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ABSTRACT Crude oil-polluted sites are a global threat, raising the demand for re-
mediation worldwide. Here, we investigated a crude oil metagenome from a former
borehole in Wietze, Germany, and reconstructed 42 metagenome-assembled ge-
nomes, many of which contained genes involved in crude oil degradation with a
high potential for bioremediation purposes.

Bioremediation of crude oil-contaminated sites is highly investigated due to severe
pollution levels in various ecosystems worldwide. It can be enhanced by the

application of microorganisms, and thus it is important to discover novel microbes
capable of crude oil degradation (1).

Three crude oil-contaminated samples were taken on 11 October 2016 from a
former borehole (52.6592N, 9.8323E) located at a historical oil field in Wietze, Germany
(https://www.erdoelmuseum.de). Approximately 5 g of contaminated soil was taken
per sample, transported to the laboratory on ice, and stored at �20°C. Environmental
DNA was extracted from 100 mg of soil using the PowerSoil DNA extraction kit as
recommended by the manufacturer (Qiagen, Hilden, Germany). Paired-end sequencing
libraries were constructed using the Nextera DNA sample preparation kit (Illumina, San
Diego, CA, USA) and the following Nextera DNA indices: N708/N508 (sample 1),
N709/N508 (sample 2), and N710/N508 (sample 3). Paired-end sequencing was per-
formed using a HiSeq 2500 instrument (rapid run mode, 500 cycles), as recommended
by the manufacturer (Illumina), and resulted in 46,673,322 paired-end reads (sample 1,
16,094,584 reads; sample 2, 17,883,658 reads; sample 3, 12,695,080 reads). Reads were
processed with Trimmomatic version 0.36 (2). Processing included the removal of
adapter sequences and low-quality regions. Default parameters were used for all
software unless otherwise specified. The quality of the processing was confirmed using
FastQC version 0.91. A total of 42,049,950 paired-end reads and 1,147,707 unpaired
reads were retained and assembled using metaSPAdes version 3.13.2 (3). Assembly
resulted in 1,544,944 scaffolds; of these, 22,257 were larger than 2,500 bp. Coverage
information for each scaffold was determined using Bowtie 2 version 2.3.2 (4) and
SAMtools version 1.7 (5). The average sequencing depth was approximately 7�.
Metagenome-assembled genomes (MAGs) were reconstructed with MetaBAT version
2.12.1 (6). MAG quality was determined using CheckM version 1.0.13 (7). Only MAGs
with a completeness minus contamination of more than 50% and a contamination rate
of less than 7% were considered for further analysis. MAGs were classified taxonomi-
cally using GTDB-Tk version 1.0.2 and the Genome Taxonomy Database (GTDB) (release
86) (8, 9), resulting in 6 archaeal MAGs and 36 bacterial MAGs. Archaeal MAGs were
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classified as members of the Euryarchaeota (1 MAG), Halobacterota (3 MAGs), and
Thermoplasmatota (2 MAGs). Bacterial MAGs belonged to Actinobacteriota (4 MAGs),
Bacteroidota (5 MAGs), Chloroflexota (5 MAGs), Desulfobacterota (4 MAGs), Firmicutes (2
MAGs), Omnitrophota (1 MAG), Patescibacteria (1 MAG), Proteobacteria (10 MAGs),
Spirochaetota (1 MAG), Synergistota (1 MAG), and Thermotogota (1 MAG). One bacterial
MAG was assigned to an unclassified taxon associated with Nitrospirae. After annotation
with Prodigal version 2.6.3 (10), functional annotation was performed with DIAMOND
version 0.9.29 (11) and the KEGG database (October 2018 release) (12). Functional
analysis revealed that all MAGs obtained possess genes involved in xenobiotic degra-
dation. One MAG assigned to Rugosibacter, a genus of known xenobiotic degraders
(13), showed the highest abundance of pathways associated with xenobiotic degrada-
tion (11.8%).

Data availability. Raw sequencing data are available at the NCBI Sequence Read

Archive (SRA) under accession numbers SRR10568503, SRR10568510, and SRR10568511.
The metagenome assembly and the MAGs are available at GenBank under accession
numbers WOYI00000000 and WOYJ00000000 to WOZY00000000, respectively. Further
genome characteristics and the functional annotation are publicly available at the
Göttingen Research Online Database (https://doi.org/10.25625/VX8836).
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