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ABSTRACT OF THE THESIS

Enabling Fast Recovery For Autonomous Vehicle Systems

With Linux Container Checkpointing

by
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Failures are unavoidable in engineered systems such as autonomous vehicles, but

the latency of recovering a failed component degrades the performance of autonomous

vehicles. We proposed a scheme to reduce the time of recovering autonomous vehicles

from failures. Using Linux kernel features and container technology, we containerize

functional components of autonomous vehicles and periodically take checkpoints. Af-

ter detecting a failure, we recover the failed component to a previous state, and we

notify the rest of the system to coordinate with the recovery. We test our method

using the Robot Operating System (ROS), a widely-used middleware for robots and

vi



autonomous driving vehicles. Our initial experimental results show that we reduced

the recovery time of a practical pointcloud processing component in autonomous

driving by 94%.

vii



Chapter 1

Introduction

1.1 Introduction

The rapid evolution of autonomous driving technology has fostered the develop-

ment of various intelligent and complicated software applications running on sophis-

ticated server-grade systems [12](Figure 1.1). The trend towards high-automation

levels like Level-4 and -5 which represent full autonomous control of the vehicle in

most traffic situations create complexities. These complexity introduces a long la-

tency to restart and recover from system and process failures. Without an efficient

and fast recovery scheme, an AV may run with a downgraded performance, pull over

until the full function of the vehicle recovers, or even temporarily lose the “driver”

control in response to a process failure. These fallback mechanisms pose excessive

safety hazards. In addition the remedies worsen the rider’s experience and could

require human intervention. This work aims to reduce the time to recover the full

functionality of failed processes in AV systems at low run time cost.

We emphasize fast recovery of components in the primary control pipeline; other

safety strategies, such as fallback controllers outlined by Ishigooka et al. [9] or redun-

dant backup systems, can co-exist with fast recovery schemes to further improve AV

robustness and safety.
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1.2 Challenges

Fast AV system recovery prompts substantial system design challenges. First, it is

infeasible for AV systems to directly adopt fault tolerance and recovery methods used

in traditional servers and mission-critical systems. Compared to conventional servers,

AV systems have limited redundancy, power, thermal budgets, and form factor [12];

it is impractical to adopt the existing system duplication and data replication used in

server clusters. It is also impractical for a commercial AV to employ expensive safe

island solutions used in air/space crafts. Secondly, the modern AV software stack

consists of many software modules running on a combination of Linux and robotics

operating systems (ROS) [12]. Although recent studies, e.g., Rorg [19], adapt Linux

containers to orchestrate the system resource management of Linux and ROS, fast

recovery of application processes remains largely unexplored.

1.3 Proposed approach

To address the challenges, we propose a fast AV system recovery scheme by ex-

ploiting Linux kernel features such as copy on write pages and container technologies.

Our key idea is to isolate autonomous driving software modules as self-contained con-

tainers and perform checkpointing and restore at the container level. After detecting

a failure, we recover the failed component to a previous state using the checkpoints

and notify the rest of the system to coordinate with the recovery. Our evaluation

demonstrates that our design effectively reduces the recovery time of practical AV

applications, such as pointcloud processing, by 94%.
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Chapter 2

Background and Related Work

Recovery strategies for autonomous vehicles must restore the state of an au-

tonomous vehicle if a software fault is detected. This is important in modern high-

automation AV system. In addition, most modern high-automation AV systems are

built on Linux operating systems and robotic middleware such as ROS [12]. As

such we can use Linux kernel features to aid in the fault tolerance of applications.

For instance applications communicate through common network protocols such as

TCP and usually have an option to run in shared memory mode which would allow

us to provide clean abstractions for checkpointing. In addition, the software which

autonomous vehicles run does not change often which allows us to optimize check-

pointing approaches. An ideal solution would provide flexibility for programmers

while requiring little additional hardware.

Most previous fast recovery schemes focused on kernel level designs that recover

from device driver [16] and OS crashes [5]; there were also attempts to build an op-

erating system that automatically recovers from failures [6]. However, vast majority

of robotic software components, especially ROS-based software, execute in the user

space. Previous kernel-level recovery mechanisms can impose unnecessary recovery la-

tency and complexity upon user process failures. Alternatively, user-space checkpoint-

ing mechanisms, such as Distributed MultiThreaded CheckPointing (DMTCP) [2]

and Checkpoint/Restore In Userspace (CRIU) [3], are often geared towards data-

center checkpointing where checkpoint latency is much more important than restore
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latency. We examine these drawbacks in later sections.

