are with withholding of movement. We use a non-

human primate model system where subjects learn to control this neural feature, termed

beta band oscillations, through a closed-loop brain-machine interface. Subjects perform

tasks where they volitionally bring their internal beta band oscillatory state to a specified

level, and immediately afterwards perform a motor task. The sequential task design allows

for testing how tightly linked beta band oscillations are to movement onset, more so than

can be claimed by correlational studies. We use a similar approach to investigate the

relationship between beta band oscillations and movement in parkinsonian subjects.

Sequential task designs shed light on how a specific neural signal contributes to a

feature of natural movement. Studying the complete link between cortical neural signals

and natural movements, however, is challenging given i) experimenters’ limited access to

neural signals driving movement ii) the number of non-linearities in the neural to move-

ment map, iii) the challenge in fully capturing a complete picture of natural movements.

One approach to simplifying the problem of studying sensorimotor control is to study

control of a fully characterized virtual plant, such as a 2D velocity-controlled cursor, that

is controlled neurally through an experimenter-defined transform and with observed neu-
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ral activity patterns. Such systems have the advantage of allowing the experimenter to

define mathematically which types of population activity influence the movement of the

plant. We take advantage of this feature to investigate how di�erent decompositions of

population activity support fast versus accurate movements. Finally, we use this system

to study principles of how neural population activity is generated for di�erent orderings

of cursor movements, or action sequences. We find that for action sequences that are con-

stituted from the same commands but in a di�erent ordering, subjects have di�erent ways

of generating the same command. We test how large these di�erences are by decomposing

the population activity that updates the movement of the plant and assess how cursor

movements are influenced. With this approach, we describe a model of how neural activ-

ity is generated that captures a majority of the neural variance observed across di�erent

action sequences.

As the motor systems neuroscience field increasingly collects simultaneously acquired

population neural activity, hypotheses about how features of the population support move-

ment will continue to emerge. Testing these hypotheses will require manipulation of pos-

sibly abstract population decompositions, a challenging feat to do precisely with current

stimulation methods, but possible with closed-loop brain-machine interfaces.
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1.1 The Distributed Motor System
Whether performing simple, necessary activities of daily living, expressing ourselves

through language, or performing exquisite feats of strength and precision in professional

athletics, the ability to actuate our limbs and vocal cords is the basis of most of our

lives. While the motor systems neuroscience field has a detailed anatomical description of

the distributed motor system including the motor areas of cortex, subcortical structures,

brain stem, cerebellum, spinal cord, and muscles, the concepts of how and where actions

are learned, stored, and initiated from is not understood.

1.1.1 Anatomy
We begin an older view of how the motor system generates movement, and although

parts have been debated and refined over the last several decades, it serves a useful

starting point. Imagine attempting a habitual action in response to a visual stimulus,

say reaching for a cup of co�ee. First, the retina receives visual information about the

object of interest. This information travels down the optic nerve, through the thalamus

to visual cortex where the features of the visual scene are parsed. The information then is

thought to travel according to the dorsal-visual-stream, or ’vision-for-action’ stream [1, 2].

It reaches higher order visual areas and parietal cortex where the goal is recognized and

evidence of a decision to initiate an action can be decoded [1]. This decision or plan is then

communicated to premotor cortices (see 1.1 for the macaque motor areas), where high-

level motor planning and preparation is thought to take place. These commands then are

sent to motor cortex where high-level command are translated to muscle commands and

then muscle commands travel down the spinal cord to the muscles via the corticospinal

pathway. Thus, motor cortex has been labeled the “final common pathway” for cortically-

controlled movement [3]. If we instead perform an internally-generated action, activation

of supplementary motor areas (SMA) and pre-SMA will drive motor cortical activity [1].

There are many lines of evidence contradicting the above generalization. In the above

description, the spinal cord is described only as a path for transmitting motor cortical

commands to the musculature, ignoring complex spinal-level computations including re-

flexes [5], central pattern generators for rhythmic movements [6], and even modulation

of spinal cord segments during preparation of an upcoming movement [7, 8]. Further,

in addition to the corticospinal tract, there are contributions to movement from spinal

cord tracts that originate in the midbrain such as the rubrospinal tract (originating in

the red nucleus), the vestibulospinal tract (originating in the vestibular nuclei), and retic-

ulospinal tract (originating in the reticular nucleus) [9]. These tracts also contribute to

movement related modulations. For example, red nucleus neurons projecting down the

rubrospinal tract have been shown to encode inter and intra limb coordination [10] and

the reticulospinal tract has been shown to contribute to distal hand function [11, 12].

Another modification of the described model is the identification of many separate ar-

eas of premotor cortices, shown in 1.1, and the finding that many of them with have direct
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Figure 1.1: Pre-motor and motor cortical areas in a macaque monkey, from [4]

corticospinal projections [3], challenging the notion that primary motor cortex is the “fi-

nal common pathway”. When performing retrograde mapping from spinal cord segments

that control arm motions, approximately 50% of neurons originated in primary motor

cortex, but about 12-20% originate in SMA, 15-20% originate in the cingulate motor ar-

eas (CMAs). It is unclear exactly which areas contribute to which types of movements

through their corticospinal connections, but lesions and stimulation studies provide some

insight. Standard microelectrode stimulation in M1 evokes grasping movements, support-

ing its contribution to distal control [13]. Long trains of electrical stimulation of M1

give rise to reaching movements or movements resembling manipulation of objects. On

the other hand, stimulation in dorsal and ventral premotor cortices (PMd, PMv) give

rise to more complex hand-to-mouth movements or defensive movements [14]. Stimu-

lation in supplementary motor area (SMA) gives rise to primarily proximal movements

and combinations of proximal and distal movements, but requires more electrical cur-

rent to evoke movement than primary motor cortex [15]. Further, when primary motor

cortex is removed, SMA stimulation only triggers proximal movements [3]. Stimulation

in pre-SMA rarely evokes movements, but lesions a�ecting pre-SMA, but not SMA, give

rise to a deficit in inhibiting competing motor plans [16]. Finally, the cingulate motor

areas (CMAs) exhibit segmentation by area as well, breaking into a rostral, dorsal, and

ventral subsection. Stimulation of the rostral section does not elicit movement, whereas

stimulation of the dorsal and ventral sections do evoke movement [17, 18].
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In addition to evoking di�erent movements when electrically stimulated, premotor

and primary motor cortex are also innervated by di�erent parietal areas [2], and have

di�erent connectivity with the basal ganglia and thalamus [19]. Di�erent premotor areas

also have di�erent degrees of projection to primary motor cortex [3]. This structural

organization suggests that instead of viewing premotor cortices as a level above primary

motor cortex in the hierarchy of motor processing, it may be more appropriate to view

primary motor cortex on an equal level as the premotor cortices [3], organized in parallel

loops each of which has a di�erent contribution to movement [14]. Further evidence for

parallel motor loops controlling di�erent aspects of movement can be found by studying

neural activations from each area. Primary motor cortex has a high representation of

hand-tuned neurons. PMd is strongly connected to parietal area VIP, which typically

associated with visual information in the dorsal stream. PMd activity is high in stimulus-

response actions. A class of PMv neurons called ’mirror neurons’ exhibit activity during

observation of movements. SMA and pre-SMA neurons tend to exhibit activity prior

to movement [17]. These findings point to involvements of premotor cortices and motor

cortices in the mental rehearsal, planning, and direct control of movement.

Overall, the motor system’s structure and hierarchy is far more complex than the sim-

ple description given at the beginning, just based on structure and connectivity alone. To

probe the functional connectivity, coordination, and generation of movement, measure-

ment methods varying in spatial and temporal scale are used.

1.1.2 Electrophysiology Measurements
Many types of measurements can be made from cortical, subcortical, spinal cord, and

musculature circuitry that yield a insight into the computations performed in each area

by single neurons, ensemble of neurons, or brain regions. Here we limit our discussion

to electrophysiological approaches, though note that many new measurement methods

are emerging that have high temporal and spatial resolution. One of these methods is

magnetoencelography (MEG), a non-invasive method that captures changes in magnetic

field due to the electrical activity of neurons, and has a high temporal resolution of ~1ms

and spatial resolution of 2-3 mm. Another method used in animal models uses voltage-

sensitive dyes (VSDs) which are proteins that bind to the membrane of cells and change

optical properties with voltage. These changes in voltage can be measured with high-

resolution fast-speed digital cameras positioned over a window where the skin, skull, and

dura have been removed [20]. Both MEG and VSDs are promising measurement methods

that will facilitate our understanding of motor function.

Currently, the four primary electrophysiological recording modalities that are used

in awake and behaving subjects are electroencelography (EEG), electrocorticography

(ECoG), local field potentials (LFPs), and extracellular single-neuron action potential

recordings (single and multi-units). These four methods vary in invasiveness of method

and spatial scale of recording, with smaller spatial scale requiring the most invasive

methodology as shown in 1.2. The EEG method involves placing electrodes outside of
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the skull and measuring signals that are summed contributions from over ~10 cm swaths

of cortex and have been low-pass filtered due to passing through the hard tissue of the

skull. Benefits of the EEG method are the non-invasiveness. Drawbacks include the ex-

tensive spatial averaging due to the electrodes being so far from the signal source and the

day-to-day changes in electrode positioning and impedance. The ECoG method involves

placing electrodes on the surface of the cortex, below the skull, and thus records activity

from within ~0.5 cm or less, with the exact spatial spread depending on the size of the

electrode contact. Depending on the preparation, ECoG grids can be in place chronically

or temporarily. ECoG contacts are much closer to the signal source than EEG contacts,

yielding a more spatially specific, and less attenuated signal. While EEG and ECoG are

biased towards sampling cortical activity in superficial layers [21], recording LFP signals

requires penetrating cortex with microelectrodes and can yield signals from deeper cor-

tical layers (such as layer V, the layer containing corticospinal projecting cells in motor

areas). The small microelectrode recording tip yields signals from a smaller population of

~ 1mm radius, though the actual spatial extent relies on the neuron morphology, the dis-

tribution of synapses along the neuron, and the correlations present in synaptic activity of

neurons within the recorded population [22]. If synapse activity is uncorrelated, the LFP

represents cells within a radius of a few hundred micrometers. High frequency activity

from LFP signals ( > 80 Hz, often termed ’high-gamma activity’) has been shown to be

correlated with spiking activity [23, 24], whereas lower frequency activity (0 Hz - 100 Hz)

can be attributed to a variety factors including recording electrode position, frequency

content of synaptic inputs, and neuron morphology [25]. Finally, extracellular recordings

can be acquired with the same method used to collect LFP signals. Instead of examining

the low-pass filtered signal, neural activity is high-pass filtered between 250 Hz - 10 kHz

and if lucky, one or more characteristic action potential waveforms can be identified as

standing out from the baseline high-pass filtered activity [26]. Even if a high SNR action

potential cannot be picked out, recently groups have characterized “threshold-crossing”

activity by setting a static threshold on the high-pass filtered signal, and using the cross-

ings of this threshold as analogs for population spiking activity regardless of whether this

activity results from more than one, easily isolatable neuron [27].

In this thesis, we study LFP signals, ECoG signals, and simultaneously recorded popu-

lations of single and multi units to garner how neural ensembles coordinate to accomplish

motor tasks.

1.2 Coding in the Motor System
1.2.1 Representation of Movement

Examining how neural activity relates to movements throughout the motor system may

yield insight into principles of how the distributed motor system generates actions. Early

work in studying neural coding was based on the idea that motor intentions are represented
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Figure 1.2: Figure from [28] comparing the spatial scale of recording by EEG, ECoG,

LFPs, and single-unit action potentials.

Figure 1.3: Figure from [29] describing a series of sensorimotor transforms that could

characterize the computations in visual, parietal, premotor, and motor cortices to generate

an action in response to a presented target.

throughout the distributed motor system, but in di�erent coordinate frames. For example,

posterior parietal cortex represents goal information in retina-centric coordinates, whereas

premotor cortices represents information in terms of hand kinematics, and primary motor

cortex represents joint torques [29]. An example of a cascade of sensorimotor transforms

is shown in 1.3.

A challenge to this approach is that the issue of which coordinate frame M1 represents

action within has remained largely unresolved [30, 31]. There have been proposals that M1

encodes hand direction, hand velocity, joint angle velocity, joint torques, muscle activity

(reviewed in [30]). Many of these studies have employed electrophysiological recordings

of single units to make these inferences, but even simultaneously recording from a full

population does not assist in resolving the question. One issue in discriminating which

variables are most reliably encoded is that during standard reaching tasks, many of the

proposed variables are highly correlated.
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1.2.2 Generation of Movement
A di�erent approach to studying the generation of action is leave the question of

which movement parameters the motor cortex represents and instead focus on identifying

principles of how movement is generated. Early work from Fetz demonstrated that an

artificial neural network with input units, hidden units, and output units could be trained

to produce specific EMG activity in response to an input signal [32]. Fetz noted that there

were multiple coding schemes that allowed combinations of hidden units to generate the

correct EMG output signal, including schemes that would result in a poor correlation

between the hidden unit and trained output EMG patterns explicitly. Since Fetz, other

groups have embarked on studying properties of populations of single and multi-unit

activity and developed proposals of how these properties generate movement.

One group has modeled simultaneously recorded populations of single and multi-unit

activity recorded from motor cortical areas during very well-practiced, fast arm reaches,

as observations from a low-dimensional linear dynamical system. Here, the activity of

tens to hundreds of single and multi-units are well-summarized by only a few dimen-

sions (low dimensional population state), where the low-dimensional observations abide

by lawful temporal rules [33, 34]. When subjects initiate their reaches, the low dimen-

sional population state starts at a reach-specific initial position and temporal rules evolve

the population state to produce a pattern. This temporal pattern has the correct fre-

quency content to produce muscle electromyography (EMG) activity [33]. This model

of how neural activity evolves captures substantial neural variance, and explains specific

characteristics of population activity that other typical representation models do not cap-

ture. Whether a consistent dynamical system can also explain complex behaviors such as

feedback corrected reaches, or delayed reaches is beginning to be explored [35, 36, 37].

1.2.3 Studying Principles of Movement Encoding
In this thesis, we aim to study questions about how population activity within motor

cortex codes for withholding movement, generating fast movement, and generating action

sequences. One approach to these questions is to design behaviors that capture our

questions of interest (e.g. moving vs. non-moving, fast vs. slow movements, sequences vs.

single actions), record neural data during these ongoing behaviors, and look for patterns in

the recorded neural data that may support the behavior. This approach has been fruitful

for countless studies, and yielded insights that form the basis of our theories today. One

challenge with the approach though, is if one desires to causally show how a specific

pattern of neural activity relates to the behavior of interest, this will be very di�cult

unless the identified neural pattern of interest is gross activation or gross inhibition of a

large swath of brain tissue. Below, we review Brain Machine Interfaces (BMIs), a tool we

will use throughout this thesis to try to use to make claims stronger than correlations.
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1.3 Closed loop Brain Machine Interface (BMI) Sys-
tems

Closed loop brain machine interfaces (BMIs) are systems that map a subject’s neural

activity to the behavior of an e�ector. The subject then senses the e�ect their own

neural activity has on the behavior of the e�ector, and can adjust their neural activity in

response, closing the loop as in 1.4. In all closed-loop BMI systems there are four vital

components, illustrated in 1.4. First, real-time recording or imaging of neural activity is

used to estimate the state that a subject is in with respect to the BMI system. Many

approaches exist for capturing neural activity from the brain, including electrophysiology

at various scales as shown in 1.4, or various neuroimaging approaches. Activity from

the peripheral nervous system can also be recorded as a BMI control signal via surface

or intramuscular electromyography (EMG). Peripheral nerves can be recorded with cu�

electrodes or more recently, miniature wireless motes [38]. Second, a mapping between

neural activity and the BMI e�ector extracts relevant features from the neural activity, and

dictates how the e�ector changes its behavior. In neuroprosthetic BMI systems, where the

goal is to estimate a subject’s motor intent, this neural activity to BMI e�ector mapping

is called a decoder since the mapping “decodes” brain activity and translates it into the

desired action. On the other hand, in neurofeedback training systems where the goal is to

provide the subject feedback about their current brain state, the mapping is only designed

to make the feedback interpretable and does not require estimations of subject intent.

Third, the virtual or real e�ector changes behavior according to the output from the

neural-to-e�ector mapping. E�ectors can include virtual cursors and robots, real robots,

muscle stimulation settings, brain stimulation settings, wheelchairs or other transporters,

spellers for communication, and more. Finally, the subject receives feedback of the e�ector

either visually, through somatosensory feedback, or through changes in stimulation. The

feedback update rate can be rapid (200 Hz), or very slow (1 Hz) depending on the system

and the goal.

1.3.1 BMIs for Clinical Applications
Closed loop BMIs appear in many clinical applications. Closed loop BMIs can be

neuroprosthetic systems where users control virtual e�ectors such as cursors [39, 40, 41,

42, 43] or modern day spellers [44]. Combined with a modern predictive text completion,

accessibility to the host of applications, games, and resources available through the Web,

and paralyzed users controlling a cursor could communicate, read, and even play music

[45]. Control of robotic arms has also been demonstrated with closed loop BMIs, allowing

paralyzed subjects to feed themselves and perform other reach-to-grasp motions [46, 47].

Closed loop BMIs have also been used for control of wheelchair movements [43]. There

have been very few studies where wearable exoskeletons have been controlled in multiple

degrees of freedom as an assistive device, owing to the complexity of the robot-human
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interaction. There have, however, been many studies investigating wearable exoskeletons

in closed loop BMIs as rehabilitation tools [48, 49], and studies using cortically driven

electrical stimulation of the natural arm [50, 51, 52]. Further, there are exoskeleton devices

that can by controlled with muscle signals [53, 54, 55].

In addition to using BMIs to control virtual cursors and robots, closed loop BMIs can

also be closed-loop brain stimulation systems [56, 57, 58] where brain signals or other

biometric signals such as accelerometers are used to titrate the therapeutic stimulation

level to avoid delivering too much or too little therapy. Closed-loop peripheral nervous

system stimulation and closed-loop drug delivery systems also exist for conditions such

as urinary incontinence, chronic pain, modulation of spinal cord circuits, and modulation

of cortical activity [59, 60, 61, 62].

Finally, closed loop BMIs can be used for brain training applications. Online mon-

itoring of brain activity during learning or gaming can allow for a closed loop training

environment where neural signals contribute to progression through the material to be

learned or the game [63, 64]. Alternatively, if a particular neural signal is known to be

related to a desired behavior or state, subjects can perform neurofeedback tasks where

they learn to volitionally increase or decrease that particular signal [65, 66, 67, 68, 69, 70].

Overall, closed loop BMIs thus have the promise of augmenting natural human func-

tion, assisting injured populations, contributing to rehabilitation, and enhancing existing

open-loop therapies.

1.3.2 BMIs as Scientific Tools
In addition to closed loop BMIs o�ering promising clinical therapies, they also serve

as valuable tools for scientific investigation. In this thesis, we use closed loop BMIs first

as a tool to probe the relationship between specific neural activity patterns and natural

behaviors, and second to study sensorimotor control principles in a simplified setting.

Notable other scientific uses of closed loop BMIs are to study neural plasticity [71, 72, 73]

and motor learning [74].

1.3.2.1 BMIs for Probing the Brain-Behavior Relationship

One challenge in classical neurophysiological experiments is that experimenters only

observe a subset of the neural activity relevant for the generation of behaviors studied.

Even full brain imaging methods su�er in temporal resolution and/or spatial resolution.

Thus, the best an experimenter can do to explain how a particular behavior may arise

from observed neural activity is to correlate the two observations – the brain activity

and the behavior. While there are manipulations to silence, remove, or stimulate brain

areas hypothesized to be related to ongoing behavior, it is di�cult to do so precisely.

In this thesis we consider relationships between specific decompositions of population

neural activity and behavior, and few tools exist to perturb only specific decompositions

of neural activity. For example, we consider oscillations in a particular frequency band
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Figure 1.4: A schematic demonstrating the four central components of a closed loop BMI.

In red is the neural recording modality pictured as varying scales of electrophysiological

measurements, but which also can include non-invasive brain imaging methods, optical

sensing of voltage sensitive dyes, and recording from the peripheral nervous system. In

blue is the “decoder”, or neural to e�ector map. In magenta is the e�ector, which can be

a real assistive device, virtual e�ector, or therapeutic stimulation. Finally, in purple is

the feedback which can include visual feedback, somatosensory feedback, or feedback via

changes in therapy.
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whose activation has long been thought to be related to motor inhibition. Thus, to

manipulate frequency specific population activity patterns, we instead use a closed-loop

BMI.

One method to study how tightly coupled a neural signal is to a behavior is to have

a subject volitionally manipulate the neural signal of interest through a closed-loop BMI,

and then to perform a behavioral task to probe the e�ect of the BMI manipulation.

Although this is not a strictly causal manipulation since volitionally modulating a neural

signal may involve unobserved co-modulations that end up being truly responsible for any

resultant changes in behavior, this becomes less likely the more behavioral probes that

are done. It also become less likely if bidirectional modulation (increasing the presence of

the signal and decreasing the presence of the signal) have opposite e�ects on behavior.

Presenting feedback of a neural signal of interest for the purpose of learning to voli-

tionally modulate the signal is referred to as “neurofeedback”. Neurofeedback has been

used as a tool to study the relationship between neural signals and behavior in a variety

of brain areas. For example, in the frontal eye fields (FEF) of the rhesus macaque, there

are neurons that are thought to play a role both in preparation of saccadic eye move-

ments and visual spatial attention. When their activity is volitionally decreased, subjects

exhibit worse performance in a visual attention task, but not in oculomotor preparation

[75]. This points to activity of FEF neurons being tightly linked to visual attention, and

is suggestive of neurofeedback as a potential therapy for disorders of attention. Besides

visual attention, neurofeedback has been used to influence visual perception [76], atten-

tion deficit disorder [66], motor improvement in parkinsonian patients [65], emotional

regulation networks [77], pain [67], and more.

When neurofeedback manipulations cause changes in behavior, it does not definitively

prove that the conditioned neural signal drives the behavior, but it is evidence for a tighter

relationship between the signal and behavior than correlations alone.

1.3.2.2 BMIs for Studying Sensorimotor Control Principles

Another scientific use of closed-loop BMI systems is to study sensorimotor control prin-

ciples. BMIs where a virtual e�ector is controlled by populations of single and multi-unit

activity simplify many aspects of studying the endogenous sensorimotor system, yet still

incorporate fundamental principles relevant for studying control [78] and learning [79].

In studying natural control, the mapping between observed neural signals and the move-

ment of the limb is undefined and likely non-linear, whereas in a BMI it is fully defined

by the experimenter and linear. In natural motor control the experimenter only observes

a subset of the relevant neurons for driving the musculature, whereas in a BMI system

the experimenter can define a subset of observed neurons as the “output neurons” thereby

allowing full observation all relevant neurons. Further, in our bodies, the biomechanical

properties of limbs are complex and non-linear, whereas the dynamics of a virtual e�ector

in a BMI can be made simple and linear. Finally, in natural control, feedback about the

state of the limb arrives through both visual and sensory feedback, complicating the study
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of how feedback may influence control. In a BMI system, feedback is usually restricted

to visual feedback, thus allowing for a simpler study of feedback manipulations.

Using populations of single and multi unit activity from primary and pre-motor cortices

mapped to the movement of a 2D or 3D cursor has been a popular approach for studying

sensorimotor control and learning due to the ease in which non-human primates can learn

such control (days or weeks), and the compelling evidence that controlling such a BMI

may resemble performing habitual motor actions. Evidence has been found for internal

models of how neural commands influence the cursor during BMI control [80], which are

also thought to exist for natural control of limbs [81]. Neural-to-cursor BMI mappings

can be learned over days, and once learned are stable across time, can be readily recalled,

and are resistant to interference [71], resembling a putative motor memory. Further, BMI

cursor movement speeds and accuracy are approaching natural arm speeds [82], so the

statistics of kinematics are also becoming comparable.

BMIs using other neural control signals (LFPs, ECoG signals, EEG signals) or other

types of e�ectors (real robots) may also be used for study of sensorimotor control, but

have not been so extensively studied or analogized to natural control as the typical BMI

using populations of multi-units mapped to the activity of a cursor.

1.4 Open Questions and Chapter Previews
The following thesis uses BMIs that are driven by population-level (LFP signals and

single and multi-unit populations) motor cortical activity in an e�ort to investigate prin-

ciples of population-level motor cortical computation.

One open question relates to how motor areas transition from withholding movement

to initiating movement. Individual neural responses in motor areas have been shown to

exhibit preparatory activity and movement activity, but how the preparatory activity

does not cause actual movement is not well understood. Some hypotheses posit the

presence of a downstream gate, perhaps in the spinal cord, that blocks or allows movement

using an independent signal. Another posits that motor cortical population patterns may

modulate during preparation, but in a dimension that results in a non-moving readout

[83]. A similar hypothesis proposes that temporally synchronized patterns at a specific

frequency, evidenced in LFP recordings, may reflect population patterns that encode a

non-moving state [84].

Chapter 2 sets out to test the hypothesis that a specific LFP feature of motor cortical

population activity, beta band oscillations, is tightly linked to withholding movement.

For the last two decades, the behavioral correlates of beta band oscillations have been

debated and proposed to be related to behaviors like attention, co-contraction, or idling.

Without technology to reliably perturb population signals, the only evidence that can

be gathered are correlations between beta band oscillation strength and motor behavior.

In chapter 2, we approach this problem with a sequential BMI-motor task. Subjects

use a closed loop BMI to learn to control the state of their motor cortical beta band
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oscillations. On each trial, they make their beta oscillatory state match the cued state

(either high, medium-high, medium-low, or low). Once their beta band state matches the

cued state, the closed loop BMI turns o� and subjects perform a typical motor reaching

task. Analyzing how motor reaching changes depending on which beta band state was

achieved prior to the reach is able to shed light on how tightly linked beta band oscillations

are to movement inhibition. One benefit of the BMI paradigm is that di�erent subjects

may di�er in the manner in which they generate or dissipate beta band activity during

the closed loop BMI. If subjects perform the task di�erently, characterized by di�erences

in other neural features, yet the e�ect of the pre-reaching beta state on motor behavior

is consistent across subjects, evidence for the link between beta band oscillations and

movement inhibition is stronger. One downside of this paradigm is that it is not a causal

manipulation. Subjects do need to perform an unnatural closed loop BMI task prior

to executing their motor reaching task, so it is possible that the manner in which they

perform the closed loop BMI may di�er from the way beta band oscillations occur during

natural reaching behavior. Thus, in chapter 3 we address the question of how similar

neural populations of multi and single-unit activity are during natural motor reaching

and the BMI-reaching task.

While beta band oscillations represent one statistic of frequency-specific population

neural activity on the scale of millimeters, single-unit action potentials and multi-units

o�er another perspective into the state of the population on the scale of hundreds of

microns, capturing high frequency spiking activity. In chapter 3, unit activity during

ongoing beta oscillations is compared in a natural reaching setting versus the closed-loop

BMI task setting. If populations of units show consistent relationships to ongoing beta

oscillations during both contexts, the probability that the beta oscillations generated

during the closed-loop BMI task are qualitatively the same as the ones during natural

motor control is higher, strengthening the argument that the behavioral results found in

chapter 2 reflect a relationship that is present in natural motor control contexts. Overall,

analyses using di�erent statistics of population activity are investigated to assess how

similar high beta neural states are in a natural and closed loop BMI context. Similarity

of these contexts supports the finding from chapter 2 that beta oscillations are tightly

linked to movement inhibition states.

While closed loop BMIs are useful scientific tools to perturb neural states, they also

may have clinical applications. In Parkinson’s patients, beta oscillations in the basal

ganglia are known to be exacerbated when patients are not receiving pharmacological

or stimulation therapy. While motor cortex does not exhibit the same increase in beta

oscillatory patterns, it does exhibit greater coupling of high-frequency, putatively spiking

activity, to ongoing beta oscillations [85, 86, 87]. It is also known that cortex serves as

the greatest synaptic input into the basal ganglia, making it likely that correlated cortical

activity has a role in the exaggerated basal ganglia oscillations. Thus, in chapter 4 we

investigate first whether parkinsonian patients can perform closed loop BMI tasks given

their compromised basal ganglia, and second whether there is any behavioral benefit of

learning to reduce motor cortical beta power on motor behavior in a similar BMI-motor
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task. Evidence of motor cortical beta state being linked to changes in motor behavior

would not only establish a basis for closed loop BMI training as a possible therapy, but

also may yield insight into how motor cortical beta oscillations are related to the basal

ganglia beta oscillations, behavior, and parkinsonian symptoms. This chapter concludes

our study of beta band oscillations and their relationship to movement inhibition.

We next turn our attention to questions focusing on how population activity of tens

single and multi-units coordinate in a closed-loop BMI cursor control tasks as a starting

point for trying to understand how the cortical motor system may generate di�erent types

of movement. Representational theories of the motor system posit the premotor and motor

cortex contain thousands of neurons, all with tuning to a specific goal-related, kinematic,

or kinetic variables. Downstream systems perform transformations on these variables,

until they are transformed into muscles commands. Given that the musculature of the arm

contains tens of muscles to control precisely, one might expect that high dimensionality to

be reflected in the computations in motor cortices. However, recent findings highlight that

tens to hundreds of simultaneously single and multi-units exhibit low dimensional firing

patterns during arm reaching tasks [33, 88, 34], and even that the arm itself only uses

a fraction of the dimensionality available to it [89]. In an analogous BMI system, when

expert subjects perform a 2D BMI task driven by tens to hundreds of neurons, [90, 91]

uncover low dimensional structure as well. How might low dimensional population activity

emerge from inputs in a system that receives inputs from thousands of neurons each with

their own respective independent neural noise? And why might low dimensional encodings

be useful for control? In chapter 5, we develop a generative model of BMI population

activity by modeling inputs into a population of simulated BMI neurons. Two di�erent

mechanisms are identified for how low dimensional, coordinated activity can emerge in

population through inputs that are not explicitly designed to be correlated. Further, given

the well defined neuron-to-cursor mapping in BMI experiments, it is possible to study

how low dimensional coordinated activity contributes to online control with respect to

speed and accuracy. Discovering which components of motor cortical population activity

drive fast and accurate movements suggests how low-dimensional structure contributes to

control during BMI tasks, and may suggest how low-dimensional natural motor cortical

activity contributes to control of limbs.

Finally, natural actions are not comprised only of fast, accurate reaching movements

to peripheral targets, but rather of individual actions strung together in sequences. How

similar are neural population patterns when generating sequences with di�erent orderings

of the same subactions? Does the temporal arrangement of a series of actions influence the

manner in which neural activity is produced? In chapter 6 we use two cursor BMI tasks,

requiring di�erent cursor trajectories, to investigate the coding, low-dimensional structure,

and temporal constraints in neural population activity. Essential to these questions is

having a well-defined neural-to-behavioral mapping to allow for interpretation of how

specific components of neural commands do or do not directly contribute to movement.

BMIs are used in this thesis to study motor population activity and their relation

to behavior. Specifically, they allowed for the manipulation of abstract types of neural
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activity that are currently impossible to manipulate with optogenetics, electrical stimu-

lation, or pharmacology. BMIs enabled the study of di�erent frequency decompositions

of local field potentials, as well as di�erent decompositions of populations of single and

multi-units into correlated and uncorrelated patterns. As the field of systems neuroscience

shifts away from studying one neuron at a time to studying the population, BMIs serve as

tools to perturb populations in specific ways, and gain a stronger understanding of how

di�erent pieces of their activity sum to drive the full movements we rely on daily.
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Chapter 2

Neurofeedback Control of Beta Band
Oscillations A�ects Movement Onset
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2.1 Introduction
2.1.1 Beta Band Oscillations in the Motor System

In motor output areas and the basal ganglia, beta (15 – 40 Hz) oscillations have

emerged as a prominent signal in LFP and ECoG recordings. However, the behavioral

correlates of beta activation across di�erent motor tasks are still poorly understood. A

better characterization of motor oscillations has potential to directly improve our ability

to design neural prosthetic devices such as BMIs driven by motor field potential activity

[92], BMIs driven by single unit activity but that take into account field potential activity

during decoding [93, 94], and create closed-loop deep brain stimulators for movement

disorders triggered by field potential signals [56, 57].

Before diving into the review of the existing hypotheses, we clarify what is meant when

stating that ‘x is a correlate of beta oscillations’, where x may be ‘attention’, ‘motor

preparation’, or ‘cue processing’, for example. LFP activity is generated by firing of

neurons, and specific features in the field potential emerge due to the network connectivity,

spatial arrangement of cells, and statistics of synaptic inputs to a region [21, 22, 95]. In

this sense, the oscillatory activity measured in the field potential is an epiphenomenon of

local neuronal activity, and the field potential is a population summary statistic. When

asking what behaviors correlate with beta oscillations, we really are asking what behaviors

correlate with these specific neural patterns that can be measured through the presence

of an oscillation in the field potential.

The neural patterns that co-occur with cortical beta oscillatory events have been some-

what categorized. There is evidence that firing rate of recorded motor layer V pyramidal

neurons does not significantly change during beta oscillations [95]but increased regularity

of firing is observed [96]. Neuronal spike timing locked to a particular phase of the ongo-

ing oscillation is observed, and in particular, spike timing in response to a visual stimulus

becomes more predictable when taking into account a neuron’s preferred phase of firing

during ongoing beta activity [97]. Across di�erent tasks though, neurons may exhibit

di�erent preferred beta phases [98]. Also, increases in synchronous ‘unitary events’, or

simultaneous firing of multiple neurons, has been observed [99]. A subtlety is that since

the LFP represents an electrical potential measured in the extracellular space, it will in

turn a�ect the probability of firing of local neurons. Such ephaptic e�ects have been

demonstrated to a�ect neuronal firing in vitro [100]. Thus, it is not clear whether the

previously described neural firing patterns are indeed causal in creating the oscillation, or

are a product of an ongoing oscillation that is generated elsewhere. Di�erent generators

of oscillatory activity (remote, local, local network) are schematized below. Which one of

these best categorized beta activity is an issue that remains unresolved. Below, we will

consider hypotheses that fall into each of these possibilities.
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Remote Pacemaker Local Pacemaker Locally Generated 
by Network

Figure 2.1: Possible drivers of oscillatory activity. Remote (a) or local (b) ’pacemaker’

neurons could be responsible, or the oscillation could be an emergent property of the

tissue (c). Modified from Whittington et al., 2000 with permission.

2.1.2 Beta Band Oscillations In Vitro

In cortex, locally generated oscillations in LFP signals are attributed to cycles of syn-

chronous excitation followed by synchronous inhibition [101, 102]. There are wide ranges

of network structures and cell types that give rise to di�erent frequencies and amplitudes

of oscillatory activity [102]. Through stimulation studies, beta oscillations in motor cortex

have been found to be generated in part by corticospinal projecting pyramidal neurons

[103]. Modeling and in vitro slice work has identified two specific mechanisms as respon-

sible for sustained beta activity in pyramidal tract neurons in the presence of excitatory

drive: gap junctions and the M-current [104, 105]. Roopun and colleagues took slices of

rat somatosensory cortex and pharmacologically activated excitatory glutamate receptors.

They found an emergence of beta oscillations in layer V, and that the oscillations were

robust to applications of various neurotransmitter blockers. Notably, three manipulations

changed the oscillatory activity: GABAA receptor blockers, gap junction blockers, and

an M-current blocker. GABAA receptor blockers at high enough dosage and gap junc-

tion blockers resulted in the disappearance of the oscillation, and the M-current blocker

a�ected the peak frequency of the oscillation in a dose-dependent manner. This finding

suggests that due to the structure of sensorimotor cortical regions, in the presence of a

constant excitatory input, oscillations in beta frequencies will emerge making them an

emergent property of the tissue, as schematized on the right in 2.1. While this study

did identify mechanisms that explain why beta frequencies are dominant, it did rely on a

constant excitatory drive, a condition that may not be physiologically reproduced in vivo.
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2.1.3 Behavioral Correlates of Beta Oscillations
2.1.3.1 Motor Cortical Beta Oscillations are generated by a local network in

motor cortex

Early studies found beta oscillations to emerge reliably during precision reach tasks

[106], pressing of force plates with digits [107], and isometric contraction [108]. Clear onset

and o�set of muscle sti�ening measured by electromyography (EMG) predicts the emer-

gence and cession of oscillatory beta activity [106]. In contrast, during natural reaching

and grasping where limbs are in motion, beta oscillations are not consistently correlated

with EMG [95]. It is interesting that during pressing, pushing, and contraction tasks,

when the upper arm is not moving but the muscles are sti�ened that oscillations are well

correlated with EMG. One possible reason for this is that during more dynamic move-

ments muscle synergies are activated in a temporal sequence whereas when sti�ening, all

muscles in a given area receive simultaneous excitatory drive [109]. Given evidence that

a strong excitatory drive in slice is required to give rise to robust beta oscillatory activity

[104], it is possible that in sti�ening tasks these conditions are consistently met in vivo.

The “sti�ening hypothesis” corresponds best with the architecture described in the right

of 2.1since it suggests that beta oscillation is an emergent property of subjects having to

co-activate their muscles. Another possibility is that beta oscillatory activity could be

transmitted from elsewhere (left of 2.1, [110]) or that beta activity could be driven by

specific local pacemaker cells instead of driven by the entire network (middle of 2.1).

2.1.3.2 Motor Cortical Beta Oscillations are generated by few pacemakers in
the motor system

Another class of hypotheses has emerged after the findings that beta oscillations are

not just limited to motor cortex and EMG activity, but are concomitantly present in

somatosensory and parietal cortices [111, 112]. Beta oscillations emerge in somatosensory

cortices during somatosensory stimulation [113]. Even the earliest studies of beta oscil-

lations in NHPs have noted consistent beta oscillations in M1 in response to ‘cutaneous

stimulation of the hand or wrist’ [114]. Further, a number of studies have noted the

emergence of beta oscillations in S1 concurrently with M1 oscillations, and even noted

an anterior-posterior directional flow of activity [111, 115], implying an interaction be-

tween somatosensory and motor cortical beta oscillations. One theory as to how M1 and

S1 could be interacting postulates that beta activity is a correlate of active peripheral

sensory sampling. Proponents theorize that beta oscillations synchronize and serve as a

‘test pulse’ descending the spinal cord and emerging in motor and somatosensory cortex

just prior to movement in order for motor commands to be updated based on the current

state of the periphery. At times when motor cortex has just sent a signal, beta oscillations

emerge to ensure that the feedback arrives at a time when motor cells are ‘most receptive’

to receive it so that they can quickly adapt to feedback [113], p. 20.

If the case, it would be expected to find coherence in the beta range between the initial
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motor cortical oscillations and the ascending spinal cord as well as motor cortex and so-

matosensory cortex, which are both found [112, 116]. Further, if motor and sensory cells

participate in this network wide oscillation, cells will likely have phases where they better

perceive sensory feedback. In human EEG studies, a relationship between ongoing beta

phase and a reliance of the magnitude of sensory evoked responses is found [117]. Addi-

tionally, numerous studies on ‘sensory gating’ have demonstrated that somatasensation is

reduced during movement [118, 119, 120], as are beta oscillations, though these studies use

cutaneous somatosensation, and spinal cord recordings suggest a greater involvement of

motoneurons than cutaneous neurons in muscular coherence [116]. The peripheral sensory

sampling hypothesis relies on an internal driver pacemaker of beta activity to entrain cells

such that their spiking probability is higher at times when they receive sensory feedback,

an architecture resembling the middle of 2.1. As further evidence, potential pacemaker

cells that exhibit after-spike hyperpolarization properties useful for entraining 25-35Hz ac-

tivity have been identified in primate motor cortex for 25-35 Hz activity [121]. Thus far,

we have discussed the biophysical generation of beta oscillations and noted that periods of

constant excitatory drive ought to reliably evoke beta activity. Below, we consider a final

hypothesis that posits that distal generation of beta may drive the observed oscillatory

activity.

2.1.3.3 Distal Areas Generate Motor Cortical Beta Oscillations

Substantial work has found beta frequencies in other parts of cortex involved in atten-

tion and long –distance synchronization[110]. Examples include beta synchronization of

dorsal prefrontal cortex and posterior parietal cortex during top-down search for a visual

stimulus [122, 123, 124]. Further, modeling work has suggested that beta oscillations are

best well suited for communication between distal areas, compared to gamma oscillations

which are better suited for local processing [125, 110]. In addition, it has been suggested

that beta rhythms could represent subject attention to motor tasks [95, 126, 127], and

could be generated in a manner suggested by the left of 2.1. The link between beta in

motor cortex and attention is best illustrated by an elegant human study.

Saleh and colleagues developed a task that isolates attention from motor preparation,

postural holding, and muscular contraction [128]. Here experimenters instruct human

subjects to observe five sequential cues, each of which instructs a reach to a di�erent

target. After observation of all five cues, subjects then execute the fourth cue, which they

have to have remembered from the prior presentation. During this experiment, transient

beta oscillatory activity emerged just prior to the first through fourth cues 2.2. Since the

cues are presented rhythmically, they are predictable. The authors interpret the transient

oscillatory activity as a proxy for subjects paying attention to the upcoming cue. For the

first through third cues, subjects must attend to them in order to count their occurrence,

and for the fourth cue, subjects must remember the instruction. Since the action that

subjects are performing occurs much later in time, it is unlikely that the beta activity in

this case represents maintenance of a postural state or any kind of muscular sti�ening.
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Figure 2.2: Single trials where beta power is represented by color, and the task cues are

shown on the horizontal axis. In this task, a human subject is instructed to watch five

cues without responding and afterwards must execute the action instructed by the fourth

cue [128]. At the top, schematics of neural activity demonstrate an attentionally driven

beta oscillation from prefrontal areas during times in the trial where the subject must

pay attention. Attention is needed either to count the cue (cues 1-3), or to remember the

instruction given by the cue (cue 4). The lack of a driving oscillation is shown when the

subject no longer needs to attend to the cue (as in cue 5). Modified from Saleh et. al.,

2010 with permission.



22

Another possible way that the distal beta source can influence computation is to

selectively coordinate local cell assemblies that are task-relevant. Probabilistic models of

neuronal spiking have shown a significant dependence on distal LFP phases and even distal

LFP-LFP phase coupling [129]. Further, cells that form a functional cell assembly may be

simultaneously co-activated by exhibiting strong coherence to distal field potentials. This

phenomenon has been observed in motor cortical cells that are responsible for controlling a

BMI. They exhibit enhanced coherence to striatal field potentials compared to cells in the

same region that were not responsible for controlling the BMI [130]. The BMI-controlling

cells also show increase locking to slow-wave activity during sleep [131]. While the above

evidence is not specific to beta activity, it is possible that beta is being transmitted from

a distal region to bind cells together much in the same way oscillatory activity has been

proposed to solve the ‘binding problem’ in perception [132].

