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Abstract

Black Holes and Holography:

Insights and Applications

by

Jason Wien

This dissertation focuses on the role classical black hole spacetimes play in the

AdS/CFT correspondence. We begin by introducing some of the puzzles surrounding

black holes, and we review their connection to strongly correlated CFT states through

holography. Additionally, we detail numerical methods for constructing black hole states

of non-trivial topology in three dimensions and evaluating their actions.

In part I we focus on using black hole spacetimes to derive insights into holography

and quantum gravity. Using numerical methods, we study a class of non-local operators

in the CFT, defined via a path integral over a torus with two punctures. In particular, we

are interested in determining the spectrum of such operators at various points in moduli

space. In the dual gravitational theory, such an operator might be used to construct black

hole spacetimes with arbitrarily high topology behind the horizon. We present evidence

suggesting this fails, and along the way encounter a puzzle related to the positivity of

these operators. The resolution of this puzzle lies in developing technology to better

catalogue the relevant gravitational phases.

Additionally, we use multi-boundary wormhole spacetimes to investigate the con-

straints on the subregion entanglement entropies of holographic states. We find tension

with previously claimed properties of these constraints, namely that they define a poly-

hedral cone in the space of entanglement entropies. These results either suggest the

possible existence of further unknown constraints, or the need for a more complicated

vii



construction procedure to realize the extremal states.

In part II we focus on the holographic description of CFT states via black hole

spacetimes, focusing on spacetimes perturbatively constructed from the planar AdS-

Schwarzschild metric. First, we consider corrections to properties of confining ground

states of holographic CFTs as we introduce spatial curvature. Next, we compute shifts

in vacuum entanglement entropy in a thermal state with a locally varying temperature

as well as similar shifts in the confining ground states with spatial curvature.
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Chapter 1

Introduction

Black holes are one of the most enchanting aspects of the known universe, providing

inspiration for countless science fiction stories while remaining a puzzle to physicists as

to their exact nature. These mysterious objects follow directly from Einstein’s theory

of General Relativity [1], and in fact they are as essential to the theory as a mass on a

spring is to Newtonian mechanics.

General Relativity describes how massive objects warp and stretch the fabric of space

and time itself, and how objects travel through such a warped universe. These two notions

are linked through Einstein’s equations, which relate the curvature of a spacetime encoded

in the tensor Gµν with the matter and energy content encoded in the stress tensor Tµν :

Gµν =
8πGN

c4
Tµν . (1.1)

These equations were elegantly summarized by John Wheeler as, “Matter tells space how

to curve; space tells matter how to move.”

A black hole is a region of space that is warped so strongly that nothing can escape

it, not even light. Anyone or anything that enters a black hole is ultimately doomed to

1



Introduction Chapter 1

be torn apart by the extreme gravitational forces within. These forces become infinitely

large inside of the black hole, where the solution has a singularity, and so some theory

other than General Relativity must become relevant in the interior. The prototypical

black hole solution of Einstein’s equations, the Schwarzschild solution [2], was derived

just one year after Einstein developed his theory, although physicists did not understand

it to be a black hole until decades later. In the present day, black holes provide a rich

theoretical testing ground for how to go beyond the limits of General Relativity due to

their singular nature and unique causal structure.

One could hope the Schwarzschild singularity arises because the solution assumes

perfect spherical symmetry, and real black holes wouldn’t be plagued by this theoretical

oddity; however, it was shown in 1965 that any black hole in a spacetime satisfying a

set of generic conditions would contain a singularity [3]. In this way, singularities are a

fundamental feature of General Relativity, rather than a finely tuned pathology.

Furthermore, black holes are thought to be ubiquitous in our universe, with one sit-

ting right at the center of our galaxy [4]. Recently the LIGO collaboration has reported

multiple observations of gravitational waves emitted from the coalescence of two black

holes, with waveforms consistent with that predicted by General Relativity [5, 6, 7]. In-

deed, black holes seem to be a robust feature of our universe, even though our theoretical

understanding of them is incomplete.

Despite this incompleteness, black holes have a rich theoretical description as objects

with temperature, mass, angular momentum, and charge. Their dynamics are elegantly

described by the four laws of black hole mechanics [8], standing in direct analogy to the

four laws of thermodynamics. This description hints at a deeper connection between

black holes and real thermodynamic objects, a connection made more explicit in the

1970s by the works of Stephen Hawking and Jacob Bekenstein [9, 10, 11, 12]. This

characterization of black holes as thermodynamic objects revealed a beautiful theoretical

2
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structure built in to General Relativity, but also laid bare some of its inconsistencies.

An essential ingredient of this formulation is the Bekenstein-Hawking formula for the

entropy of a black hole:

SBH =
A

4GN~
, (1.2)

where A is the area of the event horizon of the black hole [10, 11]. Treating a black hole

as a thermodynamic object, this formula for the entropy follows from general arguments

involving the partition function. However, it remains a mystery to derive this entropy in a

statistical mechanical way in terms of counting the number of microstates corresponding

to the black hole macrostate. Such a counting requires an underlying theory of quantum

gravity, and a derivation of this formula is an important benchmark for such a theory.

Indeed a major success of string theory has been to provide this microscopic explanation

[13].

Additionally, it is puzzling that the entropy scales with the area of the black hole,

rather than the volume as it does for most thermodynamic systems. In some sense this

formula suggests that gravity is “holographic,” meaning the degrees of freedom in the

interior of region are somehow encoded on its boundary. This notion later was explicitly

realized through the AdS/CFT correspondence [14, 15, 16], and this general idea of

holography fuels much modern research in quantum gravity, providing a window into

understanding how these puzzles might be resolved.

The AdS/CFT correspondence originated from the conjecture that a particular type

of string theory defined in Anti-de Sitter space (AdS) is dual to a particular type of

conformal field theory (CFT). More specifically, Juan Maldacena in 1997 motivated that

Type IIB string theory on AdS5 × S5 should be dual to N = 4 Super Yang-Mills in

four dimensions [14]. In many cases we can consider only the AdS sector of the string

3



Introduction Chapter 1

theory, in which case this duality relates a four dimensional quantum field theory to a

five dimensional string theory. Furthermore, inserting sources in the CFT corresponds

to changing the asymptotically AdS boundary conditions, and so as a cartoon one can

think of the CFT as repackaging the quantum gravitational theory in terms of degrees

of freedom on its boundary. In this way, Maldacena’s original conjecture provides a

description of a theory of quantum gravity in terms of a holographic duality.

This idea of holography is thought to apply more generally to theories of quantum

gravity as explained in various reviews [17, 18, 19, 20]. The correspondence more generally

can be stated at the level of partition functions:

ZCFT = ZQG . (1.3)

On the left hand side is the partition function of some conformal field theory defined on

a d dimensional manifold X. On the right hand side is the partition function of a dual

quantum gravitational theory with asymptotic boundary conditions ∂M = X. Through

this relation, the kinematics and dynamics in one theory has a corresponding description

on the other side.

In most cases, the quantum gravity partition function is either unknown or in-

tractable, and so it is convenient to consider the strong coupling and large number of

flavors limit of the CFT. In this limit, the dual gravitational theory reduces to Einstein

gravity with asymptotically AdS boundary conditions and some auxiliary fields that de-

pend on the details of the original quantum gravitational theory. For the purposes of this

dissertation, we will work exclusively in this limit and turn off all the auxiliary fields,

restricting to the so called “universal sector” that does not depend on the specific de-

tails of the underlying theory quantum gravity. With these assumptions the duality is

4
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summarized by

ZCFT = ZEH , (1.4)

where the right hand side is the partition function for pure Einstein gravity with no

matter fields1, i.e.
∫
Dg e−SEH[g]. The limit of a large number of flavors in the CFT

corresponds to the limit GN → 0 in the gravitational theory, and as the Einstein-Hilbert

action scales like 1/GN , the partition function on the gravity side is often evaluated using

a saddle point approximation. For the rest of this dissertation, we set c = ~ = kB = 1,

but leave GN explicit in order to make this limit more explicit.

This dissertation focuses on various classical black hole spacetimes and the role they

play in holography. The AdS/CFT correspondence relates these spacetimes to highly

correlated (thermal) states in the CFT and provides the basis for a symbiotic relationship

between the two. On one side of the relationship, the previously mentioned puzzles

associated with black holes should have conceptually clear resolutions in terms of the

language of the CFT. For example, there should be a microscopic accounting of the

black hole entropy formula in terms of states in the CFT. Going in the other direction,

holography can be used to translate difficult computations involving strongly coupled

CFTs into simpler calculations in Einstein gravity. In this dissertation, we explore both

aspects of this symbiosis.

The material in this dissertation is organized as follows. In §1.1 below, we review the

simplest example of the correspondence between a CFT state and a black hole, namely

the duality between the thermofield double state and the AdS-Schwarzschild solution

[21]. Finding the gravitational dual of a CFT state defined via a path integral amounts

to solving for the dominant saddle point of the Einstein-Hilbert action with the correct

1Note that the Gibbons-Hawking-York boundary term must also be included.
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boundary conditions, and so we first explain this example in order to make the material

in the rest of the dissertation more accessible.

We begin in section 2, where we detail the numerical techniques used in this disserta-

tion to study black hole spacetimes with non-trivial topology behind the horizon in two

spatial dimensions plus time. Constructing these spacetimes involves numerical methods

for solving non-linear differential equations using the finite element method, as well as

mathematical methods for uniformizing Riemann surfaces. We include a Mathematica

package for doing these computations, and we provide a simple example to demonstrate

its use. The reader more interested in the applications of these methods to physical

questions can skip this section without loss of narrative.

In part I, we construct classical black hole spacetimes of non-trivial topology and use

them to try and gain insights into holography and quantum gravity in general. First

in chapter 3 we consider a class of non-local CFT operators defined via a path integral

over a torus with two punctures. One might use these operators to naturally construct

gravitational states of high topology. Using numerical methods to compute the relevant

bulk saddles, we study the action of such operators on the vacuum state as well as the

associated projector onto the highest eigenvalue state. Along the way, we are confronted

with an apparent contradiction in our arguments with no clear resolution, motivating

further study.

Next, in chapter 4 we try to characterize the set of states in a CFT which have gravi-

tational duals through the holographic entropy cone. This cone consists of the subregion

entanglement entropies realizable by holographic CFT states, and for n subregions has

dimension 2n−1. It was previously claimed that this cone is polyhedral, and we evaluate

this claim by searching for the holographic dual of states at the vertices of the cone. Such

dual states are naturally constructed as multi-boundary wormholes, and thus black holes

play an essential role in these insights.

6
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In part II, we focus on applications of holography to CFT states with gravitational

duals described by black holes. In particular, in chapter 5 we study confinement in gauge

theory through corresponding calculations in spacetimes related to black hole spacetimes.

This program was initiated by Witten [22], and we study how various quantities change

as we perturbatively add boundary curvature.

An important tool for studying strongly correlated CFT states is entanglement en-

tropy, and in chapter 6 we use holography to study entanglement entropy in thermal CFT

states and confining states on curved backgrounds. These states are dual to black hole-

like spacetimes, and we use the Ryu-Takayanagi formula to compute the entanglement

entropy holographically [23, 24].

We conclude with a short summary and an outlook.

1.1 Preamble: From black holes to thermal states

The simplest example of the holographic connection between black holes and CFTs

is the correspondence between the Euclidean AdS-Schwarzschild black hole and the ther-

mofield double (TFD) state in the CFT [21]. In this section, we review the argument

that these states are related by a holographic duality. First we introduce each state in-

dividually, then we explain how they are linked through the AdS/CFT correspondence.

In Euclidean signature, the metric for the AdS-Schwarzschild black hole in d + 1

dimensions is given by

ds2 = f(r)dτ 2 +
dr2

f(r)
+ r2dΩd−1 , f(r) = 1 +

r2

`2
−

rd+
rd−2

(
1

r2
+

+
1

`2

)
, (1.5)

where dΩd−1 is the metric on the d− 1 dimensional sphere, ` is the AdS radius, and r+

is the location of the event horizon. Note that f(r+) = 0, and so the gtt component of

7



Introduction Chapter 1

the metric vanishes and the grr component blows up at r = r+. This behavior seems

to signal that the spacetime becomes singular at the event horizon, but in Lorentzian

signature we can remove this singularity through a coordinate transformation. As we

explain below, in order to perform the analogous transformation in Euclidean signature

we need to identify τ ∼ τ + β where β is the inverse temperature of the black hole

β =
4π`2r+

d r2
+ + (d− 2)`2

. (1.6)

In Lorentzian signature, we can choose a coordinate system so that the AdS-Schwarzschild

metric near the horizon has the form

ds2 = −ξ2κ2dt2 + dξ2 + · · · , (1.7)

where the horizon is at ξ = 0, κ is the surface gravity of the horizon, and the dots signify

terms that are finite as ξ → 0. Further transforming to X = ξ coshκt and T = ξ sinhκt

yields the metric

ds2 = −dT 2 + dX2 + · · · , (1.8)

which is perfectly regular at ξ = 0. In Euclidean signature however, the near horizon

metric has the form

ds2 = ξ2κ2dτ 2 + dξ2 + · · · , (1.9)

and so the appropriate coordinate transformation is X = ξ cosκτ and Y = ξ sinκτ . In

order for this transformation to be well defined, we must identify τ ∼ τ + 2π/κ. We

can similarly derive that κ = 2π/β, where β is defined in eq. (1.6). This means that in

8
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order to preserve regularity in the Euclidean solution, we must make the identification

τ ∼ τ + β for a fixed β.

The main result of the above derivation is that in Euclidean signature, the AdS-

Schwarzschild black hole has periodically identified time. As asymptotically AdS space-

times have a boundary at asymptotic infinity, the boundary of AdS-Schwarzschild is

given by S1 × Sd−1, where the first S1 corresponds to Euclidean time. Collapsing the

Sd−1 directions into a single S1, we can draw this spacetime as a filled in torus as shown

in figure 1.1.

⌧

Sd�1

Figure 1.1: A cartoon of the Euclidean AdS-Schwarzschild spacetime, represented by
a filled in torus. The filled-in direction corresponds to the r direction of the spacetime
in the range r ∈ [r+,∞). Note that in this picture the τ direction is contractible,
as by eq. (1.5) this direction pinches off to zero size at r = r+. However the Sd−1

directions are non-contractible, as they remain finite size at r = r+.

This spacetime has a CFT dual given by the thermofield double state, which we can

think of as a maximally entangled state of two CFTs. Formally we can define this state

as the path integral over a cylinder of length β/2 with two cuts (more precisely the space

[0, β/2] × Sd−1), with each cut corresponding to a CFT defined on an Sd−1. Imposing

boundary conditions on each cut computes the inner product of the TFD state with the

9
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state imposed on the boundaries. In particular, the TFD wavefunction is

〈φ1, φ2|TFD〉 =

∫
Dφ e−SE [φ]

φ(CFT1)=φ1, φ(CFT2)=φ2

, (1.10)

where SE is the Euclidean action for the CFT and we have set ~ = 1. Pictorally we

represent this path integral definition of the TFD state in figure 1.2.

�/2

CFT1 CFT2

�2 = ???�1 = ???

Figure 1.2: A pictoral representation of the path integral definition of the TFD state.

We can gain better understanding of this state by taking the partial trace of the

density matrix |TFD〉 〈TFD| over the degrees of freedom in one of the CFTs. First,

we can construct the density matrix by taking two copies of the path integral drawn

in fig. 1.2. Tracing over CFT2 corresponds to integrating over all boundary conditions

φ(CFT2). As the path integral integrates over all fields φ, this is equivalent to sewing

the two path integrals along CFT2, and we are left with a path integral over a cylinder of

length β as shown in figure 1.3. As well known from the Suzuki-Trotter decomposition,

a path integral over a Euclidean time interval corresponds to a thermal state. Therefore

we have

TrCFT2 |TFD〉 〈TFD| = e−βH , (1.11)

10
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CFT1

�1 = ???

�10 = ???

CFT10

�

Figure 1.3: The TFD density matrix reduced to a single CFT.

where H is the Hamiltonian for a single copy of the CFT. In this way, we see that |TFD〉

is a purification of the thermal CFT state with inverse temperature β. Reversing the path

integral manipulations in bra-ket language we see that that the TFD state is constructed

through the standard doubling trick for purifications, and so we can write

|TFD〉 =
∑
n

e−βEn/2 |n〉 |n〉 , (1.12)

where |n〉 is an energy eigenstate of the CFT Hamiltonian with eigenvalue En. Hence,

this state is referred to as the thermofield double state.

We can now link together the TFD state and the AdS black hole through holography.

From the equivalence of the partition functions in eq. (1.4), the gravitational dual of

the TFD state is characterized by the path integral over metrics with boundary given by

[0, β/2]×Sd−1, or a cylinder of length β/2. Working in the limit GN → 0, we can perform

the gravitational path integral by a saddle point approximation. Therefore, we need to

find solutions of Einstein’s equations with the required boundary conditions, then choose

the solution with least action.

11
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One such solution is half the AdS-Schwarzschild black hole with inverse temperature

β. As discussed previously, the boundary of this spacetime is the S1 × Sd−1 where the

length of the S1 on the boundary is given by β. Cutting this spacetime in half along a

fixed τ slice gives a solution with boundary [0, β/2]×Sd−1. From fig. 1.1, we see that this

cut corresponds to cutting the torus along the plane of the page. The constant τ slice

consists of two boundaries connected through the bulk, which we draw a cartoon of in

fig. 1.4. The bulk state prepared by our path integral is thus a semi-classical state2 that

bndy1 bndy2

r = r+

Figure 1.4: The constant τ slice of half the AdS black hole. Two boundaries are
connected through the bulk wormhole.

is strongly peaked on classical solutions that are close to this two boundary wormhole

geometry at time τ . Note that an observer on one boundary sees a black hole with inverse

temperature β, which exactly matches the temperature of the thermal CFT state on a

single boundary. In this way, holography makes explicit the treatment of black holes as

thermodynamic objects.

However, in order for the thermal CFT state to be dual to the above black hole state,

the bulk solution just described needs to be the dominant saddle in the path integral.

But there is another solution of Einstein’s equations matching these boundary conditions,

namely Euclidean AdSd+1 with periodically identified Euclidean time, with which it must

2Note this saddle point approximation is equivalent to the WKB approximation of the semi-classical
wavefunction, in which the probability density is peaked on classical trajectories with quantum correc-
tions suppressed by order GN . See [25] for more details.
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compete. The action for each solution is infinite due to the infinite spatial extent of AdS,

but by subtracting “counter-terms” that depend only on the boundary conditions (and

which are the same for both saddles) we can renormalize the action to find

Sren[AdS] = 0 Sren[BH] =
π2βr2

+

8GN`2

(
`2 − r2

+

)
. (1.13)

Said differently, S[BH] − S[AdS] = Sren[BH] − Sren[AdS] =
π2βr2

+

8GN `2

(
`2 − r2

+

)
is finite and

well defined. As long as r+ > ` the black hole solution has lower Euclidean action and

is the dominant saddle. From eq. (1.6) we see that large r+ corresponds to small β, i.e.

high temperatures. So at high temperatures the thermal CFT state and the AdS black

hole are holographic duals.

This duality has many applications. For example, the phase transition at r+ = ` has

been used to try and understand the confinement/deconfinement phase transition in QCD

[22]. In chapters 5 and 6 we investigate questions related to this program. Additionally,

one can construct generalizations of this example to link together entangled states of

multiple copies of the CFT with multiboundary wormholes as in [26, 27]. In chapters 3

and 4 we explore further applications of these generalizations.

1.2 Permissions and Attributions

1. The content of chapter 3 is the result of a collaboration with Donald Marolf [28].

2. The content of chapter 4 is the result of a collaboration with Donald Marolf and

Massimiliano Rota, and has previously appeared in the Journal of High Energy

Physics (JHEP) [29]. It is reproduced here with the permission of the International

School of Advanced Studdies (SISSA), Trieste, Italy. http://jhep.sissa.it/

jhep/help/JHEP/CR_OA.pdf.
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3. The content of chapter 5 is the result of a collaboration with Donald Marolf, and

has previously appeared in the Journal of High Energy Physics (JHEP) [30]. It

is reproduced here with the permission of the International School of Advanced

Studdies (SISSA), Trieste, Italy. http://jhep.sissa.it/jhep/help/JHEP/CR_

OA.pdf.

4. The content of chapter 6 is the result of a collaboration with Donald Marolf, and

has previously appeared in the Journal of High Energy Physics (JHEP) [31]. It

is reproduced here with the permission of the International School of Advanced

Studdies (SISSA), Trieste, Italy. http://jhep.sissa.it/jhep/help/JHEP/CR_

OA.pdf.
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Chapter 2

Numerical Methods

In this section we review some of the tools used in chapters 3 and 4 to study handlebody

solutions of Einstein’s equations. These techniques include the finite element method

(FEM) for numerically solving differential equations as well as the mathematical frame-

work of Schottky uniformization for characterizing Riemann surfaces. The focus will be

on useful formulas for implementing these calculations, and as such we have attached a

Mathematica package to the electronic version of this dissertation that implements many

of these tools. Readers interested in physical insights should skip to the next section.

First, we review the aspects of finite element methods used in this dissertation. Next,

we give a rough overview of Schottky uniformization, focusing on explicitly writing down

a uniformization for a given Riemann surface that describes a desired handlebody phase.

We additionally give explicit formulas for computing the regularized action of these phases

reduced by certain symmetries, which we conveniently encode in the attached Mathemat-

ica package. Finally, we give a simple example to illustrate the concepts and techniques

described.

Note that in chapters 5 and 6 we use pseudo-spectral methods for solving differential

equations of a single variable. These methods are well reviewed in [32, 33], and so we
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leave this material out of this section.

2.1 Finite Element Methods

Finite element methods are numerical methods for solving differential equations which

involve discretizing the domain with a set of finite “elements” [34, 35]. We will restrict

our attention exclusively to equations in two dimensions of the form

∇2u(x, y) + f(x, y)u(x, y) = g(x, y) . (2.1)

In order to solve this equation, we will discretize our solution space and convert this

equation into a finite dimensional matrix equation, which we can then easily solve by

algebraic methods.

2.1.1 Discretization of the domain

First, we discretize the domain D with a mesh made up of triangular elements. We

will use elements with six nodes: one on each vertex and one on the midpoint of each

edge. An example of a valid triangulation for a domain used in chapter 3 is shown in

figure 2.1. The meshes used in this dissertation were generated using Mathematica’s

built-in ToElementMesh function. Note that for numerical convenience, we approximate

curved boundaries of D by a large number of straight segments. We can estimate the

error introduced by computing the length of ∂D using the mesh and comparing it to

the true value. The error introduced by this approximation can easily be made smaller

by including more nodes on the boundary, and we always choose a sufficient number of

nodes so that this error is always sub-leading.

Given a valid mesh, we can define our solution space as the Sobolev space of piecewise
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Figure 2.1: An example FEM mesh used in this dissertation.

continuous second-order polyomials spanned by the set of functions ψi on D such that

ψi(nj) = δij. That is, we parameterize our solution space with a basis of second order

polynomials such that ψi is one on node ni and vanishes on all other nodes. In this way

we can approximate any function as

u ≈
N∑
i=1

uiψi , (2.2)

where ui = u(ni) and N is the number of nodes in the mesh. We can improve this

approximation by increasing the number of elements in the mesh.

Note that ψi is non-vanishing only on the set of elements containing ni. In the

discussion below and in the attached code, we refer to such a set as the “neighborhood”

of ni, and we can simplify some of the computations by restricting only to the appropriate

neighborhood. We plot an example ψi and highlight its associated neighborhood in figure

2.2.
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Figure 2.2: A contour plot of ψi for a particular ni and FEM mesh. Note that ψi is
1 on ni, 0 on nj 6= ni, and non-vanishing only in the highlighted neighborhood Ni.

2.1.2 Solving the differential equation

To convert the equation (2.1) to a matrix equation, we can integrate both sides against

an arbitrary ψi.

∫
D

∇2uψi +

∫
D

f uψi =

∫
D

g ψi . (2.3)

Integrating by parts gives the equation

∫
∂D

∇nuψi −
∫
D

∇u · ∇ψi +

∫
D

f uψi =

∫
D

g ψi . (2.4)
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Finally we can use the approximation eq. (2.2) to convert this equation into a matrix

equation:

N∑
j=1

uj

[∫
∂D

ψi∇nψj

]
−

N∑
j=1

uj

[∫
D

∇ψi · ∇ψj
]

+
N∑
j=1

ujfj

[∫
D

ψiψj

]
=

N∑
j=1

gj

[∫
D

ψiψj

]
.

(2.5)

This equation is a bit ugly, but we can clean it up by introducing the following notation:

Mij =

∫
D

ψiψj Wij =

∫
D

∇ψi · ∇ψj Kij =

∫
∂D

ψi∇nψj (2.6)

where M and W are often called the “mass” and “stiffness” matrices respectively. Note

that Kij is non-zero only when both ni and nj are on the boundary.1 With these defini-

tions we can write our equation as

N∑
j=1

Kijuj −
N∑
j=1

Wijuj +
N∑

j,k=1

Mij(fjδkj)uk =
N∑
j=1

Mijgj

N∑
j=1

[
Kij −Wij +

N∑
k=1

Mik(fkδkj)

]
uj =

N∑
j=1

Mijgj , (2.7)

which now takes the form of a matrix equation A · ~u = ~b. We can easily solve this

equation using the LinearSolve function in Mathematica, after appropriately enforcing

the boundary conditions.

In this dissertation, we exclusively use boundary conditions which can be converted

into a Neumann-type form. That is, we only consider cases where we can rewrite Kij

1Additionally it is often possible to rewrite Kij in a simpler manner using the boundary conditions.
We do so in the applications of FEM to this dissertation and later in this section.
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using the boundary conditions ∇nu = f in the manner

N∑
j=1

Kijuj =

∫
∂D

ψi∇nu =

∫
∂D

ψif =
N∑
j=1

∫
∂D

ψiψjfj . (2.8)

In this way, we have converted the term Kij in our matrix equation into a source term

given by
∑N

j=1 Cijfj where

Cij =

∫
∂D

ψiψj . (2.9)

This new source term enforces the appropriate boundary conditions, and so no further

modifications need to be made to eq. (2.7) to ensure the solution obeys them. The

modified equation is given by

N∑
j=1

[
−Wij +

N∑
k=1

Mik(fkδkj)

]
uj =

N∑
j=1

[Mijgj − Cijfj] . (2.10)

2.1.3 Computation of matrix elements

In practice, we can compute the matrices M , W , and C by deriving an analytic

formula based on a unit “reference element” R with vertices at (0, 0), (0, 1), and (1, 0)

as drawn in figure 2.3. Note that as ψi is non-vanishing only in the neighborhood of ni

(denoted by Ni) we can write

Mij =

∫
D

ψiψj =

∫
Ni∩Nj

ψiψj =
∑

E∈Ni∩Nj

∫
E

ψiψj . (2.11)

Therefore we can decompose Mij (and similarly Wij and Cij) as a sum of integrals over

elements in Ni ∩Nj. It will be useful then to derive analytic formulas for the following
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(0, 0)

(0, 1)

(1, 0)(0.5, 0)

(0.5, 0.5)
(0, 0.5)

n1 n2

n3

n4

n5
n6

Figure 2.3: The unit reference element with nodes labeled.

integrals over an arbitrary element E specified by the coordinates of its vertices:

mij =

∫
E

ψiψj wij =

∫
E

∇ψi · ∇ψj cij(s) =

∫
s

ψiψj , (2.12)

where E is assumed to contain nodes ni and nj and s is a particular boundary segment

of E. First we can compute the value of these integrals on the unit reference element,

then transform to an arbitrary element E using an appropriate change of coordinates.2

Quantities associated with the reference element we denote by a superscript R.