2.1 DMTCP, CRIU, and Derivatives

DMTCP and CRIU work in similar manners. They both freeze a target process,

write its state to storage, and then optionally resume the process execution. The data

saved include the pages of process memory, TCP / UDP connections established, and

file descriptors open among other metadata. The difference between DMTCP and

CRIU is that DMTCP uses a user space library to execute code in the process space

while CRIU uses the ptrace API to inject its parasite. Previous work attempted

to incorporate DMTCP into error recovery for ROS [2]. However, most of these

mechanisms involve checkpointing the whole ROS stack to recover from a failure in

the ROS master node. Checkpointing the whole ROS stack simplifies recovery but

also requires every node to wait for the whole checkpointing process before resuming

execution. This introduces large delays in checkpointing time [10].

Linux containers are becoming a mainstream way to deploy software in robots.

Recent works, such as Rorg [19], employ Linux containers to run ROS programs to

reduce maintenance burden and resource contention. In this work, we leverage Linux

container’s encapsulation to checkpoint and restore standalone user space application

components. Employing containers is practical since ROS applications can communi-

cate over a network based protocol. The network communication allows us to decrease

the number of applications that need to be checkedpointed at the same time. We

leverage the existing boundaries created by the TCP connections by separating each

application into its own container. Container level checkpointing is a common level

of abstraction for data-center checkpoint restore schemes such as CRIU, HyCoR [21]

and NiLiCon [20] which all rely on containers to provide an interface to checkpoint,

i.e. the whole container is checkpointed at once. In fact, Docker, a popular container

management system, uses CRIU for its built-in checkpoint restore mechanism.

General purpose container checkpoint and restore has been demonstrated to work

with sub 10 millisecond recovery time [21]. The highest performing solution, HyCoR,

requires a second server to host a backup container, increasing resource demands on
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the system. NiLiCon, which HyCoR is based on, does not require the second server

but has restore times over 100 milliseconds. NiLiCon and HyCoR both use CRIU as

a backend to track pages necessary to save for checkpointing in addition to the other

process state such as TCP connections and open file descriptors. Other proposed cold

backup solutions require over 100 milliseconds to recover [18].

2.2 Other Approaches

Another approach is to use hand crafted checkpoint restore mechanisms. This is

very common in high performance compute applications and neural network training.

[15]. Hand crafted solutions require expertise from the software developer and modi-

fication of the software to meet requirements by the developers. There exist libraries

that assist in the writing of hand crafted checkpoint restore code such as [8]. This

provides additional features such as code modification in between checkpoints. That

is the software running on the autonomous vehicle is modified between a checkpoint

restore cycle. We do not explore this line of work and instead focus on checkpoint-

ing mechanisms leveraging existing abstractions created by containers are described

earlier.

2.3 Extensions

Previous work examined checkpoint restore for autonomous vehicles from a sys-

tems perspective by determining the optimal checkpoint frequency [13]. We do not

address the checkpoint frequency in this work but delegate to Kim et all’s work in-

stead.

Many common autonomous vehcicle applications require the use of GPUs for

efficient computation. These pose unique challenges when running checkpoint restore

as the memory is fragmented across two different devices. One solution is proposed

in CRAC [11]. CRAC substitutes the GPU driver library, the CUDA library, with

a custom version that tracks dirty pages. The dirty page tracking is then used to

copy necessary data to the CPU on checkpoint and restore. These are additional
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requirements in regards to the shared VMA implementation in CUDA which are

described in Twinkle’s paper. In this scope we focus on only checkpoint and restore

of CPU processes but acknowledge the importance of extending the work to GPU

processes.

2.4 Limitations

This work tackles reliability of autonomous vehicles, however there are many as-

pects of reliability which are not address by this work. We focus on user level ap-

plication resilience from the perspective of intermittent issues. Other work address

topics such as network resiliency [17] or other algorithmic and kernel level resiliency

such as recovering from device driver [16] and OS crashes [5].
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Chapter 3

Design and Implementation

We propose a scheme to perform periodic checkpointing of containerized ROS

applications during regular operation with the ability to fast recover upon failures.

To demonstrate our design, we implement our system on Linux and ROS.

3.1 Goal

Fast recovery involves restoring a process to a previous state in the presence of

an intermittent software error. For instance a bug that only occurs at a particular

time or in response to a particular packet. An ideal solution would skip over the bug

inducing time step or sensor data.