2.1.4 Perturb Beta Band Oscillations to Infer Relationship to
Behaviors

Ideally, in order to test these hypotheses, experiments could be designed that perturb

beta oscillatory activity during muscular activation tasks, movement tasks, and tasks

that require motor-related attention. In addition to measuring behavioral variables such

as reaction time, reaching error, and perception errors for example, ideally experimenters

would also be able to recording neural activity during perturbations. Electrical stimula-

tion is one approach to experimentally inducing oscillations. Slowly oscillating cortical

macrostimulation (up to 1.7 Hz) has been shown to entrain single unit neural activity

in anesthetized rodents, though it was overpowered by endogenous rhythms in an awake

preparation [133, 134]. Non-invasive stimulation using transcranial alternating current

stimulation (tACS) and repeated transcranial magnetic stimulation (rTMS) has been

used to induce changes in cortical oscillations [135], but the frequency of the induced

oscillations is not solely dependent on the stimulation frequency [136, 137]. Further, the

change in motor behavior from stimulation at beta frequencies has been non-congruent

[138, 139, 140].

A non-stimulation based approach is to use neurofeedback to have subjects learn to

manipulate their own beta oscillations in their motor cortex. While neurofeedback was

pioneered by rewarding changes in firing rates of single motor cortical cells [70], learning

to control cortical local field potential (LFP) features has been proposed [126, 141] and

more recently has been demonstrated [142, 143]. Thus, if subjects perform a sequential

neurofeedback-behavior task where they are trained to modulate their beta oscillations

to an instructed level, and immediately afterwards perform a behavioral task, the rela-

tionship between beta oscillations and the probed behavior can investigated. Sequential

neurofeedback-behavior task designs have been used before with a variety of neural record-

ing modalities, neural signal features, and behaviors [66, 144, 75, 65]. For example, one

study examines the e�ects of operantly increasing or decreasing the firing rate of a single
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neuron in frontal eye field region on perception of targets in the receptive field of that

neuron [75]. Sequential neurofeedback-behavioral paradigms have the benefit of first, per-

turbing neural signals endogenously instead of driving the tissue with an artificially large

amount of current, second the ability to record neural activity simultaneously without

stimulation artifacts, and finally the ability for experimenters to specify the time length

and cortical location of the neural activity they wish to study.

2.2 Methods
To explore how beta oscillations reflect changes in arm movements, we trained three

macaque monkeys to perform a typical center-out arm-reaching task (CO tasks) and a

novel sequential beta neurofeedback arm-reaching task (NR task) while recording from

bilateral intracortical microelectrode arrays.

2.2.1 Surgery, electrophysiology, and experimental setup
Three male rhesus macaques (Macaca mulatta, RRID: NCBITaxon:9544) were chron-

ically implanted with arrays of 128 Teflon-coated tungsten microwire electrodes (35 mm
in diameter, 500 mm separation between microwires, 16 x 8 configuration, 6.5 mm length

Innovative Neurophysiology, Durham, NC) in left upper arm area of primary motor cor-

tex (M1) and posterior dorsal premotor cortex (PMd). Localization of target areas was

performed using stereotactic coordinates from a neuroanatomical atlas of the rhesus brain

(Paxinos et al., 2013). LFP activity was recorded at 1 kHz using either the 128-channel

Multichannel Acquisition Processor (Plexon, Inc., Dallas, TX) (Monkeys S, G) or the 256-

channel Omniplex D Neural Acquisition System (Plexon, Inc.) (Monkey C). Single unit

and multi-unit activity from Monkey G was manually sorted o�ine using O�ine Sorter

(Plexon, Inc). Channel-level activity [27] from Monkey C was defined using OmniPlex’s

auto-threshold procedure to set each channel threshold to 5.5-standard deviations from

the mean signal amplitude. Thresholds were set at the beginning of each session based on

1-2min of neural activity recorded as the animal sat quietly (i.e. not performing a behav-

ioral task). Monkeys S and G were trained to perform a center-out delayed reaching task

using a KINARM exoskeleton (BKIN Technologies, Kingston, ON, Canada) fitted to their

right arm. Monkey C was trained using a custom right-arm sleeve with a red LED marker

on the hand that was tracked in real-time with an Impulse X2 motion capture system

(PhaseSpace, San Leandro, CA). For all monkeys and tasks in this study, visual feedback

of hand position was shown by a circular cursor on the task screen. Monkey S and G’s

right arm movements were restricted to the horizontal plane by the KINARM. Monkey C

could rest and move his right arm on a horizontal plane like Monkeys G and S, but could

also move his arm above the plane. Prior to this study, Monkey S was trained at reaching

tasks and spike-based brain-machine interface (BMI) cursor tasks for 4 years, Monkey G

was trained at joystick tasks and spike-based BMI cursor tasks for 1 year, and Monkey C
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was trained at reaching and spike-based BMI cursor and virtual exoskeleton tasks for 3

years. All procedures were conducted in compliance with the NIH Guide for the Care and

Use of Laboratory Animals and were approved by the University of California, Berkeley

Institutional Animal Care and Use Committee.
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Figure 2.2.1 (a) Timeline of center-out reaching task (CO task) with variable hold times

(200-800 ms) (b) Timeline of neurofeedback-reaching task (NR task) where blue text

indicates the neurofeedback epoch and green text indicates the reaching epoch. (c) The

NR task feedback loop. Subject keep their right hand held in a central target throughout

the task. They are then shown a single beta target (shown in yellow here) and beta cursor

(shown in gray here) on the screen which is updated every 100 ms. Once the beta cursor

is held in the beta target for 450 ms, the beta cursor and beta target disappear and the

subject reaches to a peripheral target 6.5 cm away. (d) Trial averaged spectrogram of

movement onset aligned motor cortical LFP signals for Monkey C, with a mean 1/f trend
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estimated with first-order linear regression and subtracted away. White box highlights

the beta desynchronization in the 25-40 hz range. (e) All three subjects perform the

neurofeedback epoch part of the task above chance. The x axis corresponds to all trials

from all sessions concatenated, each point corresponds to a session, and the x axis position

of each point corresponds to the first trial that falls within that session. Position on the

Y axis indicates standard deviations above mean chance level (shown with black dotted

line) (f) Illustration of the metric termed movement onset time (MOT) throughout the

text. Trial-averaged hand speed in the direction of the target is shown in blue with an

arrow pointing out the time of maximum hand speed. To find the MOT, step backward

in time along the hand speed trace until the hand speed falls below 20% of the maximum

speed value. (g) 100 trials (rows) of hand speed are shown where time prior to 0.0 sec is

the neurofeedback epoch and time after 0.0 sec is the reaching epoch in (b). Black dots

indicate the calculated MOT. Increasing blue corresponds to increasing hand speed.

2.2.2 Behavioral Tasks
2.2.2.1 Center-Out Task (CO task)

Subjects performed a CO reaching task consisted of right hand movements from a

center target to a peripheral target distributed over a 13 cm diameter circle, panel a

of 2.2.1. The workspace was created to minimize any requirement for postural changes

during task performance. Target radius was typically 1.2 cm in the workspace. Trials

were initiated by entering the center target and holding for a variable time (uniformly

distributed within 200–800 ms). The go cue after the hold period was indicated by the

center target changing color and the peripheral target illuminating, cuing a reach to

that target. A liquid reward was provided after a successful reach to each target and a

peripheral hold period of 200 ms.

2.2.2.2 Neurofeedback-Reaching Task (NR Task)

Prior to training subjects to perform the NR task, beta frequency band limits used in

the neurofeedback portion of the NR task were computed from the CO task. A movement

onset-aligned trial-averaged spectrogram from the intracortical recordings in contralateral

motor and premotor cortex (e.g. Monkey C in panel d, 2.2.1) showed that the clearest

movement related desynchronization was in the 25 - 40 Hz band for all monkeys, consistent

with early reports of beta oscillations in macaque motor cortex [106, 107]. Thus, the beta

band limits for the neurofeedback epoch of the NR task were set to 25-40 Hz. Subjects

were then trained to perform the NR task. Trials were initiated by moving the right

arm (co-located with a cursor on a screen) such that the cursor fell within a central

target. Holding in the center target initiated the neurofeedback epoch where a beta

neurofeedback cursor and one of four possible beta neurofeedback targets appeared on

the screen (all blue text in panel b, 2.2.1 falls in the neurofeedback epoch). Subjects

modulated endogenous motor cortical local field potential signals to move the vertical
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position of the beta cursor. Specifically, the cursor was controlled by a spectral estimate

of beta band power normalized by a spectral estimate of broadband (1-100 Hz) power:

ßest =
1
3

q3
ch=1

q40Hz
f=25Hz PSDch

f
1
3

q3
ch=1

q100Hz
f=1Hz PSDch

f

where PSDch
f is the power spectral density estimate of a particular channel (ch) at a

particular frequency (f) assessed using the multi-taper method (5 tapers) in windows of

200 ms [145, 143]. Once was computed, a subject-specific linear transform was used to

map ßest to a vertical screen position. A two-timestep (200 ms) moving average (boxcar)

filter was then used to smooth out the displayed beta cursor position. Subject-specific

values were finalized after ~1 week of training the subjects on the NR task. Initial training

began with more lenient beta neurofeedback requirements (values to achieve low beta and

high beta target were closer to the mean beta cursor value). As subjects improved in

performance, the beta targets moved further apart until the top and bottom targets had

a mean time to target of 5-10 seconds.

After successful beta target completion, both the beta cursor and beta target disap-

peared, cueing that the reaching epoch had begun (all green text in panel b of 2.2.1 falls

in the reaching epoch). Subjects then executed a right-arm reach from the central target

to a peripheral target to receive a liquid reward. During NR task performance from these

days, subjects exhibited above chance performance as shown in panel e of 2.2.1. Chance

performance was computed by shu�ing the beta target order from a single block, designed

to assess whether the subjects’ performance during the beta neurofeedback epoch of the

NR task was merely due to chance fluctuations in beta power or was due to volitional

changes in neural activity that were specific for the target on the screen. In the simula-

tion, after the beta cursor entered the beta target and held for the 450 ms beta target

hold time, an average arm-reaching time, the constant reward time, and the constant

inter-trial interval time transpired to simulate the natural pacing of the task. At the end

of the simulation, a metric of chance performance was the mean number of successful

beta targets acquired over the length of the session. For example, if one target-shu�ed

performance yields 10 successful trials in 10 minutes, the chance rate for that simulation

would be 1 rewarded target / minute. One hundred simulations were run per session

(each session ~ 10-40 min) yielding a distribution of rewarded targets/minute. The mean

and standard deviation of the distribution was calculated, and used to z-score the actual

number of rewarded trials. The resultant z-scores for each session are plotted in panel

e of 2.2.1where each point corresponds to a session (session i), and each point’s position

on the x axis (xi) corresponds to the first trial that falls within session i amongst the

concatenated trials over all sessions.

Overall, monkeys achieved average success rates of 60% and performed on average ~4

successful trials per minute in the NR task. Errors almost entirely came from accidentally

moving the right hand outside the center target during the neurofeedback epoch.
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Figure 2.3: (a-c) Mean (s.e.m) of normalized beta power for Monkey S, C, and G aligned

to the end of neurofeedback epoch. High, mid-high, mid-low, and low beta targets are in

red, yellow, blue, and green, and go-cue aligned CO trials are in black for reference (d-f) Z-

scored PSDs estimated from a time slice 0.8 seconds prior to the end of the neurofeedback

epoch (labeled as 0.0 sec in a-c) and 0.2 seconds after the end of the neurofeedback epoch.

This time slice is displayed in gray arrows below the time axis in (a).

2.3 Results
2.3.1 Neural Dynamics During the NR task

The neurofeedback epoch of the NR task accomplished the goal of bringing beta power

to di�erent levels shown by plotting mean normalized beta power for the last 1 second of

the neurofeedback epoch and the first 0.5 seconds of the reach epoch for rewarded trials

to each of the four beta targets in 2.3, panels a-c, averages (s.e.m.) over all trials (Monkey

S: total n = 1184, Monkey C: total n = 2328, Monkey G: n = 1042).

The first vertical red line indicates the end of the neurofeedback epoch, or go cue

for the reaching epoch. The second vertical red line indicates the mean movement onset

time of the reach. The mean normalized beta power of CO trials is shown in black

for reference. At the time of the go cue there is a significant group di�erence between

normalized beta power for the four di�erent neurofeedback target conditions (two-tailed

Kruskal-Wallis test, Monkey S: n = 1184, H = 47.44, p = 2.803e-10, Monkey C: n =

2328, H = 250.1, p<5e-20, Monkey G: n = 1042, H = 48.11, p = 2.023e-10). To assess

how subjects co-modulate other frequency bands in addition to beta band, and to ensure

that the beta cursor changes were not a product of the normalization in panels a-c in 2.3,

non-normalized, z-scored power spectral densities (PSDs) were computed over the last 0.8
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seconds of the neurofeedback epoch to the first 0.2 seconds of the reaching epoch (total

window is 1.0 second) is shown in panels d-f in 2.3. Mean traces show that high and low

beta targets were achieved by increasing and decreasing beta power. Since calculation of

the beta cursor position involved an estimate of broadband power, changes in non-beta

frequencies also a�ected beta cursor position. In some subjects (Monkeys C, G), increases

and decreases in beta power were accompanied with reliable decreases and increases in

low frequencies (1-10 Hz). A final time-domain metric was computed to confirm that

the occurrence of beta oscillations was changing across the di�erent beta targets in the

neurofeedback epoch. Instead of using PSD estimators over a window (as in panels a-

f, 2.3), a time-domain method was used to extract time segments with bursts of beta

oscillations. Briefly, instantaneous beta amplitude was measured by bandpass filtering the

raw LFP with a 5th order Butterworth filter to isolate 25-40 Hz components, and taking

the Hilbert transform. If the amplitude exceeded the 60th percentile of beta amplitude

(computed each day) for a period of at least 125 ms (3-5 cycles of beta oscillations), the

time points within that period were labeled as “on-beta”. The percent of time points

that were labeled as on-beta was computed in the same time window as Figure 2d-f for

all trials. All subjects exhibit increasing percentages of on-beta time points for the low

to high beta targets. The mean (s.e.m) of percent of time points labeled as on-beta for

low, mid-low, mid-high, high beta targets respectively in Monkey S is 9.78 (0.783), 11.2

(0.778), 17.6 (0.913), 39.4 (1.35), Monkey C is 8.65 (0.523), 17.6 (0.708), 35.9 (0.840),

37.8 (0.868), and Monkey G is 18.3(1.04), 16.6 (0.994), 22.5 (1.22), 33.4 (1.43)). These

three metrics (normalized beta power in a-c, 2.3, non-normalized PSDs in d-f 2.3, and

percentage of time labeled as on-beta) demonstrate that the neurofeedback epoch served

to increase and decrease beta oscillatory power prior to the arm-reaching epoch.

2.3.2 Beta Band Oscillations Delay Movement Onset
In the NR task, movement onset times, movement onset speed, peak reach speed, and

movement onset acceleration were calculated for the reaching epoch of each successfully

completed trial from days with a fixed beta-to-cursor transform. The two-tailed nonpara-

metric Wilcoxon-like Cuzick’s test was used to test for increasing or decreasing ordering

of trial across the four beta target groups. Cuzick’s test [146] is a non-parametric test

for significant ordering of groups in an increasing or decreasing manner (two-tailed) and

was used to assess significance of ordering of behavioral metrics according to the four

beta targets. A test statistic (Z) is calculated for the hypothesis that groups follow a

designated ordering (Cuzick, 1985). Z is calculated using the ranks of individual points

and the group assignment (assignments used here: low beta target: 1, mid-low beta tar-

get: 2, mid-high beta target: 3, high beta target: 4 (except where noted) to determine

if there is a significantly increasing or decreasing metric following the group ordering. Z

follows a standard normal distribution (confirmed for data here by shu�ing group labels

10,000 times and comparing the resultant Z distribution to a standard normal distribution

with the KS test), so a p-value can be calculated using the cumulative standard normal
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Figure 2.4: (a-c) Boxplot of reaching movement onset times grouped by proceeding beta

target. Subjects exhibit an increase in movement onset time (MOT) when modulating

normalized beta power to higher targets. Gray line at center of boxplot is median. *** p

< 5e-09, Cuzick’s two-tailed test.

distribution.

We tested whether rewarded trials preceded by low, mid-low, mid-high, and high beta

targets exhibit increasing or decreasing behavioral metrics. In all three animals, trials with

high beta power targets had subsequent reaches with slower movement onset times (panels

a-c 2.4Two-tailed Cuzick’s test, Monkey S: z = 5.763, p =8.267e-09, n = 1183, Monkey C:

z = 11.987, p < 5e-20, n = 2168, Monkey G: z = 5.856, p = 4.729e-09, n = 1028). Note

that trials with movement onset times greater than 0.7 seconds or less than 0.0 seconds

were removed from this and all subsequent analyses (Monkey S: 1 trial, Monkey C: 160

trials, Monkey G: 14 trials). Other groups have found correlations between increased beta

power and reduced onset speed, peak speed, and onset acceleration [147, 140] which we

do not find consistently across subjects when comparing metrics grouped based on our

proxy for beta power, the preceding beta target (see table 2.1).
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Table 2.1: Z-statistic (and p-values) for Cuzick’s two-tailed test for ordered grouping

performed on onset speed, peak speed, and onset acceleration. * p < 0.05, ** p < 0.01,

*** p < 0.001, Monkey S: n = 1183, Monkey C: n = 2168, Monkey G: n = 1028, Combined:

n = 4379

Metric Monkey S Monkey C Monkey G Combine

Onset Speed 1.378, p=0.168 -3.593 (***) 0.0734, p=0.941 -1.2443, p=0.213

Peak Speed 4.476 (***) 4.142 (***) -1.330, p=0.187 1.8339, p=0.067

Onset Accel. 1.901, p=0.057 2.573 (*) 0.159, p=0.873 0.8178, p=0.414

2.3.3 Sequential Neurofeedback -Reaching Task Controls
2.3.3.1 Beta target acquisition di�culty does not correlate with movement

onset time

To ensure the cognitive e�ort required to increase and decrease beta power during the

neurofeedback epoch did not result in increasing movement onset time observed in 2.4,

we compared the amount of time it took to acquire each beta target as an approximate

measure of each target’s di�culty. For Monkeys S and G the time to acquire beta target

did not significantly predict MOT in a linear regression but it did for Monkey C and when

data was combined across monkeys (panels a-c in two-sided Student’s t-test for non-zero

slope in linear regression, Monkey S: t = 0.7119, p = 0.476, n = 1183, Monkey C: t =

2.352, p = 0.0188, n = 2168, Monkey G: t = 1.651, p = 0.0991, n = 1028, Combined across

monkeys: t = 2.0832, p = 0.0373, n = 4379). When linear regression was used to predict

MOT (MOTpred) from time to beta target, and was subtracted from the actual MOT

(MOTres = MOT - MOTpred), increasing MOTres with increasing beta power target

remained (two-tailed Cuzick’s test on MOTres, Monkey C: z = 13.191, p < 5 e-20, n =

2168, Combined data across monkeys: z = 13.615, p < 5e-20, n = 4379). Thus, the slight

predictive power of time to beta target on MOT does not account for increasing MOT

with increasing beta target from Figure 3.

We controlled for whether looking at the top part of the screen (where the high power

beta target is displayed) was e�ortful for subjects and resulted in slower movement onset

times. In Monkey C the relationship between beta target and screen location was reversed

by mapping increased beta power to the bottom of the Y-axis for a set of trials analyzed

separately. For these trials, the high beta power target became the green Target 1 instead

of the red Target 4. 2.5e shows that increasing beta-target versus increasing movement

onset time reverses relationship (z = -5.971, p = 2.354e-09, n = 2113) demonstrating that

increasing beta power, not the beta target position on the screen, consistently correlates

with the observed increasing movement onset time. To test that the beta target versus

movement onset time relationship generalizes to more than a single arm reaching target,

we show that the same task with a di�erent arm reaching target location produces the

same e�ect (2.5d, Monkey S: z= 3.972, p =7.117e-05, n=735).
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Figure 2.5: (a-c) Movement onset time (MOT) from 2.4 is plotted against time to beta

target for Monkey S, C, G. Colors correspond to the beta target for that trial following

the same colormap as 2.3 and 2.4. Linear regression is performed to assess if time to beta

target is predictive of MOT. Non-significant p-values for Monkey S, G show time to beta

target (interpreted as beta target di�culty) does not significantly predict MOT. Monkey C

exhibits a significant relationship, but when MOTres is computed by subtracting predicted

MOTs from time to beta target from actual MOT, MOTres exhibits the same increase

with increasing beta target as seen in 2.4 (d) Changing location of the manual control

reaching location from 6.5 cm to the right of the central target to 6.5 cm above the central

target does not change the observed relationship between increasing movement onset times

and increasing beta power target, Monkey S. (e) Changing the vertical ordering of beta

targets on the screen (green is the high-beta target, blue is mid-high beta target, yellow is

mid-low beta target, and red is low beta target) also shows the same increase as in 2.4B.

* p < 0.05, ** p < 0.01, *** p < 0.001, Cuzick’s two-tailed test for significant increases

and decreases by grouping except where noted.
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2.3.3.2 Movement onset time increase is specific to beta band frequencies

Using other methods to compute beta power shows the same movement onset
relationship To confirm that the correlation between lower beta power targets and

faster movement onset times was not due to the beta cursor calculation method that

normalizes beta power by total broadband power, o�ine we sought to account for the

increase in movement onset time with a beta power calculation method that was non-

normalized. Non-normalized beta power was computed in the window spanned by the last

0.8 seconds of the neurofeedback epoch. Trials were then re-labeled by which quartile their

un-normalized beta power fell (e.g., if the un-normalized beta power falls in the 0-25th

percentile of all trials, the trial would be assigned to group 1). Trials with movement onset

times less than 0 seconds or greater than 0.7 seconds were removed, as before. The mean

movement onset time for each of these new groups is plotted by monkey (2.6A-C, darkest

and lightest bars correspond to lowest and highest non-normalized power respectively).

All three monkeys exhibit significantly increasing movement onset times with increasing

non-normalized beta power (Two-tailed Cuzick’s Test, Monkey S, z = 7.162, p = 7.945e-

13, n = 1183, Monkey C, z = 7.767, p = 7.994e-15, n = 2168, Monkey G, z = 7.709 p

=1.266e-14, n = 1028, Combined Across Monkeys: z = 6.168, p = 6.924e-10, n = 4379).

This same procedure was performed except instead of relabeling by non-normalized beta

power, trials were re-labeled by the percentage of on-beta time points using the previously

explained time-domain method. Indeed, the same increase in movement onset time follows

where trials with a larger percentage of on-beta time points exhibit slower movement onset

times (Two-tailed Cuzick’s Test, Monkey S, z = 7.575, p = 3.597e-14, n = 1183, Monkey

C, z = 5.488, p = 4.068e-08, n = 2168, Monkey G, z = 7.890, p =3.108e-15, n = 1028,

Combined Across Monkeys z = 5.1301, p = 2.895e-07, n = 4379). Thus, the normalization

of the cursor does not account for the increase in movement onset time.

Non-beta frequencies are co-modulated during the beta neurofeedback epoch
of task Since the neurofeedback epoch required control of normalized beta power, it

is possible for subjects to have neurofeedback strategies that involve modulation of non-

beta frequency bands to move the cursor. Using the same trial re-labeling procedure as

described above, individual trial labels were re-assigned depending on normalized power

in non-beta frequency bands (1-10 Hz, 10-25 Hz, 40-65 Hz, and 65-100 Hz) for the same

time window as above. The resulting movement onset times are plotted by re-labeled

group, frequency band, and monkey in 2.6D-F. For the 10-25 Hz and 40-65 Hz frequency

bands there is ordering correlated with the 25-40 Hz band, and no consistent ordering

across monkeys respectively. (Two-tailed Cuzick’s Test, Monkey S 10-25 Hz: z = -0.6660,

p = 0.5054, n = 1183, 40 – 65 Hz: z = -1.599, p = 0.1097, n = 1183, Monkey C 10-25 Hz:

z = 5.717, p = 1.082, n = 2168, 40-65 Hz: z = 0.1569, p = 0.8753, n = 2168, Monkey

G 10-25 Hz: z = 5.477, p = 4.33e-08, n = 1028, 40-65 Hz: z = -0.9347, p = 0.3500,

n = 1028, Combined across Monkeys 10-25 Hz: z = 2.9728, p = 0.002951, n = 4379,

40-65 Hz: z = -0.4443, p = 0.6568, n = 4379). The consistent ordering in the 10-25
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Figure 2.6: (a-c) Trials from Monkey S, C, G were re-labeled as low, mid-low, mid-high,

and high according to the non-normalized beta power during time slice -0.8 to 0.0 sec with

respect to the end of the neurofeedback epoch. The movement onset times (MOTs) of the

resorted trials were compared and the mean (s.e.m) are plotted in each subplot. Below

titles, p-values are shown for Cuzick’s test (d-f) Same as a-c except using normalized

non-beta frequencies indicated at top of plot (g) Right shows MOTs for version of task

where subjects control X axis with normalized 1-10 Hz power in addition to Y axis with

normalized 25-40 Hz. Note that Cuzick’s test for the right plot assumes ordering is mid-

low, mid-high, high, low targets (instead of low, mid-low, mid-high, high). Left, same

MOT plot for Monkey G from Figure 3c for comparison (h, i) Z scored PSD plots (same

method as Figure 2d-f) for di�erent beta targets in the standard beta neurofeedback

task (h) and the neurofeedback task that incorporates delta power modulation on the X

axis (i). Dotted lines point out the ordering of targets in the beta range, following the

movement onset time ordering in (g). (j) Percent of time points within the last 0.8 sec

of the neurofeedback epoch that are part of beta oscillatory episodes during beta and

1-10 Hz XY control. * p < 0.05, ** p < 0.01, *** p < 0.001, Cuzick’s two-tailed test for

ordered grouping.



34

Hz band (increased power correlated with increased MOT) is likely due to the natural

beta band for each animal extending into frequencies below 25 Hz. 2.3D-F shows that

Monkey C and Monkey G exhibit increases in low beta frequencies that are match those

in the 25-40 Hz range. The 65-100 Hz (gamma) band does exhibit consistently decreasing

power for higher beta targets across monkeys (Two-tailed Cuzick’s test, Monkey S: z

= -5.0279, p = 4.96e-07, n = 1183, Monkey C: z= -4.227, p = 2.368e-05, n = 2168,

Monkey G: z = -1.775, p = 0.0759, n = 1028, Combined across Monkeys z = -3.1079,

p = 0.001884, n = 4379). Indeed, beta power and gamma power have been shown to

be anti-correlated in motor-related regions during tasks involving movement [148, 149]

in prefrontal cortex during working memory tasks [150], and in parkinsonian subjects at

rest [151]. Increased gamma power may then be a physiological pattern that emerges

with reduced beta power. It is unlikely that subjects are relying on changes in gamma

power, which would change the denominator term in the beta cursor computation, to drive

their neurofeedback strategy since gamma power constitutes less than 3% of the total

broadband estimate, as shown in table 2.3. The correlation between increased gamma

power and reduced MOT was further investigated with a model selection analysis. MOTs

were either linearly estimated using normalized gamma power as a predictor (Model 2,

table 2.2), normalized beta power as a predictor (Model 1, table 2.2), or both normalized

gamma power and normalized beta power as predictors (Model 4, table 2.2) from the

last 0.8 seconds of the neurofeedback epoch. The normalized beta power model explained

more MOT variance than the normalized gamma power model (table 2.2), and the F-

test demonstrated that adding normalized beta power as a predictor in a model with

normalized gamma power resulted in significant improvement (Model 2 vs. Model 4,

table 2.2). Thus, while gamma power is negatively correlated with MOT, beta power

explains more MOT variance than gamma power, and addition of beta power to a model

predicting MOT with gamma power significantly improves prediction. The 1-10 Hz band

also shows a consistent across-monkey decrease in movement onset time with increased

power, discussed below (Two-tailed Cuzick’s Test, Monkey S z = -4.290, p = 1.785e-05,

n = 1183, Monkey C: z = -6.8774, p = 6.097 e-12, n = 2168, Monkey G: z = -8.4548, p

= 2.795e-17, n = 1028, Combined Across Monkeys z= -5.3049, p = 1.127e-07, n = 4379).

Modified beta neurofeedback task shows 1-10 Hz band power does not account
for movement onset time increase The 1-10 Hz power subplot of 2.6D-F shows re-

duced movement onset time with increasing 1-10 Hz power for all three subjects. To

investigate whether the movement onset time increase observed was truly due to changes

in beta power and not changes in the 1-10 Hz band power, we performed an experimen-

tal manipulation as well as a regression analysis, as above with gamma power. In the

experimental manipulation, Monkey G performed a NR task variant where beta power

continued to move the beta cursor up and down the Y axis, but now instead of having

a fixed X axis position, 1-10 Hz power controlled the cursor on the X axis. The targets

were in the same positions in as in the standard NR task, but now Monkey G had to

ensure that his 1-10 Hz power was nether too low nor too high else the horizontal position
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Table 2.2: Predicting MOT with Beta and non-Beta Frequency Bands

Model 1:
MOT ~

Beta (R2)

Model 2:
MOT ~
Gamma

(R2)

Model 3:
MOT ~
LF (R2)

Model 4:
MOT~
Beta+

Gamma
(R2)

Model 5:
MOT ~
Beta +
LF (R2)

Monkey S 0.0403 0.0148 0.006417 0.05806 0.04321

Monkey C 0.0138 0.004384 0.01253 0.01733 0.01456

Monkey G 0.0767 0.005467 0.05866 0.10561 0.07963

Combined 0.04363 0.01383 0.01820 0.05677 0.04522

F statistic
Model 2

vs. Model
4

p (Model
4 > �>

Model 2)

F statistic
Model 3

vs. Model
5

p (Model
5 > �>

Model 3)

Monkey S F (1181,
1180) =
54.162

p < 1e-16 F (1181,
1180) =
45.373

p < 1e-16

Monkey C F(2166,
2165) =
28.531

p < 1e-16 F(2166,
2165) =

4.477

p < 1e-16

Monkey G F(1026,
1025) =
114.77

p < 1e-16 F(1026,
1025) =
23.356

p < 1e-16

Combine
Monkeys F(4377,

4376) =
199.2

p < 1e-16 F(4377,
4376) =
123.83

p < 1e-16
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Table 2.3: Percentage of Broadband Power Estimate Comprised by 65-100 Hz

Mean (std) Percentage

Monkey S 2.43 +/- 1.13 %

Monkey C 1.50 +/- .518 %

Monkey G 2.14 +/- .825 %

of his cursor would not fall within the width of the beta target. Monkey G learned this

task and after 3-4 days of practice achieved similar performance to the standard beta-

only task of 5-10 sec to each beta target. In the beta task variant, Monkey G adopted

a new strategy for getting to the lowest target. 2.6H and 2.6I show PSDs from the last

0.8 seconds of the neurofeedback epoch to the first 0.2 seconds of the reach epoch. For

the lowest (green) target in the beta task variant, Monkey G managed to increase the

power of his beta frequencies to similar levels as the highest beta target (red) but since

he concomitantly increased the power of other frequencies, the denominator term in the

normalized beta metric increased more, making the cursor move downwards (2.6I). To

ensure that the PSD plot reflected the presence of beta oscillations, we also calculated

the percent of on-beta time points using the previously explained time-domain method

for the beta task variant (2.6J). This metric reflects the same ordering as in the PSD that

the lowest beta target had a comparable percentage of on-beta time points to the high-

est beta target. This task variant e�ectively decoupled beta and 1-10 Hz power. In the

original task, beta and 1-10 Hz power were inversely correlated (low beta power occurred

with high 1-10 Hz power and vice versa) but in this modified task, high 1-10 Hz power

and high beta power co-occurred during the low, green target and low 1-10 Hz power and

high beta power co-occurred during the high, red target. We analyzed whether movement

onset times followed the beta power or the 1-10 Hz power ordering. The movement onset

times (2.6G, right) for the green target rose to match the movement onset times of the

red target, indicating that the movement onset times followed beta power ordering, not

1-10 Hz power ordering (One-tailed Cuzick’s test for significant ordering of beta targets

in 2.6G, right assesses increasing movement onset times per the group order 2, 3, 4, 1

instead of group order of 1, 2, 3, 4 used in all other Cuzick’s tests. Monkey G: z = 7.1359,

p = 4.807e-13, n = 1164). If the 1-10 Hz power target ordering is used then MOTs show

no significant trend (One-tailed Cuzick’s test for MOTs increase with decreasing 1-10 Hz

power, group order of 1, 2, 3, 4, Monkey G: z = -2.5713, p = 0.9949, n = 1164). Although

2.6D-F show a strong co-modulation of 1-10 Hz frequencies with beta frequencies, the

1-10 Hz band does not explain the observed ordering of movement onset times.

In addition to the above experimental manipulation, we also assessed the contribution

of the 1-10 Hz band on explaining MOT variance. MOTs were either linearly estimated

using the normalized 1-10 Hz power as predictor (Model 4, table 2.2), normalized beta

power as a predictor (Model 2, table 2.2), or both normalized 1-10 Hz power and nor-
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malized beta power as predictors (Model 5, table 2.2). The normalized beta power model

explained more MOT variance than the normalized 1-10 Hz power model (table 2.2), and

the F-test demonstrated that adding normalized beta power as a predictor in a model

with normalized 1-10 Hz power resulted in significant improvement (Model 4 vs. Model

5, table 2.2). Thus, while 1-10 Hz power is negatively correlated with MOT, beta power

explains more MOT variance than 1-10 Hz power, and addition of beta power to a model

predicting MOT with 1-10 Hz power significantly improves prediction. Finally, we inves-

tigated which sub-frequency bands within the 1-10 Hz band were most closely correlated

with MOT. We divided the low frequencies into the delta band (1-3 Hz), theta band (4-7

Hz), and alpha band (8-12 Hz). By performing the same analysis as in Figure 5d-f with

the narrower bands, we find that delta and theta bands, but not alpha band, strongly

correlate with MOT in all three animals (Monkey S: 1-3 Hz: z = -3.276, p = 1.052e-03, n

= 1183, 4-7 Hz: z = -3.245, p = 0.001174, n = 1183, 8-12 Hz: z = -1.3085, p = 0.1907, n

= 1183, Monkey C: 1-3 Hz: z = -6.9864, p = 2.821e-12, n = 2168, 4-7 Hz: z = -6.1334, p

= 8.602e-10, n = 2168, 8-12 Hz: z = -1.779, p = 0.0753, n = 2168, Monkey G, 1 – 3 Hz:

z = -8.2012, p = 2.379e-16, n = 1028, 4 – 7 Hz: z = -6.1655, p = 7.0239e-10, n = 1028,

8-12 Hz: z = 0.0669, p = 0.9467, n = 1028, Combined over Monkeys: 1-3 Hz: -5.0064, p

= 5.55e-07, n = 4379, 4 – 7 Hz: z = -4.355, p = 1.33e-05, n = 4379, 8-12 Hz: z = -0.9782,

p = 0.328, n = 4379).

2.4 Conclusion
2.4.1 Behavioral Correlates of Beta Oscillations

Here we have shown evidence that volitionally increasing and decreasing beta power

in the motor system with neurofeedback achieves neural states that precede slower and

faster movement onset times respectively in three monkeys. How do these results jive

with previous hypotheses?

We first consider how beta oscillations may be generated in the motor system. Our

result that volitionally increasing and decreasing motor cortical beta power with neuro-

feedback precedes slower and faster movement onset times supports the hypothesis that

beta oscillations are linked to neural patterns that slow onset of new movements [152].

Our results add to previously reported findings of elevated beta power prior to and after

well-trained movements [153, 107, 127]. While we cannot identify the mechanism that

drives the beta oscillations observed, modeling and in vitro slice work shed light. Recent

modeling of striatal neural populations show increased medium spiny neuron (MSN) ex-

citation can result in beta oscillations within the striatum, which can propagate through

output structures of the basal ganglia [154]. MSN excitability is a�ected by many neuro-

modulators such as acetylcholine [155] which notably drives increased MSN excitability

primarily in D2 MSNs, or the MSNs responsible for the indirect pathway activation [156].

The findings from our study show that when cells generate beta oscillations they encode
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a slower movement state, which could reflect indirect pathway activation. Recent work

has also shown that shifts in attention due to salient stimuli are thought to involve the

intralaminar nuclei of the thalamus [157], which projects to the striatum [158], potentially

resulting in transient increases in beta power in D2 MSNs as well [154]. This common

striatal beta-generating mechanism would explain how increases in attention have been

reported to evoke beta oscillations [126, 159, 128], and could be used to pause current

motor programs in response to salient stimuli [156]. This mechanism is also a plausible

explanation for evidence of beta oscillations occurring during untrained, free reaching

movements [114, 153]. These oscillations could be driven by salient stimuli that subjects

encounter as they execute and update their internally generated motor plan. Our results

and proposed mechanism of beta generation do not predict oscillatory events occurring

during isometric contraction [106, 108], however it is becoming increasingly common to

find di�erent mechanisms for generating similar frequency oscillations [155]. In vitro slice

work has identified that with su�cient excitatory drive to slices of sensorimotor or motor

cortex, beta frequency oscillations emerge in deep cortical layers [104, 160]. It is possible

that the strong excitatory drive needed to sti�en muscles during an isometric contraction

task, in contrast to reaching movements that require temporal coordination of antagonist

muscle groups [109], is su�cient to generate beta oscillations by the same means described

by Roopun et al., 2006 and Yamawaki et al., 2008. Further evidence for this proposed

mechanism comes from computational models of driving motoneuron recruitment with

pyramidal tract neurons. When pyramidal tract neurons fire at beta band or higher fre-

quencies, motoneurons increased recruitment and hence muscular force production [161],

as would be required in an isometric contraction task. Potentially beta oscillations are ob-

served during isometric contraction tasks because of large muscular force requirements in

the task, not because of the same striatal beta-generation pathway previously described.

Finally, our results and the proposed striatal beta-generating mechanism do not predict

the correlation of beta power with other behavioral metrics such as movement onset speed,

peak speed, and onset acceleration that were correlated with beta power in other studies

[147, 140]. Note though, that the findings of Joundi et al., 2012 and Pogosyan et al., 2009

are from experiments using transcranial alternating current stimulation (tACS) at beta

frequencies applied to motor cortical areas. The mechanisms of tACS are still unclear

[162], so it is possible that the reported behavioral e�ects are due to evoked neuronal

activity patterns that are specific to tACS stimulation and do not occur endogenously.

While identifying mechanisms that generate beta oscillations can shed light on how cer-

tain types of behavior such as attention or isometric contraction may be correlated with

onset of beta oscillations, they do not inform how the dynamics of the underlying neural

population generate movement change.

2.4.2 Benefits of the Sequential Neurofeedback-Reaching Task
Using a neurofeedback paradigm to investigate behavioral and population neural cor-

relates of oscillations has several advantages. First, since the neurofeedback epoch only
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requires subjects to modulate beta power and to be seated at rest, they choose their own

subject-specific strategy for generating or quenching beta activity. These strategies may

include co-modulating other frequency bands, imagining movement, or performing other

internal behaviors that generate beta activity. For example, while Monkeys C and G

inversely modulated low frequency (1-10 Hz) power with beta frequency power, Monkey

S did not modulate 1-10 Hz power as drastically but did exhibit increased 50-60 Hz power

with increased beta power (2.3D-F). Despite the di�erent approaches that were taken to

increase and decrease beta power across animals there is still a consistent e�ect of high

versus low beta power on movement onset times, increasing confidence that the oscillation

is a reliable marker of the observed behavior. In contrast, many motor tasks engage motor

preparation, increased attention, cue expectation, and possibly muscular sti�ening all the

same time within the task. These overlapping behaviors make it challenging to deliver a

parsimonious explanation for the behavioral correlates of beta oscillations using correla-

tional studies. Another advantage of using neurofeedback over other approaches to per-

turb neural oscillations such as non-invasive transcranial alternating current stimulation

[147, 140] or invasive transcranial electrical stimulation [133] is that the recorded neural

signal is not tarnished with a stimulation artifact. In this study, simultaneously recorded

units were analyzed and shown to exhibit di�erent activity during neurofeedback-induced

beta oscillations compared to natural beta oscillations occurring during typical reaching

tasks. Despite di�erences at an individual unit level, population level analyses show that

beta oscillations promote a consistent movement-slowing state during both the CO and

NR tasks, matching what is observed behaviorally. This analysis may be compromised if

a stimulation artifact prevented recording of local field potentials or single units.

Another report, [144], used a similar but non-invasive beta band neurofeedback method

prior to a movement task and reports comparable behavioral results. The authors find

that 3 of the 8 subjects exhibit significant reductions in movement onset time following

reduced beta power, consistent with our findings. Possibly the movement onset increase

was not in all subjects because there was substantially more temporal smoothing in their

neurofeedback task setup (neural signals averaged in window of 1 seconds, compared with

our window of 200 ms), and no hold requirement for their neurofeedback cursor (compared

to our hold requirement of 450 ms). Thus, their subjects could be in a greater range of

neural states prior to beginning the movement task, making the movement onset versus

beta target relationship less robust. Finally, the authors do report a group-level significant

increase in movement accuracy following beta reduction, a metric that did not change in

our experiment likely due to the subjects’ overtraining of arm reaches in our study.

Finally, neurofeedback is a tool that if e�ective at introducing a change in subsequent

behaviors could possibly be a directly translatable therapy for patients. For example, if

excessive synchronization of motor neurons is pathological in PD, learning to reduce neural

coupling with neurofeedback of beta oscillations may improve bradykinesia symptoms.

Evidence suggests that PD patients do indeed exhibit a stronger movement-related beta

power reduction prior to movement onset than non-PD patients [163], implying that

some patients may already reduce beta power to initiate movement more easily. Thus,
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neurofeedback could be a tool to teach patients to cognitively modulate their beta power

for symptom improvement, as discussed in chapter 4.
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Chapter 3

Individual and Population Neural
Activity during Neurofeedback
Control and Naturally Occurring
Beta Band Oscillations
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3.1 Introduction
3.1.1 Neural Signals are Characterized During Beta Band Os-

cillations and During Motor Behavior, but Not During
Both

In chapter 2, we discussed the behavioral correlates of beta oscillations, and an ex-

periment designed to test the correlations between motor cortical beta oscillations and

motor behavior. We now turn to the question, of how the presence of beta oscillations re-

flects underlying population signals in motor cortex. In the study described in chapter 2,

a neurofeedback-reaching (NR) task was used in concert with simultaneous, multi-scale,

high-count neural recordings to first study how the presence of beta oscillations influ-

ence arm-reaching behavior, and second, how underlying neuronal population patterns

shift when beta oscillations are generated. It has been suggested that the generation of

the beta oscillation itself, either locally or distally, could influence neuronal computation

[164, 97] since slowly oscillating ephaptic fields have been shown to entrain spiking be-

havior in vitro [100]. However, little evidence exists showing that beta oscillations in the

local field potential influence spiking activity through ephaptic mechanisms. Thus, in the

subsequent analyses and discussions, we interpret beta oscillations as a statistic of syn-

chronization of the underlying neural signals, not as a signal that can independently and

causally influence neural spiking through ephaptic e�ects. We aim to investigate how the

underlying neural signals change their encoding during epochs when they generate beta

oscillations and do not make claims about the causality of beta oscillations on spiking.