First we can write ψi for the reference element:

ψ
(R)
1 = (x+ y − 1)(2x+ 2y − 1) , ψ

(R)
2 = x(2x− 1) , ψ

(R)
3 = y(2y − 1) ,

ψ
(R)
4 = 4x(1− x− y) , ψ

(R)
5 = 4xy , ψ

(R)
6 = 4y(1− x− y) .

(2.13)

One can easily see that these functions are second order polynomials that satisfy ψi(nj) =

δij as required. Additionally, given these expressions we can analytically compute the 36

2One can also compute these integrals using Gaussian quadrature rules as in [36], but we choose to
eliminate the need to compute any analytic derivatives of the ψi.
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matrix elements of m
(R)
ij , w

(R)
ij , and each of the three c

(R)
ij (s).

To transform from the reference element to an arbitrary element with nodes ni =

(xi, yi), we can perform the coordinate transformation

x′
y′

 =

x2 − x1 x3 − x1

y2 − y1 y3 − y1


x
y

+

x1

y1

 . (2.14)

Using the standard change of basis formulas for integrals and derivatives, we can derive

analytic expressions for the matrix elements as functions of the vertices (xi, yi) of E:

mij = |J |



1
60 − 1

360 − 1
360 0 − 1

90 0

− 1
360

1
60 − 1

360 0 0 − 1
90

− 1
360 − 1

360
1
60 − 1

90 0 0

0 0 − 1
90

4
45

2
45

2
45

− 1
90 0 0 2

45
4
45

2
45

0 − 1
90 0 2

45
2
45

4
45



wij =
1

6|J |



3χ23 ξ3 ξ2 −4 ξ3 0 −4 ξ2

ξ3 3χ13 ξ1 −4 ξ3 −4 ξ1 0

ξ2 ξ1 3χ12 0 −4 ξ1 −4 ξ2

−4 ξ3 −4 ξ3 0 4 (χ12 + χ13 + χ23) −8 ξ2 −8 ξ1

0 −4 ξ1 −4 ξ1 −8 ξ2 4 (χ12 + χ13 + χ23) −8 ξ3

−4 ξ2 0 −4 ξ2 −8 ξ1 −8 ξ3 4 (χ12 + χ13 + χ23)


,

(2.15)

where we have used the notations

|J | = | (x3 − x2) y1 + (x1 − x3) y2 + (x2 − x1) y3|

ξ1 = (x1 − x2)(x1 − x3) + (y1 − y2)(y1 − y3)

ξ2 = (x2 − x1)(x2 − x3) + (y2 − y1)(y2 − y3)
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ξ3 = (x3 − x1)(x3 − x2) + (y3 − y1)(y3 − y2)

χ12 = (x1 − x2)2 + (y1 − y2)2

χ23 = (x2 − x3)2 + (y2 − y3)2

χ13 = (x1 − x3)2 + (y1 − y3)2 . (2.16)

For c
(s)
ij we can write the matrix elements as

c(s)
asas = c

(s)
bsbs

= 2/15|s|

c
(s)
asds

= c
(s)
bsds

= 1/15|s|

c
(s)
asbs

= −1/30|s|

c
(s)
dsds

= 8/15|s| , (2.17)

where all matrix elements not implied by i↔ j symmetry vanish and segment s extends

between nodes as and bs with midpoint ds, and |s| is the Euclidean length of segment s.

Using these formulas provides an efficient way to compute Mij, Wij, and Cij and, then

numerically solve a given differential equation in terms of the matrix equation eq. (2.10).

2.2 Handlebody Phases

All solutions of vacuum Einstein’s equations with negative cosmological constant in

2+1 dimensions are quotients of AdS3. These solutions provide a rich set of spacetimes

for probing holography, as we are able to construct geometries with non-trivial topology

simply by taking quotients. In this dissertation, these geometries arise as the gravitational

duals of CFT states in two dimensions defined via a Euclidean path integrals. For a state

defined as a path integral over a genus g Riemann surface X, the associated gravitational
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path integral with boundary conditions ∂M = X has a set of Euclidean saddles which we

can characterize by specifying a set of g cycles on the boundary to be made contractible

in the bulk. We refer to these saddles as handlebody phases, which have been extensively

studied in [37, 38, 39, 40, 41, 36], and which are the focus of this section.

In this section, we review methods for constructing these handlebody phases and

evaluating their actions. We focus on practical tools and formulas for doing computations,

and we refer the reader to §3.3 and the various references for more details on the rich

mathematical theory underlying these methods. In particular, we will show how to

compute the regularized Einstein Hilbert action in the conformal frame where Rbndy =

−2/`2, and we will set ` = 1.

2.2.1 Schottky Uniformization

We can construct a convenient representation of a handlebody phase, called a Schot-

tky uniformization, by starting with the boundary Riemann surface X of genus g. To

specify a handlebody phase, we need to choose a set of g independent and non-intersecting

cycles to be made contractible in the bulk. For example, given a basis {αi, βj} of the

homotopy group of X such that αiβj = δij and
∏

i α
−1
i β−1

i αiβi = 1, we can choose the

set of g cycles {αi}, the cycles {βi}, or any set of cycles given by the image of {αi} under

an element of the mapping class group.

Having chosen a set of g cycles, we now cut open the Riemann surface along each

cycle and label each side of the cut Ci and C ′i. The resulting surface is a Riemann

sphere punctured by 2g circles that come in pairs. We can project this sphere into

the complex plane, resulting in a Schottky domain for X. It is often useful to make

sure that certain reflection and rotational symmetries of X are preserved along the way,

although it is sometimes not possible to preserve all such symmetries (see §3.5 for an

24



Numerical Methods Chapter 2

example). Alternatively, one can begin with 2g circles in the complex plane and then

reverse engineer the corresponding surface X and handlebody phase, although we found

this process to be more difficult in practice.3

The region in C exterior to all the Ci and C ′i can be taken as a fundamental do-

main D for the surface X. As Ci and C ′i are the same cycle on X, we can recover X

from the Schottky uniformization by taking the quotient by the subgroup of Möbius

transformations 〈Li〉, where each Li maps the interior of Ci to the exterior of C ′i.

The Schottky domain resulting from this construction describes a bulk phase in which

the initial cycles chosen on the boundary are contractible in the bulk. If we consider the

half-plane model of H3 with the complex plane as its boundary,4 we can extend the

identifications on the boundary into the bulk along geodesic hemispheres. That is, the

quotient group acts in the bulk by identifying the hemispheres anchored on Ci and C ′i. In

this way, the cycles homologous to Ci on the boundary are contractible in the bulk, as they

may be lifted off the boundary along the corresponding hemisphere and shrunk down to

a point. The dual cycles running between Ci and C ′i remain non-contractible. Therefore,

we have successfully described the handlebody phase with the requisite boundary cycles

contractible in the bulk.

One way to characterize a handlebody phase is by the topology of a particular slice

through the bulk, often corresponding to a moment of time-reflection symmetry. When

this slice is fixed by a reflection symmetry of the boundary X, we can compute the

topology using the following formula:

gslice =
1

2
(n− b+ 1) , (2.18)

3There is an additional complication that sometimes the symmetries of X act in a non-trivial way
on the Schottky uniformization, so determining the bulk geometry on a particular symmetry slice of the
boundary can be difficult.

4We remind the reader that Euclidean AdS3 is H3 or three dimensional hyperbolic space.
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where b is the number of disconnected boundaries of the slice and n is the number of

pairs of circles that lie on the slice. Note that the assumption of reflection symmetry

ensures that either both circles of a pair lie on the slice or neither do. For example, a slice

intersecting 2 pairs of circles that divides the boundary into 3 disconnected circles has no

topology in the interior, and so this slice describes a simple three boundary wormhole.

To compare the gravitational action between different phases, we must numerically

solve for a standard conformal frame on the boundary and regularize the action. Ad-

ditionally, we must be sure to compare phases with the same boundary X, and so we

will need to compute the moduli of the boundary for each phase, and match the moduli

between phases. This process is computationally intensive, but we may sometimes use a

heuristic to get a rough understanding of the phase diagram.

In general the phase with minimal action will be the one in which the total length of

the boundary cycles made contractible is minimized.5 Note that for many phases there is

not a unique choice of g cycles that yield that phase, and so when applying the heuristic

one must choose the choice of g cycles that yields the minimal action. We can summarize

this heuristic simply as: “Shorter cycles are more likely to pinch off than longer cycles”.

While this heuristic does not hold exactly (in fact we can construct cases where it fails),

it is true approximately in the sense that as boundary cycles get longer the phase in

which they are contractible becomes more subdominant. In this way, this heuristic is a

useful shortcut for determining the general structure of the phase diagram.

2.2.2 The boundary metric

In order to fully specify the boundary Riemann surface X and the corresponding

handlebody phase, along with the set of contractible cycles we need to additionally

specify the 3g− 3 moduli of the boundary. In the cases we consider, some of the moduli

5Note that we have fixed the conformal frame of the boundary to be Rbndy = −2.
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are fixed by symmetry, while others are computed by evaluating the lengths of certain

geodesics on the boundary. Therefore, we need to specify a boundary metric before we

can fully match a Schottky uniformization with its Riemann surface X. As detailed

in [40], to properly renormalize the gravitational action, we should choose a conformal

frame on the boundary in which Rbndy = −2. As all metrics in 2d are conformally flat,

we can write in general

ds2 = e2φ(w)|dw|2 , (2.19)

where φ(w) is an arbitrary function for which we will solve. The regularity of the metric

under the quotient by the Li imposes the following boundary conditions on ∂D:

φ(Li(w)) = φ(w)− 1

2
log |L′i(w)|2 . (2.20)

Additionally, the requirement Rbndy = −2 yields the Liouville equation for φ:

∇2φ = e2φ . (2.21)

In all cases we consider, the circles Ci and C ′i are fixed point sets of a symmetry of

D given by inversion through some circle in the complex plane. Using polar coordinates

(rI , θI) centered on the circle of inversion with radius RI , invariance of the metric under

this symmetry requires that

φ(R2
I/rI , θI) = φ(rI , θI) + log(r2

I/R
2
I) . (2.22)
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Differentiating with respect to the unit normal r̂I we find

∂rIφ(R2
I/rI , θ) = − r

2
I

R2
I

(
∂rIφ(rI , θI) +

2

rI

)
. (2.23)

Evaluating this equation on rI = RI we have the simple formula that on CI

∂RIφ|CI = − 1

RI

. (2.24)

In fact, we can show that when Ci and Ci′ are related by an involution symmetry,

this equation also holds on Ci and Ci′ . First, we consider C and C ′ as concentric circles

centered at the origin with radii λ and 1/λ respectively with λ > 1, and L(w) = w/λ2.

The domain D is the region between the circles6. From the boundary conditions eq.

(2.20) we have

1

λ2
∂rφ(1/λ) = ∂rφ(λ) . (2.25)

Additionally, C and C ′ are related by inversion through the unit circle, and so by eq.

(2.23) we have

∂rφ(1/λ) = −λ2

(
∂rφ(λ) +

2

λ

)
. (2.26)

Solving these two equations and noting ∇n = ±∂r for C and C ′ respectively we have

∇nφ|C = −1

λ
∇nφ|C′ = λ . (2.27)

6Note that the “outside” of C is the region including the origin.
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Or in general we have

∇nφ|Ci =
σ

Ri

, (2.28)

where σi = ±1 for D outside or inside of Ci respectively and Ri is the radius of Ci.

To show that the condition eq. (2.28) holds whenever Ci and Ci′ are related by an

involution symmetry, we can perform a Möbius transformation to move the unit circle

to the appropriate circle of involution. Let the appropriate transformation be given by

w′ =
aw + b

cw + d
. (2.29)

Under this transformation we have

~∇′
(
φ(w′)− 1

2
log

∣∣∣∣ bc− ad
(a− cw′)2

∣∣∣∣2
)

= J−1 · ~∇φ(w) , (2.30)

where J is the Jacobian of the transformation eq. (2.29). As on C and C ′ we know

~∇φ(w) from eq. (2.27) and we can compute J , we can solve this equation for ~∇′φ(w′).

Taking the inner product with the normal vector on the image of C and C ′ under the

coordinate transformation yields eq. (2.28).

We can now solve eq. (2.21) using the Newton-Raphson algorithm and the finite

element methods described in the previous section. First, we write φ = φ(n) + δφ(n) and

expand the Liouville to first order in δφ(n):

∇2δφ(n) − 2e2φ(n)δφ(n) = −
(
∇2φ(n) − e2φ(n)

)
. (2.31)

With the assumption that all Ci and Ci′ are related by a Z2 symmetry of the domain, we

can rewrite the boundary conditions eq. (2.20) as Neumann-type conditions eq. (2.28).
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In the manner discussed in the previous section, we can enforce these boundary conditions

by introducing a source term in the integral form of our differential equation:7

−
∫
D

∇ψ · ∇δφ(n) − 2

∫
D

ψ e2φ(n) δφ(n) =

∫
D

∇ψ · ∇φ(n) +

∫
D

ψ e2φ(n) +
∑
i

1

Ri

∫
∂Di

ψ dθi .

(2.32)

This equation is now in the form to apply the formulas from the previous section.

Further, we can often use the symmetries of the Schottky uniformization to reduce

D down to a reduced domain D̃. In all cases we consider, we use at least one reflection

symmetry to reduce D, and without loss of generality we can choose for this reflection

symmetry to act as inversion through the unit circle. Therefore, we choose to always

work with a finite domain D̃. Note that the boundary conditions on the unit circle are

fixed by eq. (2.24), and are accounted for by the final term in eq. (2.32).

Using FEM to discretize this equation, we then can solve the appropriate matrix

equation for δφ(n). Then, we update our solution to φ(n+1) = φ(n) + δφ(n) and solve a

similar equation for δφ(n). Starting with an initial seed of φ(0) = 0, we repeat this process

until ||δφ(n+1)||∞ < 10−10 or another desired accuracy.

Given the solution for φ, we can use the metric to numerically compute the lengths

of all segments of ∂D̃. However, to compute the lengths of geodesics that do not make

up ∂D̃ we must use a different method. We note that the region D̃ with Rbndy = −2

can be represented as a region in H2, and so if we can construct this region we can use

the known analytic properties of H2 to compute the lengths of geodesics. Given a region

D̃ with boundary segments ∂D̃i given by geodesics that meet at right angles,8 we can

construct a corresponding region in H2 by the following algorithm. First, we start with

7Note that in the last term the orientation σi is absorbed into the orientation of dθi in the manner
described in the next section.

8This condition will be guaranteed by our symmetry requirements.
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an arbitrary geodesic segment of length |∂D̃1|. Next, we solve for the geodesic in H2

that intersects it orthogonally, and we follow that geodesic for length |∂D̃2|. We continue

this process until we have represented all boundary segments and form a closed region.

Using this region in H2, we can now solve for the lengths of geodesics using well known

formulas. In this way, we can compute all the remaining moduli of the boundary X.

2.2.3 The bulk action

We can now compute the Einstein-Hilbert action for the associated handlebody phase.

In terms of the field φ it was shown in [36] that the regularized action is given by

I = − c

24π

[
ITZ[φ]− A− 4π(g − 1)(1− log 4ρ2

0)
]
, (2.33)

where A is the area of the boundary, c = 3/2GN is the central charge of the dual CFT,

and ρ0 is the radius of the sphere for which the partition function is one, and we set

ρ0 = 1. Additionally defining Ri to be the radius of Ci and ∆i as the distance between

the center of Ci and the point w
(i)
∞ mapped to ∞ by Li, we have,

ITZ [φ] =

∫
D

d2w
(
(∇φ)2 + e2φ

)
+
∑
i

(∫
Ci

4φ dθ(i)
∞ − 4π log

∣∣R2
i −∆2

i

∣∣) , (2.34)

where θ
(i)
∞ is the angle measured from the point w

(i)
∞ . In the rest of this section, we use

our assumption of symmetries to simplify this action and derive useful formulas.

First, we note that on shell we have the relation

A =

∫
D

d2w e2φ (2.35)

and therefore the term A in eq. (2.33) cancels part of the integration in eq. (2.34).
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Further, we can reduce the remaining ntegral over D to integrations over D̃ using the

various inversion and reflection symmetries. Using the relation eq. (2.23) we have

∫
D

d2w (∇φ)2 = 2

∫
D̃

d2w

[
(∇φ)2 +

2

rI
∂rIφ+

2

r2
I

]
. (2.36)

In practice, we only use reflections and inversion through the unit circle to reduce the

Schottky domain.9 We can think of a reflection as the limit of an inversion where rI →∞,

and so we see that there are no additional terms generated by this reduction (i.e. we can

simply integrate over half the domain and multiply by a factor of 2). Therefore reducing

the domain by a product of s reflections and an inversion through the unit circle yields

∫
D

d2w (∇φ)2 = 2s+1

[∫
D̃

d2w (∇φ)2 +

∫
D̃

d2w

(
2

r
∂rφ+

2

r2

)]
= 2s+1

∫
D̃

d2w (∇φ)2 + 2s+2

∫
∂D̃

φ dθ + 2s+2

∫
∂D̃

log r dθ . (2.37)

We can additionally integrate by parts to get

∫
D

d2w (∇φ)2 = −2s+1

∫
D̃

d2wφ∇2φ+ 2s+1

∫
∂D̃

φ∇nφ+ 2s+2

∫
∂D̃

φ dθ + 2s+2

∫
∂D̃

log r dθ ,

(2.38)

which we can further simplify using the equations of motion ∇2φ = e2φ.

Note that with our assumptions the boundary of D̃ consists of lines through the origin,

the unit circle U , and some portion of the circles Ci, C
′
i, and so we write ∂D̃ = {∂Di}.

It is thus convenient to write the integrals over ∂D̃ above as integrals over these lines

and circles. All the integrals over the lines through the origin vanish due to either dθ or

9Note that for some domains we consider inversion through the unit circle is not a symmetry, but
the product of this inversion with a reflection is a symmetry. The discussion that follows also applies to
this case.
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~∇nφ vanishing, and so we are left with the integral over circles. Denoting I [∂Di] the

contribution to the action from boundary segment ∂Di, we can write the action as

−24π

c
I = −4π(g − 1)(1− log 4)− 2

∫
D̃

φ e2φ d2w +
∑
i

I [∂Di] , (2.39)

where I [∂Di] includes possible contributions coming from eq. (2.34). We now compute

this contribution for each type of boundary segment. The following subsection is rather

technical, and should be thought of as a compendium of useful formulas. The reader

more interested in the overall narrative should skip to the example in §2.4.

2.2.4 Boundary circle contributions

For simplicity, in this section we only compute the contribution reduced over inversion

through the unit circle (or the product of this inversion and a reflection). Reducing

over more reflections is straightforward and simply multiplies certain terms by factors of

2. Throughout this section, we leave the sign inherited through the orientation of ∂D

implicit, i.e. we have

∫
Ci

dθ
(i)
0 = ± 2π (2.40)

where we choose the positive or negative sign when D lies inside or outside Ci respectively.

As previously mentioned, when ∂Di is a line the contribution I [∂Di] vanishes. For

the unit circle U , we only have the contribution from eq. (2.38):

I [U ] = 2

∫
U

φ∇nφ dθ + 4

∫
U

φ dθ , (2.41)

as the log r term vanishes on U . We can use eq. (2.24) to rewrite the normal derivative
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and we have

I [U ] = 2

∫
U

φ dθ . (2.42)

The rest of the boundary segments are made up of parts or all of Ci and C ′i. There are

multiple cases depending on the positions of these circles, and we go through all of them

in detail. Note that we only consider cases in which the domain can be reduced by at

least inversion through the unit circle, and additionally in which Ci and C ′i are the fixed

point set of a symmetry of the domain.

In the simplest case, only one of Ci or C ′i is included in ∂D̃ and this circle does not

intersect U . Without loss of generality, we can choose Ci to be included in ∂D̃, so we

have contributions to I [Ci] from eq. (2.38) and from the final summation in eq. (2.34).

Using the boundary conditions eq. (2.28) we have

I [Ci] = −2

∫
Ci

φ dθ
(i)
0 + 4

∫
Ci

φ dθ + 4

∫
Ci

log rdθ + 4

∫
Ci

dθ(i)
∞ − 4π log |R2

i −∆2
i | ,

(2.43)

where θ
(i)
0 is the angular coordinate measured from the center of Ci. Additionally, one

can show

∫
Ci

log rdθ = π log
(
1−R2

i /X
2
i

)
, (2.44)

for Xi > Ri where Xi is the Euclidean distance of the center of Ci from the origin.

Putting everything together we have

I [Ci] = 2

∫
Ci

φ
(

2dθ + 2dθ(i)
∞ − dθ

(i)
0

)
+ 4π log

1−R2
i /X

2
i

|R2
i −∆2

i |
. (2.45)
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Further, numerically it is only convenient to integrate over dθ
(i)
0 , and so we can introduce

Jacobian factors to transform dθ and dθ
(i)
∞ . In general integrating on Ci over an angle ξ

measured from a point along the axis connecting the origin and Xi introduces the factor10

dξ

dθ
(i)
0

=
Ri(Ri − d cos θ

(i)
0 )

d2 − 2 dRi cos θ
(i)
0 +R2

i

, (2.46)

where d is the signed distance between Xi and the point. For example, applying this

formula to θ we have d = −Xi and

dθ

dθ
(i)
0

=
Ri(Ri +Xi cos θ

(i)
0 )

X2
i + 2XiRi cos θ

(i)
0 +R2

i

. (2.47)

In the second case, we assume both Ci and Ci′ are fully contained in ∂D̃. By the sym-

metry assumptions, there must be a conjugate pair Cī, Cī′ related by inversion through

the unit circle. Therefore we must account for the contribution from this pair as well.

Following similar arguments and using the transformation of φ under the inversion (with

details given in §4.A) we have

I [Ci] + I [C ′i] =2

∫
Ci

φ (2dθ + 2dθ(i)
∞ − dθ

(i)
0 ) + 4

∫
Ci

(φ+ 2 log |w|)dθ
(̄i)
∞

dθ
(̄i)
0

dθ
(̄i)
0

dθ
(i)
0

dθ
(i)
0

+ 2

∫
Ci′

φ (2dθ − dθ(i′)
0 ) + 4π log

(1−R2
i /X

2
i )(1−R2

i′/X
2
i′)

|R2
i −∆2

i |
∣∣R2

ī
−∆2

ī

∣∣ . (2.48)

We can similarly introduce Jacobian factors of the form eq. (2.46) to numerically evaluate

these integrals. The Jacobian for transforming the integral on C(̄i) to one on C(i) can be

10Note using the signed Jacobian factor is more convenient numerically as a built-in way to keep track
of possible orientation reversal.
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worked out geometrically as

dθ
(̄i)
0

dθ
(i)
0

=
R2
i −X2

i

X2
i + 2XiRi cos θ

(i)
0 +R2

i

. (2.49)

Finally, we have to consider the cases in which Ci and C ′i intersect the unit circle.

First, we consider when Ci is mapped to itself under inversion through the unit circle.

In this case the analytic formulas were worked out in [36] and we have

I [Ci] + I [C ′i] = 2

∫
C̃i

φ dθ
(i)
0 + 2

∫
C̃′i

φ dθ
(i′)
0 − 8π logRi + 8

∫ 2 arctanRi

0

x

sinx
dx , (2.50)

where C̃i refers to the part of Ci that is part of ∂D̃ and similarly for C̃ ′i.

Additionally, we can consider the case when inversion through the unit circle is not

a symmetry, but the product of this inversion and a reflection is a symmetry. In this

case, the part of Ci outside of D̃ gets mapped to the part of Ci′ inside D̃, and so we

must include the appropriate Jacobian factor for inversion as in eq. (2.49), with an extra

minus sign to account for the reversal of orientation.

I [Ci] + I [C ′i] =2

∫
C̃i

φ (2dθ + 2dθ(i)
∞ − dθ

(i)
0 ) + 4

∫
C̃i

log |w| dθ

+ 2

∫
C̃i′

φ (2dθ − dθ(i′)
0 ) + 4

∫
C̃i′

log |w| dθ

+ 4

∫
C̃i′

(φ+ 2 log |w|)dθ
(i)
∞

dθ
(i)
0

dθ
(i)
0

dθ
(i′)
0

dθ
(i′)
0 − 4π log

∣∣R2
i −∆2

i

∣∣ . (2.51)

All of the above formulas are included in the attached Mathematica package, providing

a convenient set of tools to study these phases.
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2.3 A Mathematica package

In this section, we document the usage of the attached Mathematica package for com-

puting the action and moduli of a handlebody phase. There are two packages included;

FEMfine.m implements general finite element methods for numerically solving differen-

tial equations, and handlebodies.m provides a framework for solving for the handlebody

geometry.

To load the packages, make sure both files are included in the same directory as the

working notebook and execute

SetDirectory[NotebookDirectory[]];

<<‘‘handlebodies.m’’;

The FEMfine package is automatically loaded as part of handlebodies.

To solve for a handlebody, one must first specify the circles Ci and C ′i in the domain

and the symmetries. There are five allowed circle types, as documented in figure 2.4,

categorized according to the symmetry that Ci and C ′i are the fixed point set under.

Inversion in the unit circle must be a symmetry of the domain, and one can additionally

speicfy reflection across the x axis or y axis as symmetries. This framework allows one to

construct all of the handlebody phases considered in this dissertation, and additionally

one can construct a large set of handlebodies for general application.

In the handlebodies package, one can specify the handlebody via the following code:

InitializeHandlebody[]

AddCircle[{c1, r1, t1}]

AddCircle[{c2, r2, t2}]

...

AddSymmetry[‘‘x’’]

AddSymmetry[‘‘y’’]

where c = {cx, cy} is the center of each circle, r is the radius, and t is the type. The func-

tion IntializeHandlebody[] resets the list of circles and symmetries, and sets the mesh
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InvRU

Inv

InvR

R

Figure 2.4: Illustration of the allowed circle types according to the symmetries that
exchange Ci and C ′i as follows. “R”: a reflection across x̂ or ŷ. “Inv:” inversion
through the unit circle. “InvR:” product of a reflection and inversion through the
unit circle. “InvRU:” circles which are InvR and also intersect the unit circle. “RU”
(not pictured): circles exchaged by reflection and also intersect the unit circle, and
additionally must be fixed under inversion through unit circle.

generation parameters in Mathematica’s ToElementMesh function as “MaxCellMeasure”→

0.005 and “AccuracyGoal”→ 4. To increase the quality of the mesh, one can change the

values of these parameters by resetting the variables mcm and ag to the desired values

after the handlebody is initialized.