To achieve our goal of restoring a failed application process as quickly as possible,

we opt to employ periodic checkpointing. Every interval (a few seconds based the

profiling of our system), we take a snapshot of the ROS node. If we encounter a process

error or failure, we restore from the previous checkpoint. Figure 1.2b illustrates the

checkpoint restore process, while Figure 1.2a shows an example containerized ROS

system.
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3.2 Naive Implementation

A naive implementation could use off the shelf container implementations. Many

containerization frameworks support checkpoint restore [7] of containers. These often

use CRIU which saves the program state to disk. There is a large amount of overhead

associated with writing data to disk [18] which limits the feasibility of this approach.

In addition, standard checkpoint restore schemes with CRIU are unable to checkpoint

established TCP connections. That is to say we can not checkpoint a TCP connection

to another container.

Our proposed scheme leverages the copy on write mechanism in the Linux kernel

commonly used by the clone system call to overcome the overhead associated with

writing data to disk. Similar to VAS-CRIU [18] this places the checkpoint data into

volatile memory. However we significantly reduce overhead by employing the copy

on write scheme. The copy on write mechanism in the Linux kernel copies a page of

memory only when it is written to. This means static pages between checkpoints are

not written to disk. There is a performance overhead associated with this while the

application is running, however we found this to be negligible as described in section

4.3.

Our scheme also handles TCP connections which are the main mechanism of

cross container communication. The scheme does not create a new TCP connection,

instead it re-uses the existing connection. This has the side effect of keeping the

queues persistent across checkpoints. That is to say the packets received after a

checkpoint but before a restore are effectively dropped. This has effects on stability

but the scheme as a whole manages high reliability as described in section 4.4.

3.3 Background on Linux Processes

To persist TCP connections and use the copy on write mechanism featured in

the Linux kernel we clone a process. In Linux each process has a parent and can

optionally share the address space with its parent. In the case of a process fork the

address spaces are shared which means a write from the child will affect the memory
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of the parent and vice versa. However, in the case of a clone the address spaces for

the child and the parent are separate but the file descriptors can persist across both

processes. Each time a process invokes fork or clone a new kernel thread is created

for the process. This is a process with a parent that optionally share the address

space with its parent process. This means that each process running in the container

can, and often does, have many child processes acting as threads.

3.4 Cloning a Process

Each time we want to make a checkpoint we invoke the clone syscall from the

desired process. We then walk the process tree for the container to build the kernel

threads for each process. This results in two identical process trees which are backed

by the same physical pages. However, the kernel is set up to perform a copy on write

for each tree’s address space. During this process we freeze each of the processes in

the process tree, then after completing the clone we release the last process and allow

normal execution to resume. At the same time we keep the cloned tree frozen. When

the original tree crashes or encounters an error we unfreeze the cloned tree and kill

the original tree. This approach performs much fast checkpoint restore operations

providing sub 100 ms checkpoint and sub 100 ms restore times on the same system

with minimal performance degradation.

To duplicate the address space we employ a parasite. This is a short executable

which we inject into the target’s address space by means of the ptrace kernel API. The

compel program provided by CRIU is used heavily in this process. Compel provides

facilities to inflect and cure the target process with a user provided parasite. Infect

is used to describe mapping the parasite executable into the victim’s address space.

Unmapping those pages is referred to as curing. Figure 3.1 shows the detailed clone

process.

When we go to do a checkpoint we first walk the process tree while the application

is still running. We can do this as the autonomous vehicle applications are fairly static

in their process tree. After this we have a tree of processes to duplicate. We then freeze

the process tree and infect it with our parasite. This involves using the ptrace API to
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allocate pages for our parasite and copy the executable. The parasite is invoked with

the process tree and calls the clone syscall in the appropriate manner as to duplicate

the process tree. This involves one call to clone that does not preserve the address

space and instead creates a copy on write copy. After this we free the original process

tree and also resume execution of the parasite in the cloned process tree. Here we

duplicate the process tree by calling clone and specifying that the address space is to

remain the same. At the end we also cure the cloned process tree. This yields two

identical process trees, one of which is executing and the other of which is frozen. To

do a restore we must simply resume execution on the cloned process tree which is a

single syscall per fork.

3.5 Parasite Operation

The parasite is responsible for executing the clone syscall in the victim process

and the duplicated process tree. A parasite is a small program which we run in the

address space of another process. In this case we employ two parasites. The first is

responsible for duplicating the address space from our running process. This involves

a single call to the clone syscall with the appropriate parameters. The rest of the

process creation is done in the cloned process tree. We start by using the compel

library to freeze the victim parent process by means of the ptrace API. This allows us

to write to memory locations in the victims address space. We map the parasite into

the victims memory as described by the compel documentation [3] . The executable

we map invokes the clone syscall via some inline assembly code. It is important not

to use any glibc functions as the parasite should not interfere with any memory of

the victim process. After the parasite executes the clone syscall the address space is

duplicated. This sends a signal to the initiator of the ptrace calls and allows us to

capture the child process ID which corresponds to the cloned syscall. These steps are

illustrated in blocks b and c in figure 3.1.