Many proposed behavioral correlates of beta oscillations exist, as described in chapter

2, but to link oscillations to a behavior rigorously it is necessary to understand how

oscillations reflect the underlying neural activity that ultimately drives the behavior. Prior

studies investigating neural activity changes during beta oscillations have used acute,

single-electrode recording preparations and shown that single cells are synchronized to

ongoing oscillations but that the strength of this synchronization is unrelated to the

involvement of the neuron during the motor task [95]. Further, individual cells do not

change their mean spike firing rate but do exhibit a reduction in spiking variability during

oscillations compared to before the oscillation [95]. How might these changes in individual

units relate to attention, motor preparation, or idling? Modeling groups have aimed to

bridge this gap by showing how beta oscillations could be a signal generated by cells

conveying top-down information [164, 125], could reflect a pattern of firing used to activate

specific cell assemblies [165, 98], or could reflect a specific spatiotemporal recruitment of

cells [166, 115]. However, experimental evidence supporting that beta-generating spiking

patterns are used to accomplish the proposed functions is lacking. In contrast, if one were

to omit the role that beta oscillations may play in motor behavior, there is substantial

work linking spiking patterns to specific aspects of motor behavior such as movement

onset [83], reaction time [167, 168], movement angle [169, 170], and movement speed

[171, 172], to list just a few. We have already reported changes in motor behavior following
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performance of neurofeedback during a sequential neurofeedback-reaching task, and now

we turn to analyzing a neural population shift that mirrors the change in motor behavior

observed. Notably, this shift in neural population was also seen during naturally occurring

beta oscillations during reaching tasks suggesting that beta oscillations reflect a common

underlying subset of spiking patterns even in di�erent task contexts. Taken together, the

behavioral results plus the population analysis ties together existing works on behavioral

correlates of beta oscillations with hypotheses of how motor cortex encodes movement

onset through the lens of population level neural activity.

3.2 Methods
In the experiments described in chapter 2 with Monkeys G and C, single and multi-

unit activity was recorded. All population unit analysis was only conducted with these

two animals.. Monkey S had arrays that had been implanted for > 3 years and no longer

were usable for recording single-units. All neural data from sessions from Monkey G were

o�ine sorted using the Plexon O�ine Sorter. Isolated single units and multi units were

included in analysis. For Monkey C, channel activity (Chestek et al., 2011) was used (see

Surgery, electrophysiology, and experimental setup). Analyses were performed within day

to prevent day-to-day recording instability from influencing analysis.

3.3 Results
3.3.1 Relationship of Individual Units to Beta Band Oscillations

During NR Task and CO Task
First we consider that if the neurofeedback-induced beta oscillations are qualitatively

the same as naturally occurring beta oscillations during reaching tasks, it might be unsur-

prising that increasing beta power biases subjects toward slower movement onset based on

previous studies. We investigate exactly how similar the beta oscillations in the di�erent

tasks are through the lens of unit neural activity. On most days, subjects performed 5-10

minutes of the CO task prior to beginning the NR task. Only days when the CO task was

performed were used for subsequent analysis (Monkey G: 6 days, Monkey C: 4 days). Si-

multaneous single-unit and multi-unit activity were recorded throughout Monkey G’s task

sessions, and multi-unit and channel level activity [27] were recorded throughout Monkey

C’s task sessions. Both single-unit and multi-unit activity were manually sorted, whereas

channel level activity used the auto-thresholding function in Omniplex-D software. In

subsequent analyses, time bins (100ms or 25ms depending on analysis) will be labeled

as on-beta or o�-beta referring to whether they fall within or outside a beta oscillation.

A beta oscillation is defined as periods in which beta amplitude is above 60th percentile

for at least 125 ms (same definition used in chapter 2 when computing percentage of

time point on-beta, e.g. in 2.6J). Bins will also be referred to as slow or fast referring to
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whether the mean hand speed within the bin is below or above 3.5 cm / sec. The ‘slow’

versus ‘fast’ bin distinction was made to separate bins that were before movement onset

from ones after movement onset (approximate movement onset time occurred when hand

velocity crossed 3.5 cm / sec). The point in the trial corresponding the cue for movement

onset is referred to as the go cue in both tasks (corresponding to the end of neurofeedback

epoch in the NR task).

We first assess whether units fire at similar rates during CO task beta oscillations and

NR task beta oscillations. Go cue aligned trials were aggregated for each task with each

trial lasting 2.5 sec (1.5 sec before go cue through 1.0 sec after go cue). Unit activity

was binned into 100 ms bins yielding 25 bins per trial. For every trial, bins that were

labeled as slow and on-beta were selected. The distribution of spike counts for these slow,

on-beta bins from the NR task was compared to the slow, on-beta events from the CO

task. Counts from fast bins were not used in the analysis because there were very few

fast bins that were also on-beta. Example mean firing rates of four consecutive time bins

in a row aligned to onset of on-beta are shown for two example single unit recordings

(unit 101a and unit 1a) from Monkey G in 3.1A where red is the mean firing rate for NR

slow, on-beta bins and blue is the mean firing rate for CO slow, on-beta bins. 3.1B shows

the fraction of units exhibiting significantly di�erent mean firing rates between the slow,

on-beta bins from the two tasks on each day (Mann-Whitney test, p < 0.05, number of

units recorded per day displayed above bar). Each day, 40-60% of units from Monkey G

(15-20% of units from Monkey C, inset) exhibited significantly di�erent firing rates for NR

versus CO slow, on-beta bins. While many individual cells showed changes in mean firing

rate during slow, on-beta bins across the two di�erent tasks, it is possible that units could

still exhibit a consistent spike rate change in response to beta amplitude changes. We used

methods adapted from [98] to fit a continuous beta amplitude-to-spike rate mapping for

the NR and CO task to determine if the units’ beta amplitude-to-spike rate correlations

are consistent across tasks. Briefly, the logarithm of instantaneous beta amplitude was

calculated for the entire 2.5 second epoch and was then correlated against the firing rate

of each cell. Three example units are shown in 3.1C-E where the red and blue traces

are the relationship between cell firing and beta amplitude for the NR task and the CO

tasks respectively. Some units exhibit similar mean firing rates but di�erent beta-to-spike

rate slopes (3.1C), some exhibit di�erent mean firing rates but similar beta-to-spike rate

slopes (3.1D), and some exhibit di�erent mean firing rates and di�erent beta-to-spike

rate slopes (3.1E). To assess whether units exhibit similar beta amplitude-to-spike rate

slope across the tasks, we compared within-task and across-task slope estimates. First,

two non-overlapping subsets of the CO (CO1, CO2) and NR (NR1, NR2) tasks were

used to estimate separate beta amplitude-to-firing rate slopes per unit (CO1, slope, CO2,

slope and NR1, slope, NR2, slope). Note that slightly overlapping CO sets were used

for Monkey C due to limited CO data. Then, the two slope estimates for each task are

correlated to assess within-task slope estimate stability (3.1F: CO1, slope vs. CO2, slope

and 3.1G: NR1, slope, vs. NR2, slope). In 3.1F-G, each plotted marker corresponds

to a unit and its color corresponds to day on which it was recorded (Monkey G: main



45

m
V

Raw LFP
Binary Beta 

a

b
n=130 n=130 n=127 n=1260.3

0.0
C1 C2 C3 C4

FR
 (H

z)

log10(Beta Amplitude)

c

d

log10(Beta Amplitude)

FR
 (H

z)

log10(Beta Amplitude)

FR
 (H

z)

e

G1 G2 G3 G4 G5 G6

Fr
ac

tio
n 

of
 U

ni
ts

f

C.O. Task, Subset 1

C
.O

. T
as

k,
 S

ub
se

t 2

Monkey G: r = 0.89
Monkey C: r = 0.80

g

NR Task, Subset 1

N
R

 T
as

k,
 S

ub
se

t 2

Monkey G: r = 0.94
Monkey C: r = 0.92

h

C.O. Task, Full Set

N
R

 T
as

k,
 F

ul
l S

et

Monkey G: r = 0.55
Monkey C: r = 0.63

unit 13a

unit 101a

unit 26a

unit 25a

unit 1a

CO task
NR task

CO task
NR task

C1
C2
C3
C4

G1
G2
G3
G4
G5
G6

Figure 3.1: (a) Schematic of an LFP trace (in black) with a time period corresponding to

an on-beta time period (in green). During oscillatory events, example mean firing rates

are shown for two example single units from Monkey G (unit 101a, unit 1a) where the red

trace is for on-beta bins during the neurofeedback epoch and the blue trace is for slow,

on-beta bins during the CO task. Graphs are aligned to starting bin of beta event (b)

For each day (main plot Monkey G: days G1 – G6, subplot Monkey C: days C1 – C4), a

bar plot indicates the fraction of units that exhibit significantly di�erent firing patterns

during slow, on-beta time points in the CO and NR task assessed by the Mann-Whitney

U test (p < 0.05). Number of units recorded per day are printed above each bar (c-e)

Example beta amplitude-to-spike rate mappings for single-units from a day. Mappings

in red are from the CO task. Mappings in blue are from the same unit on the same day

during the NR task. (f, g) Stability of beta-to-rate slope estimates from subset #1 versus

subset #2 of CO (f) and NR (g) tasks (Main plot Monkey G, subplot Monkey C). R

values indicate mean correlation coe�cient between slopes computed from subset #1 and

from subset #2 across days (h) Comparison of slopes from subset #2 CO versus subset

#1 NR tasks. R values indicate mean correlation between slopes from subset #2 CO task

versus slopes computed from subset #1 NR task across days.
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plot, Monkey C: inset, note same colormap as 3.1B). The printed correlation coe�cients

are the mean correlation coe�cient across days and describe how well a linear regression

captures the correlation between slope estimates from subset 1 vs. slope estimates from

subset 2. For both tasks, correlation coe�cients exceed 0.8. These high correlation

coe�cients suggest a stable within-task beta-to-rate mapping.Across task slope estimates

are visually compared in Figure 6h (COall data vs NRall data). In contrast to the stable

within-task slope estimates, across task slope estimates are less correlated across units..

To assess whether the within-task and across-tasks slope di�erences are significant, a

paired Student’s t-test is performed to assess the di�erences between within-task and

across-tasks between CO1 vs. CO2 slopes, NF1 vs. NF2 slopes, and CO2-NF1 slopes

where units from each day are treated as independent observations (Monkey G: CO1 vs.

CO2, t = 1.275, p = 0.2032, n = 355 units, NF1 vs. NF2, t = 0.0169, p = 0.9866, n =

355 units, CO2-NF1, t = 2.3403, p = 0.0198, n = 355, Monkey C: CO1 vs. CO2, t =

-1.5075, p = 0.1323, n = 513 units, NF1 vs. NF2, t = -1.309, p = 0.1910, n = 513 units,

CO2-NF1, t = 9.880, p =3.473e-21, n = 513, Combined Across Monkeys: CO1 vs. CO2, t

= 0.6258, p = 0.5316, n = 868 units, NF1 vs. NF2, t = -0.5547, p = 0.5793, n = 868 units,

CO2-NF1„ t = 5.1782, p = 2.786e-07, n = 868 units). The subset comparison of CO2-NF1

was randomly chosen to report -- CO2-NF2, CO1-NF1, and CO1-NF2 also show the same

di�erence in CO vs. NF slopes. Thus, both the mean firing rates of units during slow, on-

beta time points as well as the continuous beta amplitude-to-spike rate mappings across

tasks are di�erent for many units. Given that the behavioral e�ect from neurofeedback

induced beta oscillations matches well with hypotheses claiming a movement-slowing role

of beta oscillations during natural movements [152], it was surprising that individual unit

responses during beta activity were so di�erent across tasks.

3.3.2 Relationship of Population Signals to Beta Band Oscilla-
tions During NR Task and CO Task

While many individual units exhibit di�erent spiking patterns during beta oscillations

in the CO and NR tasks, population-level activity across the two tasks could still exhibit

consistent patterns. Specifically, since increased beta oscillations during the NR task ex-

hibit slower MOT times, beta oscillations may reflect shifting neural population patterns

in a way that a�ects movement onset. To assess the relationship between CO and NR

spike activity patterns with respect to movement onset, we train a classifier on within-day

CO spiking activity to discriminate bins occurring pre and post movement onset (PreMO,

PostMO). We then use the preMO and postMO neural population activity from the same

day’s NR task and assess first whether the same CO-trained classifier successfully dis-

tinguishes PreMO and PostMO in the NR task, and second how the presence of beta

oscillations influences the separation of the two labeled classes. The approach used to

discriminate PreMO and PostMO neural population activity was to train a logistic re-

gression classifier on the first two-thirds of the CO spike counts. CO spiking activity was
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binned in 25 ms, each unit was z-scored according to its mean and standard deviation

during the CO task, and each 25 ms bin was labeled as PreMO or PostMO. A logistic

regression classifier was trained on the binned spike counts with an additional 2 bins of

history (number of spike features per observation equal to 3 x number of neurons, and

each 3-bin set is referred to as a ‘chunk’). The trained classifier yields a probability of

each chunk being PreMO and PostMO:

p(yi = 1) = 1
1 + e(—0 +—1 ◊x

i

)

p(yi = 0) = 1 ≠ p(yi = 1)
where b0 and b1 are the intercept and neural weights found by the logistic regression

classifier respectively. By setting a threshold on these probabilities we can assign predicted

PreMO or PostMO labels. For example, if the threshold is 0.5 and the probability of an

observation being PostMO is greater than 0.5, the chunk would be assigned as PostMO

else it would be assigned as PreMO. Typically in logistic regression, a threshold of 0.5

is used to classify the two classes, where observations with greater than 0.5 would be

assigned the label of ‘1’ and less than 0.5 would be assigned the label of ‘0’. Training with

unbalanced groups can result in other threshold values being optimal which are typically

discovered with an ROC curve analysis (Bradley, 1997). We find optimal thresholds for

maximizing percent correct classification are 0.5 and 0.315 for Monkey G and Monkey C.

These values are the MO thresholds in Figure 7.

We found that actual PreMO and PostMO chunks exhibited significantly di�erent

distances to MO threshold for the held-out 1/3 of data from the CO task (3.2A, Blue: CO

task, paired two-tailed Student’s t-test on mean within-day probabilities for CO PreMO

and PostMO, Monkey G: n = 6, T = -20.899, p = 4.65e-6, Monkey C (inset): n = 4,

T-4.2711, p = 0.0236, Combined Across Monkeys: n = 10, T = -4.1097, p = 0.002638).

Thus, population spike count chunks reliably encode before and after movement onset

in the CO task. Note that Monkey G does exhibit about an order of magnitude more

reliable separation between PreMO and PostMO than Monkey C (y axis in 3.2A), and

this is likely due to the lower neural signal quality in Monkey C (implanted ~3 years

prior to study without resolvable single or multi-units) than Monkey G (implanted only

~1 year prior to study, with resolvable single and multi-units). To assess whether the

same spiking patterns were present during PreMO and PostMO in the NR task, the CO-

trained classifier was used to predict the PreMO and PostMO labels of z-scored spiking

activity chunks from NR trials. Note that in the NR task, chunks are labeled as ‘PreMO’

during the neurofeedback epoch of the NR task and before movement onset during the

reaching epoch of the NR task, and labeled as ‘PostMO’ after movement onset during

the reaching epoch. Given the di�erences in individual unit firing patterns across the CO

and NR task (3.1), it is possible that the neural population activity also varies drastically

across tasks and that the CO-trained classifier may not perform well when given NR

population activity. Instead, we confirm that the same CO-trained classifier does yield

significantly di�erent distances to MO threshold for the NR task (3.2A, Red: NR task,
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Figure 3.2: (a) Distance to MO threshold for the CO (blue) and NR (red) tasks for

PreMO and PostMO time points from Monkey G and Monkey C (inset). Bars less than

and greater than zero indicate mean scores predicting PreMO and PostMO respectively.

(b) Example mean (s.e.m) of distance from MO threshold as a function of time to go cue

for CO trials (black) high beta target NR trials (red), mid-high beta target NR trials

(yellow), mid-low beta target NR trials (blue), and low beta target NR trials (green). At

the go cue, distances to MO threshold are greatest for high beta target, and lowest for

low beta targets. (c) Similar to (b) but aligned to MOT instead of go cue. Trials converge

to MO threshold at MOT. (d-e) The mean distance from MO threshold for slow, preMO,

o�-beta and slow, preMO, on-beta time points during the CO (left) and NR (right) tasks

for Monkey G and Monkey C respectively. Individual lines connect mean o�-beta and

on-beta distances (s.e.m) for individual sessions.
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paired two-tailed Student’s t-test on mean within-day probabilities for CO PreMO and

PostMO chunks, Monkey G: n = 6, T = -7.4593, p = 6.83e-4, Monkey C (inset): n = 4,T

= -13.591, p = 8.62e-4, Combined Across Monkeys: T = -3.6193, p = 5.578e-3, n = 10

). This finding validates that the population reliably encodes gross kinematics similarly

across tasks despite the individual unit activity changes observed in the previous analysis.

Given that the CO-trained movement onset classifier maintains its predictability in the

NR task, we can now ask how the presence of beta oscillations influences the distance to

the MO threshold. It is possible in both the CO task and NR task that the presence of beta

oscillations does not a�ect the distance to MO threshold since it is known that cells more

involved in movement are no more likely to be entrained to beta oscillations than signals

not involved in movement [95]. The classifier thus may have captured reliable movement

signals from units that are not entrained by beta oscillations, making the distance to MO

threshold una�ected by the presence of the oscillations. A second possibility is that the

presence of beta oscillations keeps neural activity further away from the MO threshold

only during CO trials, but not NR trials. Since the classifier weights were trained on

the CO task the classifier weights may reflect beta-related structure in the population

that is useful for predicting CO bins to be PreMO. If the neurofeedback beta-related

structure in the population is di�erent than it is in the CO case, as is suggested on

an individual unit basis by 3.1, then the population spiking patterns occurring during

beta oscillations during the NR task may not exhibit similarly greater distances from

the MO threshold. A final possibility is that despite the di�erences in individual unit

firing patterns during the CO and NR beta oscillations, production of beta oscillations

requires a consistent shift in population activity that is also related to movement onset.

By comparing the signed distance to the MO threshold of each of the beta targets during

NR trials and CO trials during on-beta and o�-beta periods we can begin to discriminate

amongst the three possibilities. 3.2B-C show the mean signed distance to MO threshold

for beta targets and CO trials from one representative day (Monkey G, session 5). In

3.2B, traces are aligned to the go cue, showing that during the neurofeedback epoch prior

to the go cue, the high beta target (red) maintains a much greater distance from the

MO threshold than the low and mid-low beta targets (green and blue). At the time of

the go cue the high beta target is further from the MO threshold than the lower beta

targets, suggesting that subjects must traverse a greater neural distance to arrive at the

MO threshold, which may take longer resulting in a longer MOT. When aligning the

same trials to the MOT, all traces converge around the MO threshold showing that all

NR trials must arrive at the same MO threshold to initiate movement. These examples

suggest that the presence of beta oscillations is an indicator of subjects’ neural population

being far from movement initiation. It is possible, however, that the decoder has identified

discriminative firing patterns that are unrelated to the presence of beta oscillations. Since

subjects are performing a neurofeedback task with di�erent strategies for di�erent beta

targets, the di�erences observed in 3.2B-C could be related to their distinct beta-target

strategy instead of the actual presence of beta oscillations. In 3.2B-C, the green line

corresponding to the lowest beta target is further from the blue line corresponding to the
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Table 3.1: Unit Properties of Chosen vs. Unchosen and Chosen+ vs. Chosen- : All tests

are Kruskal Wallis test for di�erences in median

Chosen Un-

chosen

Classifier

Wt.

Beta-to-

FR

Slope

Mean

Modula-

tion

(Hz)

Mean

Firing

Rate

(Hz)

Beta

Rhyth-

micity

Monkey G N = 104 N = 251 H = 32.42,

p = 1.24e-8

H = 24.78,

p=6.41e-07

H = 0.97,

p=0.324

H = 14.40,

p=1.48e-04

H = 0.229,

p = 0.632

Monkey C N = 171 N = 342 H = 244.2,

p=4.72e-55

H = 145.0,

p = 2.1e-33

H=1.195,

p = 0.274

H = 139.6,

p = 3.3e-32

H = 0.364,

p = 0.546

Combine N = 275 N = 593 H = 213.4,

p = 2.5e-48

H = 132.3,

p=1.30e-30

H = 0.004,

p = 0.947

H = 99.16,

p = 2.3e-23

H = 0.016,

p = 0.897

Chosen + Chosen - Classifier

Wt.

Beta-to-

FR

Slope

Mean

Modula-

tion

(Hz)

Mean

Firing

Rate

(Hz)

Beta

Rhyth-

micity

Monkey G N = 85 N = 19 n/a H = 35.72,

p = 2.27e-9

H = 0.009,

p = 0.92

H = 7.13,

p=0.00756

H = 1.56,

p = 0.2116

Monkey C N = 170 N = 1 n/a H = 2.50,

p = 0.114

H = 0.673,

p = 0.412

H = 2.965,

p = 0.0851

H = 0.059,

p = 0.8079

Combine N = 255 N = 20 n/a H = 39.30,

p = 3.6e-10

H = 1.164,

p = 0.281

H = 3.702,

p = 0.054

H = 1.765,

p = 0.184

mid-low beta target, showing that the presence of more beta oscillations in the mid-low

beta target is not the only factor in determining distance from the MO threshold. To

directly test if the presence of beta oscillations a�ects distance to the MO threshold, we

collapse all NR data across beta targets, isolate slow chunks that occur prior to actual

movement onset, and compare distance to MO threshold for on-beta and o�-beta bins

in both the CO and NR task. 3.2D-E show mean on-beta and o�-beta distances to MO

threshold for individual days in the CO (left) and NR (right) tasks. In all cases but one,

o�-beta slow chunks exhibit significantly closer distances to MO threshold than on-beta

slow chunks (paired Students’ t-test of within-day means 3.2D: Monkey G: CO o�-beta vs.

on-beta, n = 6, T = 6.7423, p = 0.001089, , NR o�-beta vs. on-beta, n = 6, T = 2.6073,

p = 0.0478, 3.2E: Monkey C: CO o�-beta vs. on-beta, n = 4, T = 1.3245, p = 0.2772

NR o�-beta vs. on-beta n = 4, T = 4.7632, p = 0.0176, Combined Across Monkeys:

CO o�-beta vs. on-beta, n = 10, T = 4.2458, p = .00216, NF o�-beta vs. on-beta,

n = 10, T = 3.1851, p = 0.0111). The CO and NR tasks exhibit common population

level activity changes reflected by the onset of beta oscillations, and specifically, these

population changes encode a shift further away from the MO threshold.

To determine which types of units contributed most to the success of the logistic

classifier, we selected units that fulfilled two criteria. First, a logistic classifier trained
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Monkey G Monkey C

Chosen - Unchosen Chosen - Unchosen Chosen - Unchosen

Chosen - Unchosen Chosen - Unchosen

Chosen (+) - Chosen (-)

+ -

*** ***

*** ***

n.s.

n.s.

***

***

n.s. n.s.

Monkey G Monkey C Monkey G Monkey C

*** n.s.
n.s. n.s.

n.s.

**
n.s.n.s.

Chosen (+) - Chosen (-) Chosen (+) - Chosen (-)

Chosen (+) - Chosen (-) Chosen (+) - Chosen (-)

a b c

d e

Figure 3.3: Top shows di�erences between classifier weight b1 for chosen and unchosen

units (top) and chosen+ and chosen- units (bottom) for Monkey G (left) and Monkey C

(right). Same layout for (b) beta-to-FR slope (as in 3.1f-h), (c) CO task modulation, (d)

mean firing rate, and (e) beta rhythmicity. Di�erences are assessed with Kruskal Wallis

test and reported along with sample sizes in 3.1. * p < 0.05, ** p < 0.01, *** p < 0.001.



52

only on chunks from the individual unit in 2/3 of the CO task had to predict significantly

lower scores for PreMO than PostMO in held-out data in the CO and NF tasks. The

second criterion was that units exhibit lower predicted scores for ‘on-beta’, slow chunks

than ‘o�-beta’, slow chunks in both tasks. The units that fulfilled both criteria were

referred to as ‘chosen’ units, and were compared to all other ‘unchosen’ units (units

collapsed across days -- Monkey G: 104 chosen units, 251 unchosen units, Monkey C:

171 chosen units, 342 unchosen units). We analyzed the di�erences between chosen and

unchosen weights using five di�erent metrics—classifier weight, beta-to-firing rate slope

during CO task, mean modulation during the CO task, mean firing rate during the CO

task, and beta rhythmicity during the CO task (3.3, table 3.1). We found the weights of

chosen units exhibited significantly higher and more positive weights than unchosen units,

indicating that most chosen units increased their firing rate during PostMO compared to

PreMO. Chosen units also tended to have higher firing rates. Further, chosen units show

significantly lower beta-amplitude-to-firing-rate slopes during the CO task than unchosen

units, consistent with the finding that firing rates increase during movement concomitantly

with beta amplitude decreases. Chosen units and unchosen units showed no di�erence

in their mean task modulation, and no di�erence in their beta rhythmicity (3.3, table

3.1). Lastly, to assess any di�erence between the chosen units with a positive b1 classifier

weight and the chosen units with negative b1 classifier weight, the same analyses were

performed between these groups (termed ‘Chosen +’ units and ‘Chosen –‘ units, Monkey

G: 85 Chosen+ units, 19 Chosen – units, Monkey C: 170 Chosen + units, 1 Chosen – unit).

The Chosen+ units and Chosen- units respectively increase and decrease firing rate during

movement. Thus, we also find that the Chosen+ group exhibits significantly lower beta-to

firing rate slopes. The groups do not show any di�erence in mean task modulation. The

positive units exhibit significantly higher firing rate. Finally, the negatively modulated

units have a non-significantly higher ‘beta rhythmicity’ than the positive units. Overall,

units that contribute most to the classification of PreMO versus PostMO tend to be high

firing units that are positively modulated with movement onset, yet are no more task

modulated. Within this group are a few units that instead fire less with movement that

are generally lower firing rate and possibly more entrained to ongoing beta oscillations

in the local field potential. These Chosen- units are possibly a distinct subpopulation of

single and multi-units that may act as pacemaker cells for the population [121], though

more data and a more careful characterization of firing properties, ISIs, and waveform

would be needed to make this claim.

3.4 Conclusion
In chapter 2 we presented evidence that volitionally increasing and decreasing beta

power in the motor system with neurofeedback achieves neural states that precede slower

and faster movement onset times respectively in three monkeys. These results support the

hypothesis that beta oscillations in the motor system reflect neural patterns that are far
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from a movement onset neural state. Importantly, we use simultaneously recorded single

and multi-unit activity during the NR and CO tasks to characterize how the presence of

beta oscillations reflects changes in underlying neural population activity that ultimately

drives the behavioral changes observed. During the neurofeedback epoch of the NR task,

population neural activity exhibits greater distances from the computed MO threshold in

the presence of beta oscillations, and shorter distances when there are no oscillations. We

emphasize that this result is not merely driven by the observation that there are often more

beta oscillations at rest than during movement. Rather, when subjects are performing

neurofeedback and they are at rest, their underlying neural population is shifting further

away from the MO threshold when beta oscillations are observed. We discuss mechanisms

that generate beta oscillation in the conclusion of chapter 2 which can shed light on how

certain types of behavior such as attention or isometric contraction may be correlated

with onset of beta oscillations. However, they do not inform how the dynamics of the

underlying neural population generate the movement change.

We find here that populations of neurons generate beta oscillations, their patterns

are further from movement onset threshold than when they do not generate oscillations.

In both the CO and NR tasks, on-beta PreMO bins exhibit further distances from the

MO threshold than o�-beta PreMO bins 3.2 emphasizing the common population shift

that occurs in the CO and NR tasks during beta oscillatory periods. We propose that

neural populations must stop generating beta oscillations before they can instantiate spe-

cific preparatory and movement generating patterns that may occur closer to the MO

threshold. Thus, the generation of beta oscillations favors a low-risk state where neural

populations will not accidentally create patterns that cause movement, and in exchange

compromise their readiness for upcoming movements. Generation of these oscillations

may possibly be implemented by a distinct subpopulation of ‘pacemaker’ cells, as dis-

cussed in 3.3, though data with more clearly isolatable single units is needed to describe

how distinct subpopulations may each contribute to the pacing of beta oscillations versus

the encoding of kinematic information. The hypothesis that encoding of specific move-

ments is compromised with beta oscillations is further supported by experiments showing

that in a delayed reaching task similar to the CO task here, movement cues associated

with more uncertainty are correlated with higher beta power during preparatory periods

than movement cues associated with certainty [173]. Uncertain stimuli bias the subject

against preparing movements, corroborating that periods of beta oscillations are associ-

ated with compromised preparation. Further, during spike driven cursor brain-machine

interface tasks when subjects are not moving, periods of beta oscillatory activity corre-

spond to inferior neural decoding [93] and slower cursor movements [94], suggesting that

the population contains less specific directional information that can be used to move the

prosthetic cursor. How does this hypothesis of reduced movement encoding mesh with

results showing linearly separable neural activity patterns for di�erent movements occur-

ring during preparatory periods when beta oscillations are prominent [174]? Since beta

oscillations occur in transient bursts and only show elevated power for trial averages [175],

it is possible that movement encoding during bursts is compromised, but outside of bursts
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is intact. Further, not all cells engage in beta oscillatory events [95] making it possible

that some cells are still encoding movement information during ongoing oscillations [97].
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Chapter 4

Neurofeedback Control in
Parkinsonian Patients
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4.1 Introduction
4.1.1 Beta Band Oscillations in Parkinsonian Patients

In addition to neurofeedback being a useful scientific tool for perturbing neural signals

of interest as demonstrated in chapter 2 and 3, neurofeedback has also been used as a ther-

apy for various neurological disorders including attention deficit disorder [66], chronic pain

[67], and even epileptic seizure frequency [176]. Below we first consider whether neuro-

feedback control can be performed in Parkinsonian patients, and second whether repeated

practice of a neurofeedback-behavioral task can reveal how cortical beta oscillations are

related to motor behaviors in Parkinsonian patients.

Parkinson’s disease is characterized by a denervation of dopaminergic inputs to the

basal ganglia, resulting in a variety of motor and cognitive deficits including tremor,

bradykinesia, rigidity, and disorders of executive function, impulse control, and mood.

Two common therapies for Parkinson’s disease are pharmacological (dopamine replace-

ment therapy) and surgical (deep brain stimulation). Pharmacological treatment is ini-

tially an e�ective therapy, but eventually the required dose for e�cacy becomes too high.

Deep brain stimulation is an e�ective therapy for patients responsive to dopamine re-

placement therapy, though its mechanism of action is not clear. One consistent finding

in Parkinsonian patients is that they exhibit increased beta oscillatory power in the basal

ganglia when they are not receiving deep brain stimulation therapy or dopamine replace-

ment therapy, compared to when they are on these therapies [177]. The mechanisms

through which dopamine administration or deep brain stimulation ameliorates patient

symptoms and reduces beta oscillations remains to be determined.

Primary motor cortex, a primary source of input to the motor basal ganglia does

not exhibit the same increase in beta power when patients are o� therapy [86], nor does

it exhibit a di�erence between PD and non-PD patients [85, 163]. However, individual

motor cortical neuron recordings from parkinsonian non-human primates and electro-

corticography recordings in parkinsonian humans support the hypothesis that excessive

beta oscillations in the LFP of the basal ganglia may be reflected in hyper synchronized

spiking activity or high-frequency LFP activity of motor cortical signals. This hyper syn-

chronization may prevent successful encoding of kinematic information during movement.

Specifically, simultaneously recorded activity from many motor cortical cells was found to

be more correlated in motor disabled non-human primates after systemic treatment with

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, a drug causing Parkinson’s disease)

than before treatment [178, 179]. Cells also fire less specifically to passive limb movements

after MPTP treatment [178] suggesting a link between parkinsonian symptoms and highly

synchronous, uninformative spiking activity. It has also been found that coupling between

low frequency beta phase and high frequency broadband gamma power is elevated in PD

patients who had their deep brain stimulation therapy turned o� [86] or were in an o�

state following an extended period of no levodopa medication [87]. Both stimulation and

levodopa administration therapies improve symptoms of bradykinesia and rigidity for PD
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patients, suggesting that synchronization of high gamma LFP activity, a proxy for spiking

activity, to beta frequencies may be related to akinesia symptoms. This evidence supports

the hypothesis that beta oscillations reflects reduced capability of kinematic encoding in

motor cortical population activity, and that in Parkinsonian patients, reducing excessive

beta activity in the basal ganglia, or reducing synchronization of spiking activity to beta

frequencies in motor cortex may be therapeutic. One possible strategy for overcoming

excessive beta synchronization in the basal ganglia and motor system may be to learn

to reduce motor cortical beta power, which may serve to reduce the beta-synchronized

spiking activity. Since cortex constitutes the majority of input to the basal ganglia, this

manipulation may also reduce excessive beta activity in the basal ganglia. Recent work

has found that PD patients do exhibit stronger sensorimotor cortical beta desynchroniza-

tions in early movement preparation compared to Essential Tremor (ET) patients [163],

suggesting some patients may already use this cortical beta desynchronization strategy.

Finally, the technical reason to test the cortical beta desynchronization approach instead

of directly reducing basal ganglia beta power is that cortical neural signals are much

greater in amplitude, and less likely to be a�ected by stimulation artifacts than basal

ganglia signals [180].

4.2 Methods
4.2.1 Activa PC + S Use

Neurofeedback studies to date either utilize invasive or non- invasive neural recordings.

Studies making use of invasive recording systems often require subjects to be in a hospital

setting (e.g. [181]) and have not been developed for patients to use while going about

their normal daily activities. On the other hand, acquiring non-invasive signals is more

convenient but the signal itself su�ers from reduced spatial resolution and attenuated high

frequency activity. Further, non-invasive systems are sensitive to ambient electronic noise

as well as biological artifacts from muscle and eye movements. An ideal neurofeedback

system would combine the high signal quality of invasive studies with the convenience of a

non-invasive setup. In addition, it would support real-time data streaming and not exert

excessive power demands on the device.

The Medtronic Activa PC + S neurostimulator coupled with the Medtronic Nexus-

D communication link system enables such capabilities [182, 183, 184]. This device is

an investigational pulse generator capable of delivering continuous constant frequency

electrical stimulation, similar to commercially available pulse generators used in DBS for

movement disorders such as PD, dystonia, and essential tremor. In addition to delivering

therapeutic subcortical stimulation, bipolar ECoG neural signals can also be recorded.

Recently, recording invasive cortical ECoG signals chronically has been demonstrated in

a nonhuman primate by implanting a quadripolar lead over sensorimotor cortical regions

and routing leads (with lead extensions) into the neurostimulator [185]. Coupled with
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Table 4.1: Neurofeedback task parameters for three study subjects

Patient
#

Months
Post-

Surgery

Home or
Clinic

Stim On
or O�

Streamed
Data

Beta
Band
(Hz)

Power
Est.

Method

Cursor
Predict

Alg.
1 13.5 Clinic O� Time

Domain
10-20 Multi-

Taper
Linear
Reg.

2 11 Home On Power
Estimate

12.5-
17.5

On Chip Linear
Reg.

3 18 Clinic On Time
Domain

20-30 Welch Kalman
Filter

the Nexus-D communication link, the system allows for real- time, wireless transfer of

ECoG signals. Here, we leverage the fully embedded, wireless streaming capabilities of

the device to investigate whether PD patients can learn to perform a neurofeedback task

driven by invasively recorded cortical signals.

4.2.2 Activa PC + S Configuration
We first sought out to determine if 3 PD patients could perform neurofeedback control

with the Activa PC + S device. This protocol was approved by the UCSF institutional

review board (protocol # 13-10878) under a physician sponsored investigational device

exemption (IDE #G120283 to Dr. Phil Starr). The study was registered at Clinical

Trials.gov (NCT01934296). Informed consent was obtained under the Declaration of the

Principles of Helsinki.

Study subjects were evaluated by a movement disorders neurologist and met criteria

for a diagnosis of PD (i.e. presence of bradykinesia and at least one other parkinsonian

cardinal symptom and responsiveness to levodopa). Baseline motor function in the on

medication and o� medication states were characterized using the Unified Parkinson’s

Disease Rating Scale, motor subscale (UPDRS III). Patients were evaluated by a neu-

ropsychologist to exclude significant cognitive impairment or untreated mood disorder.

In all three patients, the 4-contact cortical ECoG lead (Medtronic model 3587a) was

placed in the subdural space through the same burr hole used for the therapeutic subtha-

lamic nucleus (STN) lead. The STN lead was placed with standard methods [186]. At

least one contact covered the posterior precentral gyrus (presumed primary motor cor-

tex). Localization of the ECoG strip was confirmed using intraoperative CT merged to

the patients preoperative MRI, as previously described [187]. Then, the free ends of the

cortical and subthalamic leads were each connected to 40 cm lead extender (Medtronic

model 37087) and tunneled down the neck to a Medtronic Activa PC+S bidirectional

neural interface placed in a pocket over the pectoralis muscle. Sessions occurred at 13.5,

11, and 18 months post-surgery for patients 1-3 respectively (see table 4.1).

The Activa PC + S accommodates di�erent sampling rates, channel streaming con-
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figurations, and filtering options. The sampling rate utilized in this study was 422 Hz

(maximum sampling rate supported when device is streaming data). At this sampling

rate, the device can stream one channel of time-domain data per lead (packets of 169

points sent every 400 ms). It can also stream pre-calculated power in a frequency band

(2 points sampled at 5 Hz, sent every 400 ms). The benefit of the on-chip power calcula-

tion option is that it substantially reduces the power consumption of the neurostimulator

device. In contrast to streaming time-domain data which consumes 2.5 mA, streaming

power channels consumes only 90 uA (both estimates do not include additional drain

of 220 uA required for stimulation) [188]. In order to validate that our experimental

paradigm would function in a setting where we used the lower-power on-chip spectral

power estimate, we chose to use the on-chip power estimate of beta power for Patient

2’s online control instead of using beta power calculated from the streamed time-domain

channel. Prior work has shown that with stimulation on in the Activa PC+S device,

artifacts can be introduced into time domain data and power estimate data at multiple

frequencies, corrupting the underlying neural signal [188]. In order to avoid Patient 2’s

stimulation artifact from compromising beta band recordings, we selected a bandwidth of

15 +/- 2.5 Hz (recommended for a stimulation frequency of 130 Hz) instead of optimizing

the beta band frequency limits with the baseline calibration task (as was done for Patients

1, 3). The Activa PC + S is also outfitted with a number of filter and gain options. Our

real-time streamed data was filtered through a low-pass anti-aliasing filter at 260 Hz and

a 0.5 Hz high pass filter. We used the maximum gain (2000) that the device allowed. The

Activa PC+S also requires a data compression feature to be used when streaming data

in real- time with Nexus-D.

4.2.3 Neurofeedback Task Calibration
All neural recordings were bipolar. Contact selection occurred prior to the training

session using both recorded neural data from previous neural recordings sessions and

anatomical location. Contacts that were over sensorimotor areas and exhibited a strong

beta desynchronization during overt movement tasks were selected. For Patients 1 and

3, to estimate the beta band limits to be used for online control, patients performed a

1-2 minute movement task involving elbow flexion and extension in response to quasi-

random auditory cues. These tasks elicit strong beta synchronizations in anticipation

of the movement cue and after movement, and desynchronizations at movement onset

[189]. Using the neural recording during this movement task, the power spectral density

was estimated (see below) in windows of 400 ms at steps of 400 ms (no overlap). The

variance of the spectrum at each frequency was plotted. The frequency band in the beta

region (10-40 Hz) that yielded the local maxima on the frequency versus variance plot

was selected.

For patient 1, the multi-taper method (using 5 tapers) was used to estimate the base-

line spectrum as well as beta power online [143]. In patient 2, however, STN stimulation

was on which resulted in a noisier signal. Due to artifacts from stimulation and the
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Figure 4.1: Patient power spectral densities during online neurofeedback control. Despite

stimulation on in Patients 2 and 3 (130 Hz, 160 Hz respectively), beta peaks are still

resolvable. Colored horizontal lines denoted by black arrow show the beta frequency

range used for online control for each patient (Patient 1: 10-20 Hz, Patient 2: 12.5-17.5

Hz, Patient 3: 20-30 Hz). Note that the beta band used for neurofeedback control in

Patient 2 was specially configured for streaming power estimates (instead of time domain

data), and does not match the actual beta peak.
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Volitional Control of Neural
Activity with Visual Feedback
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Link

Custom BMI Game
Score: 14

High Targ.
 

Mid-High Targ.
 

Mid-Low Targ.
 

Low Targ

Score: 14

Score: 14

Score: 15

Score: 15

Target #2 Trial Time: 
15-60 sec

Inter-Trial 
Interval: 
1.6 sec

Cursor in 
Target

Score

Target #4

Hold Time: 
400 ms

a b

Figure 4.2: (A) Patients implanted with the Activa PC + S and cortical leads have the

implantable pulse generator (IPG) located over the pectoralis muscle. A telemetry module

has an antenna that sits on the skin surface in close proximity to the IPG and wirelessly

acquires neural data and transmits the data to a Windows 7 machine via serial port. The

Medtronic Nexus-D application program interface provides functions called from Matlab

2014b to acquire data from the serial port. Neural data is then translated into cursor

position. (B) Task timeline begins with a target appearing. The patient then must make

the cursor enter the target and hold (in all sessions reported, hold <400 ms making the

hold time e�ectively 0 ms) after which the target turns yellow and the score count is

incremented. An inter-trial interval of 1.6 seconds follows before the next trial begins.

processor clock (at multiple frequencies, see [188]), the smoothing from the multi-taper

method spread artifacts to other frequency band estimates, yielding a noisy estimate of

the spectrum. To mitigate this issue in future patients, estimates of beta power using the

time domain signal used a method without smoothing (Welch’s method with a Hamming

window, pwelch in Matlab).