Once the handlebody is specified, the executing the command SolveHandlebody[name]

computes a set of quantities and stores them as name[‘‘Attribute’’]. If no variable

name is specified the attributes are stored as Handlebody[‘‘Attribute’’]. The full list

of quantities computed can be seen in the package documentation, and a few relevant

ones are listed below.

• name[‘‘genus’’]: Genus of boundary Riemann surface

• name[‘‘mesh’’]: Finite element mesh used to discretize domain D
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• name[‘‘CError’’]: Estimation of numerical error due to discretization by mesh

• name[‘‘AError’’]: Estimation of numerical error from computation of area com-

pared to the area determined from the genus by the Gauss-Bonnet theorem

• name[‘‘BoundaryLengths’’]: List of the length of each boundary segment ∂Di

compute using the solution for the metric in the order {circle segments, x segments,

y segments} with the order for the circle segments given by the order they were

added, with the unit circle first.

• name[‘‘Action’’]: The Einstein-Hilbert action for the handlebody

One can read off various moduli of the Riemann surface in the list of boundary segment

lengths, and additionally one can use this list to construct the analogous region in H2 to

compute the rest of the moduli.

Additionally, one must match moduli between different phases to determine the dom-

inant phase for given boundary conditions. The NM function and GradSearch function

are included as part of handlebodies as convenient ways to match moduli using New-

ton’s method and a gradient search method respectively. The documentation for these

functions can also be read off from the package.

2.4 An example

As an example, we can use the handlebodies package and the methods outlined in

this section to study the toroidal geon phase originally studied in [36]. First, we choose

boundary conditions given by a genus 2 Riemann surface drawn in figure 2.5 with three

Z2 symmetries. This Riemann surface has a two dimensional moduli space leftover after

imposing these symmetries.

39



Numerical Methods Chapter 2

Figure 2.5: Boundary Riemann surface with three Z2 symmetries given by reflection
in each dashed line and the plane of the page.

In order to specify a handlebody phase, we choose two independent cycles to make

contractible in the bulk. There are three distinct choices that respect the Z2 symmetries

of the boundary. Letting the α cycles go around the handles (red in fig 2.6a) and the

β cycles go around the holes (orange in fig 2.6a), the phases are defined by choosing

{α1, α2} contractible, choosing {β1, β2}, or choosing {α1 − α2, β1 + β2}. Each of these

choices results in a different handlebody phase.

We choose to study the phase in which {α1 − α2, β1 + β2} are contractible. These

cycles are drawn in blue and green on figure 2.6a respectively. To study this phase we

must first cut the Riemann surface apart along theses cycles and project it into the

complex plane. First, cutting the Riemann surface along α1 − α2 yields a square torus

with two punctures related by a reflection symmetry. Next, we can cut this torus along

its β cycle (i.e. β1 + β2) to yield the Riemann sphere with four punctures, where the

punctures are identified by orthogonal reflection symmetries. Projecting this sphere into

the plane gives the Schottky domain drawn in figure 2.6b. Reflection about the x̂ and

ŷ axis identify each pair of Ci, C
′
i, and inversion in the unit circle leaves the domain

unchanged. Additionally, we can identify the cycles α1 and β1 in this domain as the fixed

point sets under the relevant symmetries.
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α1

β1

α1 − α2

β1 + β2

(a)

α1

β1

α1 − α2

β1 + β2

(b)

Figure 2.6: (a) Cycles labeled on the boundary Riemann surface. (b) The Schottky
uniformization of this Riemann surface used to compute the toroidal geon phase.

We can characterize the bulk geometry of this handlebody by considering the geome-

try of a particular time slice. Consider the slice given by the fixed point set of reflection

across the vertical line in fig 2.5. This symmetry fixes the x̂ axis of the Schottky domain

in fig 2.6b, and the topology of this slice is determined by eq. (2.18). The slice has 2 pairs
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of circles, and the boundary consists of a single segment, giving a topology of gslice = 1.

Therefore, in this phase this bulk time slice has geometry given by a single boundary

wormhole with a genus one surface behind the horizon. As in [28] we refer to this phase

as the toroidal geon.

Note that we could have chosen a different time slice to characterize the bulk geometry.

A potential source of confusion is that doing so does not change the handlebody phase,

but rather simply the bulk slice we are using to characterize it. If we had chosen either

of the two remaining slices fixed by Z2 symmetries we would have resulted in a geometry

with three boundaries– with two of the boundaries connected by a wormhole, and the

third a copy of the Poincaré disk. In each of these cases it is important to take the entire

fixed point set of the reflection symmetry as the boundary. For example, if we considered

the fixed point set of the reflection across the horizontal line in fig. 2.5 the boundary

slice consists not only of the ŷ axis but also of the cycle α1− α2. This statement is clear

in fig. 2.6a but more sublte in fig. 2.6b.

Having specified the phase, we can now compute its action and moduli using the

handlebodies package. We can construct a general such phase via the following code:

InitializeHandlebody[]

AddCircle[{{0, 0}, r, ‘‘Inv’’}]

AddCircle[{{Sec[a], 0}, Tan[a], ‘‘RU’’}]

AddSymmetry[‘‘x’’]; AddSymmetry[‘‘y’’];

SolveHandlebody[geon]

A sample mesh used for this phase is shown in figure 2.7. Evaluating this code for

different values of r and a computes the action of this phase at various points in moduli

space. To parameterize the moduli space, we can use |α1| and |β1|, which after reducing

the Schottky domain by the three Z2 symmetries correspond to boundary segments ∂Di.
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Figure 2.7: A mesh used to compute the toroidal geon phase.

In figure 2.8 we show a contour plot of the action in this moduli space.

|α1|

|β1|

Figure 2.8: The action I/c for the toroid geon as a function of moduli. We see the
action decreases as |α1| and |β1| increase.
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Chapter 3

The Torus Operator and Holography

3.1 Introduction

The Euclidean time-evolution operator e−βH is a central object in quantum field

theory (QFT). We focus on conformal field theories in d = 2 spacetime dimensions so

that the matrix elements of e−βH are given by Euclidean path integrals over a cylinder

of height β and radius r0, with the latter chosen to agree with the radius of the circle on

which the QFT is defined. We thus refer to e−βH as the cylinder operator C(β) = e−βH

below. Interesting properties of this operator include the ground state of βH = − lnC(β),

the partition function Z = Tr (C(β)), the gap between the ground state and the first

excited state, and other properties of the spectrum.

We restrict our attention to holographic CFTs; i.e., to families of CFTs that have

a bulk AdS3 dual in the limit of large central charge c. For such theories the AdS3

analogue of the Hawking-Page phase-transition [42] is associated with the fact that the

above-mentioned gap is of order 1 at large c, while above some energy threshold H has

a black-hole-like density of states with entropy S = 2π
√
E ` c/3.

The goal of the present work is to study the effect of adding topology to the above
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path integrals. In partiuclar, we investigate CFT operators T defined by Euclidean

path integrals over some twice-punctured torus T as drawn in figure 3.1. We wish to

understand how such properties depend on the moduli of T , though we suppress these

moduli from our notation. For simplicity we impose three Z2 symmetries on T which

act on figure 3.1 by reflecting the page front-to-back, top-to-bottom, and right-to-left

across the vertical dashed line. This reduces the dimension of the moduli space to two.

Furthermore, by cutting the path integral along the dashed vertical line in figure 3.1, one

sees that the reflection exchanging the two resulting pieces implies that T = A†A for the

operator A that maps our CFT Hilbert space H to H⊗H as defined by the path integral

over the right piece. It follows that T is manifestly non-negative and we may define the

corresponding “Hamiltonian” K := − log T . The largest eigenvalue of T corresponds to

the ground state of K. We call this state |0〉K and often refer to it simply as the torus

operator ground state. We also refer to eigenvalues of K as “K-energies.”

Figure 3.1: The surface T used to define the torus operator T . The surface has three
Z2 symmetries, acting on the page by reflecting front-to-back, right-to-left across the
vertical dashed line, and top-to-bottom. Cutting the path integral along the plane
defined by the normal to the page and the vertical axis (dashed line) decomposes T
into the product A†A where A maps our CFT Hilbert space H to H⊗H.

A closely related problem was recently considered in [36], which studied path inte-

grals over tori with a single puncture in holographic CFTs. To understand the precise
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connection, recall that the CFT vacuum |0〉 is given by the Euclidean path integral over

a disk. The state T |0〉 is thus computed by sewing a disk into the right-hand puncture

of the twice-punctured torus T . The result is a once-punctured torus T , which is con-

formally equivalent to the once-punctured tori studied in [36]. In particular, we show

in appendix 3.A below that our Z2 symmetries do not significantly restrict the resulting

moduli space.

Now, as we review in greater detail in appendix 3.A, ref. [36] identified two phases

in the moduli space of T . In the first phase, the bulk dual of T |0〉 is empty AdS3 with

O(1) excitations for the bulk quantum fields. But in the second phase the bulk dual of

T |0〉 contains a black hole with one asymptotic region and a (punctured) torus inside

the horizon; see figure 3.2. Such spacetimes are known as toroidal geons. This raises the

question of whether T might have other black-hole-like properties when the bulk dual of

T |0〉 is a toroidal geon. Indeed, we will show in section 3.4.2 that this transition also

implies a phase transition for the ground state |0K〉 of K = − log T . While the actual

properties of |0K〉 remain unclear in the toroidal geon case, it is natural to ask if |0K〉

might also be dual to a bulk black hole, what the internal topology of that black hole

might be, and whether the density of states for T might become black-hole-like near |0K〉

with S = O(c) for large c. Such a density of states would be high enough that we would

then refer to it as a “gapless” or “continuous” spectrum.

We begin in section 3.2 by discussing how the above issues are related to properties of

the partition functions Tr(T n). Much of our work will analyze such partition functions

using the dual AdS3 system by further developing the techniques described in [40, 41, 36].

We therefore review the construction of the relevant (handlebody) bulk solutions in §3.3,

along with the computation of the associated bulk actions. We also discuss a heuristic

for understanding which phase dominates a given path integral. Using such techniques

to study Tr(T n) in §3.4 then leads to a puzzle: although T = A†A is manifestly non-
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Figure 3.2: A cartoon of the t = 0 surface for the toroidal geon state. The geometry
consists of a single asymptotically AdS boundary separated from a genus one surface
by a black hole horizon (dashed line).

negative, the most tractable phases – and in particular those directly associated with the

phases studied in [36] – suggest T to have negative eigenvalues. In §3.5 we then consider

the action of T on states containing black holes with toroidal interiors. We close with

some discussion of possible resolutions in §3.6. Further technicalities related to our use of

results from [36] appear in appendix 3.A, and comments on numerical errors are relegated

to appendix 3.B.

3.2 Gaps, ground states, and traces

As mentioned above, a key question of interest is the density of K-eigenstates near

the torus ground state |0K〉. In particular, we wish to distinguish between the case where

K has a gap ∆ that does not vanish at large c and the case where ∆ → 0 as c → ∞.

We will probe this issue in section 3.4 by studying Tr(T n) for large n. This trace is

computed by evaluating the path integral over a Riemann surface consisting of n copies

of T glued together along the seams. As shown in figure 3.3, the result is a Riemann

surface of genus n+ 1 with an n−fold “replica symmetry” acting by a 2π/n rotation.

In particular, as explained in more detail in section 3.3, we will further translate
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n

Figure 3.3: Partition function of genus n+ 1 that computes Tr(T n) in the CFT.

Tr(T n) into a bulk Euclidean path integral. For the 2d CFTs on which we focus, taking

the limit of large central charge c corresponds to taking GN = 3`
2c
→ 0 with fixed AdS

scale `. In this limit we may evaluate the gravitational partition function via the saddle

point approximation using only the dominant bulk solution (dom.):

− log Tr(T n) = SEH[gdom.] . (3.1)

In the rest of this section we describe how studying (3.1) can both determine the value

of ∆ and characterize the ground state |0K〉.

3.2.1 Gapped or Gapless?

To understand how properties of ∆ relate to properties of the dominant bulk saddle,

let us first suppose that ∆ does not vanish at large c. Then for large n we have

Tr(T n) = e−λ0n
(
1 +O(e−∆n)

)
(3.2)
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where λ0 is the smallest eigenvalue of K. Since exponential corrections as in (3.2) corre-

spond to O(c0) effects in the bulk (for ∆ = O(c0)) or sub-dominant bulk solutions (for

∆ = O(c)), for such cases there should be an n0 of order 1 such that the leading-order

gravitational action of the dominant bulk solution becomes precisely linear for n > n0.

We refer to this behavior as “gapped,” and in this case we can write for n > n0

− ln Tr (T n) ∼ nλ0 +O(e−∆n) · · · . (3.3)

On the other hand, if ∆ vanishes as c → ∞ then the corrections in (3.2) can be

neglected only for n & 1/∆. For ∆ vanishing as a power of c this should result from

perturbative corrections in the bulk. It is difficult to imagine how this could be the case,

so we instead focus on the case where the density-of-states becomes black-hole like and

the gap is exponentially small (with − ln ∆ = O(c)). The resulting near-continuum of

low energy states means that evaluating the trace requires us to sum over all the states

in the associated band:

Tr (T n) =
∞∑
k=0

e−n(λ0+g(k)e−c ŝ) , (3.4)

where we have taken the spectrum of excitations above the ground state k = 0 to be

g(k)e−c ŝ; i.e. to leading order the density of states is s = c ŝ for some constant ŝ with

further O(1) details determined by g(k).

To understand the implications for a bulk dual, recall that in a theory with c degrees of

freedom it is natural to expect the number of states at each k to scale like the volume kc−1

of a (k − 1)−sphere so that g(k) ∼ k1/c at large c, or more generally that g(k) ∼ k1/(αc)

for some α of order 1. For small ne−c ŝ we can then approximate the sum in (3.4) by an
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integral to find

− ln Tr (T n) ∼ nλ0 + α c log(n) +O(1) · · · . (3.5)

Note that since the bulk saddle-point approximation is valid only for asymptotically

large c, in this approximation c is always taken large relative to n and we may use (3.5)

no matter how large n may be, as λ0 also scales with c. The gravitational action of

the dominant bulk saddle should thus also be given by (3.5) at large n; i.e., it is never

precisely linear in n, but only becomes approximately linear as n→∞. We refer to this

behavior as “gapless.”

3.2.2 Characterizing the ground state

Whether gapped or gapless, for large n the operator T n approximates e−nλ0 times

the projector |0K〉〈0K |. At least for even n, the analogous statement also holds for

T n/2. Note that this operator is defined by path integrals over an n/2-torus with two

punctures. Indeed, sewing together two copies of this Riemann surface along the two

pairs of punctures gives the partition function Z(n) = Tr(T n). Reversing this logic, we

see that T n/2 is obtained by cutting open the path integral for Z(n) along a pair of circles

C1, C2.

Now, it is well known that cutting open a partition function path integral yields a

state. For n even, let |ψT ,n/2〉 be the state defined in this way by cutting Z(n) along

the above two circles (C1, C2). The relation between T n/2 and |ψT ,n/2〉 is described by

the time-reversal operator T. While time-reversal is often described as an anti-linear

operator on the Hilbert space, it may be equivalently characterized as a map from ket-

vectors 〈α| to bra-vectors |Tα〉. We shall use the latter description. As a result we may

use T to recode the information in any operator O as a state on two copies of the system.
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Choosing a basis {|i〉}, we may write this recoding in the form

|ψO〉 = TO = T
∑
i,j

|i〉Oij〈j| :=
∑
i,j

Oij(|i〉 ⊗ |Tj〉), (3.6)

where we have defined T on |i〉〈j| to act trivially on the ket-vector and to map 〈j| into

|Tj〉. When T is a symmetry of the system, it commutes with the Hamiltonian and we

may choose a basis of energy eigenstates {|E〉} such that |TE〉 = |E〉. Equation (3.6)

then gives the well-known relation between the cylinder operator C(β/2) = e−βH/2 and

the thermofield double state |TFD(β)〉 at temperature 1/β:

|ψC(β/2)〉 = Te−βH/2 =
∑
E

e−βE/2(|E〉 ⊗ |E〉) = |TFD(β)〉. (3.7)

In the same way, we have

|ψT ,n/2〉 = TT n/2. (3.8)

Due to the analogy between (3.7) and (3.8), we refer to the latter as a thermofield-double-

like state.

In [21], Maldacena studied the bulk dual of |ψC(β/2)〉 = |TFD(β)〉 by cutting open

the corresponding bulk path integral. We will do the same below for the TFD-like states

|ψT ,n/2〉. Now, at large enough n, the operator T n/2 approaches e−nλ0/2|0K〉〈0K |, so

(choosing an appropriate phase for |0K〉) we find

|ψT ,n/2〉 = TT n/2 = e−nλ0/2
(
|0K〉|0K〉+O(e−n∆/2

)
. (3.9)

And as discussed above, for ∆ of order 1 or larger at large c, the bulk semi-classical

approximation will not capture the exponentially small corrections. So above some n0,

the state defined by cutting open the bulk path integral for Z(n) should be a product
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state proportional to two copies of |0K〉. One thus expects to find a disconnected pair of

bulk spacetimes analogous to the pair of empty AdS3 spacetimes dual to the thermofield

double |ψC(β/2)〉 = TFD(β)〉 at temperatures lower than the AdS3 version [21] of the

Hawking-Page transition1.

On the other hand, much as in our discussion above, for a black-hole-like density

of states the semiclassical limit cannot access large enough n to see the corrections in

(3.9) become small. At any n it will thus characterize |ψT ,n/2〉 as a highly entangled

state. The amount S(n) of such entanglement then quantifies the density of states and

should take on values typical of a bulk black hole for each n, with S(n)→ 0 as n→∞.

In such cases, the bulk dual of |ψT ,n/2〉 should be a connected wormhole-like spacetime

having two asymptotic regions, and where the corresponding entanglement wedges meet

at a Hubeny-Rangamani-Takayanagi (HRT) surface [43] of area 4GS(n). Topological

censorship theorems [44] then imply that this wormhole lies inside a black hole.

As n → ∞, the area of this HRT surface shrinks to zero and the spacetime approx-

imately splits into two parts, each of which should again be closely related to the bulk

dual of |0K〉. In particular, the topology of the bulk dual to |0K〉 can be determined in

this way.

3.3 Handlebody Phases

We now review the use of bulk handlebodies to compute partition functions Z[X] for

d = 2 holographic CFTs on Riemann surfaces X. That the CFT is holographic means

1As in [21], our Euclidean bulk saddles will all be invariant under a (Euclidean) time-reversal sym-
metry that fixes a bulk surface we call t = 0. In the bulk semi-classical approximation, cutting open
the path integral at t = 0 amounts to using the induced metric at t = 0 as initial data to construct a
Lorentz-signature spacetime that is similarly invariant under time-reversal. In particular, the resulting
spacetime has vanishing extrinsic curvature at t = 0.
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[15, 16] that we have,

ZCFT = Zgrav. , (3.10)

where Zgrav. =
∫
Dg e−SEH [g] and SEH is the Einstein-Hilbert action with Newton constant

GN and negative cosmological constant.2

The gravitational path integral is over Asymptotically Locally Anti-de Sitter (AlAdS)

Euclidean bulk manifolds M that satisfy the boundary condition ∂M = X, where ∂M is

the conformal boundary of M . All solutions of this theory are quotients of global AdS3,

even if the solution features non-trivial topology and/or multiple boundary regions. An

interesting class of bulk solutions are the so-called handlebodies, described by choosing

an appropriate set of cycles on the Euclidean boundary to be contractible in the bulk.

As above, we consider boundary conditions in Euclidean signature given by a compact

Riemann surface X, where X has at least one reflection symmetry, which we will call

time-reflection. The bulk surface Σ invariant under this reflection will be called the t = 0

surface. We leave implicit any analytic continuation to Lorentzian signature.

For a given boundary Riemann surface X of genus g, we can choose a basis {αi, βj}

of cycles3 for the homotopy group π1(X), such that αi ∩ βj = δij and

g∏
i=1

α−1
i β−1

i αiβi = 1 . (3.11)

2For exact equality, Zgrav. should be the full quantum gravity partition function including other fields,
strings, higher derivative corrections, etc. But we will largely restrict attention below to the so-called
universal sector in which the bulk is described by SEH [g] alone at leading order in large central charge
c. As discussed in [45], for known holographic dualities involving AdS3, instabilities involving “long
strings” often imply that the dominant bulk solution does not in fact lie in the universal sector. But
at least when large black holes are present, we may expect the associated temperature to remove such
instabilities in much the same way as the mass deformations described in [46]. We therefore ignore such
instabilities until §3.6.

3Throughout this paper we use the term “cycle” to mean not only an element of π1(X) but in fact a
particular curve in X belonging to the associated equivalence class.
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Given a such basis, we can define a bulk manifold with boundary X by declaring the

cycles {αi} to be contractible in the bulk while the cycles {βi} remain non-contractible.

To be explicit, we take the smallest normal subgroup Γ of π1(X) generated by the αi

and define the bulk to have homotopy group π1(M) := π1(X)/Γ; see [47, 48] for further

discussion of these Schottky groups. It is known that all such π1(M) can be embedded in

the group of AdS3 isometries so that we may construct M as the quotient AdS3/π1(M).

In this way, each possible basis for the boundary Riemann surface X defines a han-

dlebody geometry with boundary X, and we refer to these bulk solutions as the set of

handlebody phases. While they are not the only solutions for a particular set of boundary

conditions, it has been conjectured that the non-handlebody solutions are always sub-

dominant [49], and indeed certain non-handlebody solutions are known to be forbidden

by AdS/CFT [46].

We wish to compute the Euclidean gravitational path integral using a saddle point

approximation, so for each boundary X we need to find the bulk phase with least action.

It is often assumed that phases which break the symmetry of the boundary are sub-

dominant to the ones which preserve the symmetry, and for simplicity we will often

focus on bulk manifolds with fundamental groups π1(M) which preserve the symmetries

of π1(X). We will use a normalization in which the action for certain non-handlebody

solutions vanishes, and we will see explicitly that the dominant action is always negative

for the subspace of moduli space considered.

We can generate a large class of phases by the following algorithm. For simplicity we

work with the homology group, and therefore we might miss phases with the same bulk

homology but different bulk homotopy. However, we do not expect this restriction to

affect our main results. First, we embed X into R3 and choose a standard basis in which

the α cycles go around the “handles” and the β cycles go around the “holes” as shown

in Figure 3.4. This phase is referred to as the “naive handlebody,” as it corresponds to
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Figure 3.4: The naive handlebody phase for a genus 4 boundary with the α cycles
drawn in purple. The four β cycles are not drawn but each circle one of the four holes.

filling in the bulk manifold with a solid handlebody as suggested by the picture. We then

construct new phases by considering the image of these cycles under an arbitrary element

M of the mapping class group and choosing the cycles M({α}) to be contractible in the

bulk. Note that this procedure can generate phases that break symmetries of X. One

might expect such phases to be subdominant, though this is not always the case.

Some of the resulting phases were originally described in [37, 38], with their applica-

tion to holography described in [39]. A more systematic treatment in terms of Schottky

uniformization and a recipe for computing their actions were then derived in [40, 41].

Numerical techniques for evaluating these actions and matching moduli between phases

were later introduced in [36]. The remainder of this section reviews these techniques for

use in §3.4 and §3.5.

3.3.1 Schottky Uniformization

All solutions of Einstein’s equation in 2+1 dimensions with negative cosmological

constant can be constructed by taking a quotient of Euclidean AdS3 by some subset of
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the symmetry group PSL(2,C). In the half-space representation of Euclidean AdS3, the

quotient operations act to identify pairs of hemispheres anchored to the boundary. If we

think of the boundary as the complex plane C, then on the boundary the identifications

are given by Möbius transformations which identify pairs of circles. We can thus specify

a particular bulk quotient by describing these pairs of boundary circles, with the quotient

extending into the bulk by acting on hemispheres anchored to each such boundary circle.

Any connected part of the bulk region that remains after these hemispheres are removed

can serve as a fundamental domain for the quotient handlebody.

Representing a Riemann surface in terms of pairs of circles identified on C is known as

a Schottky uniformization. In general, this uniformization is not unique. More explicitly,

we think of C∪{∞} as the Riemann sphere and consider the domain defined by removing

2g non-intersecting closed disks. The boundaries of these disks are 2g circles, which we

group into g pairs (Ci, C
′
i). Further let the Möbius transformation Li map the interior of

Ci (defined by the embedding in C) to the exterior of C ′i.

As defined, each Li is a loxodromic transformation, meaning that it is conjugate to

the transformation w 7→ q2
iw for some qi ∈ C with 0 < |qi| < 1. Taking the quotient by

the group generated by {Li} defines a Riemann surface of genus g with a fundamental

domain D given by the region exterior to all of the circles. Each transformation Li

is associated with three complex free parameters, while we are free to choose overall

normalizations which fix three of these 3g parameters. The space of surfaces described

in this manner is thus C3g−3, which matches the moduli space of a genus g Riemann

surface. In fact, the Koebe retrosection theorem [50] tells us that all compact Riemann

surfaces can be described in this way.

To connect the choice of Schottky uniformization for the boundary Riemann surface

to the choice of bulk handlebody phase, note that the circles Ci on the boundary are

contractible in the bulk since each Ci can be shrunk to a point by contracting the cycle
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along the corresponding bulk hemisphere. As a result, to construct a bulk in which {αi}

are contractible, we need only find a Schottky uniformization with Ci = αi.

The cycles βi that are dual to αi remain non-contractible, as these are the cycles that

run from Ci to C ′i on the boundary. Each such cycle is associated with the transformation

Li, and any non-contractible bulk cycle given by a product of βi can be associated

with some L which is correspondingly a product of the Li. Additionally, for any non-

contractible cycle there is a unique geodesic representative of the associated homotopy

class. Since all loxodromic L have TrL > 2, as shown in [51] the length of this geodesic

is

`(L) = 2 cosh−1 TrL

2
. (3.12)

This technology provides a useful way to understand the bulk topology and compute the

lengths of various horizons and geodesics.

Given a Schottky representation of a boundary Riemann surface, the topology of the

“t = 0” bulk slice can be determined as follows. Suppose n of the g pairs of circles

{Ci, C ′i} lie on the boundary t = 0 slice.4 Additionally, suppose these identifications

create b disjoint boundary circles at t = 0. The number of holes in the bulk t = 0 slice

is then given by

gt=0 =
n− b+ 1

2
. (3.13)

This formula follows from an analog of the “doubling” construction X = 2Y as pointed

out in [41], using only the subset of identifications that act on the t = 0 slice. As

the boundary identifications are extended into the bulk along hemispheres, the quotient

4Since the bulk t = 0 surface is invariant under a reflection symmetry of the boundary, if Ci lies on
the boundary slice then so must C ′i.
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of the bulk t = 0 slice is determined precisely by the identifications which act on the

intersection of this slice with the boundary.

