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Quinn and Erb1 propose to apply a centered log-ratio (CLR) trans-
form before performing correlation analysis and make the case 
that, when used correctly, correlation and proportionality can out-
perform MMvec in identifying microbe–metabolite interactions. 
While this may be an appealing strategy, it is important to note that 
the correlations estimated from CLR-transformed data will have a 
fundamentally different interpretation than the true correlations in 
the environment, namely:

Cov xi; yj
� �

≠Cov clr xð Þi; clr yð Þj
� �

where xi and yj are the absolute abundances for microbe abundances 
x and metabolite abundances y in taxon i and metabolite j. Because 
the absolute abundances are often not available, inferring the true 
correlations between microbes and metabolites is not tractable 
(Supplementary Note 1). This phenomenon has been extensively 
studied in refs. 2–4, and one of our recent studies provides the intu-
ition behind this in the case of differential abundance5. Because of 
this discrepancy, we proposed to use co-occurrence probabilities 
instead of correlation.

We relied on simulated data in the original paper6 as an artifi-
cial ground truth, as is common in the evaluation of omics tools. 
However, simulated data will always have limitations because 
of the inability to model unknown features of the real system or 
because of deliberate simplifications that clarify key points in 
the model system. Furthermore, it is possible to identify simu-
lations where a proposed model is optimal. In Fig. 1, we used 
Bayesian Optimization7 to identify simulations where MMvec was 
able to accurately estimate the correct parameters and Pearson  
underperformed. If the appropriate assumptions are satisfied, 
MMvec can correctly estimate the co-occurrence probabilities with 
machine precision.

Therefore, a crucial aspect of the MMvec manuscript was to test 
performance both on simulations and on real data. Performance on 
real data is the ultimate test of methods, and we recommend that 
simulated datasets be complemented with experimentally vali-
dated datasets where possible. Accordingly, we applied the same 
proportionality-based scripts described by Quinn and Erb1 and eval-
uated them on one of the real datasets we used in the MMvec paper.

A major obstacle to analyzing real-world microbiome and 
metabolomics data is sparsity. Traditional compositional methods 
such as the proposed CLR transform cannot automatically deal with 
zeros and require imputation as a preprocessing step. This imputa-
tion adds bias and is impractical for the sparse datasets typically 
encountered8,9. Microbiome and untargeted metabolomics datas-
ets are generally sparse: in large studies, such as the American Gut 
Project10, the sparsity for stool samples alone is 99.946%. MMvec 
was designed to handle sparse data. In the desert biocrust soils data-
set (sparsity of 51%; ref. 11) that was used in the MMvec publication, 
we observe that MMvec dramatically outperformed the newly pro-
posed linear methods (Fig. 2).

Contrary to the argument by Quinn and Erb1 regarding the 
complexity of neural networks, the MMvec model6 is not much 
more complex than the proposed regression techniques. It is a 
simple one-layer neural network, which is in effect a two-stage  
log–bilinear regression.

Methods similar to MMvec have been successful at the task of 
learning word co-occurrences. Since Mikolov et al.12, these mod-
els have been designed with an emphasis on practical methods for 
learning useful word representations at scale, rather than on per-
fectly modeling the data distribution.

MMvec is only one tool in the arsenal of correlative methods. 
It is not perfect for every correlation type or dataset and is not a 
one-size-fits-all solution. However, we have found that MMvec is a 
powerful discovery tool, as demonstrated by the other real datasets  
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we evaluated in the original article. It is critical that we provide 
accurate guidance to the community so that scenarios where one 
method works better than others are well understood. While there 
may be scenarios where linear methods outperform neural net-
works, we show that there are scenarios where neural networks 
outperform linear methods. We appreciate the communication on 
the topic to the extent that it helps the community better under-
stand the advantages and limitations of the different approaches and 
prompts the community to continue to innovate in this area.

online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
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Fig. 1 | A simulation benchmark comparing MMvec to Pearson. Simulations were obtained through Bayesian Optimization7 to showcase scenarios 
where MMvec outperforms Pearson. a–c, Simulation of a scenario where the microbiome dataset is 99% dense. d–f, Simulation of a scenario where the 
microbiome dataset is 60% dense. All axes are represented on a log scale. Pearson’s R is used to measure the agreement between the simulated ground 
truth co-occurrences and the estimated co-occurrences.
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Fig. 2 | Biocrust soils benchmark. A comparison of MMvec to metrics 
proposed by Quinn and Erb1. These proposed metrics include Spearman, 
Pearson, φ and ρ applied after a CLR transformation13.
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Methods
The simulations were created by using the generative form of MMvec; the 
microbe and metabolite factor loadings were randomly generated from a normal 
distribution to parameterize the MMvec parameters. Microbial counts were then 
drawn from a multinomial logistic normal distribution and fed into MMvec to 
generate the metabolite counts. To identify scenarios where CLR correlations 
underperformed in comparison to MMvec, we used Bayesian Optimization to tune 
the distributions used to generate the simulations.

The CLR-transformed correlations suggested by Quinn and Erb were 
benchmarked on the desert biocrust soils dataset using the R scripts provided in ref. 1.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The datasets to reproduce the results presented here can be found at https://github.
com/knightlab-analyses/multiomic-cooccurrences.

Code availability
The analysis software to reproduce the results presented here can be found at 
https://github.com/knightlab-analyses/multiomic-cooccurrences.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Only simulation data was used.

Data analysis All data analysis scripts can be found here: https://github.com/knightlab-analyses/multiomic-cooccurences

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The biocrust soils data was retrieved from the supplemental section in Swenson et al
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We used 500 samples in our simulations, since this is larger than most of the studies that we have analyzed. 
For the biocrust soils study, there were 19 samples and after filtering there were 466 unique microbial taxa and 85 metabolite features.

Data exclusions Taxa that appeared in less than 10 samples for each study were removed, since there are fewer samples than degrees of freedom in the 
model to infer these microbes co-occurrence patterns.

Replication Replication was not necessary, since the data was simulated, not collected.

Randomization Randomization was not necessary, since the data was simulated, not collected.

Blinding Blinding was not necessary, since the data was simulated, not collected.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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