To fit the mapping between beta power estimates and cursor position, either simple

linear regression (Patients 1, 2) or a Kalman filter (Patient 3) was used. To fit the simple

linear regression model, a distribution of baseline beta power estimates from a 1-2 minute

movement task was first acquired. The slope and o�set of the linear regression were fit

using two points ((x1 , y1 ) and (x2 , y2 )) where the 25th and 50th percentiles of the

beta power distribution from the movement task were x1 and x2 and the cursor positions

at the bottom of the screen and middle of the screen were y1 and y2. For Patient 3, the

Kalman filter utilized had constant A, W, C, and Q matrices, and the state-space model

and observation model were formulated typically:

yt+1 = Ayt + wt, wt ≥ N(0, W )

—t = Cyt + qt, qt ≥ N(0, Q)
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Here, yt represents cursor position, and —t represents beta power estimate. C was fit by

estimating the target position from the baseline movement task where it was assumed

that at all times when beta power was in the 0-25th percentile of the overall baseline

beta power distribution, the ’intended’ cursor position was the position of the low beta

target. Similarly, beta power in the 25th-50th percentile, 50th-75th percentile, and 75th-

100th percentile were assumed to be aiming at the mid-low, mid-high, and high target

respectively. Then beta power (—t) was regressed against these inferred target positions

(yt). Q was calculated as the covariance of (—t≠Cyt). A was calculated by adding minimal

Gaussian noise to the inferred target position and calculating the correlation between time

t and t≠1. W was calculated as the covariance of (yt+1≠Ayt). Matrices remained constant

throughout the task, and the standard time-update and measurement-update steps were

utilized to estimate cursor position from neural input and previous cursor state [190].

Once a mapping was set, patients began to play the neurofeedback game (4.2b). The

task includes 4 targets each centered at -6, -2, 2, and 6 on a y axis that extends from

-10 to 10 (arbitrary units). Targets had a radius of 2 (1.75 in early training for Patient

1 only) and the cursor was a point that was represented by Mario, a popular video game

character. The cued target for that particular trial was indicated by the target turning

green. Once subjects got their cursor (Mario) in the target, an auditory cue sounded,

and the target turned yellow to indicate success. The score counter on the task interface

incremented. Finally, an inter- trial interval time of 1.6 seconds elapsed before the next

target was cued (turned green). The GUI and custom code for interfacing with the Activa

PC + S using Nexus D and the Medtronic provided Matlab API functions is available on

http://github.com/pkhanna104/nexusbmi

In order to help patients reach targets in early training an assistive feature was used

to bring the cursor closer to the final target position that was currently trying to be

acquired. The assist was an additive o�set to the decoded cursor position:

cursorpos = (1 ≠ –)cursorposdecoder + –finalpos

where a is a value between 0 (no assist) and 1 (full assist) that corresponds to how

much the assistive feature determines the position of cursor. a parameters used for each

patient). Patients provided verbal input during breaks in between blocks indicating what

value of a they wanted for the next block.

4.3 Results: Evidence of Neurofeedback Control
Three patients completed the cortical beta power driven neurofeedback task (4.2).

Two patients visited the UCSF Movement Disorders and Neuromodulation Center, and

one patient completed the task at home. All patients had one Activa PC + S device that

supports two quadripolar leads. The lead for DBS therapy was placed in the subthalamic

nucleus, while the lead for recording covered sensorimotor cortex. Patients with bilateral

therapy also had a separate Activa SC unit (for clinical therapy only). Depending on
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Figure 4.3: Assist parameter (a) used over the course of training for Patients 1-3. Training

blocks are concatenated together for visualization, even if time elapsed between blocks.

All patients either reduce their reliance on the assist, or maintain a constant assist level

throughout the course of training.

severity of patient condition, patients were tested either on or o� stimulation for the

entirety of the neurofeedback training session (table 4.1). Because ECoG contact locations

and the limits of the beta frequency band vary slightly by subject, contact selection and

band limits were defined through an initial calibration procedure at the beginning of each

patients training session. After contact selection and beta band frequency limits were

selected, a linear mapping between beta band power and the one-dimensional height of a

cursor was fit. The mapping was fit such that mean beta power during the baseline task

positioned the cursor in the middle of the 1D axis of cursor movement, and beta power

above and below baseline levels moved the cursor higher and lower respectively. This

position-based mapping is in contrast to many velocity-driven neurofeedback systems.

Patients then proceeded to play a neurofeedback game where they controlled a cursor

shaped like Mario, a video game character from the Nintendo Mario franchise. The

Mario cursor could move in one dimension and was controlled by patients changing their

endogenous sensorimotor beta power. On each trial one of the four targets that were

uniformly spaced along the 1D workspace was illuminated. Patients goal was to move

the cursor to a position within the illuminated target before the trial timed out (4.2B).

Patients completed 5-10 blocks of 5-15 minutes each where they practiced moving the

cursor into targets. In early blocks, an assistive feature that moved their cursor closer to

the desired target was utilized to make the task easier for patients. As training progressed,

the assist was either maintained or reduced (4.3). Patients completed 1-2 hours of training

each. During online control Patients 1 and 3 exhibited beta power peaks that were similar

to their baseline recording peak (4.1) illustrated by the match between the beta peak in the
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Table 4.2: Mean time to target (s.d.) in late training (secs)

Patient # Low Mid-Low Mid-High High

1 5.6 (4.9) 0.5 (0.3) 4.0 (4.6) 29.3 (32.5)
2 20.4 (29.6) 1.7 (0.9) 1.6 (0.6) 15.5 (15.3)
3 n/a 6.2 (12.6) 1.3 (0.3) 1.5 (0.2)

power spectral density plot calculated from online control sessions and the horizontal line

representing the beta band used for online control (calculated from baseline recordings).

Patient 2’s baseline beta peak was not used to fit the beta band limits used for online

control, which is why the peak in the PSD from online control appears mismatched to the

horizontal line illustrating the beta band used for neurofeedback.

When examining the average time to target, there was a natural division where trials

to one or two of the four targets were acquired on average in <2 sec and trials to the other

of the four targets were acquired on average in >4 seconds (see table 4.2). It is possible

that the trials to targets that were acquired on average in <2 sec were just acquired due to

the natural variation of the cursor, in contrast to the patient trying to get the cursor in the

target. To determine whether these two groups of times-to-target were better described

by a single Gaussian or a mixture of two Gaussians we fit a Gaussian mixture model

to the time-to-target data, and compared the one-Gaussian model to the two-Gaussian

model. Specifically, first, all time-to-target data across 3 subjects from their late learning

sessions was pooled. The mean and standard deviation was estimated for the pooled data,

and the resultant Gaussian probability distribution function was used to calculate the log-

likelihood of the data. Then, a second model was fit that used one Gaussian for the quickly

acquired targets, and a second Gaussian for the more slowly acquired targets (see table

4.2for target designation for each patient) and log-likelihood of the data was estimated for

the second model. Finally, Akaike information criterion (AIC) and Bayesian information

criterion (BIC) were calculated to compare the models account for the greater number

of parameters in the second model. We found that times-to-target were better explained

by two Gaussians (AIC, BIC of one Gaussian: 947.13 and 948.01, and of two Gaussians:

547.06, 548.82). In addition, patients reported that they did not need to control the

cursor in order to acquire these easier targets. Because of our analysis showing that these

times-to-target are better described by two Gaussians and because patients reported a

lack of voluntary control to certain targets, we proceeded to only include the targets with

mean acquisition times of >4 sec in the subsequent chance analyses (table 4.2 bolded

targets are used for each patient). In order to assess whether task performance was above

chance level, the cursor trajectory from late training blocks with constant assist level was

replayed through a target- shu�ed version of the task 1000 times. We re-simulated the

patient cursor trajectory from late sessions through many task simulations with shu�ed

target orders. Included in the task simulation is the target and cursor size, hold time,

timeout times, and inter-trial intervals. In 4.4, we only report counts for those of the

four targets that took longer than an average of 2 seconds for patients to acquire. For



65

example, if the mid-low and mid-high were deemed to be spuriously acquired by the

previous analysis, and a patient has a final target count of 30 in a particular block, but

15/30 of the simulated targets were trials to the spuriously acquired targets, we would

only count the other 15 targets in their final count for that block. Then, if a simulation

of the block was performed with target shu�ing and the simulation scored 40 targets but

30/40 of the targets are trials to the mid- low and mid-high targets, we would only count

the 10 trials to other targets. Thus, the final count for the actual performance would

be 15 and the simulated performance would be 10, in contrast to the original 30 to 40

comparison.

The actual number of successes by each patient was compared to the distribution of

successes in simulated performance for targets deemed to be acquired by voluntary control

(4.4A-C).

Subject performance significantly exceeded the distribution of chance performance

(4.4A-C, Patient 1: p <0.05, Patient 2: p <0.01, Patient 3: p <0.001, one-tailed test,

Bootstrapped distribution).

Through the course of training, subjects had access to an assistive feature that they

could use at a level varying between 0 (no assist) to 1 (full assist). Subjects’ beta cursor

was determined by a linear summation of the cursor position estimated by their neural

activity weighted by 1- a, and the desired target position weighted by a. The assist fea-

tures thus served to nudge the cursor closer to the cued target. Patients provided verbal

input in between blocks indicating what value of a they wanted for the next block. All

patients exhibited a trend of reducing or maintaining a constant assist level over blocks

indicating that patients felt they were either improving or doing the task proficiently over

the course of the session (4.3). In addition to the reduced reliance on the assist feature, we

also analyzed improvement in time to target for late training blocks where patients had

a constant assist level. Patient 3 improved significantly in time to target for the mid-low

target which was the lowest target achieved by this patient (4.4F). Other patients exhib-

ited non-significant reduction in time to target over the course of late training evidenced

by linear regression slopes less than zero (4.4D-E). These improvements are promising but

not significant, likely because subjects did too few trials with assist at a constant level.

Interestingly, Patient 1 and 3 exhibited few overt movements during their training

sessions, but Patient 2 explored the movement space and converged on a movement strat-

egy (raising his right hand and holding it up) to make their beta power increase. It is

possible that he was activating the beta rebound generated post-movement, or persistent

beta activity produced during posture maintenance [108]. Discovery of this strategy may

have contributed to Patient 2’s reduction in time to the highest target whereas Patient 1

and 3 exhibited improvements with mental strategies.

As subjects relied less on the assist, they learned to generate distinct target-specific

neural patterns. We analyzed the beta band input signal preceding successful target ac-

quisition for each patient from early in the session and late in the session (early: 4.5A-C,

late: 4.5D-F). Early in the session patients relied more heavily on the assist feature to

move the cursor close to the target, and thus only needed to change their endogenous beta
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Figure 4.4: Patients perform the neurofeedback task above chance levels. (A- C) Patient

chance level is illustrated by the blue cumulative distribution (see Experimental Proce-

dures for calculation method). The x-axis is total rewards from simulated performance

and the y-axis is a cumulative normalized count of how many simulations yield that num-

ber of rewards. Actual patient performance (total rewards) is shown with the vertical

orange line. P-values are printed and are the percent of chance level simulations greater

than actual performance (one-tailed test). Only data from late learning (constant assist)

and from targets with mean time to target greater than four seconds are included in the

chance level performance calculation (targets included are denoted in title, see Experi-

mental Procedures). (D-F) For each patient, the time to target is plotted versus session

time for the target with most improvement (restricted to late session data). Note that

for patient 3, the negative slope indicative of reduced time to reach target is significantly

di�erent than zero (Students t-test, p <0.05).
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Figure 4.5: Neural changes emerge with training. (A-F) Trial averaged beta power es-

timates used to drive the cursor are plotted for each patient two seconds before target

acquisition to time of targets acquisition (0 sec on x axis). Di�erent colored traces are for

the di�erent targets as indicated by the target color key in (A) and (D). (A-C) show Pa-

tient 1-3 neural activity for early in the session (high assist levels). (D-F) show Patient 1-3

neural activity for late in the session (lower constant assist level, same data as Fig 3.). As-

terisks indicate significant group di�erences (Kruskal-Wallis test, * p <0.05, ** p <0.01,

*** p <0.001). (G-I) Modulation of full spectrum during neurofeedback task. Traces

show trial-averaged z-scored power spectral densities (z-scored by subtracting mean and

dividing by standard deviation of aggregated data from late training session) calculated

in the 800 ms before target acquisition. Red traces are for the high beta target, teal traces

are for the lowest beta target (G, H), and blue trace is for the mid-low beta target (I).

Shaded gray indicates significant di�erence between the top and bottom target plotted

for each subject (Kruskal-Wallis two-tailed test, p <0.05).
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power by a small amount to acquire the target. Thus, the distribution of the beta power

produced for each target was not very di�erent. By late in the session though (4.5D-

F) subjects learned to generate beta band power at distinct levels: they produced their

highest beta power for the highest target, and lowest beta power for the lowest target.

Further, late in the session, this target-based separation of beta band power occurs for

longer periods of time prior to patients entering the target. Patients 2 and 3 exhibited a

significant di�erence in beta band power at 0.4 seconds (and 0.8 seconds for Patient 2)

before their cursor entered the target, compared to early learning where there was no dif-

ference (Patient 2: p <0.05 at 0.8 seconds before target acquisition, p <0.01 at 0.4 seconds

before target acquisition, Patient 3: p <0.01 at 0.4 seconds before target acquisition, in

contrast to no significant di�erences at these time points in early session data). Overall,

patients learned to generate sensorimotor cortical signals containing di�erent amounts of

beta power to move the cursor to each of the four targets.

Finally, we investigated how other frequencies co-modulated during the beta power

task for the top most and bottom most targets (4.5G-I). We calculated the full power

spectrum for trials to the highest target (in red) and trials to the lowest target achieved

(lowest beta target in teal for Patients 1, 2 and mid- low target in blue for Patient 3) for

late session performance. The spectrum was calculated from the 800 ms prior to the time

of target acquisition. Grey rectangles represent significant di�erences between the power

spectrum of the highest target achieved and lowest target achieved (Kruskal-Wallis test,

two- tailed, p <0.05). Patient 1 significantly modulated a large range of frequency values

to move the cursor including 6.6 Hz-26.4 Hz, as well as 38.2 Hz and 52.8 Hz though their

control band was only 10-20 Hz. Patient 2 also learned a strategy for modulation covering

the large range of 6.6 Hz-16.5 Hz, and 17.5 Hz- 36.2 Hz although their control band was

only 12.5-17.5 Hz. In contrast, Patient 3 modulated only 13.3 Hz-33.0 Hz and their control

band was 20-30 Hz. For all three patients, higher frequencies (<55 Hz) were not utilized,

nor were the lowest frequencies (0.5-5 Hz). Thus patients do not exactly converge on their

input beta signal, but they also do not utilize the full spectrum to modulate beta.

4.4 Conclusions
Here we have shown for the first time to our knowledge use of a chronic, fully embedded

implantable device for neurofeedback training in human patients. While neurofeedback

paradigms using mesoscale and macroscale neural activity have been demonstrated in

humans before, these studies were done with to either one-time invasive recordings with

epilepsy patients who were undergoing monitoring for seizures [181], paralyzed patients

[46], or chronically but in non-human primates [143, 191, 142]. This paradigm demon-

strates the feasibility of chronic neurofeedback training in patients at their homes with

an invasive, fully embedded neural recording system accessible without the need to visit a

hospital or clinic. This study is a proof of principle for future work on the e�ects of chronic

neurofeedback training utilizing similar implanted devices for access to invasive cortical
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signals. Implantable neural devices with better power consumption, artifact rejection,

streaming latency, and signal-to-noise ratio (SNR) are in development [192]. All these

improvements will further enhance neurofeedback learning by reducing concerns about

battery consumption, increasing feedback rate and responsiveness of the system to the

patient, and improving the SNR of the desired neural features.

Despite the di�erent device configurations and task parameters used in the three pa-

tients (table 4.1: beta power extraction method, beta frequency limits, cursor estima-

tion method, stimulation settings, and training session environment), all subjects still

performed above chance level. This suggests the cortical beta band signal quality was

su�ciently robust to be estimated either by calculating the spectrum from a streamed

time-domain signal or a streaming on-chip power estimate. Remarkably, in both cases

(streamed time domain or power estimate) the signal was not corrupted by the stimula-

tion signal on the STN lead despite both the sensing and stimulation leads being routed

into the same device. Further, despite the slow feedback rate (400 ms) in comparison to

typical brain-machine interface cursor control studies (Æ 100 ms), subjects were still able

to process the feedback and use it to update their endogenous beta power.

We had subjects modulate cortical sensorimotor beta band power due to its relevance

in PD motor symptoms. Patients exhibited modulation to distinct target-specific beta

band power levels (4.5D-F), and did so without modulating the entire power spectrum

(4.5G-I). Patients’ time-to-target improvement was di�erent for di�erent targets (4.4D-F)

suggesting that target di�culty must vary from patient to patient. This was likely due

to variance in baseline beta power calculations which then translated to an o�set bias

in the beta-to-cursor map fitting. It is of interest that Patient 3 exhibited significant

improvement in performance to the lowest beta target (4.4F). Given that literature sug-

gests PD patients may need to compensate for their excessive beta synchrony throughout

the basal ganglia and motor areas through earlier and more drastic desynchronizations

prior to movement [163], it is perhaps not surprising that Patient 3 learned desynchro-

nization faster. Potentially, this patient had practice at desynchronizing aberrant beta

activity from using it as a compensation during normal motor control, which allowed the

patient to exhibit faster improvement to the lower target. Patients 1 and 2 exhibit most

improvement in the high beta target (4.4D-E). Patient 2 did find an overt movement

strategy that worked for the high target, potentially explaining why improvement was

quicker for that target compared to others. Further investigation of synchronization ver-

sus desynchronization di�culty can be addressed in longer-term neurofeedback training

studies.

While subjects demonstrate they can learn to increase and decrease cortical beta

power, modulating it may not alleviate symptoms. It is possible that changing cortical

beta power will not a�ect spiking synchrony at beta frequencies and thus will not a�ect PD

symptoms. It is also possible that the cognitive strategy used to generate or inhibit beta

activity is a distinct circuit from the one creating pathological activity. With respect to

the neurostimulator device, streaming time domain neural data for many hours requires

substantial battery power. Streaming from the power channel requires less power but
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still drains the battery [188]. Future systems will use rechargeable batteries eliminating

this challenge [192], but current patients implanted without rechargeable batteries may

limit their engagement in neurofeedback training to avoid invasive battery replacement

surgeries.

While DBS is currently an FDA-approved therapy only for PD, essential tremor, and

dystonia, it is being piloted as a therapy for numerous other neurological disorders such

as medication-resistant depression, Tourette syndrome, epilepsy, and neuropsychiatric

disorders [193, 194, 195, 196]. For many of these disorders, symptom characterization is

more challenging than it is in PD. Exploring neural activity in relevant circuits may shed

light on signals that can be used as biomarkers for symptom onset, as well as potential

targets for neurofeedback therapy. Since neurofeedback has been shown to be e�ective

at influencing neural signals relevant to specific behaviors, it is a promising tool to work

in tandem with DBS, with both therapies striving to relieve the patient of pathological

neural activity.

4.5 Introduction
4.5.1 Extended Neurofeedback Control in Parkinsonian Patients

The previous sections demonstrate that three PD patients were able to control a one-

dimensional cursor with their motor cortical beta oscillations well above chance level after

1-2 hours of practice. Here, we extend this study in one of these patients (Patient 3).

We ask first whether extended neurofeedback practice results in performance improve-

ments over 9 days, and second, if the patient performs a sequential neurofeedback- finger

tapping task, if we will see any e�ect of neurofeedback training on finger-tapping behav-

ior. Notably, while this patient is characterized as parkinsonian, their actual diagnosis

is Multiple Systems Atrophy (MSA), parkinsonian-subtype. MSA is a neurodegenerative

disorder like Parkinson’s disease characterized by symptoms that a�ect the autonomic

nervous system and movement. There are two types of of subtypes of MSA – one is the

parkinsonian subtype and the other is cerebellar.

4.6 Methods
4.6.1 Settings of the Activa PC + S for Multi-Day Use

As previously described, the Activa PC + S allows for wireless real-time streaming

from a fully embedded neural stimulator. Since the device’s battery is not rechargeable

and real-time streaming applies extra computational demands on the device, care must

be taken to ensure that data streaming protocols do not place patients at risk for an early

battery change surgery. We computed the number of days of stimulation therapy that
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Mode

Current Drain

(mA)

Charge Drain in

One Day

(Coloumbs)

Stim ON 220 mA 19 C

Stim ON + Sensing ON

230 mA 20 C

Stim OFF + Stream Power Channels + Stream

Time Domain Channels

2500 mA 216 C

Stim OFF + Stream Power Channels

90 mA 8 C

Table 4.3: Summary of Current Drainage for Di�erent Modes of Activa PC + S (Source:

personal communication with Medtronic, PLC).

would be sacrificed by doing a study involving real-time streaming. Estimates of current

drain for di�erent device behaviors are summarized in table 4.3.

Using the above table, an estimate for 10-15 hours of practice for the neurofeedback

task where time domain is streamed is 90 - 135 C, or the equivalent of 4 - 7 days of

conventional open loop stimulation therapy (Stim ON in table 4.3). On the other hand,

streaming power channels for 10-15 hours of neurofeedback practice is 3-5 C, or less than

a quarter of a day. Thus, doing the task with only the power channel streaming saves

substantial battery power.

In this study, only motor cortical power channels from the left hemisphere were

streamed while the device was stimulating in a monopolar stimulation configuration.

Stimulation was delivered on two STN contacts (+) and the INS case (-) (located be-

hind the pectoralis muscle) at 160 Hz at 3.7V with a pulse width of 60 msec. Motor

cortical beta power (22.5 - 27.5 Hz) was computed on the bipolar signal between cortical

strip contacts E10-E11 (same contacts used in study described in previous section). Beta

power was computed on-chip and was streamed in realtime during the neurofeedback task.

One important consideration in deciding what bandwidth limits should be used for on-

chip power computation is that stimulation artifacts can leak into the power calculation

of the desired frequency band [188]. This artifact can overpower the physiological signal,

preventing observations of modulation during the task. To eliminate the interference of

stimulation in the signal, one can compute the ’folded harmonics’ from the stimulation

frequency (here, 160 Hz) and the sampling rate of the signal (here, 422 Hz):

import numpy as np

a r t i f a c t s = [ ]

f s t im = 160 # Hz

Fs = 422 # Hz

f o r n in range (1 , 1 8 ) :

temp = np . abs (n� f s t im≠np . round (n� f s t im /Fs )� Fs )

a r t i f a c t s . append ( temp)

p r i n t ’ a r t i f a c t s : ’ , np . s o r t ( a r t i f a c t s )
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a r t i f a c t s : np . array ( [ 14 , 28 , 58 , 72 , 116 ,

130 , 160 , 174 , 188 , 218 , 232 , 276 , 290 , 320 ,

334 , 378 , 392 ] )

For our stimulation and sampling rate parameters, we find that 28 Hz is a frequency

that likely will experience folded stimulation artifacts, so we chose to cuto� our beta band

frequency limit o� at 27.5 Hz to avoid this leakage.

4.6.2 Task Description
The patient participating in this research performed two types of tasks within the

one hour of training completed per day. The first task of the day was always a cued-

movement task where an auditory cue was delivered every 6 seconds and at the sound

of the cue the patient performed an elbow flexion/extension movement. At the end of

sessions sometimes this task was repeated but with a finger-tapping motion instead of

with elbow flexion/extension.

The second task was a sequential neurofeedback-finger tapping task, illustrated in 4.6.

The task setup was almost identical to the NHP sequential neurofeedback-reaching task

described in 2.2.1 but with a finger tapping task instead of reaching task. Finger-tapping

was selected because it is part of the Unified Parkinson’s Disease Rating Scale (UPDRS,

part III) and has been proposed as a movement that can capture elements of speed,

amplitude, and rhythm which are taken into account by clinician ratings [197, 198, 65,

199]. The task began the with patient initiating a trial by bringing their cursor (Mario

character) to the middle of the screen. Next, either the top (high-beta) or bottom (low-

beta) target appeared. Once the cursor entered the cued-target, the target color and text

changed, cuing the patient to begin finger tapping. Finger tapping lasted for 6 seconds

before the beta cursor and central target re-appeared signaling the start of a new trial.

Baseline beta power streamed from the Activa PC + S fluctuated substantially day-

to-day, and even within-day. To account for these fluctuations, the beta-to-cursor map

was adjusted each day using the cued-movement task with elbow flexion/extension as

calibration, as shown in 4.7. First, a cued-elbow flexion/extension task is performed while

beta power estimates are collected. In the first panel of 4.7, clear beta desynchronizations

and synchronizations following and prior to the next cue are evident, as expected [189].

A distribution of beta power values from the calibration task is constructed, as shown in

black in the middle panel, and the 25th and 50th percentiles are identified and mapped to

the bottom and center of the middle target respectively. This process then fully defines

the linear beta-to-cursor mapping.

Since motor cortical power from the left hemisphere is used during this task, the

patient performed finger-tapping with their right hand. To quantify the kinematics of

the tapping, the subject wore an inertial measurement unit (IMU) (SparkFun, MP9250)

on the right hand index finger, and a capacitive touch sensor on the right hand thumb
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TAP!

Cue to Initiate Trial Initiate Trial
Cue Target Enter Target Cue Finger 

Tapping
Cue to 

Intiate Trial

Figure 4.6: Schematic illustrating the sequential neurofeedback-finger tapping task. Trials

are initiated by bringing the cursor (Mario character) to the central target. When the

cursor enters the central target, a trial has been successfully initiated. Either the top or

bottom target is cued. The patient then has 120 seconds to move the cursor to the cued

target. If successfully reached, the target turns cyan with the red word ’TAP’ displayed

on the target, and the cursor disappears. This concomitant color change, ’TAP’ cue,

and cursor disappearance cues the patient to begin finger tapping for 6 seconds. After 6

seconds, the central target and cursor reappears allowing the patient to begin a new trial.
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Calibration Task: Instructed Movement

Auditory Cues 
to Move

25th

perc.
50th

perc.

50th perc.
25th perc.

Figure 4.7: Daily calibration method: First, an cued-elbow flexion/extension task is

performed. Elbow flexion/extension is performed immediately after auditory cues (vertical

blue dotted lines, occurring every 6 seconds). On-chip beta power estimates are streamed

while the task is being performed and are plotted in black in units of LSBs (least significant

bits). A distribution of beta power values from the calibration task is constructed, as

shown in black in the middle panel, and the 25th and 50th percentiles are identified. The

50th percentile is mapped to the center of the middle target, and the 25th percentile is

mapped to the bottom edge of the middle target, fully defining the linear beta-to-cursor

mapping.

(SparkFun, AT42QT1010). To quantify movements of the left hand, the patient wore an

accelerometer on the left hand (SparkFun, ADXL345). Sensors were attached to fingers

with custom 3D printed housing and velcro straps as shown in 4.8.

An example of the flow of the task is shown in 4.9. Here, the dotted green line

corresponds to the target position (the y-axis is the vertical axis in which the cursor

moves). At first the cued target is the bottom target. The patient’s cursor (plotted in

black) then enters the bottom target, and 6 seconds of finger-tapping ensue (shown in

red). The red arrow points out the modulation of one axis of the gyroscope data during

the tapping epoch. Once the 6 seconds of tapping are complete, the target moves to the

center position, and the patient quickly re-initiates a trial. Next the target moves to the

top position, which is quickly acquired followed by another 6 seconds of tapping. The

task progresses.

4.7 Results
4.7.1 Neurofeedback Performance Over Days

First we assessed whether the subject was able to generate higher beta power when the

high beta target was cued compared to when the low beta target was cued. In 4.10, we

show that for almost all blocks on all days, the subject was able to generate a distribution

with a higher median for the high beta target compared to the low beta target (right panel,

almost all points are greater than zero). In 4.10, the left plot red trace shows a distribution
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Figure 4.8: Custom-made IMU holder for right hand. On the left is an image of the

patient’s hand wearing the custom-made IMU, in the middle is a file of custom IMU, and

on the right is a schematic of the SparkFun IMU with an arrow indicating how it fits into

the casing. The slots on the sides of the IMU holder are for velcro straps to secure the

device to the subjects’ index finger.
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Figure 4.9: Neurofeedback-finger tapping task cursor and gyroscope progression over ~80

seconds. In the top plot, the green dotted line corresponds to beta target position. The

black line corresponds to cursor position. The red lines indicate when the cursor and

target are removed from the screen because the patient is completing the finger tapping

epoch of the task.
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Figure 4.10: On the left is an example of the distribution of beta power for the low beta

target and the high beta target for one day. Both distributions have the median of the

calibration block (cued movement block) subtracted, hence the negative values of LSBs.

The dotted lines point out the median of both distributions. On the right, the median

of the high beta target distribution minus the low beta target distribution are plotted

for each 10-15 minute block performed over 9 days of training. The dotted vertical lines

separate days, and the dotted horizontal line is the linear regression line of all days (not

significantly di�erent from zero, p > 0.05).

of beta power from one day for times when the high target was on the screen, including

unsuccessful trials, and not including times when tapping was occurring. Similarly the

green trace shows a distribution of beta power from one day for times when the low target

was on the screen. The medians are shown in dotted vertical lines, and the median of the

red distribution is higher than the median of the green distribution. For all days and all

blocks, the di�erence between the median of the high and low beta power distributions is

calculated, and plotted on the right graph.

When performing a linear regression on the all points (each corresponding to a single

10-15 min block on a single day), there is no clear increase in median di�erence over days.

We also assessed whether the subject got better at reaching the neurofeedback target over

days assess by a ’time to target’ measure as shown in 4.11. Over days the subject does not

exhibit improvements in time to target, though often exhibits within-day improvements in

the bottom target time-to-target, and worsening in the top target time-to-target. Overall,

these results are consistent with no improvement in time to target.

One observation that may account for the within day changes in time to target are

changes in baseline mean beta power. Often on days where the top target became more

di�cult, the baseline beta power level averaged over minutes had drifted lower. Naturally

if the distribution shifts lower, the top targets will become harder.
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Figure 4.11: Time-to-target for the top and bottom beta neurofeedback targets for all

trials over blocks (thin vertical bars) and over days (thick vertical bars). Note that ten

days of data are displayed here while 9 days are reported in other figures. Indeed 10

days of data were collected, but the first day was used to select motor cortical contacts,

frequency band limits, and used a beta-to-cursor mapping that was slightly di�erent than

the subsequent days, so it is only shown here for comparisons of within - day learning.

Dotted diagonal lines are within-day regressions between time to target over the course

of the day.
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Figure 4.12: Reaction times of all finger-tapping trials. Marked in vertical dashed lines

are divisions between days.

4.7.2 Dynamics of Finger Tapping Are Influenced by Neuro-
feedback

Given that the subject has consistent performance in the neurofeedback task, we next

asked if the dynamics of finger-tapping change depending on whether they were preceded

by the low beta target or the high beta target. First we assess if there is a significant

improvement in tapping reaction-time, signifying that the subject was improving in their

ability to react to the tapping cue after completing the neurofeedback task. If there is a

learning e�ect, it does not make sense to include the early days in the analysis since the

subject was still learning the contingencies of the task. Plotted in 4.12 are the reaction

times of all finger tapping trials across the nine days of training. Some days have very

few trials because there was a technical issue in which occasionally the data trigger to

start the IMU recording was not received. Some reaction times are very high ( > 1.5

sec) because occasionally the patient did not realize that they had achieved the target, or

occasionally forgot to start tapping. The patient commented after the 9 days of training

that having an auditory cue to indicate the onset of tapping would be helpful. Some

reaction times are zero due to anticipation of the tapping cue.

We note that some days exhibit systemically higher RTs than other days (e.g. day

5) shows RTs that have a greater mean than RTs on day 9. On average though, there is

no reduction in RTs over days, indicating that there is no systemic trend of the patient

learning to initiate taps faster throughout the course of training.

We choose to perform a 2-way unbalanced ANOVA to assess tapping metrics such as

RT to assess the di�erence between taps preceded by the high beta target versus taps

preceded by the low beta target. The two factors in the ANOVA are i) low vs. high beta

target preceding tap and ii) day of training. Given the high day-to-day variance in RTs,



79

Low Target
High Target

Figure 4.13: RTs (0.2 < RT < 1.5 secs, excluding days 3 and 9), from 4.12plotted by high

vs. low target

we wanted to assess within-day di�erences in high vs. low beta targets. We eliminated

trials that had RTs < 0.2 sec, or RTs > 1.5 sec. We also did not analyze days in which

there were fewer than 15 trials collected (did not analyze days 3, 9). There was a total of

198 trials analyzed. Plotted in 4.13are boxplots of RTs following low vs. high beta targets

by day. On a majority of days, the low beta target precedes faster RTs than the high beta

target. The 2-way ANOVA shows an a�ect of day (p < 10≠15
) and of beta target (p =

0.0011).

We also assessed other tapping metrics in addition to tapping RT, shown in 4.4.

Tapping Frequency is defined as the dominant frequency when performing an FFT on

gyroscope data about the tapping axis. Higher values indicate a faster tapping pattern.

Tapping frequency was higher for trials following the low beta target compared to the

high beta target. Finger angle speed is defined as the mean rectified angular velocity over

the 6 seconds of tapping. A higher finger angle speed indicates a more vigorous tapping

sequence with higher positive and negative angular velocities. Finger angle speed was

higher for taps following low beta targets compared to higher beta targets, although not

significantly. Finally, we assessed whether the number of discrete taps (measured as the

number of times the capacitive touch sensor turned from o� to on) di�erent following low

versus high beta targets. We found that there were more discrete taps following low beta

targets compared to high beta targets, although not significant.

In the previously described work in 2using a sequential neurofeedback-reaching task

in non-human primates, there was no di�erence in the kinematics of the arm reaches

except for the movement onset time (here, RT). It is surprising, then, to find evidence for

more vigorous tapping following low-beta target than high-beta targets. Perhaps, cortical
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Table 4.4: Table of 2-way ANOVA test results for tapping metrics

Metric Tapping following

Low vs. High Beta

Target

2-way ANOVA, Test

for Metric

Tapping Frequency

(Hz)

Low > High p = 0.0460

Finger Angle Speed

(rad/sec)

Low > High p = 0.5213

Number of Discrete

Taps Per Trial

Low > High p = 0.1454

beta oscillations have di�erent dynamics in parkinsonian patients than in healthy NHPs.

We analyzed control finger-taps to assess how di�erent cortical beta dynamics were for

fast (RT < 3 sec) versus slow (RT > 3 sec) finger-taps. These taps were collected in

the same way that the calibration task was – an auditory cue instructed the patient to

begin tapping. The patient was instructed to complete two big and fast taps, and then

to rest until the next cue. Because the patient performed these taps after the sequential

neurofeedback-finger tapping task, they likely more tired than during the calibration phase

and thus had a slower reaction time. Thus we were only able to collect 10 example trials

where the response to the cue was within 5 seconds. For many of the cues, the patient was

still tapping from the previous trial, contaminating the current trial. When plotting the

fast vs. slow RT trials during the instructed tapping time, we see di�erences in cortical

dynamics, though admittedly with very few trials.

Though we have very few trials of the controlled finger-tapping task, we still can

assess the mean cortical beta dynamics. As shown on the left in 4.14, when aligning to

the movement cue fast and slow trials exhibit a beta synchronization in anticipation of

the cue, and a desynchronization following the cue. The slow trials, however, do not fully

desynchronize, and instead re-synchronize within 0.8 seconds. When assessing the fast

versus slow RT trials when aligned to the RT (movement onset time), we see that cortical

beta has desynchronized prior to RT in fast trials, but has yet to fully desynchronize prior

to the RT in slow trials. Thus, we hypothesize that fast RT trials are associated with a

successful, persistent beta desynchronization following the movement cue. On the other

hand, we hypothesize that slow RT trials may exhibit a slight beta desynchronization

following the movement cue, but pathological beta throughout the cortico-basal-ganglia-

thalamic loop may drive M1 to resynchronize, arresting movement onset.

4.8 Conclusions and Future Directions
Future directions of this work will investigate whether the findings that finger tapping

RT is faster, tapping frequency is faster, number of taps is greater, and angular speed
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n = 5
n = 5

n = 5
n = 5

Figure 4.14: Cortical beta dynamics for fast vs. slow RT trials during an instructed

finger-tapping task. Cortical beta power is normalized by subtracting the median beta

power value from the calibration task.

is greater when finger-tapping follows a low beta target compared to a high beta target

holds up in parkinsonian patients as opposed to an MSA patient. It will also further

investigate the dynamics of beta power during finger-tapping itself, and if the observed

di�erences in movement kinematics have a neurophysiological signature in beta band.

Technologically, future devices with rechargeable battery [192]will be used in these

investigations, to enable time domain-streaming from more than just one channel. In

the setup described above, only a couple estimates of on-chip beta power are streamed

every 400 ms to reduce battery consumption. If there are changes in the range of the

full time-domain signal over the course of recording, or changes in baseline noise level,

these will be reflected as changes in beta power when using the on-chip estimate. For

example, during the study described above, beta power was also streamed from a bipolar

pair of STN electrodes but the baseline level noise due to the stimulation artifact changed

on a day-to-day basis and even throughout the course of a session. This noise obscured

expected movement-related desynchronizations in beta power [200].

Better filtering and signal conditioning techniques can be used if the full time-domain

signal is available. Streaming more channels than a single bipolar pair per electrode strip

would also enable better online-computation of beta power, as well as analysis of other

brain regions including the basal ganglia during the neurofeedback task. We also hope to

be able to make a more engaging and exciting task for patients given the importance of

motivation and engagement in learning.

Overall, we hope that the approach described above (sequential neurofeedback-behavioral

task) will be used to study not only the motor system and beta oscillations, but also the

relationship between other brain areas with unique neural signals and other behaviors.
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Chapter 5

Distinct Sources of Neural
Variability Drive Neuroprosthetic
Control
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5.1 Introduction
5.1.1 Modeling Neuroprosthetic Control

Previous chapters focused on beta oscillations in the motor system and their relation-

ship to fast versus slow movements in health and disease. Here, a di�erent experimental

paradigm is employed but is still used to study of how population motor activity con-

tributes to movement dynamics. As discussed in chapter 1, closed-loop brain machine

interfaces (BMIs) can be thought of as simplified, mini, motor systems. In these systems,

unlike our natural motor systems, the experimenter fully observes all neural activity that

controls the actuator, knows the exact (and usually linear) transform of how neural activ-

ity a�ects the movement of the actuator, knows the physics of how the actuator moves,

and knows exactly what feedback the subject receives. In the natural motor system, ex-

perimenters can measure only a subset of the relevant signals for control, do not know

the exact non-linear brain to arm mapping, have only an estimation of the physics of how

the arm moves, and must contend with sensory feedback that is linked to arm movements

[78]. A closed-loop BMI then simplifies many aspects of studying sensorimotor control

yet still includes fundamental features of natural motor control. Notably, subjects still

must use many neurons to control a lower-dimensional e�ector, must plan and execute

a motor plan, and must use sensory feedback to update their motor plan. Much like

the endogenous motor system, there is evidence of subjects learning skillful control of

neuroprosthetic e�ectors [71, 74] and developing an internal model of how to control the

e�ector [80]. This chapter explores principles of how subjects coordinate their population

activity to control an e�ector using both in silico simulations of BMI control, and online

experiments.

Many closed-loop, continuous-control BMI architectures rely on decoding via a linear

readout of noisy population neural activity [169]. However, the neurons responsible for

controlling a BMI (BMI output cells) receive inputs from diverse sources. Di�erent inputs

likely have dissociable e�ects on BMI population activity, and contribute to BMI control

di�erently. Indeed, recent work has found that BMI output cells increase shared variabil-

ity (many cells co-modulating) and decrease private variability (cells modulating indepen-

dently) as subjects increase the speed and directness of the 2D cursor movements over

learning [90]. Further work has demonstrated that BMI decoders that require the produc-

tion of specific types of correlated modulations are very di�cult to learn [91]. Correlated

modulation patterns that are generated during BMI control thus represent an informative

statistic of population activity, and even predict the learnability of a BMI decoder. What

is unclear is first, what types of inputs give rise to correlated versus independent variabil-

ity in a population. Can a high-dimensional set of tuned inputs with independent noise

give rise to shared variability or must inputs already be low-dimensional? Understanding

what inputs give rise to shared and private variance in populations will assist in inter-

preting what variables must be encoded upstream of motor cortical populations. Does

controlling a low-dimensional e�ector necessitate a upstream population activity to first
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Figure 5.1: A conceptual schematic of the questions addressed in this chapter. First, the

population activity of BMI output neurons as a linear combination of private and shared

sources. We then simulate the resultant population activity, and apply Factor Analysis

to the resultant population activity to assess how di�erent combinations of shared and

private input sources a�ect the amount of correlated and uncorrelated population activity.

Second, we assess how the correlated and uncorrelated population activity contribute to

online BMI control of a cursor.

become low-dimensional? This work presents a generative model of population neural ac-

tivity in which a shared input drives many cells simultaneously, and private inputs drive

each cell independently. Presented are results of how changes in input parameters of this

generative model produce the neural population’s observed correlated and uncorrelated

variability. Second, how do shared and private variance contribute to neuroprosthetic

control? If only shared variance or only private variance is used to control the cursor,

how successful is performance? O�ine simulations and online experiments are used to

test how shared and private variability contribute to BMI control.

5.2 Methods
5.2.1 Terminology

In the following section, we will refer to two input sources: input shared variability
and input private variability. These are defined as the inputs to the population which

are simulated in the generative model described below. Observed shared variability
and observed private variability refer to shared and private variability that are parsed

by observing the population activity after all the input sources in the generative model

have been summed. Output neurons refers to the neurons in the simulated population.

The terms ’output’ and ’observed’ should not be confused with the Kalman Filter decoder

output. The Kalman Filter decoder output will be referred to as velocity commands,

decoded velocities, or predicted velocities.
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Figure 5.2: Generative model of neuroprosthetic control using a 2D velocity controlled

cursor, Kalman Filter decoder, and simulated inputs into a 20-neuron population

5.2.1.1 Generative Model

5.2.1.2 Overview

In order to study how di�erent types of inputs to a population influence the observed

shared and private variability observed, we developed a generative model of neural pop-

ulation activity 5.2. Activity for a population of 20 neurons was generated based on the

shared (blue arrows) and private (red arrows) population inputs described below and the

summed activity of inputs to these neurons were then used as BMI output neurons. The

activity of the 20 BMI output neurons was binned in 100 ms bins (illustrated with the

raster plot), and used as observations in a Kalman Filter. The decoder predicts intended

velocities, v̄t, which is integrated and used to update the position of 2D cursor as is com-

monly used in cursor BMI experiments [73, 91]. To complete the closed-loop simulation,

the cursor state and cued target position were used to infer an intended velocity command,

u(t), which would move the cursor closer to achieving and holding within the cued target.