To construct a Schottky domain for a particular bulk handlebody, however, it is more

convenient to reverse this procedure. Given a handlebody phase described by cycles {αi}

on X to be made contractible in the bulk, we can construct a Schottky uniformization

as follows. First, for each i cut along the geodesics homologous to αi, calling each side of

the cut Ci and C ′i. Cutting the Riemann surface in this manner defines a sphere with 2g

punctures. Next, project this punctured sphere into the plane C. The resulting circles

and maps Li identifying Ci and C ′i are precisely the ingredients needed for Schottky

uniformization. In §3.4 and §3.5 we provide some explicit examples; further examples

can be found in [36, 29].

Finally, in comparing different handlebody phases with the same boundary condi-

tions we must be sure that the moduli of the two boundary Riemann surfaces agree.

Determining the moduli of a Riemann surface from its Schottky representation requires

defining a boundary conformal frame in which to compute cycle lengths. While some

of the moduli are fixed by symmetry, others must be fixed by computing the lengths of

certain cycles. In practice this moduli matching problem is the most difficult part of

constructing a phase diagram for higher genus partition functions. However, there is a

useful heuristic which can sometimes be used as a shortcut.

From the numerical results of [36, 29] and results presented in §3.4 and §3.5, one

observes that the action tends to be a monotonic function of the sum of the lengths

of boundary cycles chosen to be contractible. When this sum is large the action tends

to be more positive, and when this sum is small the action tends to be more negative.

We therefore posit the heuristic that for a particular Riemann surface X, the phase

which dominates the partition function is the one in which the sum of contractible cycle

lengths is minimized, or simply “small boundary cycles like to pinch off.” We will use
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this heuristic to try to gain some intuition for the results in §3.4 and §3.5, and we will

also test the heuristic against numerical computations of the actions.

One caveat in applying this heuristic is that for a given bulk phase there may be

multiple choices of contractible boundary cycles one can use to define it, and so in apply-

ing the heuristic one needs to consider the choice with minimal total length. While this

heuristic is known not to be exact (for example it fails near the AdS/toroidal geon phase

boundary in [36]), it is still useful for building intuition about which phase dominates a

given partition function. Moreover, in many cases there is a symmetry relating two bulk

phases at a particular point in moduli space; see e.g. the example in appendix A.3 of [26].

At the symmetry point there is a choice of basis in which the action and the total length

of contractible cycles are equal in each phase. Moving away from this point as the total

length of contractible cycles decreases, the action typically becomes more negative, and

if for the dual phase the total length of contractible cycles increases then the heuristic is

exact.

3.3.2 The Boundary Metric and Bulk Action

Ultimately we will be interested in comparing the actions of different handlebody

phases in order to determine the dominant semi-classical bulk geometry. We must there-

fore regulate the action by choosing a particular conformal frame. We do so by choosing

the boundary to have constant Ricci scalar Rbndy = −2 in AdS units.

Using coordinates w = x+ iy, we can write the boundary metric as

ds2
bndy = e2φ|dw|2 , (3.14)
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where regularity of the metric under the quotient by Li requires

φ(Li(w)) = φ(w)− 1

2
log |L′i(w)|2 . (3.15)

The requirement Rbndy = −2 is equivalent to choosing φ to satisfy the Liouville equation

∇2φ = 4∂w∂w̄φ = (∂2
x + ∂2

y)φ = e2φ , (3.16)

subject to the boundary conditions (3.15). In this way, the problem of finding the bound-

ary conformal frame is reduced to solving the scalar field equation (3.16) on the Schottky

domain D with boundary conditions (3.15). We will do so in §3.4 and §3.5 using the

numerical methods described in [36] and reviewed in the next subsection.

As shown in [40], with this choice of conformal frame the evaluation of the Einstein-

Hilbert action for a particular solution can be written in terms of the Takhtajan-Zograf

action [48] for the scalar field φ:

I = − c

24π

[
ITZ[φ]− A− 4π(g − 1)(1− log 4R2

0)
]
, (3.17)

where A is the area of the boundary and R0 is the radius of the sphere for which the

partition function is one. We will set R0 = 1 in the results section. As explained in [36],

if we define Rk to be the radius of Ck and ∆k as the distance between the center of Ck

and the point w
(k)
∞ mapped to ∞ by Lk, this action reduces to

ITZ [φ] =

∫
D

d2w
(
(∇φ)2 + e2φ

)
+
∑
k

(∫
Ck

4φ dθ(k)
∞ − 4π log

∣∣R2
k −∆2

k

∣∣) , (3.18)

where θ
(k)
∞ is the angle measured from the point w

(k)
∞ . If we can further reduce D by some

set of symmetries, this action can take an even simpler form as shown in [36, 29]. As
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in [29], we introduce Jacobian factors to turn all of the integrals over θ
(k)
∞ into numeric

integrals over θ
(k)
0 , i.e. about the center of each circle.

3.3.3 Numerical Methods

Equation (3.16) on the Schottky domain D with boundary conditions (3.15) is gener-

ally difficult to solve analytically. Following [36], we thus proceed numerically using finite

element methods and the Newton-Raphson algorithm. See [34, 35] for introductions to

finite element methods.

In all cases of interest, we may write the boundary of our domain as ∂D =
⋃
i ∂Di

where ∂Di is an arc5 of a circle with radius Ri, where each ∂Di is the fixed point set of

some involution or reflection symmetry of D. As shown in appendix A of [36], we can

then use the boundary conditions (3.15) to find

∇nφ|∂Di = − 1

Ri

. (3.19)

To solve (3.16) using the Newton-Raphson algorithm, we first write φ = φ(n) + δφ(n)

and solve a linearized equation for δφ(n). We then set φ(n+1) = φ(n) + δφ(n) and similarly

solve a linearized equation for δφ(n+1). We repeat this process until ||δφ(n+1)||∞ < 10−10.

At stage n in the Newton-Raphson algorithm, we can integrate the linearized equation

against a test function ψ, and integrating by parts to incorporate the reduced boundary

conditions (3.19) we have the following equation for δφ(n):

−
∫
D

∇ψ · ∇δφ(n) − 2

∫
D

ψ e2φ(n) δφ(n) =

∫
D

∇ψ · ∇φ(n) +

∫
D

ψ e2φ(n) +
∑
i

σi
Ri

∫
∂Di

ψ dθi ,

(3.20)

5Straight line segments are “arcs” of infinite-radius circles.
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where σi = ±1 when the orientation of ∂Di as part of ∂D is counter-clockwise or clockwise

respectively. With an initial seed of φ(0) = 0, we can now use this equation and standard

finite element techniques to solve for φ.

To match moduli between different phases, we need to compute the lengths of various

geodesics on the boundary. In the case where a geodesic is fixed by a symmetry of the

domain D, we can explicitly compute its length by numerically integrating the boundary

metric over the appropriate curve. However, in some cases the domain D breaks some of

the symmetries of X (even though the handlebody solution does not), and in practice it

is difficult to numerically solve for the associated geodesic.

However, we can instead compute the boundary geodesic lengths by mapping the

domain D to a subset of the Poincaré disk. We do so using the numerical solution for

φ to compute the length of each boundary segment ∂Di. By symmetry each ∂Di is a

geodesic that orthogonally intersects the adjacent segment ∂Dj. Knowing that the metric

has been chosen so that Rbndy = −2, we can then construct a region in the Poincaré

disk bounded by orthogonally-intersecting geodesic segments of the same lengths. The

geometry of this region must then exactly match the geometry of D. Since the length

of any geodesic segment in the Poincaré disk can be computed using a simple analytic

formula, we can use this correspondence to easily compute geodesic length in our domain

D.

3.4 Computing Tr(T n)

We now use the technology of section 3.3 to compute Tr(T n) and to study the asso-

ciated TFD-like states TT n/2 obtained by cutting open the corresponding path integral.

As explained in section 3.2, characterizing the large n bulk duals of these states would

tell us if T is gapped or gapless, and would also give the bulk dual of the ground state
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|0K〉.

Since any Riemann surfaceX is associated with an infinite number of bulk handlebody

saddles, it will not be possible to study them all in detail. Indeed, even classifying the

full set of possible phases is an onerous task. We will therefore proceed pragmatically,

beginning in section 3.4.1 with bulk handlebodies that preserve the boundary replica

symmetry. We then note in section 3.4.2 that the results of [36] imply that at least

one phase breaking this replica symmetry has lower action, though the positivity of T

forbids that particular phase from being the most dominant. This raises a puzzle, as

other natural alternatives for the most dominant phase also suffer from the same issue.

3.4.1 Replica Symmetric Phases

We first consider phases which explicitly preserve the replica symmetry.6 To cat-

alog such phases we can restrict our attention to the fundamental unit T drawn in

figure 3.5. We consider four distinct phases of this partition function, divided into two

αi

βi

β0

α0

Figure 3.5: The fundamental unit T with cycles labeled. Only 1/nth of β0 is drawn.

6That is, we study phases whose Schottky domains respect the replica symmetry. There are more
complicated phases that preserve replica symmetry, even though the symmetry is broken by the Schottky
representation.
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classes. The first class are called AdS phases, given by the choice of {α0, α1, · · · , αn} or

{α0, β1, · · · , βn} contractible. In both of these phases, if any of the n choices of cycles α0

is contractible, then the image of α0 under 2π
n
k rotation is also contractible. As a result,

each α0 cycle (purple in figure 3.5) bounds a slice of the bulk with vanishing extrinsic

curvature and the geometry of the Poincaré disk. This is the Lorentzian-signature initial

data for global AdS3, so the bulk geometry for T n/2 (with even n) is just a pair of global

AdS3 geometries. We refer to such saddles as AdS phases for the TFD-like state.

When α0 is contractible we can use a trick described in [36] to build phases for higher

genus Riemann surfaces from lower genus phases. The boundary conditions on φ allow us

to glue together Schottky domains along contractible geodesics, and we can glue together

n copies of the unit T along the contractible geodesics α0. In the bulk, this gluing occurs

along the associated hemispheres (which have vanishing extrinsic curvature). In this way,

when α0 is contractible the action is given by n times the action for one of the units.

The action for such AdS phases is exactly linear in n, and so these are gapped phases.

If the operator T is gapped we would expect a phase of this general sort to dominate for

large n, though there remains the possibility that the fundamental unit of the dominant

phase could be larger than T . Note that in defining the action of a fundamental unit we

are free to include a Gibbons-Hawking boundary term 1
8πGN

∫
K at any finite boundary

(e.g., on the plane passing through an α0 cycle at either end of figure 3.5). Since the

extrinsic curvature vanishes on such boundaries, this boundary term does not affect the

numerical value of the action.

The Schottky domains used to represent the above AdS phases are shown in figure

3.6. In each of these domains we include the cycles β̃0 and α̃i, which are the images

of β0 and αi under reflection across the horizontal line of symmetry in figure 3.5. Each

domain has four free real parameters, which are reduced to two by imposing |β̃0| = |β0|

and |α̃i| = |αi|.
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αi

α̃i

α0

β0 βiβ̃0
(a)

βi

α0

β̃0
β0

α̃i αi
(b)

Figure 3.6: One quarter of the Schottky domains used to construct the two AdS
phases, reduced by the reflection symmetries in the x-axis and the inversion symmetry
through the unit circle (dashed). Various boundary cycles are labeled in each phase.
(a) AdS phase with {α0, αi} contractible. (b) AdS phase with {α0, βi} contractible.

The second class of phases we call BTZ phases, given by the choice of {β0, β1, · · · , βn}

or {β0, α1, · · · , αn} contractible.7 In these phases the moment of time symmetry in the

bulk looks like a BTZ wormhole, and the action does not have a simple dependence on n.

The trick we used to paste together AdS phases does not work, as these phases cannot

be constructed by pasting together lower genus units along contractible geodesics. We

thus expect the BTZ phases to be gapless.

Instead, we take advantage of the replica symmetry to further reduce the Schottky

domain. The reduced domains for these phases are shown in figure 3.7, with the replica

symmetry acting by a 2π/n rotation about the origin.

In practice, we find that it becomes difficult to numerically generate a mesh and solve

the requisite differential equations for φ for n > 4. Instead we notice that given a solution

φn for the metric for a particular BTZ phase at replica number n, the solution φn+1 can

be approximated as φn+1(w) = φn(wn/(n+1)). The function φn+1(w) is a solution with the

correct boundary conditions up to corrections O(1/n). Under this transformation the line

θ = π/n is mapped to θ = π/(n+1), effectively turning the n−fold replica symmetry into

7Note that there is another phase given by {β̃0, α̃i} contractible, but this phase will have exactly
equal action by the symmetry.
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βi
β0

β̃0

αi

α0

α̃i
(a)

βi
β0

αi

α0

β̃0

α̃i
(b)

Figure 3.7: A slice of the Schottky domains used to construct the two BTZ phases,
reduced by the reflection symmetry in the x-axis, 2π/n rotational symmetry about
the origin, and the inversion symmetry through the unit circle (dashed). Various
boundary cycles are labeled in each phase. (a) BTZ phase with {β0, βi} contractible.
(b) BTZ phase with {β0, αi} contractible.

(n+ 1)−fold replica symmetry. Extending this idea, we can exactly solve for φ2(w) then

approximate all higher solutions as φn(w) = φ2(w2/n). This approximation introduces

some error into the computation of the action and moduli, and we can estimate this error

by explicitly comparing it to the exact solution for n = 4. We find that in the region of

interest the error is between 0.1% and 5% with most errors around 1%.

In comparing the phases, we first note that our heuristic predicts an AdS phase to

dominate at finite n. As we increase n, the length of the cycle β0 is proportional to n by

replica symmetry, while the lengths of α0, βi, and αi stay fixed. Therefore as we increase

n, the sum of lengths {α0, β1, · · · , βn} will become smaller than {β0, β1, · · · , βn}, and the

sum of lengths {α0, α1, · · · , αn} will become smaller than {β0, α1, · · · , αn}. So at some

finite n, our heuristic predicts an AdS phase to dominate; thus for n > nBTZ we have the
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TFD-like state

TT n/2 ∼ |AdS〉 |AdS〉 , (3.21)

so that |0〉K = |AdS〉. The maximum replica number nBTZ at which a BTZ phase

dominates is a function of the moduli. Figure 3.8 shows nBTZ at various points in the

two dimensional moduli space, computed numerically using the technology described in

the previous subsection. Consistent with this plot, we expect there to be a corresponding
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Figure 3.8: Numerical computation of nBTZ for different values of the moduli. Sug-
gested phase boundaries are drawn by hand in dashed grey, each consisting of two
linear segments. The kink corresponds to a transition in dominance between two
distinct AdS phases.

region of moduli space for any nBTZ, with the area of the region decreasing for large

nBTZ. In this way, taken by themselves the above results suggest that the torus operator

is gapped for any choice of moduli.

We can understand this behavior by comparing T to the cylinder operator. Tak-

ing the cylinder to have circumference 2π` and length β, the BTZ phase dominates
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when β n < 2π`. In this case the region of moduli with a particular nBTZ is given by

2π`/(nBTZ + 1) < β < 2π`/nBTZ. We can make nBTZ as large as we like by choosing

the moduli appropriately, but the volume occupied decreases with increasing nBTZ. The

torus operator shows a similar behavior, consistent with the conclusion that it too is

gapped.

It is illustrative to compare these results with the values of nBTZ predicted by our

heuristic, which we denote n̂BTZ. In figure 3.9, we plot the value of n̂BTZ predicted

by the heuristic along with the boundaries previously drawn for nBTZ in figure 3.8 as

determined by the computation of the action. We see that the heuristic is accurate up
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Figure 3.9: Heuristic estimation of n̂BTZ for different values of the moduli. We com-
pare these values to the previously determined regions for nBTZ by drawing the dashed
boundaries from figure 3.8.

to some order one offset, in that the corresponding boundaries have the right qualitative

structure but differ from the true boundaries by an order one distance in this space.

However, around |βi| ∼ 2.2, for the boundary between n̂BTZ = 2 and n̂BTZ = 3 this

offset becomes comparable to the (vertical) width of the n̂BTZ = 2 region. Note that our

heuristic predicts an n̂BTZ = 4 region and so we expect that if we were able to push the
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numerics further we would expect to see this region in figure 3.8 as well.

3.4.2 Gapped Replica Symmetry Breaking Phases

We have thus far restricted our analysis to a particular class of phases which explicitly

preserve replica symmetry. We now consider the possibility that replica symmetry is

broken at large n, perhaps in some mild way. But since the above phases have a total

cycle length that scales with n, our heuristic suggests that we focus on phases where the

total cycle length grows at a similar rate or more slowly. And based on the results above,

it is natural to begin with a study of gapped such phases. We postpone discussion of

gapless symmetry breaking phases until §3.6.

One possibility is that the Zn replica symmetry is broken to Zn/k, i.e. the phase con-

sists of repeating blocks formed from T k units. As in the previous section, our heuristic

suggests that gapped phases will dominate at large n. Given some set of k cycles {γi}

contained in T k which are made contractible in a replica symmetry breaking phase, at

large n the total length of {n/k×γi, β0} will always be larger than that of {n/k×γi, α0},

as the length of βi grows with n while the length of α0 is constant. So we still expect

gapped phases to dominate above some n.8

For simplicity let us assume the Zn replica symmetry to be broken to Zn/2 by a bulk

phase built from n/2 fundamental units, each corresponding to T 2. We consider a phase

in which the cycles {α0, αi−αi+1, βi +βi+1} are contractible as drawn in figure 3.10. We

have reason to suspect that there might be a region of moduli space where this phase

might dominate over the AdS phases, as this problem is similar to that studied in [36]

for a genus two Riemann surface. In our language, they computed a path integral for

〈0|T 2|0〉 and found that the above phase dominates for appropriately chosen moduli.

8It is possible to break the replica symmetry to Zn/k in such a way that choosing {γi} and α0 to be
contractible is inconsistent; the gapless phase described in §3.6 below is an example. In such cases, our
heuristic could be consistent with a gapless phase dominating at large n.
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αi − αi+1

βi + βi+1

α0

Figure 3.10: The fundamental unit T 2 with cycles that are contractible in the phase
of interest labeled.

As described in [36] and reviewed in appendix 3.A, the CFT state T |0〉 is then dual to

toroidal geon.9 Our calculation differs only by the addition of the punctures on either

side of figure 3.10. In particular, appendix 3.A shows that one can indeed find moduli

where T has the Z2 discrete symmetries we require and the bulk dual of the path integral

over T is dominated by the toroidal geon.

Computing the action for this phase explicitly is beyond the scope of the present

work, but we can sharpen the above argument to show that there is indeed a region of

moduli space where it must dominate over the AdS phases considered in §3.4.1. Let us

start with the bulk regionM defined by figure 3.10. Recall that thisM is constructed by

cutting a replica-symmetric bulk solution nM along surfaces that separate the various

replica copies. Since the full nM has a reflection symmetry across each such surface, the

extrinsic curvature of these surfaces must vanish. We may thus glue half of a Poincaré

ball to each surface. On the boundary, this is the same gluing construction used in

9To gain intuition for this result, note that contractibility of βi +βi+1 indicated by figure 3.10 implies
that we can deform the cycle βi through the bulk until it becomes the cycle −βi+1. Thinking of the
left half of figure 3.10 as bulk Euclidean time negative infinity and the right half as bulk Euclidean time
positive infinity, such a deformation must pass through t = 0. But the cycle βi is not required to be
contractible on its own (and is shown to be non-contractible by the Schottky analysis in appendix 3.A)
so the t = 0 slice must contain a non-contractible cycle.
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section 3.1 to construct T from T , though we have now used it twice (i.e. once on each

boundary).

The AlAdS boundary is now a compact Riemann surface without boundary and with

genus 2. In our language, the bulk is then a phase of 〈0|T 2|0〉. The only issue is that the

boundary metric on hemispherical endcaps has constant positive curvature, so that the

solution is not presented in our standard conformal frame and in fact the boundary Ricci

curvature is discontinuous. Nevertheless, comparison with [36] shows that the resulting

bulk manifold is precisely their Euclidean toroidal geon, and one can perform a conformal

transformation to make Rbndy = −2 everywhere. In appendix 3.A we show how to tune

the moduli of T so that resulting bulk is in the toroidal geon phase.

We may repeat this gluing construction in any AdS phase from section 3.4.1. This

results in precisely the set of AdS phases from [36]. Furthermore, the difference in

actions between any two phases of 〈0|T 2|0〉 is invariant under conformal transformations

and, moreover, in the frame with discontinuous Rbndy the contributions of the Poincaré

hemispheres clearly cancel when comparing any two phases of 〈0|T 2|0〉 just described.

Therefore, for moduli of T identified in appendix 3.A where 〈0|T 2|0〉 is in the toroidal

geon phase, we know that there is a corresponding region where the action of figure 3.10

is smaller than that of two copies of figure 3.5 in either AdS phase from §3.4.1. For such

moduli, the phase described by figure 3.10 will dominate over the AdS phases from §3.4.1

for all n.

Let us now consider the implications of the phase described by figure 3.10 for the

TFD-like state TT n/2. For n that are multiples of four, taking the moment of time

symmetry to lie between two T 2 blocks (i.e., passing through an α0 cycle on either the

left or right side of figure 3.10) we find the above saddles to again give an AdS phase.

However if we put the moment of time symmetry so that it cuts through a T 2 block along

the dashed line in figure 3.10, the bulk t = 0 surface looks like two disconnected toroidal

72



The Torus Operator and Holography Chapter 3

geons, i.e., referring to the toroidal geon as |1〉BH, we have TFD ∼ |1〉BH⊗ |1〉BH. By the

full replica symmetry of the partition function, both of these configurations must have

the same gravitational action, and the TFD-like state TT n/2 is thus a superposition of

the two. On the other hand, for n congruent to 2 mod 4, by similar arguments we find

an equal superposition of |1〉BH⊗ |AdS〉 and |AdS〉 ⊗ |1〉BH. So if the phase described by

figure 3.10 dominates we have

TT n/2 ∼


1
2
|AdS〉 |AdS〉+ 1

2
|1〉BH |1〉BH n ≡ 0 mod 4

1
2
|1〉BH |AdS〉+ 1

2
|AdS〉 |1〉BH n ≡ 2 mod 4

, (3.22)

where the ∼ denotes leading behavior at large c up to normalization. The gravitational

action in this phase is still linear in n, and its dominance at large n would again imply

that T is gapped.

However, the Z2 symmetry associated with reflections of figure 3.10 across the vertical

dashed line implies that T = A†A where A is the operator from one copy of the CFT

Hilbert space H to H⊗H defined by the path integral over the right half of figure 3.10.

Thus T is non-negative, and so is T n/2 for even n. Note that while we have suppressed

details of the moduli and the order c0 state of bulk quantum fields in (3.22), these will

have some definite values in the phase described and so cannot resolve the problem.

We conclude that the phase associated with figure 3.10 cannot be the most dominant.

Instead, some new phase must become relevant.

Considering phases that repeat more complicated blocks (e.g. based on T 4) appears

to lead to similar problems. However, one possible resolution within the class of gapped
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phases is that there are additional bulk saddles which, taken by themselves would give

TT n/2 ∼


1
2
|1〉BH |AdS〉+ 1

2
|AdS〉 |1〉BH n ≡ 0 mod 4

1
2
|AdS〉 |AdS〉+ 1

2
|1〉BH |1〉BH n ≡ 2 mod 4

, (3.23)

at each n, and which turn out to be related to the phases above by an unexpected

symmetry so that their actions are precisely equal to those just discussed. In that case,

we should sum the contributions (3.22) and (3.23) with equal weight to give

TT n/2 =
1

2
(|AdS〉+ |1〉BH) (|AdS〉+ |1〉BH) , (3.24)

for all n. Interpreting (3.24) as an operator, T n/2 is the projector onto the pure state

1√
2

(|AdS〉+ |1〉BH) and is manifestly positive. The torus ground state |0〉K would then

be an equal superposition of empty AdS and the toroidal geon.

Other possible resolutions involve gapless phases. Indeed, it might seem most natural

to explore the hypothesis that the state T n|0〉 has topology of order n (at least for n� c).

This would require a ground state |0〉K with topology of order c and, in the semiclassical

bulk limit c → ∞, the action would not be precisely linear at large n and so cannot be

gapped.

It is an interesting question then to determine if acting with T on |0〉 can generate

states of high topology. Indeed, if these states exist, then one could make similar cutting

and pasting arguments that there are symmetry breaking phases of higher topology that

dominate the path integral which computes Tr(T n). For this reason, we postpone our

consideration of gapless symmetry-breaking phases until after studying the states T 2|0〉

in §3.5. We will return to this topic during the final discussion in §3.6.
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3.5 Single Boundary States

We now consider the action of T on both gloabl AdS and toroidal geon states. In

the context of the previous section, we seek to understand if states of high topology can

dominate the path integrals considered. Explicitly, we investigate whether T k |0〉 can be

dual to a black hole with genus g = 2 behind the horizon. We fail to find a region of

moduli space where this is the case, leading to the conjecture that this always fails above

genus g = 1. Indeed, there also appear to be regions of moduli space where the bulk

remains empty global AdS for all k.

3.5.1 Definitions and Phases

To study the state T 2 |0〉, we consider the partition function defined by the path

integral over the genus g = 4 Riemann surface drawn in figure 3.11 and having the three

Z2 symmetries described in the caption. In particular, we study the part of the genus-4

α1
α2 α3

α4

β1 β2 β3 β4

h1h1 h0

Figure 3.11: Our genus four Riemann surface with α cycles in purple and β cycles
in blue. There are three reflection symmetries along the horizontal and vertical axes,
as well as in the plane of the page.

moduli space where the vertical Z2 reflection leaves fixed the geodesics associated with

βi. We remark that this is quite different from the part of the g = 4 moduli space shown

in figure 3.4, and that it is figure 3.4 rather than figure 3.11 which is relevant in the high
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temperature limit described in [27]. Despite our negative results associated with figure

3.11 below, we strongly expect phase where the space behind the horizon has genus 2 to

dominate in such a high-temperature limit.

Returning to figure 3.11, cutting the path integral along an initial time-slice given by

the middle dashed black line h0 defines the state T1T2 |0〉 given by two torus operators

acting on the vacuum. This problem has a 4-dimensional moduli space, as each torus

operator has a two dimensional moduli space associated with it. Considering this gen-

eralization allows us to sidestep the need to study in detail the maps between various

conformal frames that would arise in a direct computation of T 2|0〉. While this comes at

the cost of both increasing the dimension of moduli space and being unsure of which 2d

slice describes T 2|0〉, it turns out to be sufficient for our purposes below.