After receiving the child process ID we no longer need the parasite in the victim so

we remove the parasite from the victim. Now we need to create the threads present

in the original process tree in the cloned process tree. This requires us to attach
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another parasite but this time to the parent thread of the cloned process tree. Using

the parasite we call the clone system call repeatedly for each of the various threads

found in the original process tree. Each time we call the clone syscall we make sure

to unfreeze the parasite but keep the new process frozen. This means we never let

the cloned process tree execute while the original process tree is running. Once again

we record the PID of each thread. After we finish creating the threads we are done

will all the parasite and unmap it from the cloned address space. This process is

illustrated in figure 3.1.

3.6 Metadata Collection

To restore the process we need to know what each thread in the process was

executing. This way we can restore the stack pointer and program counter to the

correct locations. We gather the metadata using the ptrace API. Freezing a process

yields the necessary data present. We freeze each of the threads of the process to

checkpoint and gather the metadata from each thread. This adds significant overhead

as we have to freeze each child process individually which greatly increases the total

time the process spends frozen. We found little difference in recovery percentage

depending on if we froze all the threads at the same time or one after each other.

As a result we do not freeze all threads at the same time but freeze one at a time.

See section 4.3 for more information about the overhead and section 4.4 for more

information about restore success rates.

3.7 Interaction within Containers

The basis for our checkpoint restore scheme is the abstraction given by container-

izing each application. We use podman [4] as the containerization software, however

there is nothing inherent to podman that could not be replicated in other software.

The key functionality offered by containers is that we can isolate the applications

to checkpoint and guarantee that they only communicate over network connections.

This allows us to simply walk the process tree found in a container to determine the

12



processes we need to checkpoint and restore in one block.

3.8 Reliability

Another aspect of checkpoint restore is the ability to successfully complete a re-

store. Depending on the implementation a restore might fail a certain percent of the

time. This could be due to a poorly chosen checkpoint location or an inconsistent

checkpoint state. For example Yu Huang et all’s work, which has the ability to re-

store different versions of the software, does not feature a 100% restore rate, especially

when updating the software at the same time [8].

The most common failures we encountered in testing were the result of non-

standard error messages. Some syscalls relating to futexs do not fail under normal

operation, however after being frozen by ptrace the syscall could return with the error

code EAGAIN [1]. This indicates to the program that nothing is wrong but the call

should be attempted again, however the program do not always respect this error

code which sometimes leads to unrecoverable errors. We only noticed these errors in

the restore stage and never in the checkpoint stage.

3.9 Summary

Our solution have similar pitfalls which means the restore process does not succeed

every time. This contrasts to other solutions which provide guaranteed restores. We

make this trade-off in the name of performance. The details of the restore success

rates are discussed in the evaluation.
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Chapter 4

Evaluation

We evaluated our work based on the Autoware self driving system. This is an

open source autonomous vehicle software stack based on ROS. It consists of processes

described as nodes which communicate with each other via TCP connections. Each

node is isolated in its own container as part of our system, this is representative of

organization schemes such as RORG [19]. There are generally two types of nodes,

GPU nodes and CPU nodes. GPU nodes require a GPU and are excluded in our

implementation, in this case they are not checkpoitned and instead continue running

without interruption. We examine a subset of the CPU nodes.

4.1 System Setup

All of the experiments are run on a system with an Intel i7-4700MQ CPU, 16

GB memory, a SATA SSD, Ubuntu 18.04 with kernel 4.15.0-147-generic and ROS

melodic release, similar to the system used by our autonomous vehicles [14]. We ran

each experiment twenty times to gather averages and standard deviations for each

value. Each of the experiments were conducted by replaying a ROS Bag of a driving

scenario. This was done to reduce run to run variance.
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4.2 Restore Overhead

To determine checkpoint overhead we examine the delay caused by each checkpoint

operation. This is measured as an end to end delay for each processing chain. For

instance the point down-sampler node receives LiDAR data and outputs point cloud

data to the NDT matching node. The NDT matching node produces a position. We

measure the added delay measured at the output of the NDT matching node. For

instance the expected delay between position updates is 100 ms. If we measure this

delay to be 110 ms after a checkpoint operation which indicates a 10 ms overhead.