This intended velocity command was then used to generate inputs for future population

activity as illustrated by the gray brain and its yellow thought bubble.

5.2.1.3 The Factor Analysis Model

Typically Factor Analysis is used to decompose a high-dimensional set of simultane-

ous observations (yt) into a summation of i) low dimensional shared patterns, ii) high
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dimensional private patterns, and iii) a mean. The Factor Analysis statistical generative

model is [201]:

yt = Uobszobs,t + Âobs,t + µobs

Âobs,t ≥ N(0, �obs)

zobs,t ≥ N(0, I)
Here, yt is a vector œ Rn

where n is the number of neurons in a population (in these

simulations, n = 20). yt represents a vector of spike counts over the course of a 100

ms bin and in real data consists of integer counts. In this simulation, yt is modeled as

Gaussian and can have continuous values. Shared variability, Uzt can be attributed to

the variance of a low-dimensional source (zt œ Rm, m < n) that is mapped through a

loading matrix (U œ Rnxm
) to the high-dimensional space of neurons. Private variability

(Ât) is individual neural variance that is independent of other neurons. That is, � is a

diagonal matrix with cross-terms of zeros. Finally, µ œ Rn
is the mean of yt. This model

will be used to parse observed shared variance and observed private variance, but also

inspires the simulated structure of input sources to the population. Details on fitting

Factor Analysis can be found in A.1.

Note that correlated and uncorrelated variability were extracted with the fit FA model

without any knowledge of the generative model parameters, as would be the case in an

online experiment. Theoretically this decomposition ought to segment neural activity

into exactly the private and shared sources that were used to generate the activity, but

given limited data and di�erent levels of noise (untuned activity), the decomposition may

converge on a di�erent solution than that of the generative model.

5.2.1.4 Population Inputs

There are four types of inputs to each output BMI neuron; tuned and untuned shared

inputs, and tuned and untuned private inputs. Shared inputs represent activity that is

generated by m low-dimensional factors, and mapped to each output neuron through a

loading matrix U . Private inputs are generated independently for each output neuron.

Tuned inputs produce a linear readout of the subjects’ intent to reach an instructed target

during a two-dimensional velocity-driven cursor BMI task and untuned inputs generate

noise with respect to the BMI objective. These inputs are illustrated in more detail 5.3

and 5.4.

Specifically, tuned inputs change according to the desired velocity of the cursor, u(t).
Once u(t) is computed by some function F , u(t) = F (cursort, targett)), the tuned shared

and tuned private inputs are computed based on cosine tuning models to u(t). Tuned
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Figure 5.3: Generative model of neuroprosthetic control with four classes of inputs high-

lighted. The raster plot first shows tuned private activity which is derived from the dot

product of u(t) with each output neurons’ private tuned cosine tuning model. Next, un-

tuned private activity is sampled from each output neurons’ private untuned zero-mean

normal distribution and is unrelated to u(t). Tuned shared input is third, consisting of

of cosine tuned low-dimensional factors whose activation is determined by cosine tun-

ing to u(t), and then is mapped to the output neurons via Ushar,tuned. Finally, untuned

shared input is generated by each untuned shared factor sampling the standard normal

distribution, and is mapped to output neurons via Ushar,tuned.
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shared activity is defined as zi
t,tuned = ut ⇧ ◊i

pref,shar, 0 < i Æ m where ◊i
pref,shar is the unit

vector in the preferred velocity direction of tuned factor i. Tuned private is defined as

Âj
t,tuned = ut ⇧ ◊j

pref,priv, 0 < j Æ n where ◊j
pref,priv is the preferred velocity direction of

tuned private input to unit j.

Untuned shared activity is defined as zt,untuned = N(0, I) and untuned private activ-

ity is defined is Ât,untuned = N(0, �untuned) where �untuned is diagonal with o�-diagonal

components equal to zero. At each time bin, zt,untuned and Ât,untuned were drawn from

their respective normal distributions. All sources zt,tuned, zt,untuned, Ât,tuned, Ât,untuned are

weighted before being summed:

yt = –1Uzt,tuned + –2Uzt,untuned + –3Ât,tuned + –4Ât,untuned + µ

Finally, to break temporal correlation between the four sources an update rate is

included for each source. For each time point, the number of times to sample each source

changes according to a Poisson process with rate parameter �source= 1. Thus at each

time point, for each source, and each factor or neuron, an integer ⁄k
t,s is drawn from a

Poisson process with rate parameter �s.Here, tcorresponds to time bin, s corresponds

to source, and k corresponds to factor or neuron index depending on source. Thus,

⁄1
T 0,unt.priv. = 2 would mean that on bin T0, for source untuned private, for neuron 1, the

distribution N(0, �[1, 1]) would be sampled twice, and sum the two resulting samples to

get Â1
T 0,untuned. If ⁄2

T 1,tun.shar. = 2, that would mean that on bin T1, tuned factor number

two would equal z2
T 1,tuned,shar = 2 ú (uT 1 ⇧ ◊2

pref,shar). Almost always �source= 1, with the

exception of �tuned,private which will be varied in results presented below.

To summarize, the parameter set of this generative model include:

• �tuned,private, �untuned,private�tuned,shared, �untuned,shared.

• U, �untuned, µ, n, mtuned, muntuned

• ◊j
pref,priv, ◊i

pref,shar for 1 Æ j Æ n, 1 Æ i Æ m

• –1, ..., –4

• F (cursort, targett)

• Kalman filter decoder

In the simulations following, �source was always equal to 1, unless specifically manipulated.

U was set to random values between -1 and 1. �untuned was diagonal and set to values

between zero and 1. µwas set to match mean firing rates of real neural data collected

during online BMI performance. nwas set to 20, mtuned = muntuned = 3 factors. ◊i
pref,shar

and ◊j
pref,priv were set to random unit vectors spanning the 2-D space. The –weights were

set between values of 0 and 1. The function mapping cursor state and target position to

u(t), u(t) = F (cursort, targett) is defined as:
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Private Tuned

Shared Tuned

PrivateUntuned

SharedUntuned

Figure 5.4: A summary of how the four di�erent sources of private and shared, tuning and

untuned activity are generated. The yellow circle with black arrow in the middle refers to

u(t) interferred from cursor and target position. The graphs for private tuned and shared

tuned refer to neuron or factor tuning curves. The graphs for private untuned and shared

untuned sources show the probability distributions N(0, �untuned), N(0, I) respectively.

Dice refer to the Poisson process used to determine how many times to sample the source.
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cursorpos /œ targetrad : u(t) = 15 ú targetpos ≠ cursorpos

||targetpos ≠ cursorpos||

cursorpos œ targetrad : u(t) = 0.5 ú targetpos ≠ cursorpos

Once all the above parameters were set, samples of data were drawn using actual

experimental cursor and target positions to compute u(t) and then each of the individual

sources. It was confirmed that for –1 = –2 = –3 = –4, on average (across neurons and

simulations) each input source contributed equal amounts of variance to the summed

population activity. It was also confirmed that the shared tuned and shared untuned low-

dimensional variations, zt, were normally distributed with identity covariance, the private

tuned and untuned variations were normally distributed with appropriate variances �i,i.

Finally, the algorithm used to generate population activity:

1. Estimate desired velocity, u(t), based on current cursor state and cued target posi-

tion

2. For each source zt,tuned, zt,untuned, Ât,tuned, Ât,untuned compute the number of times to

draw from each factor or neurons by sampling from a Poisson process with parameter

�source.

3. For each source, computed the activations for each neuron or factor using u(t),
⁄k

t,s.◊
j
pref,priv, ◊i

pref,shar

4. Sum all sources together: yt = –1Uzt,tuned+–2Uzt,untuned+–3Ât,tuned+–4Ât,untuned+µ

5. Use yt œ Rn
as an observation to update the Kalman Filter decoder’s cursor velocity

prediction.

6. Update the cursor position and velocity.

5.2.2 BMI Task and Decoder
A standard center-out task is used to assess BMI performance. To begin a trial, the

cursor is automatically set to the center of the workspace. One of eight peripheral targets,

arranged uniformly in a circle of radius 10 cm around the center, is cued. The cursor center

must enter the target (radius of 2 cm) must be acquired in less than 10 seconds to avoid

a timeout penalty. The cursor is updated every 100 ms using a velocity Kalman Filter

decoder. The Kalman Filter models neural activity as a linear combination of x and y

cursor velocities. Every 100 ms, a new vector of neural observations is used to update the

Kalman Filter’s estimate of the subject’s (in this case, simulation’s) intended velocity by

performing first a time update step on the previous estimate of cursor state according to

the modeled cursor dynamics, followed by a measurement update step using the neural

observations. More details can be found [73].
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In order to fit the Kalman Filter decoder for each simulation, a calibration phase was

completed to fit a decoder that would drive the BMI cursor from simulated neural activity,

as is done in online experiments (described as ‘visual feedback’ in [73]). In this phase,

pre-computed cursor trajectories on a center-out only task were played, and at each time

step, cursor velocities were used along with the generative model to create a vector of

spike activations resulting from a linear combination of the four di�erent types of input

sources. In this calibration phase, neural activity was not used to update the cursor.

Using the calibration data, a Kalman filter decoder was fit between neural activity and

cursor velocities (previously described as ‘visual feedback seeding’ in [73]).

5.2.3 Extracting Observed Shared and Observed Private Activ-
ity for Online Control

During the calibration (’visual feedback’) phase, the generative model creates popu-

lation neural activity driven by four input sources. Then, to analyze the observed shared

and private variability in the resultant population activity, an FA model is fit. Once the

model is fit to the calibration neural data, each vector of neural activity at each time

point can be decomposed into a vector estimating the shared component and a vector

estimating the private component (see A.3.2 for details):

y = E(yt,shared|yt = y) + E(yt,private|yt = y) + µ

E(yt,shared|yt = y) = UE(zt|yt = y)

E(yt,private|yt = y) = y ≠ E(yt,shared|yt = y) ≠ µ

E(zt|yt = y) = U
Õ(UU

Õ + �)≠1(y ≠ µ)
The decomposed activity can then used to drive the BMI cursor to directly simulate the

contributions of shared and private activity in BMI performance. Since segmenting neural

activity into private and shared activity components reduces its overall variance, a scaling

factor was calculated to restore both shared and private components to the same variance

level as original activity prior to simulating through the decoder:

—i
shar =

ı̂ıÙ ‡2
i,full

‡2
i,shar

, —i
priv =

ı̂ıÙ‡2
i,full

‡2
i,priv

, 1 Æ i Æ n

—shar œ Rnx1, —priv œ Rnx1

Here, ‡2
i,full is the variance of the full neural activity for neuron iand ‡2

i,shar, ‡2
i,priv are

the variance of the computed shared and private activity. Thus the shared (yt,shar) and

private (yt,priv) decompositions of neural activity are then:
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ŷt,sc.shared = —shar(UU
Õ(UU

Õ + �)≠1(y ≠ µ)) + µ

ŷt,sc.private = —priv(y ≠ µ ≠ UU
Õ(UU

Õ + �)≠1(y ≠ µ)) + µ

We note that this approach of fitting a separate scaling factor for each neuron is not

the most principled approach to re-scaling shared and private neural activity. In fact,

choosing a di�erent scaling for each neuron makes it such that neurons that are largely

driven by private activity and have a very small shared component part with have very

small ‡2
i,shar compared to their ‡2

i,full, resulting in a very large —i
shar. In contrast, units

largely driven by shared activity will have —i
shar approximately equal to one. This behavior

is undesirable since it causes neurons with low shared activity to contribute heavily to the

estimate of ŷt,sc.shared. Should this experiment be repeated in either the online or o�ine

context, estimating a single scaling factor for all neurons is advised in order to preserve

the proper correlational structure between neurons. Despite this error, we persist. To

simulate shared and private contributions to online BMI control, ŷt,sc.shared and ŷt,sc.private

are passed into the decoder instead of yt. All calibration and simulation sessions were run

for 3 minutes, su�cient time for a mean of 65.9 trials. Some simulations contained more

trials than others due to faster or slower cursor movement.

5.2.4 Online Experiment
The full experimental setup including electrophysiology and task description can be

found in chapter 6, as these experiments were included in that data collection. Briefly,

a non-human primate who was previously trained in neuroprosthetic control performed

a standard centerout 2D cursor task (almost identical to the centerout task described in

chapter 2, but now in neuroprosthetic control mode, instead of arm-reaching mode). In

this task, the virtual BMI cursor (0.4 cm radius) was set to the middle of the workspace to

begin a trial, and one of eight peripheral targets (2.1 cm radius) arranged radially around

the center, a distance of 10 cm away, was cued. The subject, using tens of single and

multi-units that were being recorded, binned every 100ms, and decoded with a velocity-

Kalman Filter, attempted to drive the cursor to the peripheral target. Once at the target,

they attempted to hold their cursor within the target for 200 ms, and was delivered an

apple juice reward for successful trials. The next trial began when the subject was finished

with the reward, or had spent too long attempting a target (timeout time, varying from

15-30 seconds).

In the online experiment, as in the simulations, we also estimate ŷt,sc.shared and ŷt,sc.private

and use these values to drive cursor performance. Here, the factor analysis model is not

fit from calibration data (’visual feedback block’), but rather from another block when

the subject is performing online neuroprosthetic control. The experimental flow involved

the first block, calibration block used to seed the Kalman Filter decoder, followed by a

second block of short decoder adaptation used to refit the decoder [202]. After these two
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blocks, the decoder was fixed for the remainder of the day and the subject performed a

third block of 64 trials (8 to each target) using full neural activity to drive the cursor (yt).

A factor analysis model was fit using just data this third block, and subsequent blocks

then used estimated ŷt,shared and ŷt,private as inputs to the decoder.

It should be noted that other groups exclusively used ŷt,sc.shared (though parameterized

di�erently and without the scaling factors) to drive the cursor [91], however they do not

compare control of yt,ŷt,sc.shared, and ŷt,sc.private. Finally, see A.1 for further details on how

the model was fit for the simulations and the online experimental results.

5.3 Results
5.3.1 E�ect of Source Weights on Observed Correlated Variabil-

ity
The first question investigated was how variability in the 20-neuron population emerged

from inputs by manipulating the –weights. The expectation was that any shared vari-

ability input to the population would emerge as observed shared variability once all four

sources were summed, but it was unclear how the weighting between tuned and untuned

sources may influence the final amount of observed shared variance. We simulated popu-

lation with the following sets of alpha parameters: –untuned,shared = 0.2, –untuned,private =
[0, 0.25, 0.5]. Depending on –untuned,private the remaining weights for tuned variance were

0.8, 0.55, or 0.3. A ratio between –tuned,shared and –tuned,private was then swept, where

ratio =

–
tuned,private

–
tuned,private

+–
tuned,shared

, and ratio sweeps [0, 0.25, 0.5, 0.75, 1.0] for a total of

1 ◊ 3 ◊ 5 = 15 parameter sets tested. For each of these parameter sets, the amount of

variance contributing to the input source was compared to the observed variance in the

summed population activity. Specifically, during a ’visual-feedback calibration block’, the

following comparisons were computed:

Sharedinput ≠ Sharedoutput =

[
mÿ

i=1
var(–tuned,shar ú Uzi

t,tuned + –untuned,shar ú Uzi
t,untuned)T

t=0] ≠ trace(Uout ú U Õ
out)

Privateinput ≠ Privateoutput =

[
nÿ

j=1
var(–tuned,priv ú Âj

t,tuned + –untuned,priv ú Âj
t,untuned)T

t=0] ≠ trace(�out)

If the input private and shared variances are directly reflected in the output shared

and private variance, on average Sharedinput ≠ Sharedoutput = 0 and Privateinput ≠
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Privateoutput = 0. What happens instead is shown in 5.5. When there is little pri-

vate tuned input, as on the lefthand-side of the x-axis, private and shared input roughly

match private and shared output. In contrast, when there is mostly private tuning and

little shared tuning, as on the righthand-side of the x-axis, private input variance is much

greater than private output variance. Further, shared input variance is much lower than

shared output variance. Thus, when input private activity is heavily tuned, it manifests

in the resultant population as shared variance. Adding more private untuned activity (in-

creasing redness in color of each point) dampens this e�ect. However, the more untuned

private activity there is, the less tuned private activity there can be. For example, on

the righthand-side of the x-axis, –tuned,private = 0.8 when –untun,private = 0 (black dots),

but –tuned,private = 0.3 when –untun,private = 0.5 (red dots). Thus, there much less tuned

private activity to be interpreted as shared activity when the untuned private activity is

higher.

Why would input tuned private activity, that has been designed such that temporal

correlations across neurons are broken via the Poisson process, exhibit output correlated

shared activity? If we direct attention back to 5.4, the answer comes from the fact that

the tuned private activity is being driven by a low-dimensional u(t) signal. Although

di�erent neurons may have di�erent tuning curves to the u(t) signal, and although there

is a separate Poisson process for each neuron to break temporal correlations, over the

course of an entire calibration session the two-dimensional velocities used to compute the

private tuned inputs are the same for each neuron. Thus, when modeling the private

tuned neural activity, a model that used a two factors and a mapping from the factors to

the neural activity fits well. Increasing temporal jitter by decreasing �tuned,private could be

a way for input private, tuned activity to be reflected as private in the output regardless of

the fact that the activity is driven by a low-dimensional source. We explore this possibility

below.

5.3.2 E�ect of varying �private,tuned on Observed Shared Variabil-
ity

To investigate how the update rate may influence whether input variability is des-

ignated as private or shared in the resultant population, we varied the update rate

(�tuned,private) for just the tuned private input source while keeping all other parame-

ters constant (–private,tuned = –private,untuned = –shared,tuned = –shared,untuned = 0.25). In the

resultant population, we measure how much of the total population variance is designated

as a shared by computing a shared-over-total metric:

SOTout = trace(UobsU
Õ
obs)

trace(UobsU Õ
obs + �obs)

Increases in SOT indicate that an increasing amount of a population’s total variability

is shared variability.
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Figure 5.5: Di�erences in input versus output private and shared variability as a function

of

–
tuned,private

–
tuned,private

+–
tuned,shared

and –untuned,private.

5.6illustrates that as the update rate increases from 10 events / sec (1 event / 100

ms bin) to more than 100 events / sec, the resultant population exhibits increasing

shared variability. This trend is in line with the findings of greater private tuning

activity resulting in more shared output activity in 5.5, except that here instead of

increasing the weight of private tuning, the weight remains constant but the update

rate increases, making the private tuned events more likely to be coincident across neu-

rons. Why SOT increases when the private tuned activity approaches zero is less clear.

One possible explanation is that as the rate of private tuned activity decreases, the in-

fluence of private tuned activity disappears. Thus, although –private,tuned = 0.25 , if

�private,tuned = 0, then the number of bins with non-zero ⁄i
t,priv.,tuned is very few. If

–private,tuned = 0 then the contribution of shared sources and untuned private sources be-

comes: –private,untuned = –shared,tuned = –shared,untuned = 0.33, making SOT values of 0.6 -

0.8 understandable for small �private,tuned.

Note that since our Factor Analysis model is fit with neural data binned in 100 msecs,

the increase in private tuning event rate above the 10 Hz rate will result in more observable

shared activity. For systems with narrower binning, the local minima of shared activity

seen in 5.6 will be at the shorter update value.
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�private,tuned



97

5.3.3 Contributions of Observed Shared and Observed Private
Activity to Online Control

We next consider how population with di�erent amounts of input private and input

shared activity perform in simulated online BMI control. First, cursor speed and accuracy

toward the end target are measured in populations containing di�erent –private,untuned,

–shared,tuned, –shared,untuned and then we consider how using observed shared or observed

private a�ects performance.

Using the same populations as studied above in 5.5, now a full closed-loop simulation

setup is used to study how populations with di�erent weightings of input sources perform

online. In these figures, each point is a single population where its position on the x-axis

corresponds to the private tuned to total tuning ratio as before (

–
tuned,private

–
tuned,private

+–
tuned,shared

)

and the color corresponds to –untuned,private. As before, –untuned,shared is set to 0.2.

In the left figure, tuning ratio is plotted versus the path error. Path error computes

the total distance between the cursor location and the straight-line path between the

center start target and the peripheral target. The longer the path error, the worse the

accuracy. The metric plotted was multiplied by -1 such that greater accuracy is at the

top of the y-axis. The left figure shows that populations with more private tuning exhibit

greater accuracy, and populations with less private tuning exhibit lower accuracy. The

right figure shows that populations with no private tuning (leftmost on x-axis) exhibit

the fastest cursor speeds. However, populations with a mix of private and shared tuning

exhibit lowest speeds, and population with only private tuning exhibit the second highest

speeds.

Why is accuracy linear with proportion of private tuning, but speed has a parabolic

relationship? Perhaps speed is a better reflection of the observed activity in the resultant

population, instead of the input sources, since the resultant population activity is what

drives the decoder. Since 5.5 already establishes that relative contributions of input

sources of variability do not always dictate the observed sources, plotting speed versus

observed shared variability may yield a clearer correlation. In 5.8, speed is plotted versus

observed shared over total variability (SOTobs = trace(U
obs

úU Õ
obs

)
trace(U

obs

úU Õ
obs

+�
obs

)). Although speed does

not exactly correlate with SOTout (R2 = 0.35), the relationship is linear. Thus, shared

variability in the output population contributes to speed of the cursor. The relationship

will not be perfect though, since observed shared variability can vary in its tuning, and

more tuned observed shared variability ought to drive the cursor faster.

Thus far, we have shown that:

1. Inputs of private, tuned activity give rise to observed shared variability for specific

regimes of �tuned,private

2. Cursor accuracy in simulated online control is best achieved with tuned private

inputs

3. Cursor speed is correlated with observed shared variability
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Figure 5.7: Left: Path error in simulated online BMI control as a function of tuned

activity ratio. Note that higher on the y-axis is more accurate. Right: Average cursor

speed during BMI control as a function of tuning ratio.

Given these findings, we ask whether extracting shared-only activity from the resultant

population may improve online simulated BMI control.

5.3.4 Using Observed Shared Activity Online Boosts Speed when
Private Tuning is High

So far, it has been shown that private, tuned inputs give rise to observed shared vari-

ability for specific regimes of �tuned,private, that cursor accuracy in online control is best

achieved with tuned private inputs, and that cursor speed is correlated with observed

shared variability. Next, online BMI simulations are performed with scaled, shared activ-

ity (ŷt,shared) in order to see if extracting observed shared variance and removing observed

private variance may serve to give a speed boost.

In simulation, extracting observed shared variance does have the e�ect of increasing

speed, but only for populations dominated by private tuning as shown in 5.9. This is the

same figure as 5.7(right), but now the same populations were re-simulated with ŷt,sc.shared

as the input to the decoder (ŷt,sc.shared = —shar(UobsU
Õ
obs(UobsU

Õ
obs + �obs)≠1(yt ≠ µobs))+ µ).

We hypothesize if (observed shared variance - input shared variance (y axis of 5.5) is

plotted against average speed shared - average speed full activity (di�erence between

circles and triangles in 5.9), there would be a clear correlation.
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Figure 5.8: Same as 5.7(right) but now x-axis is observed shared over total (SOTobs)

activity
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Figure 5.9: For all populations, scaled shared activity (ŷt,shared, triangle) was used as

observations for the decoder, and the speed of the resultant trajectories were compared

to their speed when using the full neural activity (yt, circle)

5.3.5 Experimental Results Demonstrate Contributions of Dis-
tinct Sources of Neural Variability to Online Neuropros-
thetic Control

In order to test how using estimated shared variance or estimated private variance

online contributes to online performance, we performed a set of catch-trial experiments

in one nonhuman-primate. The NHP performed the task described above, but on 30% of

trials yt was replaced with ŷt,sc.hared, on 30% of trials yt was replaced with ŷt,sc.private, and

the remaining 40% of trials were performed with yt. The data presented below consists

of 1167 trials collected over a few days.

5.3.5.1 Cursor Speed is Faster when Using Scaled Shared Activity

First cursor speed was analyzed since that was the attribute most obviously noticeable

to the experimenter when scaled shared activity was used compared to scaled private activ-

ity. Plotted in 5.10 is the average cursor speed for trials driven by yt,yt,sc.private, yt,sc.shared.

When using yt,sc.shared, speed is significantly higher than the original yt, and when us-

ing yt,sc.private, speed is significantly lower than the original (Significant Kruskal-Wallis

test followed by two-tailed Mann-Whitney, number of trials: yt = 580, yt,sc.shared=324,

yt,sc.private=263, p-values; ytvs.yt,sc.private, p = 1.8e-57, yt vs. yt,sc.shared, p=3.7e-69, yt,sc.shared
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Figure 5.10: Changes in average cursor speed (left) and time to target (right) when using

yt,yt,private, yt,shared online to drive the same Kalman Filter decoder.

vs. yt,sc.private, p=3.0e-91). This finding matches with the simulation results in the regime

of a high ratio of private tuning to shared tuning.

Also assessed was time to target, to see whether the increase in speed was accom-

panied by a lack of control, as would be evidenced by an increase in time to target for

yt,sc.shared. Time to target was significantly lower for yt,sc.shared than yt, and was signifi-

cantly higher for yt,sc.private than yt. (Significant Kruskal-Wallis test followed by two-tailed

Mann-Whitney, number of trials: yt = 580, yt,sc.shared=324, yt,sc.private=263, p-values;

ytvs.yt,sc.private, p=6.5e-45, ytvs.yt,sc.shared, p=5.3e-20, yt,sc.sharedvs.yt,sc.private, p=3.0e-65).

Thus, using scaled shared variance online did not make the cursor so fast that it was

uncontrollable.

5.3.5.2 Average Cursor Path Error is Higher when Using Scaled Shared Ac-
tivity

Finally, we investigate how cursor accuracy changes for trials driven by yt, yt,sc.private,

yt,sc.shared. The above analysis already shows that cursor accuracy is not so low when using

yt,sc.shared that the time to target is negatively a�ected. In fact, time to target is signifi-

cantly lower (faster) when using yt,sc.shared compared to either yt,sc.private or yt. Plotted in

5.11 are the average and total path errors. The average path error for yt,sc.shared is signifi-

cantly higher than the path error for yt, yt,sc.private (Significant Kruskal-Wallis test followed

by two-tailed Mann-Whitney, number of trials: yt = 580, yt,sc.shared=324, yt,sc.private=263,

p-values, ytvs.yt,sc.shared, p=3.5e-04, yt,sc.sharedvs.yt,sc.private,p=3.4e-06), and the total path

error for yt,sc.private is significantly higher than the total path error for yt, yt,sc.shared (Signifi-

cant Kruskal-Wallis test followed by two-tailed Mann-Whitney, number of trials: yt = 580,

yt,sc.shared=324, yt,sc.private=263, p-values, ytvs.yt,sc.private, p=2.8e-07, yt,sc.sharedvs.yt,sc.private,

p=1.9e-08).
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Figure 5.11: Changes in average path error (left) and total path error (right) when using

yt,yt,sc.private, yt,sc.shared online to drive the same Kalman Filter decoder.

5.4 Conclusions
We first simulated inputs to a population of neurons to parse how inputs can influence

to presence of observed shared variability in a population. We found that tuned, private

inputs can generate observed shared variability, since they are themselves driven by a low-

dimensional signal, u(t). We also found that increasing the update rate �tuned,private can

result in more observed shared variability, since each neurons’ private encodings of low-

dimensional u(t) are more likely to be coincident. Similarly, decreasing the update rate

below the BMI rate will also serve to increase observed shared variability, since the tuned

private source contributes less and less to the total population activity. This relationship

between private inputs and observed shared variability suggests a mechanism by which

activity that is private may become shared. Given observations of private variability

dominating observed population activity shown in the beginning of learning a BMI and

shared variability dominating in late learning [90], perhaps an analogous increase in update

rate drives this change in structure.

BMI populations with greater observed shared variance exhibit greater speed. This

makes sense in our model since the populations with the greatest observed shared variance

are the ones with the least untuned private inputs. Thus, all shared variance is from

untuned shared variance, and tuned shared and private variance. Since untuned shared

variance is the same in all of the above populations, increases in speed can be attributed

to the tuned private and tuned shared variance that become observed shared variance.

Since the Kalman filter decoder is a linear decoder, when inputs encoding the same u(t)
are synchronous as they are when they constitute shared variance, the decoder has more

observations of the same u(t) signal. In our model when inputs are asynchronous as in

tuned private inputs, some neurons will encode u(t) while the other will have no activity,

giving the decoder fewer observations of the u(t) signal within a single timepoint. Note

that in general, just because a population has shared variance doesn’t necessarily mean
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that this variance is encoding a useful variable, it just happens to be true in our case

because we did not vary the untuned shared input.

Observed private activity still drives the cursor towards the target, but along a slower

trajectory more accurate (on average) trajectory. While it has been postulated that a

low-dimensional shared representation of neural activity may be su�cient for driving

proficient BMI control and even that learning may be limited to this space [91], we show

by decomposing neural variance into shared and private sources in an online experiment,

that each has its own contribution to performance.

A number of unanswered questions remain. Why is private activity used online more

accurate in the online experiment? If all tuned private activity appears as observed

shared variability, there should be little tuned information left in the observed private

activity. It is possible that the regime most analogous to the online results is a private

tuned ratio of approximately 0.5, indicating that some private tuned activity will appear

as observed output but not all. In this regime, might there be conflicts between private

tuning and shared tuning? Might a single neuron’s shared variability component be tuned

to a di�erent direction as their private component? Perhaps separating observed private

and observed shared sources could improve overall information in the population. Another

related question is how the dimensionality of the shared variance changes depending on

whether it is driven by private tuned inputs or shared tuned inputs, or a mix of both.

Perhaps the dimensionality of the shared variance when using private tuned inputs is

higher. Establishing this could improve our ability to figure out which regime real data

resides in.

Another simplification in the model is the assumption that subjects generate a repre-

sentation of u(t) where they always point at the target. As highlighted in [203], subjects

can only aim exactly where they want to go if they have a uniform distribution of tuning

curves about the angular axis. In the case that they don’t, they must learn to re-aim

depending on the tuning of the units chosen as ’output units’. Thus, this model could be

improved if the function used to generate u(t) was fit based on actual subject behavior.

Doing so could allow for better comparisons of how a simulated population compares to

the a real neural population during the same behavior, and used to explore principles of

how real neural populations operate.

Finally, the generative model of population activity models neural activity using cosine

tuning to an intended direction of movement, a representational model of how motor areas

would encode movement objectives. Although grounded in decades of electrophysiological

findings [29], this generative model is very simple, and does not capture recent findings

that neurons change their tuning properties based on a variety of task parameters [204,

205, 206]. However even if many independent tuning curves do not present a useful model

of motor encoding, the result that independent, noisy observations of a low-dimensional

quantity can appear as correlated activity is still an important principle. At the most basic

processing level, a high dimensional number of primary sensory neurons samples the three

dimensional world and give rise to inputs that drive motor areas, so somewhere in this

processing is a collapse of high dimensional private observations to a lower-dimensional
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shared representation. While this model is a simple abstraction, it yields a number of

basic principles that guide our investigation into studying motor population computation

during actions sequences in the next chapter.
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Chapter 6

Distinct Action Sequences
Performed During Neuroprosthetic
Control Reveal High-Dimensional
Neural Dynamics
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6.1 Introduction
How does motor cortex generate action sequences which constitute our ability to reach

for the newspaper to read it ourselves one morning, and then reach for the newspaper

and give it to our friend the next? The initial newspaper-directed part of these hand

reaches will resemble each other kinematically, but are these identical portions generated

by the same motor cortical neural activity patterns? With a focus on primary motor

cortex (M1), we ask how do neural activity patterns for a given action change depending

on the sequence in which the actions fall? Early work in understanding motor cortical

coding of motor sequences reports changes in M1 neural firing rates [207] and M1 neural

correlations [208] during planning phases for the same motor actions that occur in di�erent

planned sequences. These results suggest that motor cortex encodes information about

sequence context or future movement [209, 172, 210]. However, we cannot be certain

that all aspects of motor actions are in fact identical when performed in one sequence

versus another. Perhaps a seemingly identical motor action measured kinematically in

fact requires more co-contraction of the trunk or stabilizing muscles when performed

in one sequence compared to another. Thus, finding neural activity patterns that are

di�erent for the same kinematic action performed in di�erent sequences may just be

evidence of di�erent muscular activations for the same kinematic action. For example,

in speech production, the same sound may be produced with di�erent muscle activations

depending on the sequence it falls due to the dynamics of the muscles and jaw [211].

Another challenge in interpreting di�erences in neural firing or correlations is that others

have found consistent M1 firing patterns for a given action regardless of sequence [212].

One approach to simplifying the problem of studying natural movements and assessing

whether the observed changes in neural activity contribute substantially to behavior is

to use a brain-machine interface (BMI) where a population of motor cortical neurons

drive the velocity commands to a virtual 2D cursor. In this setup, the experimenter

knows exactly which neurons contribute to movements of the cursor, and know the exact

mapping between neural activity and kinematics of the cursor behavior, as discussed in

chapter 1. Further, the experimenter can decompose neural activity patterns to assess

how di�erent parts contribute to cursor control.

Another complication with studying neural encoding of action sequences is that even

if kinematics and muscular patterns are identical when performing the same action in dif-

ferent sequences, the issue of which coordinate frame M1 represents has remained largely

unresolved [30, 29]. Thus, studying neural encoding of action requires the experimenter

to first select their favorite coordinate frame for M1, a selection that is not obvious. A

di�erent approach to studying the neural correlates of action is leave the question of

which movement parameters M1 represents and instead focus on identifying principles of

how M1 generates movement. The redundancy of neural solutions to generate the same

EMG output may explain how di�erent neural firing patterns generate the same move-

ment depending on the sequence it falls in. However, understanding the principles of

why certain solutions are used for one context versus another remain unclear. Some have
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embarked on studying properties of M1 population activity and generated proposals of

how M1 generates some types of behaviors, though few have focused on action sequences

directly. For example, it has demonstrated that M1 population activity occupies a low-

dimensional subspace, and subjects have di�culty generating neural activity that departs

from the space even when doing so would allow for task-related rewards [91]. However,

how neural activity traverses the low dimensional subspace to generate action sequences

remains unclear. Further, why the space tends to be higher-dimensional than required by

the task is also unknown. Another group has proposed a theory of movement generation

which models neural activity during very well-practiced, fast arm reaches, as observations

from a low-dimensional linear dynamical system, with a low-dimensional population state

evolving according to a consistent lawful linear dynamical process [33, 34]. When subjects

initiate their reaches, the low dimensional population state starts at a reach-specific initial

position and consistent temporal dynamics evolve its state to produce a temporal pattern

that has the correct frequency content to produce EMG activity [33]. This model captures

substantial neural variance, and explains rotational characteristics of population activity

that other representational models do not capture. Whether a consistent dynamical sys-

tem can also explain complex behaviors such as feedback corrected reaches, or reaches

requiring the subject to hold for an extended period of time before reaching is beginning

to be explored [35, 36, 37].

Here, we investigate how M1 generates action sequences by using a brain-machine in-

terface. In this preparation, we record from tens of M1 single and multi-units and linearly

map the activity of these neural activity patterns to the velocity of a 2D cursor on a screen

[213]. In di�erent tasks, the subject must generate distinct cursor trajectories, allowing

us to precisely study the neural activity patterns that generate di�erent action sequences.

The BMI preparation gives us an exact assay of the behavioral variables (velocities sent

to the cursor) and neural-to-behavioral mapping (decoder used in the BMI), in contrast

to natural reaching experiments where behavior is more challenging to rigorously capture

and the neural to behavioral mapping is unknown and nonlinear. Within the BMI prepa-

ration, we first ask how neural activity used to generate individual behavioral actions

di�ers depending on which action sequence the behavior is embedded. We assess if the

neural activity patterns for di�erent action sequences occupy a consistent subspace, as

predicted by [91]. Given that the subspace found by Sadtler is higher dimensional than the

task dimensions, there are multiple ways in which subjects may generate within-subspace

neural activity which have the same behavioral output. Perhaps they use this redundancy

to have flexibility in how they generate the same behavior depending on which action se-

quence it falls within. We also assess the mean firing rates of each neuron for a given

behavioral action. One hypothesis for how subjects perform BMI control is that they

infer through experience the tuning parameters of the neuron-to-cursor mapping in the

decoder [71, 73] and then reliably generate each neural firing rate corresponding to the

direction they want the cursor to move. Again, there is substantial redundancy in the

many neuron to two-dimensional cursor mapping, so we assess whether the same behav-

ioral actions (cursor velocities) are generated by di�erent mean firing rates depending on
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action sequence. These analyses reveal if in a well-controlled BMI task mean firing rates

and covariation patterns di�er for generation of identical behavioral actions depending on

action sequence. These analyses are the beginning steps to understanding principles of

how M1 leverages its redundancy to generate activity patterns.

Finally, we investigate if the di�erences in M1 neural activity for the same behavioral

action can be explained by M1 neural activity abiding by temporal rules that can be

modeled with a linear dynamical system. Indeed, using a linear dynamical system fit

from arm movements has already been shown to capture substantial neural activity in an

online BMI task, yielding improved BMI performance compared to models that do not

model the temporal rules of neural activity [214, 215]. However, we don’t ask if this model

is the best way of representing neural activity for online BMI performance, but rather if it

can distill principles of computation in M1 that yield di�erent neural activity for identical

behaviors within action sequences. We investigate whether the inclusion of these temporal

rules explains our subspace di�erence and mean firing rate di�erence observations. We

conclude proposing that the high-dimensionality and temporal laws in M1 give rise to a

flexible generator of action sequences.

6.2 Methods
6.2.1 Surgery, electrophysiology, and experimental setup

Two male rhesus macaques (Macaca mulatta, RRID: NCBITaxon:9544) were chroni-

cally implanted with arrays of 128 Teflon-coated tungsten microwire electrodes (35 mm in

diameter, 500 mm separation between microwires, 16 ◊ 8 configuration, 6.5 mm length,

Innovative Neurophysiology, Durham, NC) in the left upper arm area of primary motor

cortex (M1) and posterior dorsal premotor cortex (PMd). Localization of target areas

was performed using stereotactic coordinates from a neuroanatomical atlas of the rhesus

brain [216]. LFP activity was recorded at 1 kHz using either the 128-channel Multichannel

Acquisition Processor (Plexon, Inc., Dallas, TX) (Monkey J) or the 256-channel Omni-

plex D Neural Acquisition System (Plexon, Inc.) (Monkey G). Single-unit and multi-unit

activity were sorted online, after setting channel thresholds. Thresholds were set at the

beginning of each session based on 1–2 min of neural activity recorded as the animal sat

quietly (i.e. not performing a behavioral task). For all monkeys and tasks in this study,

visual feedback of the BMI output was shown by a circular cursor on the task screen.

Prior to this study, Monkeys G and J were trained at reaching tasks and spike-based

brain-machine interface (BMI) cursor tasks for 1 year. All procedures were conducted in

compliance with the NIH Guide for the Care and Use of Laboratory Animals and were

approved by the University of California, Berkeley Institutional Animal Care and Use

Committee.
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6.2.2 Tasks
Two BMI tasks are performed – a centerout task and an obstacle avoidance task. In

the centerout task, subjects control a 2D cursor to move from the center target to one

of eight cued peripheral targets distributed radially around a 6.5 cm (Monkey J) or a 10

cm (Monkey G) radius circle. For Monkey J, trials were initiated by entering the center

target and holding for a variable time. The go cue after the hold period was indicated by

the center target changing color and the peripheral target illuminating, cuing a reach to

that target. For Monkey G trials were initiated automatically by resetting the cursor to

the center position, and illuminating a peripheral target. A liquid reward was provided

after the cursor successfully reached the target with a peripheral hold time of 200 ms.

In the obstacle avoidance task, Monkeys G and J performed di�erent tasks. Monkey

G performed an obstacle avoidance task with a very similar structure to the center-out

task. The only di�erence was that a square obstacle (side length 2 or 3 cm) would appear

in between the center cursor reset position and peripheral target. If the cursor center

entered the obstacle, the trial would end in an error and subjects would repeat the trial.

Monkey J’s obstacle-avoidance task required a point-to-point movement between an initial

(not necessarily center) target and a peripheral target. On arrival at the initial target,

an ellipsoid obstacle appeared on the screen. If the cursor entered the obstacle at any

time during the movement to the peripheral target, an error resulted and the trial was

repeated. Target positions and obstacle sizes and positions were selected to vary the

amount of obstruction, radius of curvature around the obstacles, and spatial locations

of targets. Trials were constructed to include no obstruction, partial obstruction with

low-curvature, full obstruction with a long distance between targets and full obstruction

with a short distance between targets thus requiring a high curvature.

We analyzed 9 days of data from Monkey G and 4 days of data from Monkey J where

on each day, monkeys performed both the centerout and obstacle tasks with the same

BMI decoder. Only successful trials were analyzed.

6.2.3 Decoding
In both tasks, subjects must draw upon their action repertoire to generate trajectories

that bring their cursor to the cued peripheral target. In both the Kalman Filter decoder

(Monkey G) and the Point Process Filter decoder (Monkey J), the cursor position and ve-

locity are modeled with a state space with position and velocity variables with a dynamics

process:

xt = Axt≠1 + wt≠1, wt≠1 ≥ N(0, W )

nt ≥ p(nt|xt)
where xt is a 5 x 1 vector corresponding to xpos, ypos, xvel, yvel, and an o�set variable. Note

that xt always refers to the full 5 x 1 vector, whereas xpos, xvel each refer to specific cursor
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variables. Additionally, nt are binned spike counts (100 ms bins for Monkey G, 5ms bins

for Monkey J).

For the Kalman Filter, the observations process nt ≥ p(nt|xt) is:

nt ≥ N(Cxt, Q)

nt = Cxt + qt, qt ≥ N(0, Q)
Here, C is an nx5 matrix where each row represents the preferred direction and mag-

nitude of each neuron in a cosine tuning model. In these experiments, neural activity is

modeled as a linear function of velocity, so C[:, 1, 2] = 0. At each time bin, an estimate of

xt is computed from the previous estimate of x( ˆxt≠1|t≠1) through the time update process

( ˆxt|t≠1 =E(xt| ˆxt≠1|t≠1)), and then a refined estimate of is computed using the observed

spike counts, (the measurement update, x̂t|t = E(xt| ˆxt|t≠1, nt)). For the Kalman Filter,

these two update steps can be summarized with the follow expression:

x̂t|t = F ˆxt≠1|t≠1 + Ktnt

where Kt is the Kalman Gain and takes into account C, Q, P̂t|t where P̂t|t = E((x̂t|t ≠
xt)(x̂t|t ≠xt)T ). Kt approaches steady-state in BMI tasks within seconds (Kt æ K, [217]).