In general, the above initial time-slice for the corresponding bulk state can have genus

0, 1, or 2, with many possible phases for each genus. Below, we consider the subspace

of moduli space preserving our Z2 symmetries and study whether a bulk state with a

genus 2 initial time slice can dominate in any region of this subspace. We consider six

different phases, chosen as the most numerically tractable among those determined by the

algorithm described in §3.3. At t = 0, three of the phases have genus 0, two have genus

1, and one has genus 2. As a shorthand, we refer to the associated three-dimensional

bulk solutions as having genus 0, 1, and 2 respectively.

The three genus 0 phases 0a, 0b, 0c are respectively defined by choosing the sets

of cycles {α1, α12, α34, α4}, {β1, β2, β3, β4}, or {α1, β2, β3, α4} to be contractible.10 The

corresponding Schottky domains are shown in figure 3.12. For each phase we can numer-

ically compute the lengths of all the labeled boundary geodesics fixed by symmetry and

choose parameters so as to match them to those of the genus 2 phase described below.

Note that the bulk surface associated with the h0 cycle (i.e., the surface invariant under

10For simplicity of notation we define αij ≡ αi − αj and βij···k ≡ βi + βj + · · ·+ βk.
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h0

α23

α34
α4

β1234 β4 β3

(a)

h0

β1234

β4β3

α23 α34 α4

(b)

α23 h0

α4

β3

α34

β4 β1234

(c)

Figure 3.12: One eighth of the Schottky domain used to construct the three genus
0 phases (0a, 0b, 0c) reduced by the reflection symmetries in the x-axis and y-axis
and the inversion symmetry through the unit circle (dashed). Various boundary cy-
cles are labeled in each phase. (a) {α1, α12, α34, α4} contractible. (b) {β1, β2, β3, β4}
contractible. c) {α1, β2, β3, α4} contractible.

the right/left Z2 reflection symmetry of figure 3.11) has genus zero by (3.13).

The two genus 1 phases 1a, 1b are respectively defined by choosing the set of cycles

{α12, α34, α23, β1234} or the set {β1, β4, α23, β1234} to be contractible. The Schottky do-

mains are depicted in figure 3.13. Again, for each phase we can numerically compute the

lengths of all the labeled boundary geodesics fixed by symmetry, and choose parameters

so as to match them to those of the genus 2 phase. Note that the genus of the time-slice

associated with the h0 cycle is now 1 by (3.13).

Finally, we choose the genus 2 phase to have contractible cycles {α14, α23, β23, β1234}.

However, for computational reasons it is more convenient to use the basis {α23, β1234, α14+

β1234, α23 + β23}, which gives the same bulk phase.

Constructing the Schottky domain is difficult as the domain turns out not to preserve

the full set of symmetries of this phase. We thus use the following procedure to keep

track of all the boundary geodesics and symmetries. First, we cut the boundary Riemann

surface along h0, keeping only the right hand side, and then cut along β3 and β4. The

result is the surface drawn in figure 3.14a. Next, following the procedure described in
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α4

β4

α34

β3

α23

h0

β1234

(a)

β3

α34

β4

α4

β1234

h0

α23

(b)

Figure 3.13: One eighth of the Schottky domain used to construct the two genus 1
phases (1a, 1b) reduced by the reflection symmetries in the x-axis and y-axis and the
inversion symmetry through the unit circle (dashed). Various boundary cycles are
labeled in each phase. (a) {α12, α34, α23, β1234} contractible. (b) {β1, β4, α23, β1234}
contractible.

§3.3 we cut along the contractible cycles {α23, β1234, α14 + β1234, α23 + β23}. Note that

while this choice of cycles respects the three Z2 symmetries of the boundary Riemann

surface, when we choose representative cycles for α14 + β1234 and α23 + β23 we break two

Z2 symmetries11 given by reflection in the x−axis and y−axis in figure 3.14a. However,

the product of these symmetries is preserved, and the cycles α14 +β1234 and α23 +β23 are

fixed point sets of this product. When we glue everything back together along the cycles

β3 and β4 to construct the Schottky domain, we thus maintain the requirement that the

contractible cycles are fixed point sets of a symmetry. In the Schottky domain of figure

3.14b this symmetry is the product of reflection about the y−axis and inversion through

the unit circle.

Finally, we can use this Schottky domain to solve for the metric φ as described in

11One could hope that there exists a basis where we can preserve all of the symmetries, but we find
this not to be the case.
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§3.3. In order to compute the lengths of geodesics on the boundary, we use the trick

described at the end of §3.3 involving mapping to a subset of the Poincaré disk, where

the lengths of the boundary segments are determined by the numerical solution for φ.

For the three genus 0 phases and the two genus 1 phases, the Schottky domain is

defined by four free real parameters, consistent with a four dimensional moduli space for

two torus operators with the required symmetries. For the genus 2 phase our Schottky

representation breaks two of the symmetries so a priori we have an 8 dimensional param-

eter space. Carefully tracking the symmetries gives the condition b2 − b1 = b4 − b3 and

that the two blue arcs in figure 3.14b have equal length. In the Poincaré disk we can also

compute the lengths of the images of the cycles α23 +β23 and α14 +β1234 under reflection

across the x−axis of figure 3.14a. The requirement that the lengths of these cycles be

equal to the lengths of their inverse images gives two more conditions. Imposing these

symmetry conditions numerically then reduces the parameter space to four dimensions,

recovering the same moduli space considered for genus 0 and genus 1.

3.5.2 Results

We would like to find a region of moduli space where the genus 2 phase dominates.

While we do not study all of the possible lower genus phases, the numerical evidence

below suggests that the genus 2 phase never dominates even within the phases we study.

Indeed, to exclude the genus 2 phase it turns out to suffice to consider only the genus 0c

phase (with contractible cycles {α1, β2, β3, α4}) and the two genus 1 phases.

Our first step was to perform a coarse gradient search in the full four dimensional

moduli space to try to minimize the quantity I2 − Idom., i.e. the difference in action

between the genus 2 phase and the dominant phase within the set of phases described

above. This search identified a region of moduli space which we now study in more
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detail. For numerical convenience, we parameterize the moduli space using the radii ρi

of the circles Ci in the Schottky domain for the genus 2 phase (figure 3.14b), with ρi

computed using the flat space metric. These parameters {ρ1, ρ2, ρ3, ρ4} are respectively

related to the lengths of the cycles {α23, β1234, α14 + β1234, α23 + β23}, with the precise

relation determined by the conformal frame φ.

Let us next explore four 1-dimensional trajectories through moduli space each given

by varying one of the ρi while holding the others fixed. We choose parameters so that

these curves lie in the region of moduli space identified by the gradient search above. The

results in figure 3.15 show that the phase 0b dominates along all 4 trajectories, though

at the right end of figure 3.15b we appear to begin to approach a transition to where the

1b phase should dominate.

However, studying the 0b phase turns out to be computationally intensive in this

region. It is thus useful to observe that figure 3.15 also shows the computational-more-

convenient phases 0c, 1a, and 1b to dominate over the genus 2 phase. Indeed, these phases

appear to capture much of the structure of our full set of phases as the actions of the

other genus 0 phases differ from those of 0c, 1a, 1b by amounts that are roughly constant

along all 4 curves. We shall return to this constant-offset phenomenon below.

Note that a close study of figure 3.15 also suggests that the action difference (I2−I0c)

increases as either ρ3 or ρ4 decrease, and that (I2−I1b) and (I2−I1a) respectively increase

as ρ3 and ρ4 increase. It thus appears that – at least in the ρ3, ρ4 directions – we are

near a local minimum of the quantity

∆Isub. = I2 −min [I0c , I1a , I1b ] . (3.25)

Similarly, as ρ1 and ρ2 increase we find that (I2 − I0c) increases. However as ρ1 and

ρ2 decrease, all 3 actions I2, I1a , and I1b decrease with ∆Isub. appearing to approach a
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constant. This latter behavior is consistent with what one expects as the lengths of cycles

parameterized by ρ1 and ρ2 tend to zero. As shown in [36], in phases where a cycle of

small boundary length ` is contractible in the bulk, the action diverges as

I ∼ − c
6

π2

`
+O(`0) . (3.26)

So as ρ1 and ρ2 become small, we expect the phases in which α23 and β1234 are contractible

to have actions that diverge to negative infinity. However, the order one behavior depends

on the details of the phase so that the difference in action between two such phases

naturally approaches a constant. Figures 3.15a and 3.15b are qualitatively consistent

with this behavior, in that the phases whose actions decrease as ρ1 and ρ2 become smaller

are precisely those in which a contractible cycle pinches off.

In summary, figure 3.15 suggests we are close to a local minimum of ∆Isub. up to

possible flat directions associated with approaching the boundary of moduli space. To

confirm this behavior, we now choose a reference point ρ̂ = (0.0285, 0.009, 0.1785, 0.1905)

such that I0c = I1a = I1b and explore in more detail how ∆Isub. varies near ρ̂. Figure

3.16 displays the value of ∆Isub. in two 2-dimensional slices of moduli space through ρ̂.

Figure 3.16a varies (ρ3, ρ4) with (ρ1, ρ2) fixed to match ρ̂, while 3.16b varies (ρ1, ρ2) at

fixed (ρ3, ρ4). The data is consistent with the above expectations, indicating a robust

local minimum in the (ρ3, ρ4)-plane while in the (ρ1, ρ2)-plane ∆Isub. either increases or

remains roughly constant as one moves away from ρ̂.

Finally, to investigate the flat directions further we compute the action of relevant

phases as a function of the length of a pinching cycle along two one-dimensional curves

through ρ̂ by varying either ρ1 or ρ2 while holding the other three ρi fixed at ρ̂i. The

results are displayed in figure 3.17 and compared with a fit to the function −Aπ2

6
c
`

+ k

inspired by (3.26). In 3.17a we use the range 1.73 < |α23| < 2.39 and find the best fit to
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have A = 1.090 for I2 and A = 1.096 for I1a . The difference between these two best-fit

values for A is consistent with our estimated 1% numerical error. However, both differ

by 10% from the expected value A = 1. Since we study the range ` ∼ 2 where ` is

not particularly small, we expect that this discrepancy is due to not probing sufficiently

far into the asymptotic regime. In practice, it is numerically difficult to compute the

action for smaller α23. Similar comments apply to figure 3.17b where we use the range

1.65 < |β1234| < 1.97 to find best-fit parameters A = 1.091 for I2 and A = 1.077 for I1a .

We take the agreement shown in figure 3.17 to support the above interpretation of figure

3.16 as implying that ∆Isub. will remain essentially constant up to the edges of moduli

space at ρ1 = 0, ρ2 = 0, and thus that the genus 2 phase does not dominate anywhere in

moduli space.

It is interesting to compare the results presented in figure 3.16 with our heuristic based

on the total length of contractible cycles. Denoting this total length in a particular phase

by L , figure 3.18 plots the quantity,

∆L = L2 −min[L0c ,L1a ,L1b ] (3.27)

in the neighborhood of ρ̂. The heuristic suggests that ∆Isub. is smaller (i.e., that the

genus 2 phase is less sub-dominant) at small ∆L , so figures 3.16 and 3.18 should be

similar. This is certainly the case at the qualitative level, though – as seen in other cases

– there are quantitative differences. In particular, while ∆L has a local minimum close

to that of ∆Isub., it clearly differs from ρ̂.

In evaluating our claim that the dominant phase always has genus 0 or 1, one should

of course ask whether there might be another genus 2 phase that is more dominant than

the one considered here. We have no proof that such phases do not exist, though we

have found no natural candidates. For example, we excluded the phase {α1 − α3, α2 −
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α4, β1 + β3, β2 + β4} from our analysis because it breaks a symmetry of the boundary

Riemann surface by introducing a twist through the bulk. On the other hand, in light of

the replica symmetry breaking phases for Tr(T n), it remains possible that this symmetry

breaking phase does in fact dominate. It would be interesting to investigate this further

in the future.

Bearing in mind this caveat, the above numerical evidence nevertheless suggests that

– depending on the choice of moduli – T 2 |0〉 can take be either of the form |AdS〉 or

|1〉BH, but that there are no moduli for which it is dual to bulk solutions with higher

topology. If so, the same must hold for T k |0〉.

3.6 Discussion

The results presented in §3.4 and §3.5 set up a puzzle with no clear resolution. In

§3.4 we presented arguments that if a replica symmetry preserving phase dominates the

path integral computing Tr(T n) for all moduli, then for at least some large n we would

have

T n/2 ∼ |AdS〉 〈AdS| (3.28)

and therefore |0〉K = |AdS〉. But (3.28) is inconsistent with the calculations in §3.5 and

[36] showing that, in certain regions of moduli space, applying T to AdS states could

produce states described by toroidal geons. It thus seems that replica symmetry breaking

phases must dominate the path integral for such moduli.

On the other hand, if the Zn replica symmetry is broken, then acting with appropriate

elements of Zn would produce distinct saddles with equal action. In parallel with the
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discussion of §3.4.2, if a simple gapped such phase dominates we may then expect to find

T n/2 ∼ |φ〉 〈ψ|+ |ψ〉 〈φ| (3.29)

for |φ〉, |ψ〉 orthogonal states of differing bulk topology. But T n/2 would have a negative

eigenvalue corresponding to the eigenstate 1√
2

(|φ〉 − |ψ〉). We expect that similar issues

also arise for more complicated replica-symmetry breaking gapped phases.

However, §3.4.2 noted that this issue would be resolved if there are additional phases

for Tr(T n) which, taken by themselves would give

T n/2 ∼ |φ〉〈φ|+ |ψ〉〈ψ| , (3.30)

for the above n, and which somehow turn out to be related to those found thus far

above by an unexpected symmetry so that their actions are precisely equal to those just

discussed. In that case, we would sum the contributions (3.29) and (3.30) with equal

weight to give

T n/2 =
1

2
(|φ〉+ |ψ〉) (〈φ|+ 〈ψ|) , (3.31)

the manifestly-positive projector onto 1√
2

(|φ〉+ |ψ〉). If (3.31) holds for all large n, the

torus ground state |0〉K is then an equal superposition of two different bulk topologies.

Unfortunately, this would alsorequire a similar unexpected new phase for the state T 2|0〉

studied in §3.5, or else a fine-tuning that makes the state T |0〉 have just the right mod-

uli so that T 2|0〉 lies precisely on the phase boundary at which an AdS and toroidal

geon phase exchange dominance. It would be interesting to investigate both possibilities

further in the future.

Other possible resolutions involve gapless phases. As mentioned at the end of §3.4.2,

84



The Torus Operator and Holography Chapter 3

one option might be for the state T n|0〉 to have genus of order n (at least for n � c).

But, with the caveat that we leave for the future any investigation of genus-2 phases

that spontaneously break symmetries of the boundary, our direct studies of T 2|0〉 in §3.5

found no evidence that this is the case and instead suggest that T n|0〉 has at most genus

1.

We thus turn to gapless phases where the topology on a t = 0 surface remains of

order 1 at large n. Consider for example the phase defined for n ≥ 6 with contractible

cycles given by αi − αi+3 and βi + βi+3 for odd i, the cycles αi − αi−3 and βi + βi−3 for

even i, and the cycle β0. We show a depiction of this phase for n = 8 and n = 10 in figure

3.19. In particular, the contractibility of β0 means that any t = 0 surface is a connected

wormhole with two boundaries. As a result, just as for the the BTZ phases of §3.4.1,

the bulk solutions for large n cannot be obtained by cutting and pasting those for small

n. The action should thus be only asymptotically linear in n and the phase should be

gapless.

A study of figure 3.19 shows that such t = 0 surfaces have genus 2, 3, or 4. For

example, take a t = 0 surface given by the vertical dashed grey line. For n = 8, the

resulting TFD-like state is a genus 2 wormhole that is symmetric under reflection across

the horizontal dashed line, with the symmetry acting to exchange the two boundaries and

the two bulk handles. Rotating these dashed lines by π/4 gives a TFD-like state described

by a genus 4 wormhole with a similar symmetry. For n = 10, the resulting TFD-like state

is a genus 3 wormhole that breaks the symmetry of the Riemann surface associated with

reflections through the horizontal dashed line. A cartoon of the t = 0 geometry is depicted

in figure 3.20; it is not symmetric under right-to-left reflections. Rotating these dashed

lines by π/5 gives the same t = 0 geometry, but with the two boundaries exchanged. We

thus refer to this phase below as the 2, 3, 4-handled wormhole. Note that we use the term

wormhole to indicate that two distinct boundaries are connected through the bulk, while
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we have consistently used the term geon to describe solutions with a single boundary but

with non-trivial topology behind a horizon.

As argued previously for the BTZ phases of §3.4.1, we expect the (log) confor-

mal factors associated with a Schottky description to satisfy the approximate scaling

φn+2(w) = φn(w
n
n+2 ). And as before, this scaling should result in the length of some bulk

cycle on the t = 0 surface shrinking like 1/n. So if this phase dominates the state T n/2

on H⊗H will be entangled, with the entropy on each copy of the CFT also scaling like

1/n. In particular, as discussed previously, in the limit n → ∞ it becomes effectively

pure on each side, with the would-be entangling surface turning into the infinite throat

of an M = 0 BTZ black hole. In particular, for n ≡ 2 mod 4 any t = 0 surface fails to

be symmetric under exchange of the two boundaries. We thus expect the shrinking cycle

to separate a genus-2 geon from a toroidal geon; i.e., we expect the shrinking cycle to be

the one drawn as a dashed line in fig. 3.20. At large n (and again interpreting T n/2 as

an operator) we thus find

T n/2 ∼


1
2

(|1〉BH 〈1|BH + |2〉BH 〈2|BH) n ≡ 0 mod 4

1
2

(
|1〉BH 〈2|BH + 1

2
|2〉BH 〈1|BH

)
n ≡ 2 mod 4

, (3.32)

so that T again has a negative eigenvalue just as in our discussion of gapped phases.

Indeed, it seems unlikely that the above phase will dominate at large n over the

gapped replica symmetry breaking phase of figure 3.10. In order for it to do so and to

respect our heuristic, we must have

|αi − αi+3|+ |βi + βi+3| < |αi − αi+1|+ |βi + βi+1| . (3.33)

While we have not shown this to be impossible, it would be surprising if cycles stretching
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between replicas i and i+ 3 were shorter than cycles that connect nearest neighbors. So

in the end the 2, 3, 4-wormhole phase seems unlikely to be relevant at large n.

It thus appears that additional phases not yet studied must become important at

large n. It remains interesting to determine whether these are new gapped (or gapless)

phases that lead to a ground state of indefinite topology as suggested above, phases

that spontaneously break symmetries as mentioned at the end of §3.5, or merely other

– perhaps more complicated – phases that we were not considered here. In the latter

category one might also consider phases that do not lie in the universal sector, and which

are thus not described by pure gravity in the bulk. In particular, one can ask whether

considering condensates of long strings [46] might somehow resolve our puzzle.

In addition to the study of new phases, it would be useful to study in detail the map

on the genus-4 moduli space associated with passing between the Rbndy = −2 conformal

frame and the conformal frame in which T 2|0〉 is described by an Rbndy = −2 twice-

punctured genus 2 surface (representing the T 2 with geodesic boundaries) attached to a

positive-curvature hemisphere. This conformal frame was used briefly in §3.4.2 to argue

that there is a region of moduli space in which the replica-symmetry breaking phase

from figure 3.10 dominates over those studied in §3.4.1. A study of this map would allow

a more precise understanding of T 2|0〉, and also of T k|0〉 for higher k. In a different

direction, it would be interesting to extract a log term of the form shown in (3.5) from

the bulk action of a gapless phase at large replica number n, or to better understand the

relationship between the ‘total cycle length heuristic’ and the actual bulk action. While

we took some steps toward the latter in figures 3.8 and 3.18, we leave further investigation

for future work.
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3.A Phase Space of T |0〉

In this appendix we compute the gravitational dual of T |0〉 in the Z2 symmetric

subspace of the moduli space of T considered in this paper. We show that restricting to

this two dimensional subspace does not significantly restrict the phase space of states of

T |0〉. That is, by varying the moduli of T , one is able to construct states that are dual

to pure AdS or states that are dual to toroidal geons of a wide range of moduli.

Our strategy will be to start with a representation of T 2 as the path integral over

two copies of T glued together. We will use this representation to compute the moduli

of T as lengths of cycles on T in the appropriate conformal frame. To compute the

inner product 〈0|T 2|0〉, we glue hemispheres on to the two cuts in the path integral over

T 2. The resulting path integral is now one over two copies of a once punctured torus

T glued together along the puncture. This path integral is now of the type considered

in [36], and we can compute the semi-classical gravitational approximation of T |0〉 from

the saddle points in the usual way.

Consider a Schottky uniformization of T 2 in the conformal frame Rbndy = −2 as

shown in figure 3.21. In this conformal frame, we can compute the moduli of T by

evaluating the length of various boundary cycles as labeled in the figure. We choose to

parameterize the Z2 symmetric moduli space by |α0| and |β1|.

Gluing hemispheres on to the boundaries of T 2 can be achieved by filling in the purple

circles α0 in the Schottky domain of figure 3.21. The resulting domain is a representation

of the surface T
2

used to compute the norm of the state T |0〉, with the moduli of T

computed by the original Schottky domain. We draw the surface T
2

and its Schottky

uniformization in figure 3.22. The semi-classical gravitational dual of this state is given

by the geometry on the surface fixed by the Z2 symmetry exchanging the two halves of

T . In this way, we can map out the phase space of states T |0〉 in terms of the moduli

88



The Torus Operator and Holography Chapter 3

of T .

The domain constructed in this manner is a representation of a pure AdS phase of

T |0〉. The moment of time symmetry on which we define the state is given by the dashed

cycle in figure 3.22. In the associated Schottky domain, this cycle is contractible in the

bulk, as it can be lifted off the boundary and shrunk to a point without intersecting the

geodesic hemispheres that are identified by the Schottky group. Alternatively, we can

use the formula (3.13), with n = 0 and b = 1 giving gt=0 = 0.

To compute the semi-classical gravitational dual of this state, we match the moduli

of T
2

to the Schottky uniformizations corresponding to the remaining pure AdS phase

and the toroidal geon phase. The remaining pure AdS phase can be described by the

Schottky domain in figure 3.22b, with the interpretation of the α and β cycles flipped.

To describe the toroidal geon phase, we can use the Schottky domain in figure 3.23. In

this case, the relevant t = 0 slice is given by the horizontal axis of the Schottky domain.

This slice is broken into b = 1 boundary segments and intersects n = 2 pairs of circles

given gt=0 = 1. Therefore, this domain is a representation of the toroidal geon phase.

To gain intuition for this result, note that contractibility of β1 + β2 implies that we can

deform the cycle β1 through the bulk until it becomes the cycle −β2. Thinking of the

left half of figure 3.22a as bulk Euclidean time negative infinity and the right half as bulk

Euclidean time positive infinity, such a deformation must pass through t = 0. But the

cycle β1 is non-contractible, so the t = 0 slice must contain a non-contractible cycle.

Comparing the actions of these phases, we can determine the dominant saddle and

the semi-classical description of T |0〉. We display the difference in action between the

toriodal geon phase and the dominant phase 1
c
(ITG − Idom.) in figure 3.24. When the

toroidal geon phase is dominant this quantity vanishes. In the region where the toriodal

geon phase dominates, we compute the length the horizon and the lengths of the cycles

of the bulk torus. We find a minimal horizon size matching [36] and a range of internal
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cycles, leading us to conclude the moduli space of states is not signficantly restricted by

imposing the Z2 symmetries of T .

3.B Estimation of Numerical Error

In this appendix we discuss some sources of numerical error. First there is the dis-

cretization error from using finite element methods to solve for φ. We can estimate this

error as in [36] by computing the area of the Riemann surface and comparing it to the

Gauss Bonnet theorem. That is, we have

A(g) = 4π(g − 1) (3.34)

in AdS units. We define εA = |1 − A/A(g)| as an estimate for this error. For domains

where the geodesic lengths are computed in the Schottky representation (and not the

Poincaré disk), we report this value as the overall error.

Further, we perform numeric integration over the boundary circles by adding up the

function values on the mesh nodes coinciding with a particular circle. In order to do so,

we must set a tolerance for considering a point on the boundary circle, which introduces

some numerical error. We can estimate this error by computing the length of a boundary

segment using a flat metric and compare it to the analytic formula for the length of the

arc of the corresponding circle. The tolerance is chosen to minimize the percent error of

each boundary circle. We denote the maximum of all of these errors εC .

Additionally, we estimate the propagation of these uncertainties in computing the

geodesic lengths in the Poincaré disk. To estimate this error, we construct the corre-

sponding domain in the Poincaré disk for boundary segment lengths `0(1 + max(εA, εA)),

where `0 is the segment length as computed by the numerical solution φ. The maximum
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change in geodesic lengths by using different lengths of boundary segments estimates

this error εG. When εG > 0.05 we find the moduli matching algorithms tend not to

converge, and so we take this as a cutoff of numerical error. The overall error is taken to

be ε = max(εA, εC , εG) which is εG. We find εG tends to be 1-2 orders of magnitude larger

than εA or εC , and for future work this suggests a way to reduce errors even further.

Finally, in matching moduli between phases, we only require them to match up to

a certain threshold. That is we require the percentage difference between two matching

moduli to be less than max(εG, 3× 10−3).

The error εA can be reduced simply by using more lattice points to discretize the

domain. To reduce εC we must include more boundary points as well as choose the

tolerance accordingly. In figure 3.25 we display εA for a representative genus 2 phase

from §3.5 as a function of the number of points.
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β3β1234

b1 b2 b3 b4
(b)

Figure 3.14: (a) One half of the flattened Riemann surface. The surface has been cut
along the cycles β3 and β4 along the fixed point set of reflection across the vertical
purple dashed line. (b) One fourth of the genus 2 Schottky domain, reduced by
two symmetries. The two symmetries of the plane are reflection about the x−axis
(labeled h0) and the product of the reflection about the y−axis (dashed black) and
inversion through the unit circle (labeled β4). The boundary cycle h0 is broken into
four segments bi.
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Figure 3.15: The action for all six phases along four paths through the region of
moduli space picked out by the coarse gradient search. Each phase is labeled by genus
with a subscript corresponding to the labels in figures 3.12 and 3.13. The numerical
errors are less than 1% in the sense of Appendix A. This level of error is consistent
with what may appear to be stray points along the curves.
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Figure 3.16: Two 2-dimensional slices of the four dimensional moduli space through ρ̂
(black dot in each figure). ρ1, ρ2 are fixed at left, with ρ3, ρ)4 fixed at right. Numerical
errors are less than 1% in the sense of appendix A. This level of error is consistent with
some of the jagged features of the contours, though the existence of a local minima is
robust to such errors. (a) ρ1, ρ2 fixed. (b) ρ3, ρ4 fixed.
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Figure 3.17: A study of the pinching limits along the plateau in figure 3.16((b) com-

paring I/c for the indicated phases (dots) to the form −Aπ2

6
c
` + k inspired by eq.