To give a sense of how our design would perform in a realistic scenario we evaluated

design on Autoware’s perception stack [12]. A timer measured the interval between

processed messages which gives us an upper bound on the end to end system latency

introduced by our solution. During the measurements we checkpointed the voxel grid

filter node which downsamples incoming LiDAR data. We observed a 82% (107ms)

increase in maximum end to end latency after a checkpoint restore cycle compared to

the 389% (471 ms) increase of a cold start. In the median case we observe 12% (15ms)

and 241% (292ms) increases respectively. This compares favorably to the previous

single node checkpoint restore solutions that take on the order of 100 milliseconds

and is in the same range as multi node solutions.

In addition, we measure the restore success. In practice we found it unnecessary

to measure checkpoint success since we did not encounter a single failure in the

checkpoint creation process. The application fails to restore if the complete chain

of nodes fails to output a result. For instance if we restore the failed node and it

successfully establishes a connection with the upstream node but not the downstream

node then this is a failure. A success would be if the full chain successfully processes

data. In the NDT / Voxel downsampler example this would be a successful chain

from the bag, to the voxel downsample node, to the NDT matching node and finally

the measurement node.
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4.3 Runtime Overhead

Finally we need to measure the checkpoint creation overhead. We break the

overhead down into three parts. The memory footprint increase, as in how much

additional memory we require. This is straight forward to measure. Then the freeze

time or the time during which the process is unresponsive. We measure this in a

similar manner to the restore overhead in that we dtermin the time during which the

process to checkpoint breaks the computation chain. Finally, since we use a copy

on write scheme we need to measure the performance overhead of the copy on write

operations. We examine the additional memory overhead and CPU usage as shown

in figure 4.1. There is an increase memory usage of 5% and no measurable increase

in CPU usage during the time. That is to say that it was below 4% of a core.

4.4 Restore Failures

During the restore process we see some failures. These failures generally fall into

one of a few categories. Most of the failures revolve around an inconsistent state for

Futex’s. This is because the code used to wait for a Futex does not interpret the error

code for try again correctly. This is because in normal execution this error number

does not get set. However, when interrupting the Futex in the fork the restore does

not behave correctly. This causes errors within ROS. However these errors are found

to occur infrequently.

When examining the effectiveness of this checkpointing scheme it is important

to keep in mind a few key considerations. The first is that the overhead of the

scheme is very low. The second is that the alternative to this scheme is another

scheme or to fall back to a failure. And finally, the scheme does not rely on any code

modification. The scheme overhead is low enough to not interfere with the operation

of most software. This makes it possible to run the software on all useful nodes. This

increases the usefulness of the software in a real world deployment when compared to

other software systems which require a backup system or have a larger performance

overhead. The second consideration is that the comparison for the scheme should
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not be a perfect backup system but instead one of the other backup schemes. This

is because the scheme is fast enough that another scheme can be applied afterwards

in the event of a failure. This means that any improvement upon the base case of

a cold start is an improvement. An alternative backup system could improve this

rate farther but would work in addition to our system for negligible performance

implications.

4.5 Conclusion

The final point is that the scheme does not require any code modifications. This

is a key advantage as compared to other checkpoint restore mechanisms. Without

code modification the same scheme can be used for independent software which must

be brought together or used in a black box fashion. This enables integration with

vendor software that does not use the scheme or other tools that make it challenging

to implement.
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Figure 4.1: CPU and Memory overhead after repeated checkpoint cycles. Each check-
point is kept for three seconds. Black lines indicate the checkpoint time.
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Chapter 5

Conclusion

Failures are unavoidable in engineered systems such as autonomous vehicles, but

the latency of recovering a failed component degrades the performance of autonomous

vehicles. This paper proposed a scheme to reduce the time of recovering autonomous

vehicles from failures using Linux containers and checkpoints. Existing work in check-

pointing showed fast recovery however required additional backup systems. We ac-

complish this by utilizing autonomous vehicle specific checkpoint grantees, such as

the grantee that the checkpoint and restore systems are the same machine. Exper-

imental results show a 94% reduction in recovery time for a realistic autonomous

driving workload with minimal performance overhead. The scheme does not require

additional hardware and works on off the shelf software running in containers.

When compared to the alternative of not using a checkpoint restore system our

work is able to recover from errors which could leave the car non-operational. The

existing mechanisms do not provide sufficient performance or require large amounts of

resources. The current work shows promise for real world scenarios, however does not

checkpoint CUDA / GPU processes. While this is a limitation, it does not prevent

the deployment of this work as the work can be applied on a container by container

basis to CPU processes.
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5.1 Future Work

Our future goal is to apply this technique to more real-world AV scenarios and

further improve the robustness of autonomous driving. In addition, we aim to explore

the check pointing and restoration of CUDA applications to allow greater coverage of

AV software.
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