Further details about velocity Kalman Filter decoding are available [73, 218].

For the Point Process Filter, the observations process nt ≥ p(nt|xt) is:

p(nt|xt) =
nŸ

i=1
(⁄i(t|xt, „i)�)ni

texp(≠⁄i(t|xt, „i)�)

where ⁄i(t|xt, „i) is each output units’ instantaneous firing rate modeled as a log-linear

function of xt:

⁄i(t|xt, „i) = exp(—i + Ê–ixt)
where –̃i is tuning model parameter that only includes the velocity terms: –̃i =

[0, 0, –xvel, –yvel, 1]T . Thus, —i, –̃i are the parameters that model how an output units’

firing rate (⁄i) modulates with velocity, and the expression for p(nt|xt) describes the

Poisson Point Process model that takes into account the velocity-modulated ⁄i. The

Point Process Filter decoder also has a time-update and measurement update steps that

may be summarized with the following expression:

x̂t|t = F ˆxt≠1|t≠1 + P̂t|t

nÿ

i=1
–̃i(ni

t ≠ ⁄(t| ˆxt|t≠1, „i)�)

Further details about Point Process Filter decoding can be found in [219, 220, 221].
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6.2.4 Analysis
6.2.4.1 Repertoire Similarity

The repertoire similarity metric used in Figure 1G computes what percentage of the

32 sections have di�erences in distributions that are more than half of the mean of their

distributions:

similarity = 1 ≠
q32

b=1 |pco(b) ≠ pobs(b)| > 0.5 ú [pco(b) + pobs(b)]
32

where pco(b) refers to the empirical probability of observing a velocity command that

falls in section b.

6.2.4.2 Subspace Overlap Metric

The subspace overlap metric is a uni-directional metric that computes what fraction

of variance from one shared space is captured by another shared space. For example, if

one has two factor analysis models (reminder: kis dimensionality of z, U is the loading

matrix between zto x, � is a diagonal matrix characterizing private variance and µis the

population mean):

FA1 = {k1, U1, �1, µ1}, FA2 = {k2, U2, �2, µ2}

The subspace overlap from between the two first requires finding the main shared

variance (UUT
main, see A.2) and projection matrix to main shared spaced (Pmain):

overlap1æ2 =
trace(Pmain,2UUT

main,1P
T
main,2)

trace(UUT
main,1)

Note that overlap1æ2 ”= overlap2æ1. When computing this metric for within-task vs.

across-task overlap as in 6.3.1.1, both directionalities were considered.

6.2.4.3 Comparisons of mean firing rate for a given command

In 6.3.2G, we compare the mean firing rate of each neuron for a given velocity command

across both across tasks as well as within task. We followed the following procedure for

each comparison outlined in 6.3.2D:

1. Across Task vs. Within Task:

(a) First, for each day, spike counts and neural push velocity vectors from 100ms

bins from successful trials were accumulated.

(b) Spike counts and their corresponding neural push vectors from the 100ms

bins from each task were randomly assigned to subset 1 or subset 2 (yield-

ing CO_subset1, CO_subset2, OBS_subset1, OBS_subset2).
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(c) Within each subset, neural spike counts and corresponding neural push vectors

were further discretized by assigning the neural push vectors to their corre-

sponding velocity sections.

(d) For each subset and each velocity section, a mean neural firing rate vector was

computed. If fewer than 15 bins were assigned to a particular velocity section,

the mean neural firing rate vector was populated with NaNs.

(e) To compute the across-task di�erences in mean firing rates, the absolute di�er-

ence in mean firing rate between i) CO_subset1 and OBS_subset1 ii) CO_subset2

and OBS_subset2 was computed for each velocity section. These calcula-

tions yielded two n x 1 vectors per velocity section. Each of these vectors

was then summed across neurons, yielding 2 ‘across-task-population-di�erence-

estimates’ for each velocity section. If any of the subsets did not have enough

data to estimate a mean firing rate, then the population di�erence estimate

that used that subset was not used.

(f) To compute the within-task di�erence, the same procedure described above in

(e) was followed, except instead of taking the di�erence between i) CO_subset1

and OBS_subset1 and ii) CO_subset2 and OBS_subset2, now di�erences

were taken between i) CO_subset1 and CO_subset2 and ii) OBS_subset1

and OBS_subset2. This procedure also yielded two ‘within-task-population-

di�erence-estimates’.

(g) Each velocity section then had two across-task-population-di�erence-estimates

and two within-task-population-di�erence-estimates. The absolute di�erence

between the first across-task-population-di�erence-estimate and first within-

task-population-di�erence-estimate was used to compute one across-vs-within-

task-population-di�erence-estimate. This was repeated for the second within

and across task population-di�erence-estimate.

(h) At the end, for each day, 2 x n_section estimates (or fewer, if some sections has

too few samples to estimate) were obtained to estimate the across-vs-within-

task-population-di�erence-estimate. These values constituted Bar 1 in 6.3.2G.

2. Across Task Close vs. Across Task Far:

(a) This procedure was very similar to the Across Task vs. Within Task procedure.

Instead of creating two CO subsets and two OBS subsets using the full task

data, instead two CO and OBS subsets were created based on time in session.

On each day, the 16 trials of the CO task session closest in time to the OBS

task session was identified and used to create CO_close (light green in 6.3.2E).

Then, 16 trials of the CO task session furthest in time to the OBS task ses-

sion was identified and used to create CO_far (dark green in 6.3.2E). Similar

sections were made for the obstacle task (16 trials closest to CO session used
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to make OBS_close – light blue in 6.3.2E, 16 trials furthest from CO session

used to make OBS_far—dark blue in 6.3.2E).

(b) For each subset and velocity section, a mean population firing rate was com-

puted using data from that subset.

(c) To compute the close and far across-task-population-di�erence-estimate, the

absolute di�erences between i) OBS_close and CO_close and ii) OBS_far and

CO_far were computed for each velocity section, respectively. After summing

each vector across neurons, this yields one close and far across-task-population-

di�erence-estimate for each velocity section.

(d) To compute the close-vs-far-across-task-population-di�erence-estimate, the ab-

solute di�erence was taken between the close and far across-task-population-

di�erence-estimate for each velocity section, yielding for each day n_section

estimates (or fewer, if some sections had too few samples to estimate).

3. Within Task Close vs. Within Task Far:

(a) Same as above, but with subsets chosen to be i) CO_subset,close1 as the 16

trials before the midpoint of the CO task, ii) CO_subset, close2 as the 16 trials

after the midpoint of the CO task, and iii) OBS_subset, close1 iv) OBS_subset,

close2, v) CO_subset, far1 as the first 16 trials of the CO task, vi) CO_subset,

far2 as the last 16 trials of the CO task, vii) OBS_subset, far1, and viii)

OBS_subset, far2. Here, initial di�erences were taken between: i. CO_subset,

close1 and CO_subset, close2 ii. OBS_subset, close1 and OBS_subset, close2

iii. CO_subset, far1 and CO_subset, far2 iv. OBS_subset, far1 and OBS_subset,

far2 And then final di�erences were taken between: CO_close vs. CO_far and

OBS_close vs. OBS_far.

6.2.4.4 Data and Performance Metrics for Online Subspace Testing

For the tests of how using the shared space from one task influences performance on

the other task (6.3.1.1E, F), data from 9 days with Monkey G were used (overlapping,

but not identical to the 9 days used for the main centerout vs. obstacle comparisons). For

these tests, the metrics used for comparison between online performance with within-task

vs. across-task subspaces was normalized time to target and normalized path length:

BMI Performance Metrics Time to target was computed as the amount of time it

took to leave the center and arrive at the peripheral target for successful trials. Faster

times to target indicate better performance with the decoder. One issue in comparing

within vs. across task shared spaces for online control is that there are four permutations

we would ideally aim to test on a single day: CO_space-CO_task, OBS_space-CO_task,

CO_space-OBS_task, OBS_space-OBS_task. Further, to compute CO_space and OBS_space,
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an initial block of performance was needed on respective tasks. Finally, we also used de-

coders that were either seeded with the CO task or OBS task. All of the above conditions

resulted in an inability to perform all decoder-task-subspace permutations on a single day.

Unfortunately, comparing BMI performance across days in this animal yielded highly vari-

able results depending on unit quality for that particular day, motivation level, and as we

find later – whether the CO or OBS task was used as the seed decoder. Thus, we compute

normalized performance metrics for easier comparisons across days. On each day, regard-

less of whether the CO or OBS task is used to seed the decoder, and regardless of which

shared space is tested on which task, there is always a block in which the decoder is used

to perform the task tested on that day without any shared space manipulations. Thus, we

normalized all time to target metrics using that block. For example, assume on day 1 we

want to test how a shared space fit from the CO task performs when the subject is trying

to do the OBS task. We could compute time to target for all of the CO_space-OBS_task

successful trials. Then, for each trial to target i, we subtract the mean time to target

measured on that same day, with that same decoder, performed on the same task (here,

OBS), with full activity nt without any shared space manipulations, to target i. This

way, any biases in the decoder related to speed or direction do not influence our ability

to detect di�erences in using one shared space compared to another.

The same procedure was used for path length. First raw path length was computed as

the sum of the distances the cursor travel from time point to time point over the course

of a successful trial to target iduring a specific task. Then, normalized path length was

computed by subtracting the mean path length during baseline performance on the same

task, with same decoder, without shared space manipulations, to the same target from

raw path length.

Rewards per minute were computed by estimating the number of rewards obtained

within 2 minute windows during task performance. Thus if a particular block was per-

formed for 11 minutes, 5 values were obtained for ’rewards per minute’ for that block. No

normalization was performed on the rewards per minute estimates presented in 6.3.2.

Tuning Mismatch Metric For each BMI output unit, we compared the mismatch

in what the decoder tuning curve model to a model estimated from online performance.

For each block of online BMI performance, we regressed the cursor velocities against the

neural activity patterns using linear regression, to yield an estimate of how the subject

was ’using’ the BMI output neuron i in online control, vi
task. We then took the di�erence

between the decoder-fit preferred vector direction C(i, 3 : 4) (see 6.2.3 for details about

decoder) and preferred vector direction fit from the task vi
task, dvi = C(i, 3 : 4) ≠ vi

task,

and summed di
vover all neurons ito yield a single DV for each block. The angle of DV was

compared across blocks in 6.3.2.
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6.2.4.5 Linear Dynamical System

The linear dynamical system that was fit to our data used very similar methods to

[214]. Here we fit the following model to our neural data:

zt = Azt≠1 + wt, wt ≥ N(0, W )

nt = Czt + qt, qt ≥ N(0, Q)
If the above model looks similar to the Kalman Filter Decoder, it’s because it’s exactly

the same. The Kalman Filter Decoder assumes that kinematics of the cursor (xt) follow a

dynamics process (first equation), and that neural activity (nt) is a linear readout of the

cursor kinematics. In contrast, the way this model is used in the work below, is the model

the dynamics of the neural activity itself. Thus, ztis a low-dimensional latent factor, must

like it was in FA. However, now instead of E(zt≠1z
T
t ) = E(ztz

T
t+1) = 0 as in FA, now

there are temporal correlations modeled in zt. Thus, the activation of the latent variables

cannot jump around from time point to time point, but must follow some temporal rules

governed by A.

Fitting In all analyses, we use a 15-state linear dynamical system. Thus, zt œ R15, A, W œ
R15x15

. To fit an LDS (and all the models the LDS is compared to in 6.1, 6.4) for a par-

ticular task’s data, 20% of trials from the CO and OBS task from a particular day is

held out as training data (Ntest,CO and Ntest,OBS). The remaining 80% of trials were used

as training data. Since temporal structure is vital to maintain in fitting the LDS, each

’datapoint’ was a single trial instead of just a bin of data. Each trial gets one turn being

in the test dataset, and 4 turns being in the training dataset.

For the test and training data sets, trials were organized in structures and included

a full 1 second of data before their actual start. An LDS was fit using expectation-

maximization [222]implemented in python package (https://github.com/mattjj/pylds)

with the following relevant parameters:

• number of states: 15

• number of EM iterations: 30

• initialization: from Factor Analysis fit to data, as in [214]

– C0 = U

– Q0 = �
– Let z1 = ˆz1:T ≠1, z2 = ˆz2:T

– A0 = (zT
1 z1)≠1(zT

1 z2)
– W0 = cov(z2 ≠ A0z1)
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Prediction, Filtering, Smoothing Once the LDS for a particular fold was fit, it was

then used to make predictions on held-out data. We review the following terminology:

• Prediction: E(zt|n1:t≠1, z0, P0)

• Filtering (e.g. what is done during Kalman Filter Decoding): E(zt|n1:t, z0, P0)

• Smoothing: E(zt|n1:T , z0, P0)
In order to make any of the above predictions, we first must estimate z0 and P0 (which

is E(zT
0 z0)). In order to do this, we use the whole trial estimate in order to estimate the

tenth bin (1 sec after start of trial), E(z10, P10|n1:T , z0 = 0, P0 = I). Since we data for our

training and testing data starting one second before the actual start of the trial, we can

then use E(z10, P10) as the initial starting point for our actual trial estimates.

Armed with values of z0, P0 for our actual trial starts, we can now predict, filter, and

smooth to our hearts’ content according to [222].

Dynamics Ratio In order to determine how much the dynamics process actually con-

tributes to estimates of ztcompared to the observations process, we compute a “dynamics

ratio” for each bin in each trial, as is done [214]. For each bin, the norm of the dynamics

update (or time update), the norm of the innovations update (or measurement update),

and ratio between the two are computed:

dyn = | ˆxt|t≠1 ≠ ˆxt≠1|t≠1|

innov = |Ktnt ≠ C ˆxt|t≠1|

ratio = dyn

dyn + innov

Estimating Subspace Overlap Within an LDS For each LDS fit, there is C matrix

fit which defines the mapping from ztto nt. This C defines a low-dimensional plane

(specifically 15 dimensional) within Rn
, that is analogous to the shared space from FA.

We can see how similar these planes are by defining the LDS-subspace overlap metric:

1. For each LDS, concatenate all ẑt into an pxTmatrix Z.

2. Compute main shared variance (UUT
main) and the normalized projection matrix

(Pmain) of the following co-variance matrix: CZZT CT
(see ??). Note that in the

LDS, there is no requirement that zt ≥ N(0, I), so we compute the empirical co-

variance of ztinstead of assuming it is the identity (as done in FA).

3. Compute overlap from LDS1 æ LDS2:

overlapLDS1æLDS2 =
trace(Pmain,2UUT

main,1P
T
main,2)

trace(UUT
main,1)
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6.3 Results
Action sequences are comprised of sequence of smaller units, which in motor con-

trol have been termed primitives [223], submovements [224], fragments [225], or strokes

[226]. While each concept has its own properties, they all describe a complete set of basis

movements that are used as building blocks to create the full set of more complex move-

ments. We term these set of basis movements as the action repertoire. Drawing from and

combining basis movements from the action repertoire yields action sequences for solving

goal-directed tasks in di�erent environments (6.3A).
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Figure 6.3.0 Action sequences in distinct BMI tasks. a) Left: A schematic illustrating the

repertoire of action commands, which in the case of BMI, consist of individual velocity

commands of varying directions and amplitudes, Middle: Two distinct action sequences,

required due to di�erences in task demands, contain at least one of the same action

(red arrow). Right: Red arrow is embedded in sequences with di�erent histories and

futures. b) We ask, how do the neural activity patterns that generate the red arrow in

the first, green action sequence di�er from the neural activity patterns that generate the

red arrow in the second, blue action sequence? c) Illustrated with a one dimensional
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velocity readout space (red dotted line) and two neural dimensions (x and y dimensions

of each gray plane). The axis along which the three planes lie is a time axis illustrating

the evolution of neural activity over time. The blue dotted lines are perpendicular to

the red dotted line on all three planes (representing sequential time points). Neural

activity patterns that lie on the blue line are decoded identically (arrow in blue box),

and thus the three trajectories plotted exhibit di�ernet neural activity but are decoded

identically. d) The brain machine interface loop used in this investigation. Single and

multi unit activity is decoded from primary motor cortex (M1) and dorsal premotor cortex

(PMd), and binned into 100 ms (Monkey G) or 5 ms (Monkey J) bins. Then a velocity

decoder is used to convert binned spikes into predicted cursor velocities. These predicted

velocities update the position of the cursor, which is driven either in a straight centerout

task, or a curved obstacle avoidance task. e) Example straight, centerout trajectories, or

curved obstacle trajectories for Monkey G. f) Distribution of velocity commands over an

entire centerout session and entire obstacle session. Gray scale refers to how frequently

a particular command was used (darker indicates more frequent use). g) Similarity of

velocity command distributions between the centerout and obstacle task sessions within

day (9 days for Monkey G, 4 days for Monkey J).

Here, we study the neural generation of the basis movements for BMI control, velocity

commands, and specifically ask how neural encoding of a single velocity command changes

depending on the sequence in which the command is embedded (6.3B). In both natural

motor control and in BMI control, there are many more neurons than number of behavioral

dimensions to control. For example, if we were to map the activity of two neurons onto

a BMI with a 1 dimensional velocity vector (6.3C, dashed red line), at each discrete time

point (pictured as grey planes), there are many neural activity patterns that can yield the

same behavioral output. In 6.3C, three di�erent neural activity trajectories through time

are pictured that all yield the same behavioral output (pictured as boxed black velocity

arrows). Since variations orthogonal to the velocity readout line do not a�ect behavior,

subjects have flexibility in how they generate desired movements.

Here, we designed two BMI tasks – a centerout task and an obstacle avoidance task. In

the centerout task, subjects control a 2D cursor to move from the center of the workspace

to a cued peripheral target. When reaching the target, they are required to hold within

the target for 200 ms. In the obstacle avoidance task, subjects must perform the same

centerout movements but now must avoid a square obstacle placed exactly between the

straight line connecting the center and the peripheral target (Monkey G), or must perform

target to target trajectories with an ellipse obstacle in the path (Monkey J). We analyzed

9 days of data from Monkey G and 4 days of data from Monkey J where on each day,

monkeys performed both the centerout and obstacle tasks with the same BMI decoder

(6.3D). Only successful trials were analyzed.

In both tasks, subjects must draw upon their action repertoire to generate trajectories

that bring their cursor to the cued peripheral target. In both the Kalman Filter decoder
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(Monkey G) and the Point Process Filter decoder (Monkey J), the cursor position and

velocity are modeled as states with a dynamics process. At each time bin, an estimate of

cursor state is computed from the dynamics process propagating the prior state estimate,

and then a refined estimate of cursor state computed using the observed spike counts (see

6.2.3 for details). Both processes can be summarized as:

xt = F ˆxt≠1|nt≠1 + G(nt)
where xt is cursor position and nt is binned neural spike counts. In the case of the

Kalman Filter, G(nt) = Knt where K is the Kalman Gain. In the case of the Point

Process Filter, G(nt) = P̂t|tC
T nt where C is a matrix œ Rnx5

with i row of C equal to –̃i

(see 6.2.3).

In the following analyses, we define the basis movements of BMI control as the con-

tribution of the observations to the update of cursor state, or G(nt). We choose not to

define the actual cursor velocity as the basis movement because the subject does not con-

trol the dynamics process, and so the only way for them to update the state of the cursor

is through generating neural observations that will direct the cursor. There is evidence

that subjects develop an internal model of the cursor dynamics during BMI control [80],

making it likely that their neural commands are issued to the BMI with full knowledge of

how it will update control of the cursor. Since we are interested in how subjects generate

control, we define the basis movement for a particular bin as the velocity command G(nt).
As evidenced from example cursor trajectories in 6.3E, subjects succeed at generating

successful trajectories in both tasks. Cursor trajectories in the centerout task are straight

whereas ones in the obstacle avoidance task are more curved. In subsequent analyses, we

pool over all targets and trials during performance of a given task to ask questions about

subjects select neural commands to generate desired action sequences. Thus, we first ask

how similar the distribution of velocity commands is across the two tasks. Each velocity

command is binned into one of eight angular bins and one of four magnitude bins as

shown in 6.3F for an example session from Monkey G. For each animal and each session,

the similarity of distribution of commands (see 6.2.4.1) is close to 1, indicating very

similar distributions of commands (6.3G). Thus, subjects draw from similar distributions

of velocity commands across tasks.

6.3.1 Manifold Similarity
6.3.1.1 Task-Specific Comparison

Given that subjects draw from very similar distributions of velocity commands, we

next ask whether neural activity used to control the BMI in di�erent tasks lies within the

same manifold parameterized by a low dimensional set of latent variables. Recent work

demonstrates that subjects’ selections of neural activity to control a 2D cursor BMI are

well described by combinations of low-dimensional latent variable activations [91]. It is

suggested that creating new cursor trajectories would involve using the original activation
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patterns but strung together in a di�erent order [227, 91]. If subjects are overall generating

the same velocity commands in the centerout and obstacle tasks (6.3G), and are generating

each of these commands with the same latent variables activations, then we expect the

manifold fit from neural activity during the centerout task versus the obstacle task to be

nearly identical (6.3.1.1A). On the other hand, if performing the di�erent cursor sequences

required in the di�erent tasks involves producing velocity commands with distinct latent

variable activations, the manifold fit from di�erent tasks may di�er (6.3.1.1B).
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Figure 6.3.1.1 Manifold Similarity. a) Example of where the neural activity commands

for both centerout (green) and obstacle (blue) action sequences are drawn from the same

manifold. The red dotted line again represents a one dimensional readout space, and the

boxes with arrows illustrate the decoded action sequence. b) Example of where neural

activity commands for the same centerout and obstacle action sequences as shown in (a)

are now drawn from di�erent task specific manifolds. c) Illustration of typical session

where first the centerout task is performed for about 20 min (green line), followed by

performance of the obstacle task for another 20 minutes (blue line). On some sessions

this order is reversed. Within these blocks, consecutive 16 trial epochs are defined and

subspaces are fit from the data in the epoch. These subspaces are illustrated by the green

and blue parallelograms. d) Comparison of across task vs. within task subspace overlaps

for Monkey G (top) and Monkey J (bottom). e) Example of typical session in which and

estimated subspace is used in online decoding. First, a normal 64 trial epoch is performed

(illustrated by green line), in this case on the centerout task. A subspace is fit from the

data in that block. Then the subspace is used in online decoding during performance in a

second block, in this case, on the obstacle task. The BMI loop shows the subspace (green)

and task (blue) used in online testing of subspaces. f) Normalized time to target and g)

normalized path length for di�erent combinations of tasks used to fit subspaces and tasks

performed.

In order to assess similarity of the task-specific manifolds, trials from each task on

each day were split into 16-trial epochs (6.3.1.1C). Spike counts from neurons that were

used to control the BMI were binned at 100 ms. Trials to all targets were concatenated

to yield an nxT array, where n is the number of neurons, and T is the total number of

bins (sum of bins over all 16 trials). Next, Factor Analysis (FA) was applied to estimate

a low-dimensional manifold for each 16-trial epoch [201]. FA decomposes the activity of

each 100ms bin of neural spike counts (vector) into a summation of i) a mean rate µ œ Rn
,

ii) private signal Ât ≥ N(0, �) where � has diagonal covariance, and 3) shared signals Uzt

where zt is a low-dimensional latent variable œ Rk, k < n, U œ Rnxk
. The low-dimensional

manifold is defined as the column space of U . Once an FA model was fit for each 16-

trial epoch (see Appendix A.1 for methods), we compared within task versus across task

manifolds. Each manifold was compared to every other manifold within its own task on

that same day, and every other manifold in the di�erent task on that same day. Manifolds

were compared using a subspace overlap metric, comprising of an estimate of how much

variance from Manifold A is captured in Manifold B, and vis versa (see 6.2.4.2). Both

estimates contributed to the overall estimate of within-task versus across-task subspace

overlap. In both monkeys, within task overlap was significantly higher than across task

overlap (Monkey G, Kruskal Wallis test statistic = 56.10, p = 6.89e-14, n_within =

2194, n_across = 1046, Monkey K Kruskal Wallis test statistic = 59.07, p = 1.52e-

14, n_within = 432, n_across = 452). Thus, surprisingly, tasks occupied significantly

di�erent subspaces.
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6.3.1.2 Online Test of Task-Specific Comparison

Though the centerout and obstacle subspaces are significantly di�erent, we sought to

assess exactly how di�erent a subspace overlap of 0.05 – 0.1 is in more concrete metrics by

using the task-specific manifolds as a neural pre-processing step in the online BMI loop.

This approach estimates nshared
t , or the component of each neural spike count vector that

is due to the low-dimensional manifold, Uzt, and mean, µ, (removes the component due

to Ât). Since some neurons in are not well explained by the low-dimensional factors, their

had a much lower variance than the original nt. This resulting in much slower movement

of the cursor. In order to remedy this, a scaling factor for each neuron i was derived:

—i =
ı̂ıÙ ‡2

i,full

‡2
i,shar

where ‡2
i,full is the variance of ni

t during the manifold-fitting block and ‡i
i,shar is the

variance of U(i, :)zt during the manifold-fitting block. Here we call — the vector of all

n—i
s. Note that — defined here is the same as —shar from chapter 5.

Thus, the final estimate of manifold-specific activity that was used as an input into

the decoder (instead of nt directly), was:

n̂t,shared = —(UU
Õ(UU

Õ + �)≠1(nt ≠ µ)) + µ

Then n̂t,shared is used as the observation in the online BMI instead of nt. If the centerout

and obstacle task manifolds are very di�erent in axes that have non-zero projections

onto the decoder axis (e.g. 6.3.1.1B), then n̂t,shared will be very di�erent depending on

whether the manifold if fit on the CO or OBS task, resulting in distinct cursor velocities.

Thus, if the manifolds are di�erent, then there should be a proportional di�erence in task

performance when using task A manifold versus task B manifold.

On each day (Monkey G only, data from 9 days not exactly overlapping days used

in main comparison), a decoder was fit and fixed. Subjects proceeded to perform either

the centerout or obstacle task with this decoder, constituting a manifold-fitting block.

Their neural data during this session was used to fit a task-specific manifold using FA

(6.3.1.1E). Finally, this manifold was used to estimate n̂t,shared which entered the BMI

decoder.

We assess performance for each combination of task and manifold (centerout manifold-

centerout task, obstacle manifold- centerout task, centerout manifold-obstacle task, ob-

stacle manifold-obstacle task, indicated by color coded BMI loops between 6.3.1.1F,G).

Since decoders had day-to-day variability in their cursor speeds, we normalize performance

metrics in each session by the mean of the metric in the manifold-fitting block performed

with the same decoder. 6.3.1.1F and 6.3.1.1G show the normalized time to target and

path length respectively. When subjects are using a BMI loop with a mismatch in the

task performed and the task used to train the manifold, time to target performance su�ers

(Monkey G, Kruskal Wallis test, normalized time to target: CO task-CO manifold vs.
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CO task-OBS manifold, statistic = 6.09, p = 0.0136, n co task-co manifold = 443, n co

task-obs manifold = 548, OBS task-CO manifold vs. OBS task-OBS manifold, statistic

= 6.76, p = 0.00933, n obs task-co manifold = 368, n obs task-obs manifold = 452) and

path length of cursor trajectories becomes longer for the obstacle task, but is una�ected in

the centerout task(Monkey G, Kruskal Wallis test, normalized path length: CO task-CO

manifold vs. CO task-OBS manifold, statistic = .021, p = 0.885, n co task-co manifold =

443, n co task-obs manifold = 548, OBS task-CO manifold vs. OBS task-OBS manifold,

statistic = 18.13, p = 2.06e-05, n obs task-co manifold = 368, n obs task-obs manifold =

452).

Thus, the di�erences in the centerout and obstacle manifolds described in 6.3.1.1D are

in a task-relevant dimension, and result in worse performance than when the task used

to train the manifold and the task performed match. These online results substantiate

the findings that across task manifolds are di�erent, and are di�erent in a task-relevant

dimension.

6.3.2 Tuning Di�erences
One hypothesis of how subjects generate sequences of movement is that they string

together basis movements from their action repertoire, where each basis movement is

consistently generated by a specific neural activity pattern. In BMI control, one theory

of how subjects learn to generate skillful control is that they learn how the decoder

maps the activity of each neuron into a velocity command, and learn to produce neural

activity patterns that will push the cursor in the desired direction [71, 73]. Perhaps these

consistent activity patterns for basis movements can be characterized by activations of

the low-dimensional factors spanning the intrinsic manifold [227]. However, given the

finding in 6.3.1.1 of distinct across-task low-dimensional spaces, we re-assess the initial

assumption that subjects use a consistent neural activity pattern to generate specific basis

movements. One possibility is that subjects can have di�erent across-task subspaces, but

on average use the same neural command to produce basis movements (6.3.2A). Pictured

here is a 3 dimensional neural space, with a 1 dimensional readout space (red dotted

line). The green and blue planes represent the intrinsic manifolds for the centerout and

obstacle tasks respectively. The intersection of these planes with the red plane represents

the mean neural activity pattern for a given velocity command (the planes are assumed to

be symmetrically distributed in the axis normal to the red plane for ease of visualization).

Here, the green and blue planes are di�erent, but the mean neural activity pattern for a

given velocity readout command is the same. Alternatively, it is possible that the di�erent

blue and green subspaces also have di�erent mean neural activity patterns for the same

velocity command (6.3.2B).
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Figure 6.3.2 Tuning Di�erences. a) Illustration of how mean firing rate for a given com-

mand can be consistent across task, but the subspaces can be di�erent. Here, the red

dotted line is again a 1D readout space. The red plane illustrates the intersection between

the red dotted line and the green and blue planes. In both illustrations, the blue and green

planes have the same mean firing rate for a given command, illustrated by the solid blue

and green lines. b) Illustration of how mean firing rate for a given command can be

di�erent with di�erent subspaces, same format as (a). c) Illustration of analysis flow to

assess tuning di�erences. d) Illustration of main within task vs. across task comparison.
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Two subsets of CO (light and dark green) and OBS (light and dark blue) data that are

compared. e) Control for drift in firing rates over time, comparison of across task data

that is close in time versus across task data that is far in time. f) Control for drift in firing

rates over time, comparison of within task data that is close versus within task data that is

far. g) Di�ernences in mean firing rates for the comparisons outlined in d, e, f. h) Online

test to illustrate how di�erences in tuning impact online decoding. In the timeline, the

green bar represents seeding and adapting a decoder during the centerout task. The blue

line represents assessing the decoder performance during the obstacle task. i) Comparison

of rewards per minute between blocks where decoder fitting task matches the performed

task (white bar) and blocks where decoder fitting task does not match the performed task

(gray bar). j) Same as i) but comparing angular mismatch between decoder’s assumed

preferred direction for a given output unit and inferred preferred direction from task for

a given output unit.

We first use a non-parametric method to assess consistency of neural activity patterns

for a given velocity command across tasks. We build up an estimate of the mean firing

rate for each velocity command for each task as follows (6.3.2C). For each 100 ms bin with

a successful trial for a particular task, we extract the two-dimensional velocity command

(vt œ R2
). Each velocity command is then discretized into one of 32 sections, as shown

in 6.3.2C. The sections split the radial space into 8 divisions and magnitude space into

4 divisions for a total of 32 sections. After all velocity commands have been assigned to

their sections, the corresponding neural activity patterns that were used to generate the

velocity commands are collected and averaged to yield a mean firing rate for each neuron,

for each velocity atom section (blue octagon in 6.3.2C). Then, we compare across task

mean firing rates by taking absolute di�erences in mean firing rate for each neuron in

each section, yielding many gray octagons (one per output unit in the decoder). Finally,

we sum over all neurons to yield a final octagon describing the absolute vector di�erence

between mean firing rates for each command across tasks. Sections with fewer than 15

instances in a task were excluded from analysis to prevent low counts from influencing

results.

A number of comparisons were made to assess across-task versus within task di�erences

in mean firing rate. 6.3.2D describes the first comparison. For each task, each 100 ms

bin was randomly assigned to subset 1 or subset 2 (light vs. dark colors). This division

allows us to compare across task di�erences (dark green vs. dark blue and light green vs.

light blue, were randomly chosen instead of dark green vs. light blue and dark blue vs.

light green) compared to within task di�erences (dark green vs. light green, dark blue vs.

light blue). If there are greater across task di�erences than within task di�erences, we

expect that the di�erences in across task vs. within task will be much greater than zero

(bar labeled with ‘1’ in 6.3.2G).

To assess whether di�erences in across-task vs. within-task mean firing rate were

due to a slow drift in firing rates over the day, or due to consistent adaptation over the
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day, we also compared near vs. close sections both across task (6.3.2E), and within task

(6.3.2F). If slow drift in mean firing account for the across-task vs. within-task mean

di�erences observed in bar 1, we would expect that across-task-close would show a much

smaller di�erence than across-task-far (6.3.2E), resulting in a large di�erence in 6.3.2G,

bar 2. Similarly, we would expect that within-task-close di�erences would be much smaller

within-task-far (6.3.2F), again resulting in a large di�erence in 6.3.2G, bar 3. However,

in both animals, bar 1 is significantly larger than bars 2, 3 (Monkey G, Kruskal Wallis

test for di�erences across three bars statistic = 16.72, p = 2.34e-04, bar 1 n = 540, bar

2 n = 65, bar 3 n = 159, Mann Whitney Test for Multiple Comparisons with Bonferroni

Correction, bar 1 vs. bar 2 p 5.69e-3, bar 1 vs. bar 3 p = 6.52e-04, Monkey J, Kruskal

Wallis test for di�erences across three bars statistic = 33.04, p = 6.69e-08, bar 1 n = 132,

bar 2 n = 23, bar 3 n = 64, Mann Whitney Test for Multiple Comparisons with Bonferroni

Correction, bar 1 vs. bar 2 p = 7.37e-5, bar 1 vs. bar 3 p = 8.74e-7). This finding indicates

that there are di�erences in mean firing rate for a given command across-task, that are

not present within-task, and that are not accounted for by drifts or adaptation over the

course of the day. Thus, the cartoon illustrated in 6.3.2B is an accurate depiction of

our current knowledge of how the intrinsic manifold and mean neural activity for a given

velocity command di�er across tasks.

Similar to our previous manifold analysis in 6.3.1.1, we were curious how big of a

mean firing rate di�erence of 0.4 Hz (Monkey G) or 0.9 Hz (Monkey J) is in more concrete

metrics. Also similarly to 6.3.1.1, we were able to test how much these di�erences matter in

an online experiment. Since the Kalman filter decoder used with Monkey G assumes that

neurons have an underlying linear tuning model, if a decoder is trained on the centerout

task then the fit linear tuning model will be di�erent than if the decoder was trained

on the obstacle task. If a subject is using a decoder with the incorrect underlying linear

tuning model, then the velocity command computed from the decoder will not match the

subjects’ intended velocity command possibly resulting in errors [80]. This experiment is

similar to assessing how inaccurate a human is when driving a car that always goes in

slightly the wrong direction than intended. If the degree of wrongness is high perhaps in

both the left and right direction, driving performance will be heavily e�ected, whereas if

it is only slight, it may not be noticed in short bouts.

To conduct this experiment, we seed a decoder using visual feedback of a specific task,

and perform decoder adaptation on this seed as the subject performs that same task.

Next, we use this decoder on both the centerout task and the obstacle task (6.3.2H).

Finally, we assess performance metrics when Monkey G used a decoder trained on the

same task that he performing, versus when using a decoder trained on the opposite task.

6.3.2I, left shows that Monkey G has significantly higher rewards per minute when the

decoder he is using is trained on the same task as the one being performed (white bar)

versus when the decoder is trained on the opposite task as the one being performed (grey

bar) (Monkey G, Kruskal Wallis test, W = 5.90, p = 0.01516, n_same = 92, n_di� =

60). Further, when comparing the angle di�erence (angle mismatch) between an estimate

of each neurons’ tuning during online task performance and in the decoder, same-task-
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decoder-training mismatch was smaller than di�erent-task-decoder-training (Monkey G,

Kruskal Wallis test, W = 3.52, p = 0.061). Thus, Monkey G exhibits a decrement in

task performance when using decoders trained on the incorrect task possibly because of

an angular mismatch in the decoders’ assumed preferred direction of neurons and his own

model of that neurons’ preferred direction.

6.3.3 Expanded Tuning Models
Our previous analysis demonstrated that subjects exhibit di�erent mean firing rates

for producing the same velocity command, and that such di�erences could have a detri-

mental role when training a decoder on one task and using it on the next. In this cursor

task, the decoder uses neural firing rates, usually 20-50 dimensional, at a given time bin

to produce a two-dimensional velocity command. With such a large redundancy, subjects

may internalize a more complex model of how the cursor responds to neural activity in-

stead of the simplest velocity tuning curve model that the decoder assumes. Perhaps the

subject represents lagged or leading velocities and positions, generating di�erent neural

activity patterns for the same instantaneous velocity command that occurs in a di�er-

ent sequence (e.g. as in 6.3A, center). We first investigate whether greater across-task

mean firing rate di�erences for a specific velocity section are predicted by greater dif-

ferences in what trajectory the velocity command is embedded within. Specifically, for

a given velocity section (6.3.3A, red arrow), we scan through each task and mark the

occurrence of when this velocity occurs. Then, the velocity commands 400 ms before

and 400 ms after our command of interest are extracted to yield a ‘command-aligned

action segment’ (6.3.3A). Action segments are collected for each task and averaged across

segments to yield a task-specific mean command-aligned action segment which we term

the command-aligned behavioral PSTH. An example of a command-aligned behavioral

PSTH is shown for Monkey G (6.3.3B). Finally, we ask whether commands with greater

across-task di�erences in their x and y velocity behavioral PSTHs (from -400 ms to 400

ms) exhibit greater di�erences in the mean firing rates for the specific command (at 0

ms). 6.3.3C shows the correlation between across-task di�erences in behavioral PSTHs

(y axis) and across task di�erence in mean neural firing rate (x axis), where each point

corresponds to an action segment on a specific day. Both animals exhibit significant

correlations between di�erences in their mean neural firing rates at 0ms and the di�er-

ences in their behavioral PSTHs (Two-sided t-test for significant slope in linear regression,

Monkey G, p = 2.39e-21, n=283, Monkey J, p = 5.27e-19, n = 84). Thus, the sequence

in which the velocity command is embedded influences the neural activity patterns pro-

duced. This finding supports the hypothesis that subjects have a representation of the

cursor that extends beyond the instantaneous command they are producing, not unlike

findings that representation of movement are better characterized by temporal segments

than instantaneous movement parameters.
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Figure 6.3.3 Expanded Tuning Models. a) Schematic of non parametric method used to

assess the mean action sequence in which velocity commands are embedded for CO and

OBS tasks. Briefly, for a particular task in a session, all examples of a particular velocity

command are aggregated, along with the 400 ms before and after the command. These

900 ms are averaged, yielding a mean action sequence for the task. b) Example x velocity

action sequence. c) Correlation between log of the di�erence in CO and OBS mean

neural activity patterns (at 0ms) for a given velocity command, and log of the di�erence

in the mean CO and OBS action sequence from a history of 400ms to future of 400ms
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for the same velocity command. Each point is a velocity command from a particular

session. d) Expanded parametric linear tuning models where neural activity is modeled

as a linear readout of velocity or velocity and position. The residuals model explains the

residuals of the original model as a linear combination of task specific velocity commands.

e) Illustration of velocity tuning models (dotted line) and position and velocity tuning

models (solid line) with di�erent history or future lags. After the solid black line, both

history and future lags are included. f) Correlation between normalized of each of the

models and normalized of the residual models. As the models explain more variance, the

apparent task specific velocity commands is reduced.

We next investigate which cursor parameters (position, velocity) and time lags account

most for neural activity di�erences across tasks by using linear models. First, the neural

activity at each time bin is modeled as a linear combination of cursor positions and

neural push velocities at various lags, as formalized in 6.3.3D. These models use data

from both tasks. The amount of neural variance that each model can explain is plotted

in 6.3.3E. At the top of the figure is a symbol for each model illustrating if it includes

lagged cursor movement terms (-), leading terms (+), neither (0), or both (+/-). The

solid line illustrates models that have position and velocity terms, and the dashed line

illustrates models that only have velocity terms. The color intensity of each column refers

to how many regressors are used in the velocity version of each model (corresponding to

the inclusion of terms from increasingly far from 0 lags). The amount of neural variance

accounted for increases with the addition of position terms (solid line is greater than

dashed line), and with the inclusion of more regressors.

Since we are specifically interested in accounting for neural firing pattern di�erences

in the centerout and obstacle tasks that were reported in 6.3.3C, for each linear model in

6.3.3E we assess how much of the remaining, unexplained neural variance can be accounted

for by a task-specific neural firing pattern (residual model, 6.3.3D). If a model does not

account well for the di�erences in firing rates across tasks, then the residual model which

has a binary task factor (tsk = 0 for the centerout task, 1 for the obstacle task), ought

to account for a large amount of neural variance. On the other hand, if a model does

account for the across-task di�erences in neural firing rates, then the residual model will

account for little neural variance.

In 6.3.3F, we plot the normalized R2 for each model from 6.3.3E versus the normalized

R2 of the residual model for each model. In this plot, one point is one model fit on one

day of data, and the normalized R2 value is the R2 for that point divided by the mean

R2 across all models for that particular day. The significant negative correlation in both

animals demonstrates that as the models in 6.3.3E begin to include more cursor movement

parameters, the amount of neural variance accounted for increases, and the across-task

di�erences in firing rates are reduced (Two-sided t-test test for non-zero slope, Monkey G

p = 0.0317, n = 234, Monkey J p = 2.69e-14, n = 104). In other words, the di�erence in

the centerout and obstacle tasks is merely that the same actions are strung together in
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di�erent sequences, so modeling neural variance as a function of an increasing number of

velocity lags and leads essentially models neural variance as a function of task.

At this point, we have the notion that subjects may have a complex internal model of

how the neural-to-cursor mapping works. As we add more cursor kinematic parameters

to our model the amount of neural variance explained improves. However, it must be

challenging for subjects to keep track of so many previous and anticipated future cursor

kinematics. What if subjects have a very simple model of how the cursor works, but

there are guidelines on how their neural activity can evolve from time point to time

point? Thus, subjects may maintain a simple model of cursor kinematics, but due to

the temporal guidelines on their neural population activity, in di�erent situations they

generate activity di�erently. We explore this possibility next.