(3.26). The solid curve shows this function for best-fit values of A, k. Vertical lines
indicate ρ̂ and the boundaries of figure 3.16. ((a) ρ2, ρ3, ρ4 are fixed to match ρ̂ while
ρ1 varies; Abest fit = 1.090, 1.096 for I2, I11 over the range 1.73 < |α23| < 2.39. ((b)
ρ1, ρ3, ρ4 are fixed to match ρ̂ while ρ2 varies; Abest fit = 1.091, 1.077 for I2, I1a over
the range 1.65 < |β1234| < 1.97. (a) ρ1 → 0 plateau. (b) ρ2 → 0 plateau.
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Figure 3.18: The quantity ∆L in the neighborhood of ρ̂ (black dot). (a) ρ1, ρ2 fixed.
(b) ρ3, ρ4 fixed.

(a) (b)

Figure 3.19: A gapless phase for (a) n = 8 and (b) n = 10. The purple lines joining
two holes i, j indicate the pair of cycles αi−αj and βi +βj are contractible. Relevant
reflection symmetries of the boundary are drawn in dashed grey. Both dashed lines
on the left and the vertical dashed lin on the right are possible t = 0 surfaces that can
contribute to T n/2 thought of as a state on H⊗H. In contrast, the horizontal dashed
line on the right gives a 4-boundary t = 0 surface.
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Figure 3.20: A cartoon of the 3-handled wormhole, with a candidate minimal extremal
surface drawn in dashed black.
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Figure 3.21: The Z2 symmetric surface and Schottky domain used to compute the
moduli of T 2. Note that |β1| = |β2| by the reflection symmetry across the dashed
cycle. (a) The surface T 2 with moduli labeled. (b) The associated Schottky domain.
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β2β1β′1β′2
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Figure 3.22: The Z2 symmetric surface and Schottky domain used to compute〈
0|T 2|0

〉
. The handlebody represented by the Schottky domain is a pure AdS phase.

(a) The surface T
2
. (b) The Schottky domain for a pure AdS phase.
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Figure 3.23: The uniformization of the surface T 2 used to represent the toroidal geon
phase. The contractible cycles are given by α12 = α1 − α2 and β12 = β1 + β2. To
construct the Schottky domain, we cut along these cycles and identify each side of
the cut as Ci and C ′i. (a) Labeled cycles on T 2. (b) The Schottky domain for the
toroidal geon.
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(ITG − Idom.)/c

Figure 3.24: Phase diagram for T |0〉. In the blue region ITG− Idom. vanishes and the
toroidal geon phase is dominant. Outside of this region an AdS phase is dominant.
In the white region we have no data, as it is numerically difficult to probe.
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Figure 3.25: Estimation of εA as a function of number of lattice points npoints.
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Chapter 4

The Holographic Entropy Cone

4.1 Introduction

Since the original proposal by Ryu and Takayanagi [23] for the calculation of en-

tanglement entropy in holographic field theories, the inequalities implied by the “RT

formula” have been a subject of active investigations. It was already noted in [24] that

subadditivity (SA) of the von Neumann entropy is satisfied by the prescription, while

the celebrated proof [52] of the more restrictive strong subadditivity (SSA) served as a

further important check. The saturation of SA was later associated to a phase transition

of mutual information in [53] and the saturation of the Araki-Lieb inequality (AL) to

the entanglement plateaux phenomenon [54].

While all the previous inequalities were already known from quantum mechanics (they

are in fact satisfied by any quantum state), the first purely “holographic” inequality was

found in [55] and dubbed monogamy of mutual information (MMI).1 This inequality

is not satisfied by all quantum states and provides a new constraint on the family of

states which admit a classical geometric dual. It is then interesting to ask whether the

1See [56, 57, 58] for more details.
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RT formula implies additional constraints for a fixed (but arbitrary) number of regions

in a holographic CFT. The systematic study of this problem was initiated in [59], which

proved that no new inequalities exist for three or four regions and found new ones for

five.2

In principle, for a fixed number of regions in the dual field theory, the set of entropy

inequalities which are satisfied by holographic states could be rather complicated. For

example, there could be an infinite number of them or they could be nonlinear. Instead,

an important result of [59] was the proof that not only the number of inequalities implied

by the RT prescription is finite for any number of regions, but all inequalities are in fact

linear and with integer coefficients.

For an arbitrary system of inequalities it is useful to consider a geometric representa-

tion where the set of solutions is a region bounded by the corresponding hypersurfaces.

For the inequalities implied by RT this is then a rational polyhedron in the space of

entropies, in fact a cone, which has an equivalent description in terms of its extremal

rays. Any ray inside the cone (or on its boundary) can be obtained from a (conical)

linear combination of them.

Motivated by holography one then tries to construct geometries that realize the ex-

tremal rays and to show that such geometries are in fact dual to some field theory state.

This would prove that the region of entropy space corresponding to states of holographic

CFTs with classical bulk duals is a rational polyhedron. The present work focuses on this

last statement and argues that the proof of [59] was not conclusive. This naturally raises

the question of whether there are any additional entropic constraints on holographic

states not implied by Ryu-Takayanagi in the manner of [59].

We will focus on three dimensional bulk geometries with a moment of time symmetry,

2In addition, [59] also proved a new family of inequalities for any odd number of regions. The
inequality for 3 regions coincides with MMI.
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such that the time slice is in general a disjoint union of Riemann surfaces with boundaries.

This can be obtained by slicing the full three dimensional Euclidean solution, which is a

handlebody obtained by filling in the boundary Riemann surface [40, 39]. Different fillings

will correspond to different phases of the bulk geometry [26]. One can then evaluate the

Euclidean action for the different phases to determine which one is the dominant saddle.

Via the AdS/CFT dictionary this will give an approximation to the corresponding state

in the dual field theory. On the other hand, if the bulk solution is not the dominant

saddle, one cannot immediately conclude that this geometry is dual to a field theory

state.

This is the argument which we will employ in the following to challenge the conclusion

that the entropy cone of holographic CFTs is polyhedral. We will evaluate numerically

the Euclidean action for the particular geometries corresponding to some of the extremal

rays of the cone in the N = 3 and N = 4 cases and provide evidence suggesting that these

are never dominant. While it remains possible that such geometries may nevertheless be

related to CFT states by more complicated constructions, such an analysis is beyond the

scope of this work.

The structure of the paper is as follows. In §4.2 we review the definition of [59] and

introduce a new one to make a clear distinction between a notion of the cone which is

purely geometric, and one that is instead more specific to holographic states dual to

classical geometries. In §4.3 we evaluate the Euclidean actions for the geometries that

realize some of the extremal rays of the N = 3, 4 cones. We summarize our conclusions

in §4.4 and comment on some open questions.
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4.2 Entropy cones

In this section we first review the definition of the quantum entropy cone for arbitrary

quantum systems, and the definition given in [59] for the holographic context. We warn

the reader that we will change terminology from the one used in [59]. What we will call

the metric entropy cone is precisely the construction of [59], instead we reserve the name

RT (or HRT) cone for a different object that we will define in §4.2.3. The conceptual

distinction between the two constructions, and the question of whether they do or do not

coincide, is the main motivation for the calculation that we will present in §4.3.

4.2.1 The Quantum Entropy Cone (QCN)

Consider a multipartite quantum system associated to a Hilbert spaceH1⊗...⊗HN+1.

For a given pure state we trace out the degrees of freedom inHN+1 to obtain anN−partite

mixed state ρN . Then we compute the entropy of each of the N individual subsystems

of ρN , all the pairs, triplets and so on, up to the entropy of the union of all parties (the

entropy of ρN) and we arrange these numbers into a vector in “entropy space” R2N−1.

Consider now the set of all such vectors obtained from all possible initial pure states in

all possible Hilbert spaces with the previously mentioned tensor product structure. The

subset of etntropy space so obtained has the structure of a convex cone and is known as

the quantum entropy cone (QCN).

For N = 2, 3 the cones are known to be polyhedral and they are then specified by a

finite number of linear inequalities. Any polyhedral cone can equivalently be described

by the list of its extremal rays since any vector inside the cone or on its boundary can

be obtained from a conical combination of them.3

To clarify the construction, and for the purpose of the later discussion, let us review

3A conical combination is a linear combination with non-negative coefficients.
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the examples of the conesQC2 andQC3. In theN = 2 case the inequalities that determine

the quantum cone are simply subadditivity (SA) and Araki-Lieb (AL)

SA : SA + SB ≥ SAB ,

AL : SA + SAB ≥ SB . (4.1)

Note that even if the two inequalities are physically equivalent, in the sense that one

implies the other, both are necessary for the construction of the cone because they cor-

respond to different facets. For the same reason one should also include both versions of

AL obtained by swapping A and B. The extremal rays are

(SA, SB, SAB) ∈ {(1, 0, 1), (0, 1, 1), (1, 1, 0)} , (4.2)

corresponding to obvious quantum states. These rays are actually equivalent since they

are mapped to each other by permutations of the subsystems. Here we list all of them

just for clarity, in the following we will only focus on inequivalent rays.

To obtain the N = 3 cone we can imagine that we first build a “candidate cone”

obtained from all possible versions of the N = 2 inequalities for three subsystems A,B,C.

We then cut away parts of this cone by slicing along the hyperplanes corresponding to

all new, genuinely 3−partite, inequalities.4 These are strong subadditivity (SSA) and

weak monotonicity (WM)5

SSA : SAB + SBC ≥ SB + SABC ,

WM : SAB + SBC ≥ SA + SC . (4.3)

4For example for SA one also has SA + SC ≥ SAC , SA + SBC ≥ SABC and various permutations.
However this description is redundant and some of the inequalities can be removed.

5Again the two inequalities are equivalent but both should be considered.
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The extremal rays are then, up to permutations

(SA, SB, SC , SAB, SAC , SBC , SABC) ∈

{(1, 1, 0, 0, 1, 1, 0), (1, 1, 1, 2, 2, 2, 1), (1, 1, 1, 1, 1, 1, 1)} . (4.4)

The first ray simply corresponds to a Bell pair for AB, the second is a four-qutrit stabilizer

state and the last one is a GHZ state of four qubits.6

For N ≥ 4 new inequalities are known, but the full structure of the cones is not

known. However, they are conjectured to be non-polyhedral [60].

4.2.2 The Metric Entropy Cone (MCN)

Having introduced the general concept of the quantum entropy cone we can now

define, following [59], an analogous object for areas of minimal surfaces in a geometric

set-up inspired by holography. Consider an arbitrary d + 1 dimensional manifold with

(N + 1) boundaries MN+1, with a metric which is asymptotically AdSd+1 approaching

the boundaries. Since we are restricting to the RT prescription, rather than the more

general HRT [43], we will also assume that the metric has a time reflection symmetry at

t = 0 and consider the d dimensional manifold M̃N+1 corresponding to the t = 0 slice of

MN+1. We are interested in the area of minimal surfaces homologous to regions specified

on the boundaries of M̃N+1. In this set-up it is natural to think that such a geometry

is dual to a pure state of a tensor product of N + 1 CFTs living on the boundaries, but

for the moment we do not make this assumption. The metric entropy cone(MCN) is

then defined as the region in the space of “area vectors” R2N−1 spanned by varying the

topology and the metric of Md+1, as well as the choice of the N subregions. This is

6The expressions of the states realizing the second and third extremal rays are
∑2

i,j=0 |i, j, i+ j, i+ 2j〉
and |0000〉+ |1111〉 respectively (up to a normalization factor).
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precisely the definition of [59] for the “holographic entropy cone”.

For the case N = 2, it follows from the “RT proof” of SA, and from the fact that one

can construct a geometry that realizes the extremal rays (a two boundary wormhole),

that QC2 ≡ MC2. We will focus on the more interesting cases N = 3, 4. To construct

the metric entropy cone for N = 3 one should include monogamy of mutual information

(MMI) to the list of inequalities7

MMI : SAB + SAC + SBC ≥ SA + SB + SC + SABC . (4.5)

The list of extremal rays is then updated to

(SA, SB, SC , SAB, SAC , SBC , SABC) ∈ {(1, 1, 0, 0, 1, 1, 0), (1, 1, 1, 2, 2, 2, 1)} . (4.6)

Comparing (4.6) with (4.4) one sees that the net effect of includingMMI simply is the

removal of the ray corresponding to the GHZ state. Geometrically, the first extremal ray

in (4.4) is realized by the disjoint union of a two boundary wormhole and two copies of

empty AdS. The second ray is instead a 4-boundary wormhole which we will study in

§4.3.3.

In the N = 4 case it has already been shown in [59] that there are no new inequalities

implied by the RT formula. To see that this is the case one starts again with all the

previous inequalities for fewer parties and consider all possible versions for the 4−partite

case. From this list of inequalities one can then construct a cone, which is a “candidate”

for MC4, and can extract its extremal rays. The result is

(SA, SB, SC , SD, SAB, SAC , SAD, SBC , SBD, SCD, SABC , SABD, SACD, SBCD, SABCD)

7Interestingly SSA can be removed from the list. The reason is that it is redundant as it can be
obtained from MMI and SA.
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∈ {(0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1), (0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1),

(1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2)} . (4.7)

The first two rays are again inheritated from those of the previous cones. The last one

instead is again a multiboundary geometry which we will investigate in §4.3.2. Since any

extremal ray of this candidate cone can in fact be realized by some geometry, it follows

from convexity that any other ray inside the cone can also be realized geometrically. This

proves that for four regions there cannot be new RT inequalities and that the candidate

previously constructed is in factMC4. ForN > 4 the metric entropy cones are not known,

but it was proved in [59] that they are all polyhedral. Furthermore, it was proved in [61]

that MCN ⊆ QCN for all N , also justifying the usage of the word “entropy”.

4.2.3 The Ryu-Takayanagi Cone (RT CN)

The construction presented in the previous section was completely geometric and

although it was motivated by holography it did not really require it. However, since

we are interested in the set of constraints imposed by the RT formula on the space of

CFT states with classical bulk duals, we want to be able to interpret the “areas” which

appeared in the metric entropy cone as von Neumann entropies of regions in field theory.8

For this to be true one needs to further constraint the allowed geometries for which one

computes areas and impose that such geometries are in fact dual to some CFT state. We

then define the Ryu-Takayanagi cone (RT CN) as the cone spanned by all holographic

states, for an arbitrary number of CFTs and all possible choices of the N regions. This

is a convex cone, since given any two rays it contains any conical combination of them,

obtained by rescaling the metric and taking the tensor product of the corresponding two

8In these work we only consider the leading contribution to the entropy in the large N limit.
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states.9

From the previous definitions, and the result of [61], it follows that for any N

RT CN ⊆MCN ⊆ QCN . (4.8)

The case N = 2 is trivial since all the cones coincide, while for N ≥ 3 the second inclusion

in (4.8) is strict as a consequence ofMMI. On the other hand the question of whether

the first inclusion in (4.8) is strict is the focus of the next section (for N = 3, 4).

4.3 Constructing holographic geometries for the ex-

tremal rays

In this section we explore the relation between the previously defined metric entropy

and RT cones in the particular cases of N = 3 and N = 4. To prove that the RT cone

coincides with the metric entropy cone, one needs to find holographic CFT states dual to

the geometries that realize the extremal rays of the metric entropy cone. Since the metric

entropy cone was defined for the RT formula (instead of HRT) we restrict to spacetimes

with a time reflection symmetry. We focus on three dimensional gravity such that all

possible solutions of Einstein’s equations are locally AdS3 and can be obtained by its

quotients. The t = 0 slice of the full spacetime will then be a Riemann surface ΣN+1

with N + 1 boundaries. Finally, following [59], we assume that the N boundary regions

for which we compute areas of RT surfaces are entire boundaries.

The solutions we are interested in are then multiboundary wormholes with N + 1

asymptotic boundaries with a set of constraints on the size of the horizons and all internal

9As for the metric entropy cone, we restrict attention to geometries with a moment of time symmetry,
although one could similarly define a more general HRT cone.
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cycles such that the geometries correspond to extremal rays of the metric entropy cone.

We seek to find states in the tensor product of N + 1 CFTs which are dual to such

wormholes and can be obtained from a bulk Euclidean path integral via the Hartle-

Hawking construction. For both the N = 3 and N = 4 cases we fail to find CFT states

that meet all the requirements.

4.3.1 Handlebody solutions

A particularly interesting class of Euclidean solutions of three dimensional Einstein

gravity with negative cosmological constant are the so-called handlebody solutions, which

can be thought as compact Riemann surfaces “filled in” with hyperbolic space. While

these are not the only solutions for a particular set of boundary conditions, it has been

conjectured that the non-handlebody solutions are always sub-dominant [49]. Our nu-

merics confirm this explicitly in certain contexts (see §4.A for more details).

As first proposed in [40, 41] (see also [39]), one can interpret such a solution for

tE ∈ (−∞, 0) as a saddle point of the bulk Euclidean path integral. However, for a given

compact Riemann surface, different handlebodies can be obtained by different fillings

and correspond to different phases [26]. If this saddle is the one with least action then by

the Hartle-Hawking construction it provides the bulk state at t = 0 and via holography

an approximation to the dual CFT state computed by the field theory path integral.

For our purposes we must then check that the correct phase dominates in the region

of moduli space where the entanglement entropies satisfy the relations determined by

the extremal ray. Recently developed techniques [36] allow us to study these solutions

numerically even in the case of three or more boundaries. While evaluating the action for

these geometries is involved, numerical evidence from our work and [36] suggests that a

useful heuristic is that filling in the bulk along smaller boundary cycles costs less action
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than filling along larger boundary cycles. A related effect is that geometries with small

internal bulk cycles tend to be subdominant in the path integral. This provides a coarse

way to understand which phase dominates at a given point in moduli space.

An arbitrary handlebody solution can be obtained as a quotient of three dimensional

hyperbolic space H3 (i.e. Euclidean AdS3). A particular quotient can be specified by

its action on the boundary Riemann surface, with the action extended into the bulk

by geodesics. Explicitly, to construct a quotient of H3 with a genus g Riemann surface

its the boundary, one chooses g pairs of non-intersecting circles Ck, C
′
k which divide the

Riemann sphere into a region “inside” and “outside.” The set of Möbius transformations

Lk mapping Ck 7→ C ′k are then used to define the particular quotient of H3, with the

action in the bulk defined by an extension along geodesics. The Riemann sphere projected

onto R2 with the specifications of a given set of circles is referred to as a Schottky domain

D (see [40, 39] for more details).

In practice, it is difficult to determine the handlebody corresponding to a particular

quotient of the Riemann sphere. Instead it is more convenient to construct a Schottky

domain for a particular Riemann surface by choosing g cycles on the boundary to be

made contractible in the bulk.10 Cutting the Riemann surface along these g cycles gives

a Riemann sphere with g sets of circles identified, which can then be projected into the

plane to define the Schottky domain. Determining the moduli of the Riemann surface

corresponding to a particular domain is done numerically for g > 1, and we must solve

this moduli matching problem to compare solutions with given boundary conditions.

In order to compare the actions for different solutions, we must first choose a confor-

mal frame on the boundary. The standard choice is Rbndy = −2. As shown in [40], if we

10One way to classify the possibilities is to first construct a basis of cycles {αi, βi} such that αi ∩βj =
δij . Letting the cycles {αi} be contractible in the bulk defines a particular handlebody solution. One
can then act on this basis with an element of the mapping class group and choose the resulting α cycles
to be contractible. Acting with all elements of the mapping class group generates a set of handlebody
phases for a given boundary surface.
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write the boundary metric as

ds2 = e2φ(w,w̄)dwdw̄ . (4.9)

then this choice of conformal frame corresponds to the solution of the Liouville equation

with an additional non-trivial condition

∇2φ = e2φ , with φ(Li(w)) = φ(w)− 1

2
log |L′i(w)|2 . (4.10)

We will use the numerical methods described in [36] to solve this differential equation for

a given domain.

Additionally, as shown in [40], the evaluation of the Einstein-Hilbert action for a

particular solution can be written in terms of the Takhtajan-Zograf action [48] for the

scalar field φ. As explained in [36], if we define Rk to be the radius of Ck and ∆k as the

distance between the center of Ck and the point w
(k)
∞ mapped to ∞ by Lk, this action

reduces to

ITZ [φ] =

∫
D

d2w
(
(∇φ)2 + e2φ

)
+
∑
k

(∫
Ck

4φ dθ(k)
∞ − 4π log

∣∣R2
k −∆2

k

∣∣) . (4.11)

where θ
(k)
∞ is the angle measured from the point w

(k)
∞ . More details on the numerical

evaluation of this action can be found in §4.A.

Finally, we will have to impose on a handlebody solution a set of constraints which

guarantee that the entanglement entropies of entire boundaries (and their unions) match

the values of a particular extremal ray of the metric entropy cone. Since the RT formula

relates such entropies to geodesic lengths, we need to relate these geodesics lengths to

the quotient which defines a particular handlebody. This can be done using the results
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of [51], which showed that the length of a geodesic in the homology class corresponding

to the action of a Möbius transformation L is given by

`(L) = cosh−1

[
TrL

2

]
. (4.12)

In the next sections we will use all of this technology to evaluate the on-shell action for

the solutions corresponding to the desired extremal rays of the N = 3, 4 metric entropy

cones.

4.3.2 Four party extremal rays

A B C D

O

hA

hB

hAB
hO

Figure 4.1: The geometry (at t = 0) corresponding to the four party extremal ray of
interest. The sizes of the horizons and the internal cycles are fixed in order to obtain
the correct entropies, see the main text.

The extremal rays of MC4 where listed in (4.13). The first two rays are inherited

from the three party coneMC3 and we will ignore them, we will briefly comment on the

three party case in the next section. Here instead we focus on the only new extremal ray

(SA, SB, SC , SD, SAB, SAC , SAD, SBC , SBD, SCD, SABC , SABD, SACD, SBCD, SABCD)

= (1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2) . (4.13)
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As already shown in [59], this ray can be realized by the multiboundary wormhole geom-

etry drawn in Fig. 4.1, with the following conditions on the horizon lengths

l = |hA| = |hB| = |hC | = |hD| =
1

2
|hO| . (4.14)

A

B

C

D

O

(a)

L1

L2

L3

(b)

A

B

C

D

O

(c)

L1

L2

L3

L4

(d)

Figure 4.2: The choices of contractible cycles corresponding to the connected and
disconnected phases and the corresponding Schottky domains. (a) The connected
phase. (b) The associated Schottky domain, with two further circles not drawn, but
implied by requiring inversion symmetry across the dashed circle. (c) The disconnected
phase. (d) The associated Schottky domain.
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and with the additional constraint that for any internal cycle γ homologous to a union

of n of the four boundaries one has

|γ| ≥ nl . (4.15)

For example we should impose |hAB| ≥ 2l.

We wish to evaluate the Euclidean action for this solution, which we refer to as

the connected phase, and compare it to the action evaluated for a solution where the

surface of time-reflection symmetry in the bulk does not connect any pair of boundaries

0.62 0.64 0.66 0.68 0.70 0.72

0.02

0.04

0.06

0.08

0.10

-0.81

-0.54

-0.27

0

0.27

0.54

0.81

1.08

1.35

ρ

φ

(a)

0.62 0.64 0.66 0.68 0.70 0.72

0.02

0.04

0.06

0.08

0.10

0.286

0.297

0.308

0.319

0.330

ρ

φ

(b)

Figure 4.3: Comparison of the actions for the connected and disconnected phases
in the symmetric configuration. The parameters (φ, ρ) are the angular position and
size of C1 on the Riemann sphere. The dashed line corresponds to the particular
configuration with an additional π/2 rotational symmetry about the axis orthogonal
to the plane of the page in Fig. 4.2a and Fig. 4.2c (see also Fig. 4.4). (a) Icon − Idis.

(b) maxγ(1− |γ|n l ).
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(which we will simply call the disconnected phase).11 If the connected phase is the one

that minimizes the action then as explained earlier we can conclude that in the limit of

small bulk Newton constant G (and thus large CFT central charge c) it is in fact dual

to a field theory state. As anticipated, we will find evidence that this is not the case.

The constraints (4.15) require that the cycles homologous to single boundaries are small

compared to the other internal cycles. Intuitively then, the action favors the disconnected

phase, where the wormhole “pinches off” and these cycles become contractible in the bulk.

The wormhole geometry of Fig. 4.1 can be obtained starting from a closed Riemann

surface of genus g = 4. Different handlebody solutions with the same boundary corre-

spond to different choices for the cycles which are contractible in the bulk. The choice

that gives the connected phase is shown in Fig. 4.2a and the corresponding Schottky

domain in Fig. 4.2b. In the case of the disconnected phase (see Fig. 4.2c and Fig. 4.2d),

the bulk time slice consists of five disconnected copies of H2; the mutual information

between boundaries vanishes and the constraints (4.14) are not satisfied.

We want to compare the action for these two phases in various regions of the moduli

space for the associated genus-4 Riemann surface. We focus on a subspace defined by

imposing three Z2 symmetries corresponding (for Fig. 4.2a and Fig. 4.2c) to reflections

in the plane of the page and across both the horizontal and vertical axes. In both phases

considered, the contractible cycles are homotopic to curves that are fixed by a subset

of these symmetries. Combined with the constraints (4.14), these conditions reduce

the moduli space to two real dimensions. In Fig. 4.3a we plot the difference between

disconnected (Idis) and connected (Icon) actions and in Fig. 4.3b we show maxγ(1− |γ|n l );

i.e. the maximal violation of the constraints (4.15). As announced before, one can clearly

see that the constraints are violated when the connected phase has smaller action (bluer

11While in principle there are multiple phases where the surface of time reflection symmetry in the
bulk is disconnected, for our analysis it is sufficient to focus only on this particular phase.
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regions of Fig. 4.3b). Indeed, the region displayed in Fig. 4.3b contains no points where

the constraints are all satisfied.

0.2 0.3 0.4 0.5 0.6 0.7

-0.2

0.2

0.4

� 1− |hABC |
3l

� 1− |hBCD|
3l

� 1− |hAB |
2l

� 1− |hAC |
2l

� 1− |hBD|
2l

φ

Figure 4.4: The constraints (4.15) in the subspace where the connected and discon-
nected actions are equal. The dashed line indicates the point with the additional π/2
rotational symmetry discussed above.

Now the particular region of moduli space studied in Fig. 4.3 was chosen in an ad hoc

way for numerical convenience. To perform a more targeted analysis, we restrict attention

to the 1-dimensional subspace of moduli space where the connected and disconnected

actions are equal. We can then search along this curve for a point where the constraints

(4.15) are satisfied. Though we have no rigorous proof, it is natural to presume that it

is easier to satisfy the constraints along this line than in the region where the connected

phase dominates strongly. The plot shown in Fig. 4.4 suggests that no such point exists.

Toward the left, the hBD and hBCD cycles become too small, while the hABC , hAB, and

hAC cycles become too small toward the right.

Note that the minimal violation of the constraints happen at the point in moduli space

(dashed vertical line in Fig. 4.4) where there is an additional π/2 rotational symmetry

in the Riemann surface. This observation suggests that even if we were to look outside
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of the two dimensional subspace of moduli space that we have considered thus far, i.e.

even if we consider regions of moduli space with less symmetry, we will still be unable to

make the desired extremal ray dominate our path integral.

As a check we have also considered a different two dimensional subspace corresponding

to the Riemann surface drawn in Fig. 4.5a. As before, we can study the one dimensional

subspace where the connected and disconnected actions are equal. The results for the

various constraints on the cycle lengths are shown in Fig. 4.6, one can see that there is

no region where they are all satisfied simultaneously.

4.3.3 Three party extremal ray

We briefly comment on the case of RT C3. In this case the extremal ray of interest is

(SA, SB, SC , SAB, SAC , SBC , SABC) = (1, 1, 1, 2, 2, 2, 1) . (4.16)

ABCD

O

(a)

L1

L2

L3

L4

(b)

Figure 4.5: In this case the two phases differ only in moduli and have the same Schot-
tky domain. (a) The alternative Riemann surface with the two choices of contractible
cycles. (b) The Schottky domain for both sets of cycles.
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0.025 0.030 0.035 0.040 0.045

-0.6

-0.4

-0.2

0.2

0.4

0.6 � |hBC |
2l
− 1

� |hAC |
2l
− 1

� |hAB |
2l
− 1

� |hAD|
2l
− 1

� |hABC |
3l
− 1

� |hABD|
3l
− 1

φ

Figure 4.6: The constraints (4.15) for the alternative handlebody (Fig. 4.5a) in the
subspace where the connected and disconnected actions are equal.

1 1.5 2

-0.5

0.5

1

φ

Figure 4.7: Results for the highly symmetric three genus Riemann surface. The black
(solid) line is Icon − Idis, the green (dashed) one 1− |hAB |2l .

For the one-dimensional subspace of moduli space where the Riemann surface has three

holes arranged in a circle, and an extra 2π/3 rotational symmetry, the results are shown

in Fig. 4.7. They suggest in this case as well that there might not be a CFT state dual

to the particular multiboundary geometry considered to realize the desired extremal ray.

Although our argument is far from conclusive in proving that the RT cone for three parties

is not polyhedral, it is interesting to contrast the result with the quantum mechanical

case, where for three parties the cone is known to be polyhedral.
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4.4 Discussion

Our findings show that the argument of [59] for the polyhedrality of the RT cones

RT C3 and RT C4 was not conclusive. While [59] showed the polyhedrality of the metric

entropy cones MC3 and MC4, if one further requires that the geometries realizing the

extremal rays of the cones are dual to CFT states it is not clear whether these rays can

be realized holographically. We have also noted that, the wormhole solutions suggested

in [59] may fail to satisfy this requirements since they do not correspond to the dominant

saddle points of the natural bulk Euclidean path integral in any region of moduli space.

We have not ruled out the possibility that they might dominate in other more complicated

path integrals, but this seems unlikely. For RT CN with larger N the situation is even less

clear. While [59] proved that the metric entropy cone is polyhedral for any N , without

the full list of RT inequalities it is obviously not possible to construct the extremal rays

and explore whether they have holographic duals.

Though our results are suggestive, they are not conclusive with regard to the poly-

hedrality of RT C3 and RT C4. For example, there could be other bulk solutions dual

to CFT states that realize the same extremal rays. As noticed in [59], restricting spin

structures can remove otherwise-dominant saddles and perhaps allow the desired saddle

to dominate. However, for theories with a fixed number F of bulk Fermion fields this

seems unlikely for large enough N . For example, for F = 1 there is no spin structure

that guarantees connectivity beyond N = 2. If there are holographic bulk theories with

arbitrarily large F , one could use them to show equality of the metric entropy and HRT

cones. However, it is currently unknown whether such theories exist.

Alternatively, it might be that one can in some sense subtract off the part of the CFT

state corresponding to the dominant phase to leave a CFT state dual to the subdominant

phase. Indeed, one naively expects that the state defined by our path integral admits a
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semi-classical expansion of the form

|ψ〉 =
∑

saddles n
corrections m

e−Sn/2c−m/2|gn,m〉, (4.17)

in terms of the central charge c. Here |gn,m〉 is a state that includes perturbative quantum

corrections about the background geometry gn corresponding to the nth saddle. Since

each geometry gn that appears in our sum is also associated with a more natural path

integral to which it should contribute, one expects that a suitable linear combination

of these states (acted upon by appropriate CFT operators to bring into alignment the

states of the bulk quantum fields) will feature a leading term proportional to the part

|g̃, 0〉 associated with the desired geometry (e.g. Fig. 4.1).

However, there are many details to be analyzed in fleshing out this more complicated

approach to constructing CFT states dual to geometries like the one in Fig. 4.1. One

should thus be open to the possibility that it fails and that the RT cone is in fact not

polyhedral. While by construction it is certainly true that the RT cone is a subset of the

metric entropy cone, it could be that (at least for some N) it is in fact a proper subset.

This would mean that there should be other entropy inequalities, possibly non-linear,

that by the same argument of [59] could not be proved by usual “cutting and pasting”

procedures using the RT formula.

Finally, we remind the reader that all our discussion, as well as that in [59], was

based on the RT prescription and only applies to spacetimes with a moment of time

symmetry. In dynamical situations one should instead use the HRT prescription [43].

While SSA and MMI have been proved also in this more general situations [62], and

by construction the metric entropy cone based on RT has to be a subset of the one based

on HRT, it is not clear at present whether the polyhedrality proof of [59] extends to the

dynamical case, nor it is known if the new inequalities for N = 5 found by [59] still hold.
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We see these as interesting open questions for future investigations.

4.A Bulk action computation

In this appendix we present more details for computing the Einstein-Hilbert action.

As shown in [36] we can write the bulk action as

I = − c

24π

[
ITZ[φ]− A− 4π(g − 1)(1− log 4R2

0)
]
, (4.18)

where R0 is a normalization parameter corresponding to the size of the sphere on which

the partition function evaluates to one. As in [36] we set R0 = c = 1, and so the action

for a particular non-handlebody solution vanishes. Additionally, the action ITZ[φ] is

equivalent to the Takhtajan-Zograf action for a scalar field [48]. As shown in [36], if we

define Rk to be the radius of Ck, and ∆k as the distance between the center of Ck and

the point w
(k)
∞ mapped to ∞ by Lk, the action can be written as

ITZ [φ] =

∫
D

d2w
(
(∇φ)2 + e2φ

)
+
∑
k

(∫
Ck

4φ dθ(k)
∞ − 4π log

∣∣R2
k −∆2

k

∣∣) . (4.19)

We follow the convention of [36] where the orientation of a dθ element associated with

a particular circle is inherited from its orientation as the boundary of D. In practice, this

means that almost all of the elements have the opposite orientations one would naively

expect.

In all the Schottky domains we consider, there is a symmetry of the plane given by an

inversion through the unit circle (∂U). Therefore it will be convenient to reduce (4.19)

to integrals only over the part of D inside the unit circle, which we denote as D̃. As
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shown in [36] we can use the transformation properties of φ to show that

∫
D

d2w (∇φ)2 = 2

∫
D̃

d2w (∇φ)2 + 4

∫
∂D̃

(φ+ log |w|) dθ , (4.20)

where the coordinate θ refers to the angle measured from the origin. In practice, the

boundary of D̃ will consist of a set of disjoint circles {∂Di} = D̃ ∩ {Ck, C ′k} and the

boundary of the unit disk U . Furthermore, we can explicitly evaluate the integral of

log |w| over the boundary circles and write (4.20) as

∫
D

d2w (∇φ)2 = 2

∫
D̃

d2w (∇φ)2 + 4

∫
∂U

φ dθ +
∑
i

[
4

∫
∂Di

φ dθ + 4π log

(
1− R2

i

X2
i

)]
,

(4.21)

where Xi is the distance between the center of ∂Di and the origin. In all of the domains

we consider, Xi is zero only for the unit and not included in the sum. Additionally it

was shown in [36] that we can integrate the (∇φ)2 term by parts to get on shell

∫
D̃

d2w (∇φ)2 = −
∫
D̃

d2w φ e2φ −
∫
∂U

φ dθ −
∑
i

∫
∂Di

φ dθ
(i)
0 , (4.22)

where θ
(i)
0 is the angular coordinate as measured from the center of the boundary circle

∂Di. Putting everything together, we can then write

∫
D

d2w (∇φ)2 = −2

∫
D̃

d2w φ e2φ + 2

∫
∂U

φ dθ +
∑
i

[
2

∫
∂Di

φ (2dθ − dθ(i)
0 ) + 4π log

(
1− R2

i

X2
i

)]
.

(4.23)

Next, we can tackle the sum over Ck in the formula (4.19). We make the assumption

that neither Ck nor C ′k intersect the unit circle, the case in which they do was worked

out in [36]. Note that we can divide the circles into two classes, one in which one of Ck
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or C ′k ⊂ U and one in which Ck, C
′
k 6⊂ U . However, with the additional assumption that

there is an inversion symmetry through U , for every pair of circles Ck, C
′
k 6⊂ U there is a

pair of circles Ck̄, C
′
k̄
⊂ U . Additionally, only one from the pair of circles Ck, C

′
k enters

the above formula, and for each pair there is a freedom in choosing which one to be Ck

and C ′k. For each of these pairs we label Ck to be the one inside U . Therefore we can

write the sum of integrals over Ck as follows:

∑
k

4

∫
Ck

φ dθ(k)
∞ =

∑
k:C′k 6⊂U

4

∫
Ck

φ dθ(k)
∞ +

∑
k:C′k⊂U

4

(∫
Ck

φ dθ(k)
∞ +

∫
Ck̄

φ dθ(k̄)
∞

)
. (4.24)

Of the three terms, only the last one involves an integral over a circle not in U , but using

the inversion symmetry we can reduce it to an integral over Ck

∑
k

4

∫
Ck

φ dθ(k)
∞ =

∑
k:C′k 6⊂U

4

∫
Ck

φ dθ(k)
∞ +

∑
k:C′k⊂U

4

∫
Ck

(
φ + (φ+ log |w|)dθ

(k̄)
∞

dθ
(k)
∞

)
dθ(k)
∞ .

(4.25)

As the Jacobian factor and the parameters Rk and Dk can all be computed analytically

from the setup of the Schottky domain, the only numeric integration occurs within the

domain D̃.

Finally, we note that A =
∫
D
e2φd2w and so this integration in ITZ cancels the A term

in the action. Putting it all together, we have the following on shell action

I = − c

24π

[
−4π(g − 1) log 4− 2

∫
D̃

d2w φ e2φ + 2

∫
∂U

φ dθ

+
∑

k:C′k 6⊂U

(
2

∫
Ck

φ (2dθ + 2dθ(k)
∞ − dθ

(k)
0 ) + 4π log

1−R2
k/X

2
k

|R2
k −∆2

k|

)

+
∑

k:C′k⊂U

(
2

∫
Ck

φ (2dθ + 2dθ(k)
∞ − dθ

(k)
0 ) + 4

∫
Ck

(φ+ log |w|)dθ
(k̄)
∞

dθ
(k)
∞
dθ(k)
∞
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+2

∫
Ck′

φ (2dθ − dθ(k′)
0 ) + 4π log

(1−R2
k/X

2
k)(1−R2

k′/X
2
k′)

|R2
k −∆2

k|
∣∣R2

k̄
−∆2

k̄

∣∣
)]

.

(4.26)

The action written explicitly in this way is very useful because it only involves quantities

one can compute analytically and numeric integrations over D̃ and ∂D̃.

In many scenarios one can derive relations such as dθ + dθ
(k)
∞ = dθ

(k)
0 which greatly

simplify the above formula. Additionally, one is often able to use reflection symmetries

to further reduce the domain of integration. Practically, it is only numerically feasible to

compute integrals over dθ
(k)
0 and so one can introduce more Jacobian factors to convert

all integrals to this form.
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Chapter 5

Confinement in Inhomogenous

Backgrounds

5.1 Introduction

The AdS/CFT correspondence [14, 15, 16] provides elegant geometrizations of many

aspects of quantum field theory, including the phenomenon of confinement [22]. In gauge

theories, an order parameter for confinement is the expectation value of a “temporal”

Wilson loop around a Euclidean time circle:

〈|Tr(W )|〉 ≡
〈

1

N
Tr
(
Pe−

∮
Aτdτ

)〉
. (5.1)

The expectation is of the form e−βEq , where Eq is the energy of a probe quark. In a

confining phase this energy diverges, and so the expectation value (5.1) vanishes. But a

non-zero expectation value requires a finite probe quark energy and implies the theory

to be in a deconfined phase [63, 64, 65].

The holographic prescription [66] for computing the expectation value of a Wilson
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loop C involves considering a fundamental string in the bulk which intersects the asymp-

totically AdS conformal boundary on the curve C defined by the Wilson loop. Here we

identify the (conformal) boundary of the bulk with the gauge theory spacetime. At small

bulk string coupling, the semi-classical approximation to the associated worldsheet path

integral gives

〈|Tr(W )|〉 ' e−Scl , (5.2)

where Scl is the classical string action of Euclidean worldsheet. As we focus on the

vanishing or non-vanishing of (5.2), we need only determine if any worldsheets have finite

action. When there is no bulk worldsheet with boundary C, expression (5.2) vanishes

and the theory is confined.

The bulk topology associated with the Euclidean time circle is thus of critical impor-

tance. When this circle is non-contractible, there can be no worldsheet with boundary

C having the topology of a disk. Since other topologies are allowed only in special

cases1, it is of great interest to construct asymptotically locally AdS spacetimes with

non-contractible Euclidean time circles.

The prototypical example of a bulk geometry dual to a confining vacuum is the AdS-

soliton [22, 67]. The solution may be constructed by Wick-rotating the Schwarzschild-

AdS black hole and involves an arbitrary constant b > 0. In Fefferman-Graham gauge

and Euclidean signature the metric may be written

ds2 =
`2

z2

[
dz2 +

(
1 +

zd

bd

)4/d

dτ 2 +

(
1 +

zd

bd

)4/d

dxidx
i + α2

db
2

(
1− zd

bd

)2(
1 +

zd

bd

) 4
d
−2

dθ2

]
,

(5.3)

1When the bulk has additional boundaries not associated with the original CFT spacetime. Such
boundaries typically lie at the end of an infinite throat related to an extreme horizon in the bulk
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where i = 1, . . . d − 2 and αd = 21−2/d

d
. We take θ to be dimensionless and to have

b-independent period 2π (as required by regularity at z = b). The conformal boundary

may be taken to have metric

ds2
bndy = dτ 2 + dxidx

i + α2
db

2 dθ2, (5.4)

so that b controls the size of the θ-circle on the boundary.

Below, we generalize this solution by allowing the size of the S1 – and thus the confine-

ment scale – to vary slowly along the boundary. We work in Euclidean signature, but our

results define Lorentz-signature solutions via a trivial Wick rotation of τ , or equivalently

by evolving the associated initial data at t = 0. We construct the bulk geometries in

section 5.2 using an adiabatic expansion. Section 5.3 then extracts predictions for Wilson

loops and the stress tensor in the dual gauge theory. Readers most interested in such

results may skip directly to this section. Numerical results for interesting coefficients are

given for 3 ≤ d ≤ 8. The special case d = 2 is solved analytically in appendix 5.A and

used to check our numerical codes.

5.2 Adiabatically Varying Confining Vacua

In any local theory, one may use a solution with continuous free parameters to build

new solutions by promoting constant such parameters to slowly varying functions. The

explicit functional form will then require corrections, but these may be found by solving

the equations of motion in an adiabatic expansion. In particular, this procedure has been

used extensively in the fluid-gravity correspondence [68] to construct holographic duals of

conformal fluids near thermal equilibrium; see [69, 70] for reviews. Indeed, because (5.3)

is the double-Wick rotation of an AdS-Schwarzschild black hole, our solutions below could
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have been constructed as double Wick-rotations of appropriately static and symmetric

instances of the fluid-gravity correspondence that satisfy certain regularity conditions.

However, we nevertheless find it useful to construct the relevant equations and study

regularity directly in terms of coordinates adapted to our symmetries (as opposed to the

ingoing Eddington-Finkelstein black hole coordinates of [68, 69, 70]).

To be more explicit, suppose that we begin with a bulk geometry having free pa-

rameters {cα}. We promote each constant to a slowly varying function by making the

replacement cα → cα(εx) to define a new metric g̃
(0)
AB. Here ε is a dimensionless book-

keeping parameter that controls the adiabatic expansion.

Our g̃
(0)
AB no longer solves Einstein’s equation exactly, but we can use it to construct

a solution by considering the ansatz

ds2 = g̃
(0)
AB dx

AdxB + ε g̃
(1)
AB dx

AdxB + ε2 g̃
(2)
AB dx

AdxB + · · · . (5.5)

Inserting (5.5) into the Einstein equation gives, at each order n, a set of equations for

the metric correction g̃
(n)
AB. In general, at each order n there may also be consistency

conditions that impose relations between the cα and their derivatives. However, no such

conditions will arise in the setting studied below.

We will use this method to construct a class of confining geometries which approach

the AdS-soliton (5.3) in the limit as ε → 0. Our solutions are constructed in Euclidean

signature and have a τ translation symmetry. As a result, they are bulk stationary

points of the path integral that computes the vacuum of the dual gauge theory. As in

the discussion of [22, 67] we assume this saddle to dominate. Wick rotating to Lorentz

signature or evolving initial data from t = 0 will then give Lorentz-signature solutions

dual to the gauge theory vacua.
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5.2.1 Ansatz and boundary conditions

We begin with the AdS-soliton (5.3) and promote b to a slowly varying function of

a single spatial coordinate x, i.e. b → b(εx). The effect on the boundary metric is to

make the size of the S1 fibers vary with x. Although for simplicity we will allow this

size to vary only along a single coordinate direction, we describe at the end of section

5.2.2 below how at order ε2 this seemingly-special case in fact suffices to determine the

response to completely general slow variations of b in the (d− 1) directions (τ, xi).

Since the dual CFT will have a ground state on any static spacetime, one expects no

restrictions on the functional form of b(εx). We will verify below that no constraints arise

within the adiabatic expansion. A key point will be that adding x-dependence in the

above way will allow us to preserve regularity everywhere in the bulk, and in particular

at the fixed points of the rotational Killing field ∂θ.

It will be convenient to let x = x1, y1 = τ , and yi = xi for i ≥ 2. With these defini-

tions, the boundary coordinates are given by xµ = (θ, x, yi) where again i = 1, . . . , d− 2.

Below, we use rotational invariance among the yi to write gyiyj = gyyδij.

Working in Fefferman-Graham gauge, we consider solutions of the form

ds2 =
`2

z2
gABdx

AdxB =
`2

z2

(
g

(0)
AB dx

AdxB + ε g
(1)
AB dx

AdxB + ε2 g
(2)
AB dx

AdxB + · · ·
)
,

(5.6)

so that in the notation of (5.5) we have g̃
(n)
AB = `2

z2 g
(n)
AB. The explicit form of our zeroth

order ansatz is

g
(0)
AB dx

AdxB = dz2 + α2
db

2

(
1− zd

bd

)2(
1 +

zd

bd

) 4
d
−2

dθ2

+

(
1 +

zd

bd

)4/d

dx2 +

(
1 +

zd

bd

)4/d∑
i

dyidyi. (5.7)
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Using the Fefferman-Graham gauge condition g
(n)
Az = 0 for n ≥ 1 as well as reflection

symmetry in both θ and yi, shows that all g
(n)
AB remain diagonal. Similarly, only the zz,

zx, xx, yy, and θθ components of the Einstein tensor can be non-zero.

We wish to satisfy the vacuum Einstein’s equation with a negative cosmological con-

stant:

0 = EAB := RAB −
1

2
RgAB + Λ gAB . (5.8)

As in [68], at each order in the adiabatic expansion we have d(d+1)
2

equations E
(n)
µν = 0

involving second derivatives with respect to z; we refer to these equations as dynamical.

Here µ, ν range over all boundary coordinates. We also obtain d+ 1 equations involving

no more than first derivatives in z, and which we call constraints. The latter divide

themselves into E
(n)
zµ = 0 and E

(n)
zz = 0. Rotational symmetry in the yi requires E

(n)

yiyj
=

E
(n)
yy δij, so at each order we have only three distinct dynamical equations E

(n)
xx , E

(n)
θθ ,

and E
(n)
yy for the three undetermined metric functions g

(n)
θθ , g

(n)
xx , and g

(n)
yy . Moreover, each

derivative ∂x adds another factor of ε, so the dynamical equations for g
(n)
AB are ultra-

local in the boundary directions. We are left with three coupled second order ordinary

differential equations in z.

The dynamical equations require two boundary conditions to fix the solution uniquely.

The first is given by fixing the induced metric on the boundary to be given by (5.4) with

b→ b(x). The zeroth order ansatz satisfies

lim
z→0

g(0)
µν dx

µdxν = dx2 + α2
db

2dθ2 + dyidy
i, (5.9)
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and so gives the correct boundary metric to all orders. We therefore impose

lim
z→0

g(n)
µν = 0 (5.10)

for all n > 0.

The second boundary condition is determined by regularity at the fixed points of ∂θ.

This occurs at some z = b̃(x) where the associated S1 shrinks to zero size. At zeroth

order one finds b̃ = b, though there are corrections at higher orders. To impose regularity,

it suffices to construct coordinates R(z, x) and X(z, x) such that gθθ vanishes at R = 0

and the metric takes the form

ds2 = gRR|R=0

(
dR2 +R2dθ2

)
+ gXX |R=0dX

2 + gY Y |R=0

d−2∑
i=1

dY idY i +O(R2) (5.11)

where gRR|R=0, gXX |R=0, gY Y |R=0 are positive (and thus non-vanishing) functions of X.

Expanding the zeroth-order ansatz (5.7) in powers of z − b(x) shows that it satisfies

regularity as previously claimed. One may then check that the full ansatz (5.6) satisfies

(5.11) to order ε2 with

z = (1−R)b− ε2 1

3
16−1/db

(
b′

2
+

2

α2
dd

2
∂2
zg

(2)
θθ

∣∣∣
z=b

)
+O(ε4)

x = X + ε 16−1/d b b′
(
R +

1

2
R2 − 1

6
(d− 2)R3

)
+O(ε4, R4), (5.12)

so long as we impose the boundary conditions

0 = g
(1)
θθ

∣∣∣
z=b

0 = ∂zg
(1)
xx

∣∣
z=b

0 = ∂zg
(1)
yy

∣∣
z=b
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0 = ∂zg
(2)
θθ

∣∣∣
z=b
− 1

6
b
(
α2
dd

2b′
2

+ 2 ∂2
zg

(2)
θθ

∣∣∣
z=b

)
0 = 2 d b g(2)

xx

∣∣
z=b

+ 2α−2
d ∂zg

(2)
θθ

∣∣∣
z=b
− d b2 ∂zg

(2)
xx

∣∣
z=b

+ 2 d b2 b′′

0 = 2 d b g(2)
yy

∣∣
z=b

+ 2α−2
d ∂zg

(2)
θθ

∣∣∣
z=b
− d b2 ∂zg

(2)
yy

∣∣
z=b
− 2 d b b′

2
. (5.13)

We emphasize that we have chosen the period of θ to remain precisely 2π at all x at each

order in ε.

5.2.2 Adiabatic solutions

We have now specified two boundary conditions at each order for each of the dy-

namical variables g
(n)
xx , g

(n)
θθ , and g

(n)
yy . This is enough to uniquely determine solutions to

the dynamical equations Eµν = 0 at each order. It turns out that any such solution

automatically satisfies the constraints EzA = 0 or, equivalently, ERA = 0. For A = θ, Y i

this is clear from the reflection symmetries θ → −θ and Y i → −Y i. For A = X,R, we

proceed by noting that the Bianchi identities ∇AE
AB imply first order evolution equa-

tions for the constraints ERA. Using (5.11), one finds that imposing Eµν = 0 requires

ERR = CRR (R−1 + . . . ) and ERX = CRX (R−1 + . . . ) where CRR, CRX are constants and

the dots (. . . ) represent terms that vanish as R→ 0. But regularity requires2 ERR, ERX

to be finite at R = 0. This sets CRR = 0 = CRX , so that the constraints hold identi-

cally everywhere in the bulk. It thus suffices to solve the dynamical equations Eµν = 0

alone subject to (5.9) and (5.13). At least in the adiabatic expansion, this verifies the

expectation that bulk solutions exist for all profiles b(εx).

Let us now examine in more detail the equations E
(n)
µν = 0 that result from expanding

Eµν in powers of ε . In general, the lower order terms g
(n)
AB in (5.6) lead to sources for

the higher order terms. As noted above, each boundary derivative contributes an explicit

2A simple argument notes that TrE2 := EABECDgDAgBC is a positive definite quadratic form that
must be finite at R = 0. Explicitly, the leading terms at R = 0 are (gRRE

RR)2 + 2gRRgXX(ERX)2.
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power of ε. Covariance requires each term in Eµν to contain an even number of such

derivatives, so evaluating Eµν on the zeroth-order ansatz (5.7) alone can provide source

terms only for g
(n)
AB with n even.

In particular, there can be no source terms at order ε so that the dynamical equa-

tions for g
(1)
AB are homogeneous. Since the boundary conditions (5.9) and (5.13) are also

homogeneous at this order, the unique solution is g
(1)
AB = 0.