6.3.4 Constraints on Neural Activity
There are numerous models that could describe how neural activity evolves from one

time point to the next. Possibly, neural activity must evolve smoothly, making a low

pass filter applied to individual neurons an accurate description. Maybe neural activity

only changes at specific frequencies, so employing a bandpass filter could describe those

changes. Maybe there is additive noise in neural activity, preventing the above models

from achieving accurate descriptions of neural activity, so employing a Weiner filter would

best describe the evolution of activity. Maybe neural activity changes only occur in a

low-dimensional space, so employing dimensionality reduction methods prior to modeling

temporal dynamics is advisable. We do not assess the validity of every possible model in

the following work. Instead, we draw on previous literature and our findings thus far to

narrow the set of models we consider. First, we and others find that high dimensional

neural data recorded from motor cortex during performance of BMI tasks is well described

by low dimensional neural modes [90, 228, 91]. Thus, we choose to use models that reduce

the high dimensionality of neural activity to a lower dimensional population state. Prior

work has used a linear dynamical system (LDS) formulation:

zt = Azt≠1 + wt, wt ≥ N(0, W )

nt = Czt + qt, qt ≥ N(0, Q)
where zt is low-dimensional and represents the ‘population state’, and nt is a vector of

neural data as usual. Note, that there is no cursor kinematics information in this model,

unlike the linear tuning model. When this model is trained on arm movements, and used

online to make predictions (by linearly mapping zt to a two-dimensional cursor state), it

exhibited superior decoding compared to Weiner filters, Kinematic Kalman Filters, and

low pass filters [214]. Thus, given its power in explaining online BMI neural data and our

inclination that there may be temporal dynamics in our data we also consider how well

the same LDS with 15 states fits our data.
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First, how well can the LDS model account for the neural data compared to the full

linear tuning model (model from 6.3.3E with largest number of regressors, including posi-

tion)? For each day and each task, a 80% of data is used to estimate a linear tuning model

and a LDS model. Performance on 20% of the held-out task data is then assessed. Since

the linear tuning model is acausal, incorporating cursor kinematic information from future

points, we compared the performance of the linear tuning model to the performance of

smoothed estimates of observations from the LDS. For both animals, the LDS significantly

outperforms the linear tuning model (6.1A Kruskal Wallis test , Monkey G: statistic =

25.95, p = 3.51e-07, n = 18 per model, Monkey J: statistic = 11.29, p = 7.78e-4, n = 8 per

model). Thus, modeling neural activity as a linear function of a previous low-dimensional

neural activity state without any cursor kinematics movements more successfully predicts

neural activity than using a linear tuning model with tens of terms devoted to capturing

cursor movements.

We next consider how well the LDS fits neural activity compared to FA, a model that

reduce dimensionality but does not model temporal dynamics and a Gaussian low pass

filter, a model that incorporates temporal dynamics but not dimensionality reduction.

For a fair comparison, we only use the filtered state estimate of the LDS to estimate the

filtered observation estimate, instead of the smoothed state estimate we used in 6.1A.

Since there are many neural signals that do not contribute the decoder substantially and

are well-predicted by a low-pass filter, we also ask how much of the task-specific neural

activity the LDS captures (6.1B). We define task-specific neural activity as predicted

neural activity passed through the decoder to yield predicted cursor velocity commands.

In both animal, the LDS explains significantly more variance in cursor velocity commands

than FA or the low-pass filter (Monkey G, Kruskal Wallis test for di�erences across three

models = 27.90, p = 8.72e-07, n = 18 for all models, Mann Whitney Test for Multiple

Comparisons with Bonferroni Correction, LDS vs. FA p = 1.57e-05, LDS vs. LPF p =

2.25 e-06, Monkey J, Kruskal Wallis test for di�erences across three models = 15.74, p

= 3.82e-04, n = 8 for all models, Mann Whitney Test for Multiple Comparisons with

Bonferroni Correction, LDS vs. FA p = 7.41e-03 , LDS vs. LPF p = 9.39e-04).

In an extreme case where there are little temporal dynamics (A matrix is zero), the

LDS will approximate an FA model. We confirm how much the dynamics are being used by

a metric termed the ‘dynamics ratio’ [214], or a ratio of the magnitude of the time-update

step to the sum of the magnitudes of the time-updates step and the measurement-update

step. Previous work fitting an LDS to arm-movement data has reported dynamics ratio

values of 0.35-0.50 [214]. For both animals, the LDS dynamics ratio is 0.45-0.6, indicating

that in the LDS, linear dynamics contributed substantially to the state estimate. Thus,

the LDS is a model that captures substantial neural variance compared to the tuning

curve model, an FA model, and in Monkey J, a low pass filter with a Gaussian window of

300 ms 6.1,6.2. In Monkey G, we suspect that due to a number of poorly isolated units

included in the decoder that do not contribute to cursor movement substantially, a low

pass filter was a good model due to the activity of these units. If we instead assess decoded

velocity commands by the LDS, FA, and low pass filter, which isolates the components
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Figure 6.1: Linear Dynamics explain most variance. a) Comparison between the linear

dynamical system model and the full linear tuning model, both of which use observation

of past and future neural (LDS) or kinematic (linear tuning) activity to estimate the

neural activity at the current time point. b) Filtered estimate of decoded neural activity

from LDS compared to the FA model, and a simple 300 ms gaussian kernal low pass filter.

Neural activity is estimated for each of these models and then the neural push from these

estimates is compared to the true neural push.
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of neural activity that contribute to movement, we find that the LDS outperforms the

others 6.1. Finally, in the LDS, the linear dynamics are substantially used.

6.3.5 Generalized Linear Dynamics
In this work, we have hypothesized that subjects are using a consistent model to

control the BMI cursor in both tasks, and we have sought to uncover a framework that

captures how neural activity is generated for one task that also generalizes to the other

task. Thus far, we report that subjects do not use a consistent intrinsic manifold to

generate activity in di�erent tasks, nor do they generate the same velocity commands

consistently across tasks. Given how well an LDS fits the neural data compared to other

models, how general are the linear dynamics across tasks? For each model trained on a

subset of one task’s data, its performance on held-out data is compared to performance

on data from the non-trained task shown in the bottom row of 6.2 (Kruskal Wallis test,

Monkey G, n = 18 per model, test statistic = 7.752, p = 5.37e-03, Monkey J, n = 8 per

model, test statistic = 0.172) . For both the FA model and LDS model, the ability of the

model to predict within-task held out neural data (left bar) is compared to predictions

on across task neural data (right bar). We also compare how much of the task-relevant

neural activity is captured in 6.3. In both animals, the di�erence between within task and

across task estimates of velocity commands predicted by the LDS is significantly smaller

than for FA (Kruskal Wallis test, Monkey G, n = 18 per model, test statistic = 23.43,

p= 1.29e-06, Monkey J, n = 8 per model, test statistic = 11.29, p = 7.78e-4). Indeed the

linear dynamics and observation model from one task generalize better to the other.

Within the population state-space of the LDS, do the di�erent tasks exhibit distinct

subspaces that they occupy? If they do, then perhaps our findings from 6.3.1.1 are

consistent with temporal dynamics influencing which how neural activity patterns evolve.

Since di�erent action sequences require distinct ordering of velocity commands, and the

linear dynamics influence how neural activity patterns can evolve through the population

state space, perhaps the di�erent action sequences are initialized at distinct points in

the state space that can take advantage of the di�erent linear dynamics to guide activity

patterns through the space in a desired sequence. In this framework, subspace overlap

di�erence across are to be expected. We performed a similar analysis as in 6.3.1.1D, but

now instead of estimating the subspace from an FA model, we use the LDS model to

compute the subspace for a 16-trial epoch (see 6.2.4.5). Indeed, when comparing LDS

subspace overlaps, they are lower across-task versus within task (6.4B).

We confirm if our intuition that the subspace overlap di�erences are due to the neural

activity patterns following consistent linear dynamics through di�erent population state

spaces. Since we hypothesize that neural activity patterns are following linear dynamics

to generate di�erent action sequences, a selected velocity command from a given action

sequence ought to be produced with neural activity that has a high dynamics ratio within

the sequence it falls in. On the other hand, if we interchanged that velocity command

and corresponding neural activity pattern with an identical velocity command (vel_new)
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Figure 6.2: a) Comparisons of the neural activity estimates from the filtered LDS, FA,

and low pass filter. b) Comparisons of neural activity predictions on within-task held-out

data (left bar) or across-task data (right bar) for the LDS and FA models. The LDS

generalizes much better across-task than the FA model does.
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Figure 6.3: Comparisons of generalizability of the LDS and FA models based on accuracy

of decoded velocities from estimated neural activity for the held-out within task data (left

bar) versus across task data (right bar). The LDS generalizes much better across-task

than the FA model does.

and its corresponding neural activity pattern (n_new) from another action sequence,

the dynamics ratio of this interchanged command will likely be lower. In this analysis,

vel_new can come from an action sequence that is directed toward the same target in the

same task, a di�erent target in the same task, or from the other task. 6.4C shows that the

dynamics ratio is significantly decreasing as the action sequence become less similar to the

original (Monkey G: Cuzick’s test for significant ordering of groups, z = 6.01, p = 1.86e-

09, decreasing order , Monkey J: Cuzick’s test for significant ordering of groups, z = 4.59,

p = 4.53e-06, decreasing order). Thus substituting in an identical velocity command from

increasingly di�erent action sequences would make the original sequence have decreasing

dynamics ratio. Thus, identical velocity commands are produced di�erently in such a way

that keeps the dynamics ratio high in respective action sequences.

6.3.5.1 High Dimensional Linear Dynamics Enable Complex Action Sequences

Finally, we assess how the dimensionality of the model fit with Factor Analysis com-

pares to the dimensionality of the Linear Dynamical Model. One prediction is that since

the LDS models have temporal constraints, in order for the model to capture the same

variance as the Factor Analysis model, it would need to have a higher dimensionality.

Indeed, 6.5shows that to be true.

6.4 Conclusions
Above we have shown that for two di�erent BMI tasks, subjects draw neural activity

commands from di�erent low dimensional manifolds. These subspaces di�er in a task-

relevant manner – using the subspace fit on the opposite task results in task performance
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Figure 6.4: b) Main shared subspaces overlap in the LDS for epochs of 16 trials (as in

6.3.1.1D). c) Dynamics ratio when i) using velocity commands from own action sequence,

ii) replacing velocity commands with ones from same task and target, iii) replacing ve-

locity commands with ones from same task but di�erent target, or iv) replacing velocity

commands with ones from di�erent task.
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Monkey G Monkey J

Figure 6.5: Main shared dimensionality of LDS vs. FA models.

decrements. These di�erent tasks also use, on average, di�erent neural activity patterns

for generating the same command. When linear decoders are fit on one task, they result

in performance decrements when used to perform the other task. Using more complex

models of tuning that include parameters capturing tuning to the past and future of

the cursor position and velocity improves tuning model performance. However when

compared to models that don’t have an explicit encoding model (e.g. FA or LDS), the

variance captured is low. How do subjects represent the activity of the cursor, then?

What rules govern how neural activity is generated at di�erent time bins?

We turned to modeling temporal relationships between consecutive bins of neural

activity using an LDS. We find that the LDS explains more variance than FA or the

tuning curve models. We also find that the LDS generalizes across task better than FA

(fit on one task, test on other), meaning that the dynamics process fit with one task must

be general in the second task. This is surprising given that the subspace overlap across

tasks is still significantly di�erent in the LDS. Thus, even though fitting data with one task

may not fully span the space of the LDS, the dynamics that are defined by the A matrix

are still accurate even in parts of the space that the training data does not span. Thus,

the A matrix defines a set of temporal rules that generalizes across tasks. We confirm that

individual action sequences follow these dynamical rules by comparing how ’dynamical’

they would be if we were to substitute out velocity commands and corresponding neural

activity that produced the command for the same velocity command from a di�erent

action sequence going to the i) same target during the same task, ii) di�erent target during

the same task, iii) di�erent task. The finding that these substitutions progressively make

the action sequence less dynamical confirms that neural activity does indeed abide by
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dynamical rules, justifying the tuning and subspace di�erences previously noted. Below

we discuss the implications of this work for theories of motor control and representation.

6.4.1 Low Dimensional Manifolds for Computation
Although there is no encoding model explicitly built into how a low dimensional man-

ifold would contribute to movement, it has been proposed that low-dimensional neural

activity could be responsible for driving movements e�ciently [227]. Indeed other groups

have found tuning of low-dimensional factors to the cursor in a 2D BMI task [91], sug-

gesting that if tuning

We find, however, that subspaces are slightly di�erent for di�erent tasks, despite the

decoder and e�ector being identical. Perhaps using a higher dimensional manifold is

necessary as more tasks are performed, however, this suggests that the low dimensional

manifold is not su�cient for explaining how neural activity is generated from a specific

e�ector.

6.4.2 Representation of Movement
In motor tasks, it has been found that tuning curves can drift over time during per-

formance of the same, well-learned task [229, 230, 231, 232], or can change as the task

requirements change [233, 234]. Similarly, we demonstrate in the linear tuning curve

analyses, that even in a very simple motor task with tens of neurons, a linear decoder,

and two output dimensions, that in order to successfully drive the cursor during di�erent

tasks subjects do not exhibit a consistent representation of cursor movement. Previous

work defending representation of movement variables in motor cortex has discussed many

possible reasons for this drift in representation. First, tuning curves could be non-linear

instead of linear with movement, thus di�erent distributions of neural-kinematic pairs

may result in di�erent linear tuning curves. We find that the kinematics are quite similar

from task to task though (6.3G). We also do a non-parametric tuning analysis and find

greater across-task versus within-task di�erences in neural activity patterns for a given

velocity command (6.3.2). Second, tuning curves could di�er due to unfit co-variates.

We do sweep position and velocity co-variates at various lags. Perhaps though, there are

uncaptured co-variates such as changes in posture, or physical movement that di�er from

task to task. Third, subjects could exhibit di�erent types of aiming for di�erent tasks.

As found in [203], there are di�erent aiming strategies for di�erent targets, and corre-

lating neural activity with the inferred aimed direction yields more accurate estimates of

tuning than correlating activity with the cursor direction. Perhaps in our task, subjects

aim di�erently depending on whether there is an obstacle present or not, making our

tuning curves based on neural push seem inaccurate across task. Fourth, it is possible

that noisy plasticity drives changes in tuning curves over time, in a random walk fashion

[229]. If this were the case though, we would expect to see greater di�erences in within

and across-task comparisons between near and far epochs in 6.3.2. Finally, perhaps the
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subjects are still learning the task and adjusting their strategy online. This seems unlikely

since performance on either task does not improve over days, or within the course of a

single day. Overall, given the evidence we present demonstrating di�erences in tuning for

di�erent tasks, it seems unlikely that these di�erences could support a representational

view of motor cortical population activity.

6.4.3 High-Dimensional Linear Dynamics
In contrast to tuning models and manifolds, incorporating linear dynamics significantly

improves the explained neural variance. Indeed, linear dynamical systems have been used

to describe population neural activity before, and have even been used online in BMI

control and demonstrated to exhibit better performance than typical encoding models

[214]. In [214], the LDS is fit from arm reaching data and used online in a BMI task

where monkeys continue to use their arm during the task. This demonstrates that during

movement, compared to other models that do not take into account temporal dynamics,

an LDS is the best estimate of the population state.

In this work we show that not only does an LDS exhibit the most explanatory power

of neural activity compared to tuning models or manifold, but also that it generalizes best

across di�erent tasks with the same e�ector. It is notable that this is true even though

the di�erent tasks explore slightly di�erent subspaces within the LDS state space. Thus,

the dynamics captured by the A matrix are accurate even for portions of state space that

are not as well explored.

What exactly does the A matrix capture? Why are there temporal dynamics? Given

that neurons are embedded in a recurrently connected network, it may be challenging

for them to instantaneously change their rate of firing from one moment to the next.

Further, there may be low-dimensional modes of activity that reflect tighter connectivity

that also exhibit temporal constraints. However, in the manner in which the LDS is fit in

our results above, the A matrix has the challenging task of not only capturing intrinsic

neural dynamics, but also of capturing how neural dynamics may change in response to

inputs. This is less of a problem in feedforward tasks where input into the network likely

does not arrive in time to update the neural activity pattern, but becomes important to

disambiguate when assessing tasks that rely on feedback. In other words, in the dynamics

equation, there is no control input that could capture task information that is being fed

into the network. This is true in [215, 214] as well, and may be the reason why task

complexity and e�ector dimensionality are thought to increase the dimensionality of the

linear dynamical system needed to capture neural activity [235]. Instead of thinking of

the A matrix as being responsible for capturing all task-related modulations of a low-

dimensional population state, if the dynamics process was instead replaced by :

zt = Azt≠1 + But + wt, wt ≥ N(0, W )
where ut is a task-related input (cursor position and velocity with lags), then the A
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matrix would be exclusively responsible for explaining intrinsic neural dynamics. A should

then not necessarily change according to task, but rather should be a constant reflection

of the temporal constraints imposed by the network. Of course A may vary depending on

which data is used to fit it, but this is an estimation concern.

Further, when action sequences are generated by neural activity patterns that are not

well explained by dynamics (e.g. low dynamics ratio), is this because of intrinsic neural

noise? Or is it because of a large input that causes the neural population state to deviate

largely from its initial trajectory? In future work we seek to explore how the innovations

updates to the LDS are either used to re-direct action sequences correctly, or could just

be errors.
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Chapter 7

Conclusion
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Motor actions constitute the way in which we interact with the world. The topic of

this thesis focuses on understanding principles of how the population of our millions of

motor system neurons coordinate during di�erent types of behavior.

7.1 Summary of Contributions
7.1.1 Population Activity and Behavior Reflected by Motor Beta

Band Oscillations
In chapters 2 and 3 we asked what the neural signatures are of withholding move-

ment. We developed a novel sequential neurofeedback-motor behavior task to specifically

test the relationship between population level beta band oscillations in motor cortex, hy-

pothesized to be involved in maintenance of current status, and movement onset. It was

discovered that neurofeedback was an e�ective tool to manipulate beta band oscillations,

and confirmed in three non-human primates that beta band oscillations were tightly cor-

related with movement onset time, but not other movement parameters like initial speed,

initial acceleration, or maximum speed. It was also confirmed that it was beta band

oscillations indeed that accounted most strongly for this e�ect. Thus, beta band oscilla-

tions were shown to be more tightly linked to movement onset than could be claimed by

correlational studies.

Given that beta band oscillations were related to movement onset, and previous work

shows populations of single and multi-units also related to movement onset, we sought

to connect the three measurements (beta band oscillations, population level activity, and

movement onset) by characterizing how beta band oscillations reflected population ac-

tivity in di�erent behavioral states. Population level single and multi unit activity was

analyzed recorded from the same motor cortical brain region during the neurofeedback

and natural motor reaching tasks. We found that beta band oscillations reflect similar

“non-moving” population states during the neurofeedback task and during natural motor

reaching tasks. Thus, although the neurofeedback task is a new, non-natural behavior,

the underlying population exhibited similar firing patterns during neurofeedback-induced

beta oscillations as during naturally occurring beta band oscillations during motor control.

Thus, we were able to i) develop a method to study the link between local field

potential activity and behavior, ii) show a tight correlation between a specific local field

potential activity pattern and behavior, iii) demonstrate that the underlying neuronal

population activity exhibits similar characteristics when the local field potential activity

pattern occur naturally or via neurofeedback. Taken together, this study links signatures

in local field potential signals with di�erent underlying population states, both of which

are indicative of withholding movement. Future studies could i) use similar methods to

more rigorously test correlations between local field potential activity and behaviors of

interest, and ii) use beta band oscillations as a biomarker of movement being withheld or

the underlying population activity signifying withholding of movement.
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7.1.2 Demonstration of Neurofeedback Control in Parkinsonian
Patients

In addition to BMIs being useful scientific tools, in chapter 4 we investigated whether

BMIs may be useful as possible therapeutic systems. In three parkinsonian patients, we

show in a proof of concept study that they can exhibit neurofeedback control over their

motor cortical beta band oscillations, which had not yet been shown. Notably, the system

used to perform the neurofeedback study was a wireless, fully embedded neural recording

and stimulation system, the Activa PC + S. This fully embedded, wireless capability

allowed us to perform some of the neurofeedback sessions in the comfort of patients’ own

homes. Further, software used to perform this closed loop study has been made publicly

available. This project thus has brought neurofeedback and BMI control out of the lab,

and hopefully future studies will continue to trend towards at-home care for increased

patient convenience.

We also perform one extended at-home study where we assess how motor cortical

beta band activity is linked to finger tapping movements. This study provides pilot

data pointing to beta desynchronization being a useful tool for patients to practice to

facilitate faster movement onset, and faster and more vigorous finger tapping. Future

studies could leverage our findings that parkinsonian patients can learn to volitionally

control their neural activity, and investigate how the activity in other brain structures is

e�ected by changing motor cortical beta activity. Further, future studies will continue at-

home studies and better characterize across-brain beta band activity during finger tapping

movement following neurofeedback to see how beta band dynamics change over the course

of movement following neurofeedback.

7.1.3 Establish how Motor Population Shared Variability May
Emerge, and how Shared and Private Variability Con-
tribute to Online Control

Beta band oscillations are only one statistic of population neural activity, so we next

turned our attention to populations of single and multi-units that coordinate to perform

2D cursor control movements with a BMI, representing a simplified, mini, motor system.

In chapter 5, we simulate and test in experiments how di�erent decompositions of popu-

lation activity give rise to cursor movements. First we develop a generative model of BMI

output unit population activity that allows us to ask questions about how correlated vs.

uncorrelated and tuned vs. untuned inputs to a population become summed together.

We find that tuned, uncorrelated inputs can give rise to observed correlated activity when

summed in the population, and that fast, tuned uncorrelated inputs can give rise to even

more correlated activity when summed in the population. This simulation yields possible

mechanisms in which uncorrelated observations can become summed and yield correlated

activity downstream.
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Further, we see how population correlated versus uncorrelated activity gives rise to

online BMI control in simulation and in a real online catch trial experiment. We find

that on average, decomposing neural population signals into correlated and uncorrelated

parts and sending them into the decoder individually yields faster and more accurate

BMI performance respectively. Many groups discard uncorrelated population activity in

their BMI experiments, but understanding exactly how uncorrelated activity supports

performance requires future investigation.

7.1.4 Demonstration of Neural Dynamics in a Feedback Control
Task

Finally, in chapter 6 we build on our investigation of how correlated and uncorrelated

activity supports cursor trajectories by studying how populations of single and multi-units

coordinate to construct di�erent 2D cursor action sequences in a BMI. Here we show

that the correlations in neural activity di�er when an expert subject performs straight-

line centerout task compared to a curved-line obstacle task. Further, even the mean

neural activity patterns for a given velocity command sent to the cursor di�er across

the two tasks. We find that the neural data is best explained by a linear dynamical

system (LDS), which models neural activity as emissions from a lower-dimensional latent

state that abides by lawful temporal dynamics. The LDS fit on one task also fits neural

activity from the other task well, unlike other models. Further, the individual segments

of an action sequence are shown to be selected to best follow the dynamics of the low

dimensional latent state, yielding an understanding of why mean firing rates for a given

velocity command may di�er across task, and why correlation patterns may di�er.

Future work will investigate the nature of the temporal dynamics modeled, how much

they reflect the task being performed versus the network the neurons are in, and how

deviations from the lawful temporal dynamics contribute to BMI performance.

7.2 Future Directions
7.2.1 Studying Local Field Potential signals with Neurofeedback

The origin and behavioral significance of specific frequencies of local field potential

signals in the brain is debated. Developing methods to perturb these signals would shed

light into how the underlying neural firing patterns reflected in these signals contribute to

behavior. Non-invasive stimulation methods are one approach, but using neurofeedback

is a stimulation-free (and artifact-free!) approach. Further, if the LFP signal of inter-

est is implicated in disease or injury, neurofeedback may be a promising therapy. Beta

oscillations remain a signal of interest due to their exacerbation in Parkinson’s disease.

Going forward, understanding how beta oscillations are transmitted throughout the basal

ganglia, thalamus, and motor cortical areas both in healthy conditions and PD condi-
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tions will help clarify how they may reflect impaired computation. New chronic recording

systems are being developed to allow just those investigations to take place [192].

7.2.2 Studying Sensorimotor Control with BMIs
Given how many principles of neural computation remain to be understood about

simple, closed-loop BMI systems, continuing to study these simple systems is appropriate.

The field of systems motor neuroscience is starting to shift away from representational

views of motor control towards generative ones, and with that comes a need for new

principles of motor cortical computation. In chapter 6 we begin to develop a linear

dynamical system to model neural activity during 2D cursor control. Extending this

model to include feedback control terms will shed light on what aspects of neural activity

are due to true intrinsic neural dynamics, and which are due to inputs to the system

such as visual feedback of the cursor. Further studies may then be able to use this

framework to decompose intrinsic versus extrinsic components of neural activity, and

begin to understand what relationship the extrinsic inputs have with behavior, as is

already starting to be done [236]. Perhaps extrinsic inputs represent visual or sensory

feedback, strategy shifts, or even mood changes.

7.2.3 Conclusion
BMIs used for science investigations o�er new ways to perturb, study, and theorize

about our complex, distributed motor system. This thesis makes contributions towards ex-

ploring the previously complex-to-perturb local field potential features, towards studying

the origins of correlated and uncorrelated population activity and their e�ects on behav-

ior, and towards testing models of how motor cortical population activity may coordinate

the generate action sequences. Further work leveraging the potential of closed-loop BMIs

as scientific tools provide promising new paths of scientific and clinical exploration.



147

Bibliography

[1] Patrick Haggard. Human volition: towards a neuroscience of will. Nature reviews.
Neuroscience, 9(12):934–946, December 2008.

[2] G Rizzolatti, G Luppino, and M Matelli. The organization of the cortical mo-

tor system: new concepts. Electroencephalography and Clinical Neurophysiology,

106(4):283–296, April 1998.

[3] R. P. Dum and P. L. Strick. The origin of corticospinal projections from the premotor

areas in the frontal lobe. Journal of Neuroscience, 11(3):667–689, March 1991.

[4] Michael S. A. Graziano. New Insights into Motor Cortex. Neuron, 71(3):387–388,

August 2011.

[5] Eric R. Kandel, James H. Schwartz, Thomas M. Jessell, Steven A. Siegelbaum, and

A. J. Hudspeth, editors. Principles of Neural Science, Fifth Edition. McGraw-Hill

Education / Medical, New York, 5th edition edition, October 2012.

[6] C. S. Sherrington. Flexion-reflex of the limb, crossed extension-reflex, and reflex

stepping and standing. The Journal of Physiology, 40(1-2):28–121, April 1910.

[7] Yifat Prut and Eberhard E. Fetz. Primate spinal interneurons show pre-movement

instructed delay activity. Nature, 401(6753):590–594, October 1999.

[8] E. E. Fetz, S. I. Perlmutter, Y. Prut, K. Seki, and S. Votaw. Roles of primate spinal

interneurons in preparation and execution of voluntary hand movement. Brain
Research. Brain Research Reviews, 40(1-3):53–65, October 2002.

[9] Eugene Braunwald, Anthony S. Fauci, Dennis L. Kasper, et al. Harrison’s Principles
of Internal Medicine: Textbook, Self-Assessment and Board Review. McGraw-Hill

Professional Publishing, February 2001. Google-Books-ID: BcOhPwAACAAJ.

[10] Sylvain Lavoie and Trevor Drew. Discharge characteristics of neurons in the red

nucleus during voluntary gait modifications: a comparison with the motor cortex.

Journal of Neurophysiology, 88(4):1791–1814, October 2002.



148

[11] C. Nicholas Riddle, Steve A. Edgley, and Stuart N. Baker. Direct and Indirect

Connections with Upper Limb Motoneurons from the Primate Reticulospinal Tract.

The Journal of neuroscience : the o�cial journal of the Society for Neuroscience,

29(15):4993, April 2009.

[12] C. Nicholas Riddle and Stuart N. Baker. Convergence of pyramidal and medial brain

stem descending pathways onto macaque cervical spinal interneurons. Journal of
Neurophysiology, 103(5):2821–2832, May 2010.

[13] A. V. Poliakov and M. H. Schieber. Limited functional grouping of neurons in the

motor cortex hand area during individuated finger movements: A cluster analysis.

Journal of Neurophysiology, 82(6):3488–3505, December 1999.

[14] Michael Graziano. The organization of behavioral repertoire in motor cortex. Annual
Review of Neuroscience, 29:105–134, 2006.

[15] J. M. Macpherson, C. Marangoz, T. S. Miles, and M. Wiesendanger. Microstimu-

lation of the supplementary motor area (SMA) in the awake monkey. Experimental
Brain Research, 45(3):410–416, 1982.

[16] Parashkev Nachev, Henrietta Wydell, Kevin O’Neill, Masud Husain, and Christo-

pher Kennard. The role of the pre-supplementary motor area in the control of

action. Neuroimage, 36(3-3):T155–T163, 2007.

[17] N Picard and P L Strick. Motor areas of the medial wall: a review of their location

and functional activation. Cerebral cortex (New York, N.Y.: 1991), 6(3):342–353,

June 1996.

[18] G. Luppino, M. Matelli, R. M. Camarda, V. Gallese, and G. Rizzolatti. Multiple

representations of body movements in mesial area 6 and the adjacent cingulate

cortex: an intracortical microstimulation study in the macaque monkey. The Journal
of Comparative Neurology, 311(4):463–482, September 1991.

[19] G. E. Alexander, M. R. DeLong, and P. L. Strick. Parallel organization of func-

tionally segregated circuits linking basal ganglia and cortex. Annual Review of
Neuroscience, 9:357–381, 1986.

[20] Amiram Grinvald and Rina Hildesheim. VSDI: a new era in functional imaging of

cortical dynamics. Nature Reviews Neuroscience, 5(11):874, November 2004.

[21] György Buzsáki, Costas A. Anastassiou, and Christof Koch. The origin of ex-

tracellular fields and currents — EEG, ECoG, LFP and spikes. Nature Reviews
Neuroscience, 13(6):407–420, June 2012.

[22] Henrik Lindén, Tom Tetzla�, Tobias C. Potjans, et al. Modeling the Spatial Reach

of the LFP. Neuron, 72(5):859–872, August 2011.



149

[23] Supratim Ray and John H. R. Maunsell. Di�erent Origins of Gamma Rhythm and

High-Gamma Activity in Macaque Visual Cortex. PLoS Biol, 9(4):e1000610, April

2011.

[24] Erin L. Rich and Joni D. Wallis. Spatiotemporal dynamics of information encoding

revealed in orbitofrontal high-gamma. Nature Communications, 8(1):1139, October

2017.

[25] Henrik Lindén, Klas H. Pettersen, and Gaute T. Einevoll. Intrinsic dendritic filtering

gives low-pass power spectra of local field potentials. Journal of Computational
Neuroscience, 29(3):423–444, December 2010.

[26] Hernan Gonzalo Rey, Carlos Pedreira, and Rodrigo Quian Quiroga. Past, present

and future of spike sorting techniques. Brain Research Bulletin, 119(Pt B):106–117,

October 2015.

[27] Cynthia A Chestek, Vikash Gilja, Paul Nuyujukian, et al. Long-term stability of

neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor

cortex. J. Neural Eng., 8(4):045005, August 2011.

[28] Andrew B. Schwartz, X. Tracy Cui, Douglas J. Weber, and Daniel W. Moran. Brain-

Controlled Interfaces: Movement Restoration with Neural Prosthetics. Neuron,

52(1):205–220, October 2006.

[29] Stephen H. Scott. Inconvenient Truths about neural processing in primary motor

cortex. The Journal of Physiology, 586(5):1217–1224, March 2008.

[30] John F. Kalaska. From intention to action: motor cortex and the control of reaching

movements. Advances in Experimental Medicine and Biology, 629:139–178, 2009.

[31] Stephen H. Scott. Inconvenient Truths about neural processing in primary motor

cortex. The Journal of Physiology, 586(5):1217–1224, March 2008.

[32] Eberhard E. Fetz. Are movement parameters recognizably coded in the activity of

single neurons? Behavioral and Brain Sciences, 15(4):679–690, December 1992.

[33] Mark M. Churchland, John P. Cunningham, Matthew T. Kaufman, et al. Neural

population dynamics during reaching. Nature, advance online publication, June

2012.

[34] Krishna V. Shenoy, Maneesh Sahani, and Mark M. Churchland. Cortical Control

of Arm Movements: A Dynamical Systems Perspective. Annual Review of Neuro-
science, 36(1):337–359, 2013.



150

[35] K. Cora Ames, Stephen I. Ryu, and Krishna V. Shenoy. Neural dynamics of reaching

following incorrect or absent motor preparation. Neuron, 81(2):438–451, January

2014.

[36] Biljana Petreska, M. Yu Byron, John P. Cunningham, et al. Dynamical segmenta-

tion of single trials from population neural data. In Advances in neural information
processing systems, pages 756–764, 2011.

[37] Sergey D. Stavisky, Jonathan C. Kao, Stephen I. Ryu, and Krishna V. Shenoy.

Motor Cortical Visuomotor Feedback Activity Is Initially Isolated from Downstream

Targets in Output-Null Neural State Space Dimensions. Neuron, 2017.

[38] Dongjin Seo, Ryan M. Neely, Konlin Shen, et al. Wireless Recording in the Periph-

eral Nervous System with Ultrasonic Neural Dust. Neuron, 91(3):529–539, August

2016.

[39] Mijail D. Serruya, Nicholas G. Hatsopoulos, Liam Paninski, Matthew R. Fellows,

and John P. Donoghue. Instant neural control of a movement signal. Nature,

416(6877):141–142, March 2002.

[40] Dawn M. Taylor, Stephen I. Helms Tillery, and Andrew B. Schwartz. Direct Cortical

Control of 3D Neuroprosthetic Devices. Science, 296(5574):1829–1832, June 2002.

[41] Jose M. Carmena, Mikhail A. Lebedev, Roy E. Crist, et al. Learning to Control

a Brain–Machine Interface for Reaching and Grasping by Primates. PLOS Biol,
1(2):e42, October 2003.

[42] Leigh R. Hochberg, Mijail D. Serruya, Gerhard M. Friehs, et al. Neuronal ensemble

control of prosthetic devices by a human with tetraplegia. Nature, 442(7099):164–

171, July 2006.

[43] J. R. Millan, F. Renkens, J. Mourino, and W. Gerstner. Noninvasive brain-actuated

control of a mobile robot by human EEG. IEEE Transactions on Biomedical Engi-
neering, 51(6):1026–1033, June 2004.

[44] Mariska Vansteensel, Elmar Pels, Martin Bleichner, et al. Fully Implanted
Brain–Computer Interface in a Locked-In Patient with ALS, volume 375. November

2016. DOI: 10.1056/NEJMoa1608085.

[45] Chethan Pandarinath, Paul Nuyujukian, Christine H. Blabe, et al. High per-

formance communication by people with paralysis using an intracortical brain-

computer interface. eLife, 6:e18554, February 2017.

[46] Leigh R. Hochberg, Daniel Bacher, Beata Jarosiewicz, et al. Reach and grasp by peo-

ple with tetraplegia using a neurally controlled robotic arm. Nature, 485(7398):372–

375, May 2012.



151

[47] Jennifer L Collinger, Brian Wodlinger, John E Downey, et al. 7 degree-of-freedom

neuroprosthetic control by an individual with tetraplegia. Lancet, 381(9866):557–

564, February 2013.

[48] Ander Ramos-Murguialday, Doris Broetz, Massimiliano Rea, et al. Brain–machine

interface in chronic stroke rehabilitation: A controlled study. Annals of Neurology,

74(1):100–108, July 2013.

[49] S. R. Soekadar, M. Witkowski, C. Gómez, et al. Hybrid EEG/EOG-based

brain/neural hand exoskeleton restores fully independent daily living activities after

quadriplegia. Science Robotics, 1(1):eaag3296, December 2016.

[50] Chet T. Moritz, Eberhard E. Fetz, and Steve I. Perlmutter. Direct control of paral-

ysed muscles by cortical neurons. Nature, 456(7222):nature07418, October 2008.

[51] Yukio Nishimura, Steve I. Perlmutter, and Eberhard E. Fetz. Restoration of up-

per limb movement via artificial corticospinal and musculospinal connections in a

monkey with spinal cord injury. Frontiers in Neural Circuits, 7:57, 2013.

[52] C. Ethier, E. R. Oby, L. E. Miller, and M. J. Bauman. Restoration of grasp follow-

ing paralysis through brain-controlled stimulation of muscles. Nature, 485(7398):na-

ture10987, April 2012.

[53] Francesco Tenore, Ander Ramos, Amir Fahmy, et al. Towards the control of individ-

ual fingers of a prosthetic hand using surface EMG signals. Conference proceedings:
... Annual International Conference of the IEEE Engineering in Medicine and Biol-
ogy Society. IEEE Engineering in Medicine and Biology Society. Annual Conference,

2007:6146–6149, 2007.

[54] M. Jiang, R. Wang, J. Wang, and D. Jin. A Method of Recognizing Finger Mo-

tion Using Wavelet Transform of Surface EMG Signal. Conference proceedings: ...
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society. IEEE Engineering in Medicine and Biology Society. Annual Conference,

3:2672–2674, 2005.

[55] Ramses E. Alcaide-Aguirre, David C. Morgenroth, and Daniel P. Ferris. Motor

control and learning with lower-limb myoelectric control in amputees. Journal of
Rehabilitation Research and Development, 50(5):687–698, 2013.

[56] Simon Little, Alex Pogosyan, Spencer Neal, et al. Adaptive Deep Brain Stimulation

In Advanced Parkinson Disease. Annals of Neurology, 74(3):449–457, September

2013.

[57] Boris Rosin, Maya Slovik, Rea Mitelman, et al. Closed-Loop Deep Brain Stimulation

Is Superior in Ameliorating Parkinsonism. Neuron, 72(2):370–384, October 2011.



152

[58] Christianne N. Heck, David King-Stephens, Andrew D. Massey, et al. Two-year

seizure reduction in adults with medically intractable partial onset epilepsy treated

with responsive neurostimulation: final results of the RNS System Pivotal trial.

Epilepsia, 55(3):432–441, March 2014.

[59] Nikolaus Wenger, Eduardo Martin Moraud, Stanisa Raspopovic, et al. Closed-

loop neuromodulation of spinal sensorimotor circuits controls refined locomotion

after complete spinal cord injury. Science Translational Medicine, 6(255):255ra133–

255ra133, September 2014.

[60] David M. Schultz, Lynn Webster, Peter Kosek, et al. Sensor-driven position-

adaptive spinal cord stimulation for chronic pain. Pain Physician, 15(1):1–12,

February 2012.

[61] Paul Boon, Kristl Vonck, Kenou van Rijckevorsel, et al. A prospective, multicenter

study of cardiac-based seizure detection to activate vagus nerve stimulation. Seizure,

32:52–61, November 2015.

[62] Brian J. Wenzel, Joseph W. Boggs, Kenneth J. Gustafson, and Warren M. Grill.

Closed loop electrical control of urinary continence. The Journal of Urology,

175(4):1559–1563, April 2006.

[63] Federico Cirett Galán and Carole R. Beal. EEG Estimates of Engagement and

Cognitive Workload Predict Math Problem Solving Outcomes. In User Modeling,
Adaptation, and Personalization, Lecture Notes in Computer Science, pages 51–62.

Springer, Berlin, Heidelberg, July 2012.

[64] E. W. Anderson, K. C. Potter, L. E. Matzen, et al. A User Study of Visualiza-

tion E�ectiveness Using EEG and Cognitive Load. Computer Graphics Forum,

30(3):791–800, June 2011.

[65] Leena Subramanian, John V. Hindle, Stephen Johnston, et al. Real-Time Functional

Magnetic Resonance Imaging Neurofeedback for Treatment of Parkinson’s Disease.

The Journal of Neuroscience, 31(45):16309–16317, November 2011.

[66] Holger Gevensleben, Birgit Holl, Björn Albrecht, et al. Distinct EEG e�ects related

to neurofeedback training in children with ADHD: a randomized controlled trial.

International Journal of Psychophysiology: O�cial Journal of the International
Organization of Psychophysiology, 74(2):149–157, November 2009.

[67] Mark P. Jensen, Kevin J. Gertz, Amy E. Kupper, et al. Steps toward developing

an EEG biofeedback treatment for chronic pain. Applied Psychophysiology and
Biofeedback, 38(2):101–108, June 2013.



153

[68] James Sulzer, Ranganatha Sitaram, Maria Laura Blefari, et al. Neurofeedback-

mediated self-regulation of the dopaminergic midbrain. NeuroImage, 75C:176–184,

March 2013.

[69] Ander Ramos-Murguialday, Doris Broetz, Massimiliano Rea, et al. Brain-Machine-

Interface in Chronic Stroke Rehabilitation: A Controlled Study. Annals of neurol-
ogy, 74(1):100–108, July 2013.

[70] Eberhard E. Fetz. Operant Conditioning of Cortical Unit Activity. Science,

163(3870):955–958, February 1969.

[71] Karunesh Ganguly and Jose M. Carmena. Emergence of a Stable Cortical Map for

Neuroprosthetic Control. PLoS Biol, 7(7):e1000153, July 2009.

[72] Aaron C. Koralek, Xin Jin, John D. Long Ii, Rui M. Costa, and Jose M. Carmena.

Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills.

Nature, 483(7389):331–335, March 2012.

[73] Amy L. Orsborn, Helene G. Moorman, Simon A. Overduin, et al. Closed-Loop

Decoder Adaptation Shapes Neural Plasticity for Skillful Neuroprosthetic Control.

Neuron, 82(6):1380–1393, June 2014.

[74] Beata Jarosiewicz, Steven M. Chase, George W. Fraser, et al. Functional network

reorganization during learning in a brain-computer interface paradigm. Proceedings
of the National Academy of Sciences of the United States of America, 105(49):19486–

19491, December 2008.

[75] Robert J Schafer and Tirin Moore. Selective attention from voluntary control of

neurons in prefrontal cortex. Science (New York, N.Y.), 332(6037):1568–1571, June

2011.

[76] Frank Scharnowski, Chloe Hutton, Oliver Josephs, Nikolaus Weiskopf, and Geraint

Rees. Improving Visual Perception through Neurofeedback. The Journal of Neuro-
science, 32(49):17830–17841, December 2012.

[77] S. J. Johnston, S. G. Boehm, D. Healy, R. Goebel, and D. E. J. Linden. Neurofeed-

back: A promising tool for the self-regulation of emotion networks. NeuroImage,

49(1):1066–1072, January 2010.

[78] Matthew D. Golub, Steven M. Chase, Aaron P. Batista, and Byron M. Yu.

Brain–computer interfaces for dissecting cognitive processes underlying sensorimo-

tor control. Current opinion in neurobiology, 37:53, April 2016.

[79] Amy L Orsborn and Bijan Pesaran. Parsing learning in networks using

brain–machine interfaces. Current Opinion in Neurobiology, 46(Supplement C):76–

83, October 2017.



154

[80] Matthew D. Golub, Byron M. Yu, and Steven M. Chase. Internal models for in-

terpreting neural population activity during sensorimotor control. eLife, 4:e10015,

December 2015.

[81] Reza Shadmehr, Maurice A. Smith, and John W. Krakauer. Error correction, sen-

sory prediction, and adaptation in motor control. Annual Review of Neuroscience,

33:89–108, 2010.

[82] Vikash Gilja, Paul Nuyujukian, Cindy A. Chestek, et al. A high-performance neural

prosthesis enabled by control algorithm design. Nature Neuroscience, 15(12):1752–

1757, December 2012.

[83] Matthew T. Kaufman, Mark M. Churchland, Stephen I. Ryu, and Krishna V.

Shenoy. Cortical activity in the null space: permitting preparation without move-

ment. Nature Neuroscience, 17(3):440–448, March 2014.

[84] Andreas K Engel and Pascal Fries. Beta-band oscillations — signalling the status

quo? Current Opinion in Neurobiology, 20(2):156–165, April 2010.

[85] Coralie de Hemptinne, Elena S Ryapolova-Webb, Ellen L Air, et al. Exagger-

ated phase-amplitude coupling in the primary motor cortex in Parkinson disease.

Proceedings of the National Academy of Sciences of the United States of America,

110(12):4780–4785, March 2013.

[86] Coralie de Hemptinne, Nicole C. Swann, Jill L. Ostrem, et al. Therapeutic deep

brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease.

Nature Neuroscience, advance online publication, April 2015.

[87] Nicole C. Swann, Coralie de Hemptinne, Adam R. Aron, et al. Elevated synchrony

in Parkinson disease detected with electroencephalography. Annals of Neurology,

78(5):742–750, November 2015.

[88] Byron M. Yu, John P. Cunningham, Gopal Santhanam, et al. Gaussian-Process

Factor Analysis for Low-Dimensional Single-Trial Analysis of Neural Population

Activity. Journal of Neurophysiology, 102(1):614–635, July 2009.

[89] Emilio Bizzi and Vincent C. K. Cheung. The neural origin of muscle synergies.

Frontiers in Computational Neuroscience, 7, April 2013.

[90] Vivek R. Athalye, Karunesh Ganguly, Rui M. Costa, and Jose M. Carmena. Emer-

gence of Coordinated Neural Dynamics Underlies Neuroprosthetic Learning and

Skillful Control. Neuron, 93(4):955–970.e5, February 2017.

[91] Patrick T. Sadtler, Kristin M. Quick, Matthew D. Golub, et al. Neural constraints

on learning. Nature, 512(7515):423–426, August 2014.



155

[92] Gerwin Schalk and Eric C. Leuthardt. Brain-computer interfaces using electrocor-

ticographic signals. IEEE reviews in biomedical engineering, 4:140–154, 2011.

[93] Tomislav Milekovic, Beata Jarosiewicz, Anish A. Sarma, Leigh R. Hochberg, and

John P. Donoghue. Increases in beta frequency band LFP activity mark low en-

gagement of motor cortex in voluntary movement intentions in people with long-

standing tetraplegia. In 2013 6th International IEEE/EMBS Conference on Neural
Engineering (NER), November 2013.

[94] G.V. Ranade, K. Ganguly, and J. Carmena. LFP beta power predicts cursor sta-

tionarity in BMI task. In 4th International IEEE/EMBS Conference on Neural
Engineering, 2009. NER ’09, pages 482–485, April 2009.

[95] V.N. Murthy and E.E. Fetz. Synchronization of neurons during local field potential

oscillations in sensorimotor cortex of awake monkeys. Journal of Neurophysiology,

76(6):3968–3982, 1996.

[96] Michael Denker, Sébastien Roux, Marc Timme, Alexa Riehle, and Sonja Grün.

Phase synchronization between LFP and spiking activity in motor cortex during

movement preparation. Neurocomputing, 70(10–12):2096–2101, June 2007.

[97] Jacob Reimer and Nicholas G. Hatsopoulos. Periodicity and Evoked Responses in

Motor Cortex. The Journal of Neuroscience, 30(34):11506–11515, August 2010.

[98] Ryan T Canolty, Karunesh Ganguly, and Jose M Carmena. Task-dependent changes

in cross-level coupling between single neurons and oscillatory activity in multiscale

networks. PLoS computational biology, 8(12):e1002809, 2012.

[99] Alexa Riehle, Sonja Grün, Markus Diesmann, and Ad Aertsen. Spike Synchro-

nization and Rate Modulation Di�erentially Involved in Motor Cortical Function.

Science, 278(5345):1950–1953, December 1997.

[100] Flavio Fröhlich and David A. McCormick. Endogenous Electric Fields May Guide

Neocortical Network Activity. Neuron, 67(1):129–143, July 2010.

[101] Gyorgy Buzsáki. Rhythms of the Brain. Oxford University Press, August 2006.

[102] M.A Whittington, R.D Traub, N Kopell, B Ermentrout, and E.H Buhl. Inhibition-

based rhythms: experimental and mathematical observations on network dynamics.

International Journal of Psychophysiology, 38(3):315–336, December 2000.

[103] A. Jackson, R. L. Spinks, T. C. B. Freeman, D. M. Wolpert, and R. N. Lemon.

Rhythm generation in monkey motor cortex explored using pyramidal tract stimu-

lation. The Journal of Physiology, 541(3):685–699, June 2002.



156

[104] Anita K. Roopun, Steven J. Middleton, Mark O. Cunningham, et al. A beta2-

frequency (20-30 Hz) oscillation in nonsynaptic networks of somatosensory cortex.

Proceedings of the National Academy of Sciences of the United States of America,

103(42):15646–15650, October 2006.

[105] Anita K. Roopun, Mark A. Kramer, Lucy M. Carracedo, et al. Temporal Interac-

tions between Cortical Rhythms. Frontiers in Neuroscience, 2(2):145–154, Decem-

ber 2008.

[106] S. N. Baker, E. Olivier, and R. N. Lemon. Coherent oscillations in monkey motor

cortex and hand muscle EMG show task-dependent modulation. The Journal of
Physiology, 501 ( Pt 1):225–241, May 1997.

[107] V N Murthy and E E Fetz. Coherent 25- to 35-Hz oscillations in the sensorimotor

cortex of awake behaving monkeys. Proc. Natl. Acad. Sci. U. S. A., 89(12):5670–

5674, June 1992.

[108] B A Conway, D M Halliday, S F Farmer, et al. Synchronization between motor cortex

and spinal motoneuronal pool during the performance of a maintained motor task

in man. The Journal of Physiology, 489(Pt 3):917–924, December 1995.

[109] Georgopoulos. Motor cortex: A changing perspective. Experimental Brain Research,

Suppl.(22):175–183, 1992.

[110] N. Kopell, G. B. Ermentrout, M. A. Whittington, and R. D. Traub. Gamma rhythms

and beta rhythms have di�erent synchronization properties. Proceedings of the
National Academy of Sciences of the United States of America, 97(4):1867–1872,

February 2000.

[111] Toru Tsujimoto, Tatsuya Mima, Hideki Shimazu, and Yoshikazu Isomura. Direc-

tional organization of sensorimotor oscillatory activity related to the electromyo-

gram in the monkey. Clinical Neurophysiology: O�cial Journal of the International
Federation of Clinical Neurophysiology, 120(6):1168–1173, June 2009.

[112] Claire L. Witham and Stuart N. Baker. Network oscillations and intrinsic spiking

rhythmicity do not covary in monkey sensorimotor areas. The Journal of Physiology,

580(3):801–814, May 2007.

[113] Stuart N. Baker. Oscillatory interactions between sensorimotor cortex and the

periphery. Current Opinion in Neurobiology, 17(6):649–655, December 2007.

[114] V. N. Murthy and E. E. Fetz. Oscillatory activity in sensorimotor cortex of awake

monkeys: synchronization of local field potentials and relation to behavior. Journal
of Neurophysiology, 76(6):3949–3967, December 1996.



157

[115] Doug Rubino, Kay A Robbins, and Nicholas G Hatsopoulos. Propagating waves

mediate information transfer in the motor cortex. Nat. Neurosci., 9(12):1549–1557,

2006.

[116] Stuart N. Baker, Matthew Chiu, and Eberhard E. Fetz. A�erent Encoding of Central

Oscillations in the Monkey Arm. Journal of Neurophysiology, 95(6):3904–3910, June

2006.

[117] Elodie Lalo, Thomas Gilbertson, Louise Doyle, et al. Phasic increases in cortical

beta activity are associated with alterations in sensory processing in the human.

Experimental brain research, 177(1):137–145, February 2007.

[118] W. Jiang, Y. Lamarre, and C. E. Chapman. Modulation of cutaneous cortical

evoked potentials during isometric and isotonic contractions in the monkey. Brain
Research, 536(1–2):69–78, December 1990.

[119] W. A. Mackay. Synchronized neuronal oscillations and their role in motor processes.

Trends in Cognitive Sciences, 1(5):176–183, August 1997.

[120] Kazuhiko Seki and Eberhard E. Fetz. Gating of Sensory Input at Spinal and Cortical

Levels during Preparation and Execution of Voluntary Movement. The Journal of
Neuroscience, 32(3):890–902, January 2012.

[121] Daofen Chen and Eberhard E. Fetz. Characteristic membrane potential trajectories

in primate sensorimotor cortex neurons recorded in vivo. Journal of Neurophysiol-
ogy, 94(4):2713–2725, October 2005.

[122] Timothy J. Buschman, Eric L. Denovellis, Cinira Diogo, Daniel Bullock, and Earl K.

Miller. Synchronous Oscillatory Neural Ensembles for Rules in the Prefrontal Cor-

tex. Neuron, 76(4):838–846, November 2012.

[123] Timothy J. Buschman and Earl K. Miller. Top-Down Versus Bottom-Up Con-

trol of Attention in the Prefrontal and Posterior Parietal Cortices. Science,

315(5820):1860–1862, March 2007.

[124] Bram-Ernst Verhoef, Rufin Vogels, and Peter Janssen. Synchronization between the

end stages of the dorsal and the ventral visual stream. Journal of Neurophysiology,

105(5):2030–2042, May 2011.

[125] Jung H. Lee, Miles A. Whittington, and Nancy J. Kopell. Top-down beta rhythms

support selective attention via interlaminar interaction: a model. PLoS computa-
tional biology, 9(8):e1003164, 2013.

[126] Eberhard E. Fetz. Volitional Control of Cortical Oscillations and Synchrony. Neu-
ron, 77(2):216–218, January 2013.



158

[127] J. N. Sanes and J. P. Donoghue. Oscillations in local field potentials of the primate

motor cortex during voluntary movement. Proceedings of the National Academy of
Sciences, 90(10):4470–4474, May 1993.

[128] Maryam Saleh, Jacob Reimer, Richard Penn, Catherine L. Ojakangas, and

Nicholas G. Hatsopoulos. Fast and Slow Oscillations in Human Primary Motor Cor-

tex Predict Oncoming Behaviorally Relevant Cues. Neuron, 65(4):461–471, Febru-

ary 2010.

[129] Ryan T. Canolty, Karunesh Ganguly, Steven W. Kennerley, et al. Oscillatory phase

coupling coordinates anatomically dispersed functional cell assemblies. Proceedings
of the National Academy of Sciences, 107(40), September 2010.

[130] Aaron C. Koralek, Rui M. Costa, and Jose M. Carmena. Temporally precise cell-

specific coherence develops in corticostriatal networks during learning. Neuron,

79(5):865–872, September 2013.

[131] Tanuj Gulati, Dhakshin S. Ramanathan, Chelsea C. Wong, and Karunesh Gan-

guly. Reactivation of emergent task-related ensembles during slow-wave sleep after

neuroprosthetic learning. Nature Neuroscience, 17(8):1107–1113, August 2014.

[132] W. Singer. Consciousness and the binding problem. Annals of the New York
Academy of Sciences, 929:123–146, April 2001.

[133] Simal Ozen, Anton Sirota, Mariano A. Belluscio, et al. Transcranial electric stim-

ulation entrains cortical neuronal populations in rats. The Journal of neuroscience
: the o�cial journal of the Society for Neuroscience, 30(34):11476–11485, August

2010.

[134] Subramaniam Venkatraman, Jose M. Carmena, Subramaniam Venkatraman, and

Jose M. Carmena. Behavioral modulation of stimulus-evoked oscillations in barrel

cortex of alert rats. Frontiers in Integrative Neuroscience, 3:10, 2009.

[135] Flavio Fröhlich. Endogenous and exogenous electric fields as modifiers of brain ac-

tivity: rational design of noninvasive brain stimulation with transcranial alternating

current stimulation. Dialogues in Clinical Neuroscience, 16(1):93–102, March 2014.

[136] Lisa Marshall, Halla Helgadóttir, Matthias Mölle, and Jan Born. Boosting slow

oscillations during sleep potentiates memory. Nature, 444(7119):610–613, November

2006.

[137] Claudia Wach, Vanessa Krause, Vera Moliadze, et al. The e�ect of 10 Hz transcranial

alternating current stimulation (tACS) on corticomuscular coherence. Frontiers in
Human Neuroscience, 7:511, 2013.



159

[138] Nick J. Davis, Simon P. Tomlinson, and Helen M. Morgan. The Role of

Beta-Frequency Neural Oscillations in Motor Control. Journal of Neuroscience,

32(2):403–404, January 2012.

[139] Matteo Feurra, Giovanni Bianco, Emiliano Santarnecchi, et al. Frequency-

Dependent Tuning of the Human Motor System Induced by Transcranial Oscillatory

Potentials. The Journal of Neuroscience, 31(34):12165–12170, August 2011.

[140] Alek Pogosyan, Louise Doyle Gaynor, Alexandre Eusebio, and Peter Brown. Boost-

ing Cortical Activity at Beta-Band Frequencies Slows Movement in Humans. Cur-
rent Biology, 19(19):1637–1641, October 2009.

[141] Karen A. Moxon and Guglielmo Fo�ani. Brain-Machine Interfaces beyond Neuro-

prosthetics. Neuron, 86(1):55–67, April 2015.

[142] Ben Engelhard, Nofar Ozeri, Zvi Israel, Hagai Bergman, and Eilon Vaadia. Inducing

Gamma Oscillations and Precise Spike Synchrony by Operant Conditioning via

Brain-Machine Interface. Neuron, 77(2):361–375, January 2013.

[143] Kelvin So, Siddharth Dangi, Amy L. Orsborn, Michael C. Gastpar, and Jose M.

Carmena. Subject-specific modulation of local field potential spectral power dur-

ing brain–machine interface control in primates. Journal of Neural Engineering,

11(2):026002, April 2014.

[144] Dennis J. McFarland, William A. Sarnacki, and Jonathan R. Wolpaw. E�ects of

training pre-movement sensorimotor rhythms on behavioral performance. Journal
of Neural Engineering, 12(6):066021, 2015.

[145] B. Babadi and E.N. Brown. A Review of Multitaper Spectral Analysis. IEEE
Transactions on Biomedical Engineering, 61(5):1555–1564, May 2014.

[146] J Cuzick. A Wilcoxon-type test for trend. Stat. Med., 4(1):87–90, January 1985.

[147] Raed A. Joundi, Ned Jenkinson, John-Stuart Brittain, Tipu Z. Aziz, and Peter

Brown. Driving Oscillatory Activity in the Human Cortex Enhances Motor Perfor-

mance. Current Biology, 22(5):403–407, March 2012.

[148] Richard Courtemanche, Naotaka Fujii, and Ann M. Graybiel. Synchronous, Focally

Modulated —-Band Oscillations Characterize Local Field Potential Activity in the

Striatum of Awake Behaving Monkeys. Journal of Neuroscience, 23(37):11741–

11752, December 2003.

[149] Jan-Mathijs Scho�elen, Robert Oostenveld, and Pascal Fries. Neuronal coherence

as a mechanism of e�ective corticospinal interaction. Science (New York, N.Y.),
308(5718):111–113, April 2005.



160

[150] Mikael Lundqvist, Jonas Rose, Pawel Herman, et al. Gamma and Beta Bursts

Underlie Working Memory. Neuron, 90(1):152–164, April 2016.

[151] Noa Fogelson, Alek Pogosyan, Andrea A. Kühn, et al. Reciprocal interactions

between oscillatory activities of di�erent frequencies in the subthalamic region of

patients with Parkinson’s disease. European Journal of Neuroscience, 22(1):257–

266, July 2005.

[152] Thomas Gilbertson, Elodie Lalo, Louise Doyle, et al. Existing motor state is favored

at the expense of new movement during 13-35 Hz oscillatory synchrony in the human

corticospinal system. The Journal of neuroscience: the o�cial journal of the Society
for Neuroscience, 25(34):7771–7779, August 2005.

[153] J. P. Donoghue, J. N. Sanes, N. G. Hatsopoulos, and G. Gaál. Neural discharge

and local field potential oscillations in primate motor cortex during voluntary move-

ments. Journal of Neurophysiology, 79(1):159–173, January 1998.

[154] M M McCarthy, C Moore-Kochlacs, X Gu, et al. Striatal origin of the pathologic

beta oscillations in Parkinson’s disease. Proceedings of the National Academy of
Sciences of the United States of America, 108(28):11620–11625, July 2011.

[155] Jonathan Cannon, Michelle M. McCarthy, Shane Lee, et al. Neurosystems:

brain rhythms and cognitive processing. The European Journal of Neuroscience,

39(5):705–719, March 2014.

[156] Eduardo E. Benarroch. E�ects of acetylcholine in the striatum Recent insights and

therapeutic implications. Neurology, 79(3):274–281, July 2012.

[157] Yoland Smith, Dinesh Raju, Bijli Nanda, et al. The thalamostriatal systems:

Anatomical and functional organization in normal and parkinsonian states. Brain
Research Bulletin, 78(2–3):60–68, February 2009.

[158] Yoland Smith, Dinesh V. Raju, Jean-Francois Pare, and Mamadou Sidibe. The

thalamostriatal system: a highly specific network of the basal ganglia circuitry.

Trends in Neurosciences, 27(9):520–527, September 2004.

[159] Daniel K Leventhal, Gregory J Gage, Robert Schmidt, et al. Basal ganglia beta

oscillations accompany cue utilization. Neuron, 73(3):523–536, February 2012.

[160] N. Yamawaki, I. M. Stanford, S. D. Hall, and G. L. Woodhall. Pharmacologically

induced and stimulus evoked rhythmic neuronal oscillatory activity in the primary

motor cortex in vitro. Neuroscience, 151(2):386–395, January 2008.

[161] Renato N. Watanabe and Andre F. Kohn. Fast Oscillatory Commands from the

Motor Cortex Can Be Decoded by the Spinal Cord for Force Control. The Journal of



161

Neuroscience: The O�cial Journal of the Society for Neuroscience, 35(40):13687–

13697, October 2015.

[162] Soroush Zaghi, Mariana Acar, Brittney Hultgren, Paulo S. Boggio, and Felipe

Fregni. Noninvasive brain stimulation with low-intensity electrical currents: pu-

tative mechanisms of action for direct and alternating current stimulation. The
Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychia-
try, 16(3):285–307, June 2010.

[163] Nathan C. Rowland, Coralie De Hemptinne, Nicole C. Swann, et al. Task-related

activity in sensorimotor cortex in Parkinson’s disease and essential tremor: changes

in beta and gamma bands. Frontiers in Human Neuroscience, 9:512, 2015.

[164] Pascal Fries. Rhythms for Cognition: Communication through Coherence. Neuron,

88(1):220–235, October 2015.

[165] N. Kopell, M. A. Whittington, and M. A. Kramer. Neuronal assembly dynamics in

the beta1 frequency range permits short-term memory. Proceedings of the National
Academy of Sciences of the United States of America, 108(9):3779–3784, March

2011.

[166] Matthew D. Best, Aaron J. Suminski, Kazutaka Takahashi, Kevin A. Brown, and

Nicholas G. Hatsopoulos. Spatio-Temporal Patterning in Primary Motor Cortex at

Movement Onset. Cerebral Cortex, page bhv327, January 2016.

[167] Afsheen Afshar, Gopal Santhanam, Byron M. Yu, et al. Single-trial neural correlates

of arm movement preparation. Neuron, 71(3):555–564, August 2011.

[168] Mark M. Churchland and Krishna V. Shenoy. Delay of Movement Caused by Disrup-

tion of Cortical Preparatory Activity. Journal of Neurophysiology, 97(1):348–359,

January 2007.

[169] A. P. Georgopoulos, J. F. Kalaska, R. Caminiti, and J. T. Massey. On the rela-

tions between the direction of two-dimensional arm movements and cell discharge

in primate motor cortex. The Journal of Neuroscience: The O�cial Journal of the
Society for Neuroscience, 2(11):1527–1537, November 1982.

[170] Timothy P. Lillicrap and Stephen H. Scott. Preference Distributions of Primary

Motor Cortex Neurons Reflect Control Solutions Optimized for Limb Biomechanics.

Neuron, 77(1):168–179, January 2013.

[171] Mark M. Churchland, Gopal Santhanam, and Krishna V. Shenoy. Preparatory

activity in premotor and motor cortex reflects the speed of the upcoming reach.

Journal of Neurophysiology, 96(6):3130–3146, December 2006.



162

[172] D. W. Moran and A. B. Schwartz. Motor cortical representation of speed and

direction during reaching. Journal of Neurophysiology, 82(5):2676–2692, November

1999.

[173] Charidimos Tzagarakis, Nuri F. Ince, Arthur C. Leuthold, and Giuseppe Pellizzer.

Beta-Band Activity during Motor Planning Reflects Response Uncertainty. Journal
of Neuroscience, 30(34):11270–11277, August 2010.

[174] Nicholas Hatsopoulos, Jignesh Joshi, and John G. O’Leary. Decoding continuous

and discrete motor behaviors using motor and premotor cortical ensembles. Journal
of Neurophysiology, 92(2):1165–1174, August 2004.

[175] Maxwell A. Sherman, Shane Lee, Robert Law, et al. Neural mechanisms of tran-

sient neocortical beta rhythms: Converging evidence from humans, computational

modeling, monkeys, and mice. Proceedings of the National Academy of Sciences of
the United States of America, 113(33):E4885–4894, August 2016.

[176] Gabriel Tan, John Thornby, D. Corydon Hammond, et al. Meta-analysis of EEG

biofeedback in treating epilepsy. Clinical EEG and neuroscience, 40(3):173–179,

July 2009.

[177] Simon Little and Peter Brown. The functional role of beta oscillations in Parkinson’s

disease. Parkinsonism & Related Disorders, 20, Supplement 1:S44–S48, January

2014.

[178] Joshua A. Goldberg, Thomas Boraud, Sharon Maraton, et al. Enhanced syn-

chrony among primary motor cortex neurons in the 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine primate model of Parkinson’s disease. The Journal of Neuro-
science: The O�cial Journal of the Society for Neuroscience, 22(11):4639–4653,

June 2002.

[179] Benjamin Pasquereau and Robert S. Turner. Primary Motor Cortex of the Parkinso-

nian Monkey: Di�erential E�ects on the Spontaneous Activity of Pyramidal Tract-

Type Neurons. Cerebral Cortex, 21(6):1362–1378, June 2011.

[180] Nicole C. Swann, Coralie de Hemptinne, Svjetlana Miocinovic, et al. Gamma Oscil-

lations in the Hyperkinetic State Detected with Chronic Human Brain Recordings

in Parkinson’s Disease. Journal of Neuroscience, 36(24):6445–6458, June 2016.

[181] G Schalk, K J Miller, N R Anderson, et al. Two-dimensional movement control using

electrocorticographic signals in humans. Journal of neural engineering, 5(1):75–84,

March 2008.

[182] A.-T. Avestruz, W. Santa, D. Carlson, et al. A 5 W/Channel Spectral Analysis

IC for Chronic Bidirectional Brain #x2013;Machine Interfaces. IEEE Journal of
Solid-State Circuits, 43(12):3006–3024, December 2008.



163

[183] Scott Stanslaski, Peng Cong, Dave Carlson, et al. An implantable bi-directional

brain-machine interface system for chronic neuroprosthesis research. Conference
proceedings: ... Annual International Conference of the IEEE Engineering in
Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society.
Annual Conference, 2009:5494–5497, 2009.

[184] J. Herron, T. Denison, and H.J. Chizeck. Closed-loop DBS with movement intention.

In 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER),
pages 844–847, April 2015.

[185] Elena Ryapolova-Webb, Pedram Afshar, Scott Stanslaski, et al. Chronic cortical and

electromyographic recordings from a fully implantable device: preclinical experience

in a nonhuman primate. Journal of Neural Engineering, 11(1):016009, February

2014.

[186] Philip A. Starr, Chadwick W. Christine, Philip V. Theodosopoulos, et al. Implan-

tation of deep brain stimulators into the subthalamic nucleus: technical approach

and magnetic resonance imaging-verified lead locations. Journal of Neurosurgery,

97(2):370–387, August 2002.

[187] Kiarash Shahlaie, Paul S. Larson, and Philip A. Starr. Intraoperative computed

tomography for deep brain stimulation surgery: technique and accuracy assessment.

Neurosurgery, 68(1 Suppl Operative):114–124; discussion 124, March 2011.

[188] P. Khanna, S. Stanslaski, Yizi Xiao, et al. Enabling closed-loop neurostimulation

research with downloadable firmware upgrades. In 2015 IEEE Biomedical Circuits
and Systems Conference (BioCAS), pages 1–6, October 2015.

[189] N. E. Crone, D. L. Miglioretti, B. Gordon, et al. Functional mapping of human

sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta

event-related desynchronization. Brain: A Journal of Neurology, 121 ( Pt 12):2271–

2299, December 1998.

[190] Wei Wu, Yun Gao, Elie Bienenstock, John P. Donoghue, and Michael J. Black.

Bayesian population decoding of motor cortical activity using a Kalman filter. Neu-
ral Computation, 18(1):80–118, January 2006.

[191] P. Khanna and J.M. Carmena. Changes in reaching reaction times due to volitional

modulation of beta oscillations. In 2015 7th International IEEE/EMBS Conference
on Neural Engineering (NER), pages 340–343, April 2015.

[192] D. Bourget, H. Bink, S. Stanslaski, et al. An implantable, rechargeable neuro-

modulation research tool using a distributed interface and algorithm architecture.

In 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER),
pages 61–65, April 2015.



164

[193] Tejas Sankar, Nir Lipsman, and Andres M. Lozano. Deep Brain Stimulation for

Disorders of Memory and Cognition. Neurotherapeutics, 11(3):527–534, July 2014.

[194] Takashi Morishita, Sarah M. Fayad, Masa-aki Higuchi, Kelsey A. Nestor, and

Kelly D. Foote. Deep Brain Stimulation for Treatment-resistant Depression: Sys-

tematic Review of Clinical Outcomes. Neurotherapeutics, 11(3):475–484, July 2014.

[195] Nealen G. Laxpati, Willard S. Kaso�, and Robert E. Gross. Deep Brain Stimulation

for the Treatment of Epilepsy: Circuits, Targets, and Trials. Neurotherapeutics,
11(3):508–526, July 2014.

[196] Mark K. Lyons. Deep Brain Stimulation: Current and Future Clinical Applications.

Mayo Clinic Proceedings, 86(7):662–672, July 2011.

[197] Dustin A. Heldman, Alberto J. Espay, Peter A. LeWitt, and Joseph P. Giuf-

frida. Clinician versus machine: reliability and responsiveness of motor endpoints in

Parkinson’s disease. Parkinsonism & Related Disorders, 20(6):590–595, June 2014.

[198] Ana Lisa Taylor Tavares, Gregory S. X. E. Je�eris, Mandy Koop, et al. Quantitative

measurements of alternating finger tapping in Parkinson’s disease correlate with

UPDRS motor disability and reveal the improvement in fine motor control from

medication and deep brain stimulation. Movement Disorders: O�cial Journal of
the Movement Disorder Society, 20(10):1286–1298, October 2005.

[199] Dustin A. Heldman, Joseph P. Giu�rida, Robert Chen, et al. The modified bradyki-

nesia rating scale for Parkinson’s disease: reliability and comparison with kinematic

measures. Movement Disorders: O�cial Journal of the Movement Disorder Society,

26(10):1859–1863, August 2011.

[200] Michael Cassidy, Paolo Mazzone, Antonio Oliviero, et al. Movement-related changes

in synchronization in the human basal ganglia. Brain: A Journal of Neurology,

125(Pt 6):1235–1246, June 2002.

[201] B. S. Everitt. Factor analysis. In An Introduction to Latent Variable Models, Mono-

graphs on Statistics and Applied Probability, pages 13–31. Springer Netherlands,

1984. DOI: 10.1007/978-94-009-5564-6_2.

[202] Siddharth Dangi, Suraj Gowda, Helene G. Moorman, et al. Continuous Closed-Loop

Decoder Adaptation with a Recursive Maximum Likelihood Algorithm Allows for

Rapid Performance Acquisition in Brain-Machine Interfaces. Neural Computation,

26(9):1811–1839, June 2014.

[203] Steven M. Chase, Andrew B. Schwartz, and Robert E. Kass. Latent inputs improve

estimates of neural encoding in motor cortex. The Journal of neuroscience : the
o�cial journal of the Society for Neuroscience, 30(41):13873–13882, October 2010.



165

[204] Mark M. Churchland and Krishna V. Shenoy. Temporal complexity and hetero-

geneity of single-neuron activity in premotor and motor cortex. Journal of Neuro-
physiology, 97(6):4235–4257, June 2007.

[205] Shinji Kakei, Donna S. Ho�man, and Peter L. Strick. Muscle and Movement Repre-

sentations in the Primary Motor Cortex. Science, 285(5436):2136–2139, September

1999.

[206] R. Caminiti, P. B. Johnson, C. Galli, S. Ferraina, and Y. Burnod. Making arm move-

ments within di�erent parts of space: the premotor and motor cortical representa-

tion of a coordinate system for reaching to visual targets. Journal of Neuroscience,

11(5):1182–1197, May 1991.

[207] Xiaofeng Lu and James Ashe. Anticipatory Activity in Primary Motor Cortex Codes

Memorized Movement Sequences. Neuron, 45(6):967–973, March 2005.

[208] Nicholas G. Hatsopoulos, Liam Paninski, and John P. Donoghue. Sequential move-

ment representations based on correlated neuronal activity. Experimental Brain
Research, 149(4):478–486, April 2003.

[209] Nicholas G. Hatsopoulos, Qingqing Xu, and Yali Amit. Encoding of Movement

Fragments in the Motor Cortex. Journal of Neuroscience, 27(19):5105–5114, May

2007.

[210] L. Paninski. Superlinear Population Encoding of Dynamic Hand Trajectory in Pri-

mary Motor Cortex. Journal of Neuroscience, 24(39):8551–8561, September 2004.

[211] D. J. Ostry, P. L. Gribble, and V. L. Gracco. Coarticulation of jaw movements in

speech production: is context sensitivity in speech kinematics centrally planned?

Journal of Neuroscience, 16(4):1570–1579, February 1996.

[212] H. Mushiake, M. Inase, and J. Tanji. Neuronal activity in the primate premo-

tor, supplementary, and precentral motor cortex during visually guided and inter-

nally determined sequential movements. Journal of Neurophysiology, 66(3):705–718,

September 1991.

[213] Andrea M. Green and John F. Kalaska. Learning to move machines with the mind.

Trends in Neurosciences, 34(2):61–75, February 2011.

[214] Jonathan C. Kao, Paul Nuyujukian, Stephen I. Ryu, et al. Single-trial dynamics of

motor cortex and their applications to brain-machine interfaces. Nature Communi-
cations, 6:ncomms8759, July 2015.

[215] Jonathan C. Kao, Stephen I. Ryu, and Krishna V. Shenoy. Leveraging neural dy-

namics to extend functional lifetime of brain-machine interfaces. Scientific Reports,
7(1):7395, August 2017.



166

[216] George Paxinos, Xu-Feng Huang, and Arthur W Toga. The Rhesus Monkey Brain

in Stereotaxic Coordinates. April 2013.

[217] W. Q. Malik, W. Truccolo, E. N. Brown, and L. R. Hochberg. E�cient Decoding

With Steady-State Kalman Filter in Neural Interface Systems. IEEE Transactions
on Neural Systems and Rehabilitation Engineering, 19(1):25–34, February 2011.

[218] H. G. Moorman, S. Gowda, and J. M. Carmena. Control of Redundant Kinematic

Degrees of Freedom in a Closed-Loop Brain-Machine Interface. IEEE Transactions
on Neural Systems and Rehabilitation Engineering, 25(6):750–760, June 2017.

[219] M.M. Shanechi, G.W. Wornell, Z.M. Williams, and E.N. Brown. Feedback-

Controlled Parallel Point Process Filter for Estimation of Goal-Directed Movements

From Neural Signals. IEEE Transactions on Neural Systems and Rehabilitation En-
gineering, 21(1):129–140, January 2013.

[220] Maryam M. Shanechi, Amy L. Orsborn, Helene G. Moorman, et al. Rapid con-

trol and feedback rates enhance neuroprosthetic control. Nature Communications,
8:ncomms13825, January 2017.

[221] Maryam M. Shanechi, Amy L. Orsborn, and Jose M. Carmena. Robust Brain-

Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive

Point Process Filtering. PLoS computational biology, 12(4):e1004730, April 2016.

[222] Zoubin Ghahramani and Geo�rey E. Hinton. Parameter Estimation for Linear

Dynamical Systems. Technical report, 1996.

[223] Peter Pastor, Mrinal Kalakrishnan, Franziska Meier, et al. From dynamic move-

ment primitives to associative skill memories. Robotics and Autonomous Systems,
61(4):351–361, April 2013.

[224] T. E. Milner. A model for the generation of movements requiring endpoint precision.

Neuroscience, 49(2):487–496, July 1992.

[225] A. S. F. Leyton and C. S. Sherrington. Observations on the Excitable Cortex

of the Chimpanzee, Orang-Utan, and Gorilla. Quarterly Journal of Experimental
Physiology, 11(2):135–222, July 1917.

[226] Morasso, P. and Mussa Ivaldi, F. A. Trajectory Formation and Handwriting: A

Computational Model. Biological cybernetics, 45:131–142, 1982.

[227] Juan A. Gallego, Matthew G. Perich, Lee E. Miller, and Sara A. Solla. Neural

Manifolds for the Control of Movement. Neuron, 94(5):978–984, June 2017.

[228] John P. Cunningham and Byron M. Yu. Dimensionality reduction for large-scale

neural recordings. Nature Neuroscience, 17(11):1500–1509, November 2014.



167

[229] Uri Rokni, Andrew G. Richardson, Emilio Bizzi, and H. Sebastian Seung. Motor

learning with unstable neural representations. Neuron, 54(4):653–666, May 2007.

[230] S. P. Wise, S. L. Moody, K. J. Blomstrom, and A. R. Mitz. Changes in motor cortical

activity during visuomotor adaptation. Experimental Brain Research, 121(3):285–

299, August 1998.

[231] Andrew J. Peters, Simon X. Chen, and Takaki Komiyama. Emergence of repro-

ducible spatiotemporal activity during motor learning. Nature, 510(7504):263–267,

June 2014.

[232] William A. Liberti, Je�rey E. Markowitz, L. Nathan Perkins, et al. Unstable neu-

rons underlie a stable learned behavior. Nature Neuroscience, 19(12):1665–1671,

December 2016.

[233] Rony Paz and Eilon Vaadia. Learning-Induced Improvement in Encoding and De-

coding of Specific Movement Directions by Neurons in the Primary Motor Cortex.

PLoS Biol, 2(2):e45, February 2004.

[234] C. S. Li, C. Padoa-Schioppa, and E. Bizzi. Neuronal correlates of motor performance

and motor learning in the primary motor cortex of monkeys adapting to an external

force field. Neuron, 30(2):593–607, May 2001.

[235] Peiran Gao, Eric Trautmann, Byron M. Yu, et al. A theory of multineuronal di-

mensionality, dynamics and measurement. bioRxiv, page 214262, November 2017.

[236] Chethan Pandarinath, Daniel J. O’Shea, Jasmine Collins, et al. Inferring single-trial

neural population dynamics using sequential auto-encoders. bioRxiv, page 152884,

June 2017.

[237] Zoubin Ghahramani and Geo�rey E. Hinton. The EM Algorithm for Mixtures of

Factor Analyzers. Technical report, 1997.



168

Appendix A

Factor Analysis
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A.1 Fitting Factor Analysis (FA)
A.1.1 Overview of Factor Analysis (FA)

This section will outline the Factor Analysis (FA) model and the manner in which we

fit Factor Analysis models for data analysis in chapters 5 and 6. FA is a method that

can be applied as a dimensionality reduction tool, much like principal component analysis

(PCA), probabilistic principal component analysis (PPCA), or independent component

analysis (ICA). Each method is di�erent. PCA aims to reduce the dimensionality of a

high-dimensional dataset with a low-dimensional set of orthogonal axes that capture the

maximum variance. These axes, or loading vectors, turn out to be equivalent to the

eigenvectors of XT Xwhere X is a Txn matrix of n-dimensional data observed T times

after subtracting the mean µ(µ œ Rn
from each entry of X).

PPCA is similar to PCA, but can be described by a probabilistic generative model:

nt = Uzt + Ât + µ

zt ≥ N(0, I)

Ât ≥ N(0, ‡2I)
Each observation nt is described as a linear sum of a low-dimensional latent variable zt

multiplied by a constant loading matrix U , plus a noise term Ât. In PPCA, Ât is draw from

a nomal distribution with covariance equal to a diagonal matrix ‡2I, such that each entry

of the diagonal is identical. In contrast, FA models Ât as drawn from a normal distribution

with covariance equal to diagonal matrix � where each entry of the diagonal can di�er.

In both PPCA and FA, model parameters are fit using expectation-maximization [237].

In all work described in chapter 5 and chapter 6, an FA model is estimated from neu-

ral data using the python sklearn implementation of FA (http://scikit-learn.org/stable/

modules/generated/sklearn.decomposition.FactorAnalysis.html). The following workflow

was used to estimate the FA model:

1. Choose FA dataset. In chapter 5 it would be the visual feedback calibration session

for the simulated online shared BMI control, or the resultant population activity to

parse the observed shared vs. private neural variability. In chapter 6 it would be

the 16-trial epochs of online BMI performance for the subspace-overlap analysis, or

the 64 trial block of online BMI data for the online shared BMI control.

2. Aggregate the binned neural data from all correct trials from training dataset and

concatenate them into a matrix N œ RT xn
where T is the number of bins across all

trials and nis the number of output neurons.
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3. Randomly select 90% of points to be used for training FA, yielding Ntrain œ R(0.9úT )xn

and Ntest œ R(0.1úT )xn

4. For a given k(dimensionality of z) initialize and fit an FA model:

(a) Initialize FA with z œ Rk

(b) Fit FA with Ntrain . The number of times a fit is attempted is 3, max number

of EM iterations is 1000, stopping tolerance for EM is 0.01 (all defaults for

sklearn.decomposition.FactorAnalysis method).

5. Compute the loglikelihood of Ntest using the fit FA model. Store it.

6. Repeat steps 4, 5 for di�erent values of k(usually 1 Æ k Æ 10).

7. Repeat steps 3, 4, 5, 6 for di�erent random subselections of Ntest, Ntrain (usually 5

times).

8. Plot mean loglikelihood for FA models for each k(averaged over di�erent iteraitons,

di�erent subselections of Ntest, Ntrain ).

9. Select k with maximum log likelihood.

10. Fit a new FA model with dimensionality of zequal to k, and with all data N . This

is the final FA model.

A.2 Main Shared vs. Shared Variability
Chapter 6 refers to “Main Shared Variability” instead of just “Shared Variability”.

Main shared variability is extracted after fitting FA. The shared signals were ordered by

their variance by diagonalizing via the singular value decomposition (SVD) [88]:

u, s, v = np.linalg.svd(UUT )
The top p singular values that were needed to describe > 0.9 of the total variance were

used, and the remainder were set to zero:

sreduced = [s[1 : p], zeros(1, k ≠ p)]

UUT
main = u ú sreduced ú v

Also required in the computation of the main shared subspace overlap is the projection

matrix on to the main shared space. This constitutes a matrix that takes a point and

projects it onto the subspace defined by UUT
main:
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sreduced,proj = [ones(1, p), zeros(1, k ≠ p)]

Pmain = u ú sreduced,proj ú v

Throughout the chapter “main shared” variance refers to the use of UUT
main instead of

UUT
. Further, dimensionality of “main shared” variance refers to p instead of k, though

note that p Æ k. Finally, the projection onto the main shared space is defined as Pmain.

These methods are also reviewed in the supplement of [90].

A.3 Estimating zt given nt

In chapter 5 and chapter 6, individual bins of population activity are decomposed into

private and shared components. Below we review how this decomposition emerges:

A.3.1 Conditional Distribution of Multivariate Gaussians
Consider a multivariate Gaussian:

C
xt

yt

D

≥ N(
C
µx

µy

D

,

C
�xx �xy

�T
xy �yy

D

)

Now say we want to estimate the conditional distribution for yt given a particular

value x of xt: p(yt|xt = x). Because of the awesome rules of multivariate Gaussians, the

conditional distribution is also Gaussian: p(yt|xt = x) = N(µy|x, �y|x):

µy|x = µy + �yx�≠1
yy (x ≠ µx)

�y|x = �yy ≠ �yx�≠1
xx �xy

A.3.2 Factor Analysis Model Estimates
Now, turning our attention to the factor analysis model:

C
nt

zt

D

≥ N(
C
µ
0

D

,

C
�nn �nz

�T
nz �zz

D

)

We compute:

�zz = E((zt ≠ 0)(zt ≠ 0)T ) = E(ztz
T
t ) = I

�nn = E((nt ≠ µ)(nt ≠ µ)T = E((Uzt + Ât + µ ≠ µ)(Uzt + Ât + µ ≠ µ)T )
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= E(Uztz
T
t UT + UztÂ

T
t + Âtz

T
t UT + ÂtÂ

T
t ) = UUT + �

�nz = E((nt≠µ)(zt≠0)T ) = E((Uzt+Ât+µ≠µ)zT
t ) = E(Uztz

T
t +Âtz

T ) = UE(ztz
T
t ) = UI = U

Thus:

C
nt

zt

D

≥ N(
C
µ
0

D

,

C
UUT + � U

UT I

D

)

Finally, using the formula from above, the conditional distribution of p(zt|nt = n) =
N(µz|n, �z|n) can be computed:

µz|n = µz + �zn�≠1
zz (n ≠ µ)

µz|n = UT (UUT + �)≠1(n ≠ µ)

�z|n = I ≠ UT (UUT + �)≠1U

Thus, the shared estimate of nt,shared is E(nt|ẑt, nt = n) = UE(zt|nt = n) = UUT (UUT +
�)≠1(n ≠ µ)

And the private estimate is nt ≠ E(nt|ẑt, nt = n).