The story is more interesting at second order. Explicit computation gives the following

lengthy dynamical equations:

0 =4(d− 2)zd+2
(
(d+ 1)bd + (d− 2)zd

)
b′

2 − 4 b(d− 2)zd+2
(
bd + zd

)
b′′

− 4 b2(d− 4)z2dg(2)
xx − 4 b2(d− 4)(d− 2)z2dg(2)

yy

+ b2z
(
bd + zd

) (
(d− 7)zd − (d− 1)bd

)
∂zg

(2)
xx

+ b2(d− 2)z
(
bd + zd

) (
(d− 7)zd − (d− 1)bd

)
∂zg

(2)
yy

+ b2z2
(
bd + zd

)2
∂2
zg

(2)
xx + b2(d− 2)z2

(
bd + zd

)2
∂2
zg

(2)
yy ,

0 =4 (d− 2)zd+2
(
zd − bd

)3 (
b2d + (d+ 1)bdzd + (d− 2)z2d

)
b′

2

− 4α−2
d z2d

(
bd + zd

)2 (−(2d2 − 5d+ 4)b2d − 2(3d− 4)bdzd + (d− 4)z2d
)
g

(2)
θθ

− 4 b2(d− 2)z2d
(
zd − bd

)3 (
(d+ 4)bd + (d− 4)zd

)
g(2)
yy

− α−2
d z

(
bd − zd

) (
bd + zd

)3 (
(d− 1)b2d − 2(3d− 4)bdzd + (d− 7)z2d

)
∂zg

(2)
θθ

+ b2(d− 2)z
(
bd − zd

)2 (
z2d − b2d

) (
(d− 1)b2d + 8bdzd + (d− 7)z2d

)
∂zg

(2)
yy

+ α−2
d z2(bd − zd)2(bd + zd)4∂2

zg
(2)
θθ + b2(d− 2)z2

(
bd − zd

)4 (
bd + zd

)2
∂2
zg

(2)
yy ,

0 = 4zd+2
(
bd − zd

)2 (
zd − bd

) (
d b2d + ((d− 2)d− 6)bdzd + (d− 3)(d− 2)z2d

)
b′

2

+ 2 b z2
(
bd − zd

)3 (
bd + zd

) (
b2d + 4bdzd + (2d− 5)z2d

)
b′′
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− 4α−2
d z2d

(
bd + zd

)2 (−(2d2 − 5d+ 4)b2d − 2(3d− 4)bdzd + (d− 4)z2d
)
g

(2)
θθ

− 4 b2z2d
(
zd − bd

)3 (
(d+ 4)bd + (d− 4)zd

)
g(2)
xx

− 4 b2(d− 3)z2d
(
zd − bd

)3 (
(d+ 4)bd + (d− 4)zd

)
g(2)
yy

− α−2
d z

(
bd − zd

) (
bd + zd

)3 (
(d− 1)b2d − 2(3d− 4)bdzd + (d− 7)z2d

)
∂zg

(2)
θθ

+ b2z
(
bd − zd

)2 (
z2d − b2d

) (
(d− 1)b2d + 8 bdzd + (d− 7)z2d

)
∂zg

(2)
xx

+ b2(d− 3)z
(
bd − zd

)2 (
z2d − b2d

) (
(d− 1)b2d + 8 bdzd + (d− 7)z2d

)
∂zg

(2)
yy

+ α−2
d z2

(
bd − zd

)2 (
bd + zd

)4
∂2
zg

(2)
θθ + b2z2

(
bd − zd

)4 (
bd + zd

)2
∂2
zg

(2)
xx

+ b2(d− 3)z2
(
bd − zd

)4 (
bd + zd

)2
∂2
zg

(2)
yy . (5.14)

As a check, we can use (5.14) to analytically compute the asymptotic expansion of

g
(2)
xx , g

(2)
θθ , g

(2)
yy in powers of z. Solving (5.14) via the Frobenius method near z = 0, for

d ≥ 3 we find

g
(2)
θθ = α2

d

b b′′

d− 1
z2 + cθz

d +O(zd+1),

g(2)
xx =

b′′

b (d− 1)
z2 + cxz

d +O(zd+1),

g(2)
yy = − b′′

b (d− 1)(d− 2)
z2 + cyz

d +O(zd+1), (5.15)

where the coefficients of zd are determined by the boundary conditions at the horizon.

On the other hand, for any boundary metric γ
(0)
µν , it is known (see e.g. [17]) that for

d ≥ 3 the z2 coefficient in the expansion of gµν is given by

γ(2)
µν = − `2

d− 2

(
Rµν −

1

2(d− 1)
Rγ(0)

µν

)
, (5.16)

where Rµν is the Ricci tensor of γ
(0)
µν . Furthermore, the terms znγ

(n)
µν with 3 ≤ n < d

involve higher numbers of derivatives and so vanish to order ε2 (and similarly for the
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zd log z2 term for even d > 2; for d = 2 the z2 log z2 term vanishes identically). As the

boundary curvature is given by

Rθθ = −ε2α2
d b b

′′, Rxx = −ε2 b
′′

b
, R = −2 ε2

b′′

b
, (5.17)

we see that (5.16) agrees with (5.15).

While the equations (5.14) are highly coupled, they are also linear and can be solved

numerically using the collocation methods described in [32]. By linearity, and dimensional

analysis the solutions take the form

g(2)
xx (z, x) = (b′(x))

2
g(b′)2

xx (z/b) + (b(x)b′′(x)) g(bb′′)
xx (z/b),

g(2)
yy (z, x) = (b′(x))

2
g(b′)2

yy (z/b) + (b(x)b′′(x)) g(bb′′)
yy (z/b),

g
(2)
θθ (z, x) = α2

d

[
(b(x) b′(x))

2
g

(bb′)2

θθ (z/b) + b(x)3 b′′(x) g
(b3b′′)
θθ (z/b)

]
, (5.18)

where the functions g
(b′)2

xx (z/b), etc have no further dependence on b(x). Results for these

dimensionless coefficient functions are shown in figures 5.1 - 5.3.

1 z/b

-0.4

-0.3

-0.2

-0.1

0.1

g(bb')
2

θθ

3

4

5

6

7

(a)

1 z/b

0.1

0.2

0.3

gb
3 b''

θθ

3

4

5

6

7

(b)

Figure 5.1: (Color online) Numerical solutions for (a) g
(bb′)2

θθ and (b) g
(b3b′′)
θθ as functions

of z/b for d = 3 to d = 7 using the notation (5.18). In each case the left endpoint is
the asymptotic boundary z = 0 and the right endpoint is the fixed point of ∂θ (where
gθθ = 0).

Although we have thus far allowed dependence only on a single coordinate x, the
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Figure 5.2: (Color online) Numerical solutions for (a) g
(b′)2

xx and (b) g
(bb′′)
xx for d = 3

to d = 7 using the notation (5.18). In each case the left endpoint is the asymptotic
boundary z = 0 and the right endpoint is the fixed point of ∂θ (where gθθ = 0).
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Figure 5.3: (Color online) Numerical solutions for (a) g
(b′)2

yy and (b) g
(bb′′)
yy for d = 3

to d = 7 using the notation (5.18). In each case the left endpoint is the asymptotic
boundary z = 0 and the right endpoint is the fixed point of ∂θ (where gθθ = 0).

results above in fact determine the O(ε2) response of our system to general slow variations

of b in the (d− 1) directions (x, yi). In particular, since the metric at each order εn and

each bulk point (z, x, yi, θ) is locally determined by the boundary metric at (x, yi, θ), in

computing the response to gradients we are free to simply define x at each such boundary

point to run in the direction of any gradient of b, so long as we then take the yi to label

the orthogonal directions. We may then separately consider the response to the matrix

of second derivatives of b (the Hessian). Here it is useful to choose coordinates that

diagonalize the Hessian. Furthermore, since the O(ε2) response to second derivatives is

linear, it suffices to separately compute the response to each eigenvalue λα of the Hessian.
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And for studying any particular eigenvalue, we can choose the x coordinate to run in the

corresponding direction. As a result, letting α, β run over directions corresponding to

eigenvectors of the Hessian and denoting the the second order response to the Hessian of

gAB in the direction associated with some particular eigenvalue λβ by g
(2,Hess)
ββ , we have

g
(2,Hess)
ββ = b

[
g(bb′′)
xx (z/b)λβ + g(bb′′)

yy (z/b)
∑
α 6=β

λα

]
(5.19)

in terms of the functions g
(bb′′)
xx (z/b), g

(bb′′)
yy (z/b) computed above.

5.3 Gauge Theory Implications

We now use the above solutions above to extract physical data about the confining

gauge theory. In particular, the quark/anti-quark potential V (xq, xaq) can be studied by

computing the expectation value of rectangular Wilson loops extending along e.g. x and

τ = y1. For ∆τ � ∆x = xq − xaq, one expects from (5.1) that

W (C) ∼ e−V (xq ,xaq) ∆τ . (5.20)

Using the holographic prescription (5.2), we see that V (xq, xaq) is proportional to the

(renormalized) area of the string world-sheet per unit time ∆τ . If we further take ∆x (and

thus also ∆τ) much larger than the scale b, this renormalized area can be approximated

by that of the corresponding rectangle on the hypersurface where ∂θ = 0; we follow

standard practice in referring to this surface as the IR floor. In the coordinate system

(5.11), the IR floor lies at R = 0. Transforming to Fefferman-Graham coordinates using
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(5.12) and taking into account (5.13), it also lies at z = b̃ with

b̃ = b− ε2

2
b2 α−2

d ∂zg
(2)
θθ

∣∣∣
z=b

+O(ε4). (5.21)

Here we assume d ≥ 3 so that there is at least one y direction. The special case d = 2 is

discussed separately in appendix 5.A, where it is solved analytically and used to check

our numerical codes.

We denote by Cfloor the corresponding rectangular loop on this IR floor. Since τ = y1,

the loop Cfloor has area

ACfloor ≈ `2

∫
dx dy1

(
1

b2
161/d +

ε2

2b2

(
h(2)
xx + h(2)

yy

))
, (5.22)

where `2hµν is the induced metric on the IR floor. Similarly, for loops extending along τ

and a y direction, we have

ACfloor ≈ `2

∫
dy2 dy1

(
1

b2
161/d +

ε2

b2
h(2)
yy

)
. (5.23)

The second order contributions to hµν are listed in the table in figure 5.4 using notation

analogous to (5.18). Here we extend the calculations to d = 8 due to an interesting

change of sign for h
(b′)2

yy between d = 6 and d = 7.

The factors in parentheses in (5.22), (5.23) describe an effective tension for the gauge-

theory flux tube whose stretching between the quark and anti-quark provides the confin-

ing potential. Supposing for the moment that we allow b to vary only in spatial directions

(x and yi for i ≥ 2), the spacetime remains static and any flux tube will tend to orient

itself to minimize this effective tension. As described at the end of section 5.2.2, the

coefficients above can be used to deduce the O(ε2) response to general slow variations

of b across (x, yi). The fact that h
(b′)2

xx > h
(b′)2

yy for all d in the table in figure 5.4 thus
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d h
(b′)2

xx h
(bb′′)
xx h

(b′)2

yy h
(bb′′)
yy

3 -0.333 1.06 -1.06 -0.667
4 0.00 0.673 -0.571 -0.551
5 0.200 0.475 -0.272 -0.468
6 0.333 0.358 -0.0688 -0.406
7 0.429 0.282 0.0778 -0.358
8 0.500 0.231 0.189 -0.320

Figure 5.4: The coefficients h
(b′)2

xx , h
(bb′′)
xx , h

(b′)2

yy , and h
(bb′′)
yy for the induced metric on

the IR floor for various dimensions. Though we display only a few significant figures,
estimating the numerical precision by comparing results for 100 and 150 lattice points

suggests that our numerics are accurate to around a part in 1020. We note that h
(b′)2

xx

agrees with (d− 4)/d to the stated precision.

implies that the flux tube tends to orient itself orthogonal to gradients. In the same

way, using (5.19) and comparing directions associated with different eigenvalues of the

Hessian, one sees that flux tubes also tend to align themselves with the lowest eigenvalue

of the Hessian.

Interestingly, the change of sign of h
(b′)2

yy between d = 6 and d = 7 means that a

flux tube that succeeds in aligning itself orthogonal to gradients is attracted to strong

gradients for d ≤ 6 but repelled from strong gradients for d ≥ 7. In all dimensions, flux

tubes are repelled by regions where the second derivative along the tube would be large

and positive but are attracted to regions where the eigenvalues of the Hessian are large

and positive in orthogonal directions.

Another interesting piece of physics concerns the gravitational potential (or redshift)

on the IR floor. This is encoded in hττ = hy1y1 = ( 1
b2

24/d + ε2 h
(2)
yy ) + O(ε4). Again

assuming a static spacetime one finds

h(2)
ττ = h(b′)2

yy |∂µb|2 + h(bb′′)
yy Tr (b ∂µ∂νb) , (5.24)

where |∂µb|2 and Tr (∂µ∂νb) respectively denote that norm of the gradient of b and the
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trace of its Hessian. It is interesting that the table in figure 5.4 shows gradients to lower

the potential for d ≤ 6 but to raise the potential for d = 7, 8 (and presumably for higher

dimensions as well).

Note that the value of hττ at an extremum (where ∂µb = 0) is unaffected by h
(b′)2

yy .

The fact that h
(bb′′)
yy < 0 in figure 5.4 thus means that the O(ε2) corrections act to reduce

the height of local maximum of hττ and to reduce the depth of local minima. This should

be no surprise, as at this order the response of the system is linear in b′′ while on general

grounds linear perturbation theory about the AdS soliton should describe the change in

hττ as a smeared version of the boundary perturbation (i.e., given by convolution with

some appropriate kernel) over a scale ∼ b. The point here is that smearing a maximum

necessarily reduces its height, while smearing a minimum decreases its depth. Indeed, all

adiabatic coefficients associated with b′′ can in principle be calculated from the associated

linear-response Green’s functions.

Finally, we can also compute coefficients for corrections to the boundary stress tensor.

Since at order ε2 we may neglect quadratic and higher powers of boundary curvatures,

our boundary stress tensor takes the form

Tµν =
d`d−1

2κ
γ(d)
µν +O(ε4) (5.25)

for both odd and even d ≥ 3. Here κ = 8πGN/`
d−1 in terms of the bulk Newton constant

GN and γ
(n)
µν is the zn coefficient of the Fefferman-Graham expansion (not to be confused

with the g
(n)
µν in the adiabatic expansion). We expand the stress tensor as

Tµν = Tµν
(0) + ε Tµν

(1) + ε2 Tµν
(2) + · · · (5.26)
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The zeroth order result is standard with

T (0)
xx =

`d−1

4πGN

1

bd
,

T (0)
yy =

`d−1

4πGN

1

bd
,

T
(0)
θθ = − `d−1

4πGN

α2
d(d− 1)

bd−2
. (5.27)

Since g
(1)
µν vanishes, so does Tµν

(1). The second order contributions can be extracted

from the numerical solutions for g
(2)
µν . The results are summarized in figure 5.5 using the

notation

T (2)
xx =

`d−1

8πG

[(
(b′)2

bd

)
T(b−db′2)
xx +

(
b′′

bd−1

)
T(b−(d−1)b′′)
xx

]
,

T (2)
yy =

`d−1

8πG

[(
(b′)2

bd

)
T(b−db′2)
yy +

(
b′′

bd−1

)
T(b−(d−1)b′′)
yy

]
,

T
(2)
θθ =

`d−1

8πG

[(
(b′)2

bd−2

)
T

(b−(d−2)b′2)
θθ +

(
b′′

bd−3

)
T

(b−(d−3)b′′)
θθ

]
. (5.28)

d T
(b−(d−2)b′2)
θθ T

(b−(d−3)b′′)
θθ T

(b−db′2)
xx T

(b−(d−1)b′′)
xx T

(b−db′2)
yy T

(b−(d−1)b′′)
yy

3 0.00 0.00 0.00 0.00 0.00 0.00
4 −0.375 0.250 1.00 0.00 1.00 −1.00
5 −0.844 0.422 2.30 0.00 2.30 −1.53
6 −1.32 0.529 3.78 0.00 3.78 −1.89
7 −1.77 0.591 5.38 0.00 5.38 −2.15
8 −2.19 0.625 7.07 0.00 7.07 −2.36

Figure 5.5: The coefficients of the second order contributions to the boundary stress
tensor for 3 ≤ d ≤ 8. Estimating the numerical precision by comparing results
for 100 and 150 lattice points suggests that our numerics are accurate to around a

part in 108. To this accuracy our results satisfy T
(b−db′2)
yy = −d−2

2 T
(b−(d−1)b′′)
yy and

T
(b−db′2)
xx = T

(b−db′2)
yy .

As in our discussion of the potential on the IR floor, the signs of T
(b−(d−3)b′′)
θθ and

T
(b−(d−1)b′′)
yy are in all cases consistent with the idea that linear response tends to simply
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average over a scale of order b. As a result, the O(ε2) correction to the (negative) energy

density of the confining vacuum makes this energy less negative at a local minimum of b

but more negative at a local maximum. On the other hand, gradients always make this

energy density even more negative when the second derivatives are held fixed.

Of particular interest is the O(ε2) shift E(2) in the total energy of the vacuum. This is

given by integrating −T (2)
yy over the boundary at τ = 0. The interesting point here is that

first and second derivatives are often related when averaged over this surface. Indeed,

imposing either a boundary condition b → constant as x → ±∞ or periodic boundary

conditions in x, integrating by parts gives

E(2) = −
∫
bndy@τ=0

√
σ Tyy

= −2π`d−1

8πG

∫
dxdd−2y αdb

[(
(b′)2

bd

)
T(b−db′2)
yy +

(
b′′

bd−1

)
T(b−(d−1)b′′)
yy

]

= −αd`
d−1

4G

∫
dxdd−2y

(
(b′)2

bd−1

)[
T(b−db′2)
yy + (d− 2)T(b−(d−1)b′′)

yy

]
, (5.29)

where
√
σ = αdb is the volume element on the τ = 0 slice of the boundary. As shown in

figure 5.6, the factor in square brackets is negative in all cases. So the net effect of spatial

variations is in fact to make E(2) positive, shifting the energy of the confined vacuum

toward zero from its negative zeroth-order value.

It would be interesting to perform a similar analysis of the deconfined state. Com-

puting the second order shift in its free energy and comparing with (5.29) would then

determine whether the net effect of gradients is to increase the deconfinement temper-

ature TD at O(ε2), or to decrease TD as our results would appear to suggest. Other

interesting extensions would be to add additional curvature on the boundary. Note that
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d E(2)

3 0.00
4 −1.00
5 −2.30
6 −3.78
7 −5.38
8 −7.07

Figure 5.6: The coefficient E(2) = T
(b−db′2)
yy + (d − 2)T

(b−(d−1)b′′)
yy of the second order

contribution to the vacuum energy for 3 ≤ d ≤ 8. The numerical precision is as in
figure 5.5.

the particularly simple class of boundary metrics of the form

ds2
bndy = dx2 + k2(εx)dyidy

i + α2
db

2(εx) dθ2, (5.30)

is related to those studied here by a combination of a conformal transformation and

a change of coordinates in the x direction (associated with dx → dx/k), so that the

adiabatic coefficients associated with (5.30) can be computed analytically from the results

given above.

5.A 2+1 Dimensional Bulk

Due to the lack of local gravitational degrees of freedom in 2+1 dimensions, all com-

plete asymptotically locally AdS spacetimes are diffeomorphic to global AdS3 (or to a

quotient thereof). We can use this fact to analytically perform the d = 2 analogue of

the construction in section 5.2, which we can then use to check our numerical code. The

d = 2 version of the Euclidean metric (5.7) is obtained by simply deleting the yi terms:

ds2 =
`2

z2

[
dz2 +

b2

4

(
1− z2

b2

)2

dθ2 +

(
1 +

z2

b2

)2

dx2

]
. (5.31)

143



Confinement in Inhomogenous Backgrounds Chapter 5

The adiabatic expansion proceeds just as in section 5.2. We need only set d = 2 in

(5.14) to find the dynamical equations

0 =
(
b2 + z2

) (
z
(
b2 + z2

)
∂2
zg

(2)
xx −

(
z2 − 3b2

)
∂zg

(2)
xx

)
− 8b2z g(2)

xx ,

0 =
(
b2 − z2

) (
z
(
b2 − z2

)
∂2
zg

(2)
θθ +

(
z2 + 3b2

)
∂zg

(2)
θθ

)
+ 8b2z g

(2)
θθ . (5.32)

We again have the boundary conditions

lim
z→0

z2g(n)
µν = 0 (5.33)

at the asymptotic boundary, and regularity at fixed points of ∂θ requires

0 = ∂zg
(2)
θθ

∣∣∣
z=b
− 1

3
b

(
b′2

2
+ ∂2

zg
(2)
θθ

∣∣∣
z=b

)
,

0 = 2 b g(2)
xx

∣∣
z=b

+ 4 ∂zg
(2)
θθ

∣∣∣
z=b
− b2 ∂zg

(2)
xx

∣∣
z=b

+ 2 b2 b′′ . (5.34)

Solving (5.32), (5.34) yields

g
(2)
θθ =

z2 (b2 − z2) b′2

8 b2
,

g(2)
xx =

z2 (b2 + z2)
(
2 b b′′ − b′2

)
2b4

. (5.35)

Setting d = 2 in our numerical code gives solutions to (5.32), (5.34) that agree with

(5.35) to one part in 1021.
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Chapter 6

Adiabatic Corrections to

Holographic Entanglement

6.1 Introduction

Entanglement is a fundamental property of quantum systems. Studying this entan-

glement can provide insights into the nature of quantum states, and in particular into

the scale of their correlations. In the holographic context, entanglement of the dual CFT

is of particular interest through its association with the Einstein-Rosen bridges of black

holes [21] and perhaps more generally [71, 72, 73] with the emergence of bulk spacetime.

Our goal here is to generalize the analysis of holographic entanglement away from the

commonly-considered highly symmetric systems. For d = 2 CFTs, much can be done

exactly using conformal transformations. This fact lies behind the recent analysis [27]

of the CFT states dual to asymptotically-AdS3 mutli-boundary vacuum wormholes. In

particular, it was understood there that such states admit a simple description at high

temperatures where the state can be well-approximated by a thermofield double (TFD)

over most of the CFT spacetime, perhaps with adiabatic variations from one point to
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another. While a full analysis comparable to [27] is difficult in higher dimensions, we

show below that computations of entanglement in spatialy-varying holographic TFDs

remains tractable in the adiabatic limit.

We also investigate how entanglement in ground states of (d − 1)-dimensional con-

fining theories is affected by slow variations of the confinement scale. The particular

class of confining theories we consider are those given by compactifying a d-dimensional

holographic CFT on an S1 as in [22]. Such CFT ground states are related to the above

thermofield doubles, as both are given by cutting open Euclidean path integrals over

geometries with S1×Rd−1 topology. Roughly speaking, the thermofield double states are

given by cutting open the S1 factor, while ground states of confining theories are given by

cutting open a direction of the Rd−1. The particular path integrals considered here will

involve warped products of the S1 over Rd−1 in which the size b of the S1 varies slowly.

This gives in the first interpretation TFD states in spacetimes with spatially varying

redshift, and in the second ground states of confining theories in which the confinement

scale varies with position.

Since we are interested in holographic field theories, in all cases we will work directly

with the dual gravitational description. Our CFT path integrals are then interpreted

as integrals over all (d + 1)-dimensional asymptotically locally Anti-de Sitter (AlAdS)

spacetimes with boundary geometries as above. Section 6.2 begins below by reviewing

the Euclidean bulk geometries recently constructed in [30] that are expected to describe

the dominant AlAdS saddle points. For simplicity, we allow b to vary only along one

Cartesian direction of the Rd−1 space. While such solutions can be constructed by Wick

rotating the standard fluid-gravity correspondence [68, 69, 70] in the presence of a time-

translation Killing field and an appropriate regularity condition at the bifurcation surface,

it is more natural to follow [30] and use the U(1) symmetry to develop a related but

different expansion based on standard Schwarzschild-like coordinates rather than the
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ingoing Eddington-Finkelstein black hole coordinates of [68, 69, 70].

We then proceed to compute holographic entanglement. Section 6.3 pursues the

thermofield-double interpretation and computes the effect of varying b on the Ryu-

Takayanagi (RT) entropies of slabs of thickness 2L that preserve Rd−2 Euclidean sym-

metry on a surface fixed by a reflection of the S1. We include both the case of slabs

contained in a single copy of the CFT and that of pairs of diametrically opposed slabs

in each of the two CFTs. We thus also compute the effect of varying b on the mutual

information in opposing slabs and on the critical value Lcrit of L at which the mutual

information becomes non-zero. Section 6.4 then studies the effect on RT entropies for

analogous slabs with S1 × Rd−3 symmetry on a surface fixed by reflecting one direction

in the Rd−1. Here the interesting feature is the effect on the value Lcrit at which the

entangling surface changes topology from connected (S1 × [0, 1]×Rd−3) to disconnected

(two copies of the (d − 1)-disk). Readers focused on the final results may wish to jump

to sections 6.3.3 and 6.4.3 where the phase transitions are discussed. We close with some

final discussion in section 6.5. The special case d = 2 is treated analytically in appendix

6.A, and we discuss some estimation of the numerical uncertainty in appendix 6.B.

6.2 Preliminaries

We wish to describe holographic entanglement in CFT states defined by path integrals

over geometries with topology S1 × Rd−1 and metrics of the form

ds2
CFT = dx2 + δijdy

idyj + α2
db

2(x)dθ2 , (6.1)

where αd = 21−2/d

d
and i = 1, . . . , d− 2. We take θ to have b-independent period 2π. The

relevant states are constructed by slicing open the path integral along a co-dimension
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one surface that we identify as τ = 0 for some Euclidean time coordinate τ . To have a

good translation to Lorentz signature, we require a Z2 reflection symmetry τ → −τ . One

natural choice is to take τ = θ, in which case we in fact slice the path integral along the

pair of surfaces θ = 0, θ = π. The result is an entangled state on a pair of CFTs which

gives an adiabatic generalization of the well-known thermofield double state. The exact

time-translation symmetry means that the state is in thermal equilibrium when viewed

from the perspective of either CFT alone. However, after Wick rotation to Lorentz

signature the x-dependent metric factor gθθ means that the state lives in a spacetime

with x-dependent gravitational redshift. This equilibrium thus requires any local notion

of temperature (such as that defined by the inverse Euclidean period) to be x-dependent

as well. This interpretation is equally valid in the special case d = 2 in which there are

no y directions.

For d ≥ 3, there is a second interpretation given by choosing τ to be some y direction

(say, y1), so that our CFT lives on a spacetime with a compact spatial S1. States of

this theory are constructed by slicing the path integral along y1 = 0. For small b one

may Kaluza-Klein reduce on this S1. And as discussed in [22], one expects the result to

exhibit confinement with a scale set by b. So when b varies, one may think of the result

as a confining theory with a position-dependent confinement scale.

But with either interpretation, so long as b varies slowly reasoning analogous to that

of [22] implies the bulk path gravitational integral with boundary conditions given by

(6.1) to be dominated by a Euclidean solution to Einstein’s equation in which the S1

factor pinches off in the bulk; i.e., there will be a Killing field ∂θ that generates a U(1)

isometry with a fixed-point set of topology Rd−1.

When the function b(x) varies slowly, the construction of such solutions may be

organized in a derivative expansion. Here we write b = b(εx) for some small parameter ε.

The details of this expansion were recently described in [30], where it was argued that for
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slowly-varying b(x) the solution should be well-approximated by the zero-order ansatz

ds2 =
`2

z2

[
dz2 +

(
1 +

zd

bd

)4/d (
dx2 + δijdy

idyj
)

+ α2
db

2

(
1− zd

bd

)2(
1 +

zd

bd

) 4
d
−2

dθ2

]
,

(6.2)

where we take θ to have period 2π for all profiles b(x). For the case b = constant, the

ansatz (6.2) gives the metric on the Euclidean planar AdS-Schwarzschild black hole (or,

equivalently, on the Euclidean AdS soliton). The full metric is then taken to be of the

form

ds2 =
`2

z2

(
g

(0)
AB dx

AdxB + ε g
(1)
AB dx

AdxB + ε2 g
(2)
AB dx

AdxB + · · ·
)
, (6.3)

where the corrections g
(n)
AB are determined by solving Einstein’s equation with appropriate

boundary conditions at each order in an adiabatic expansion and xA = (z, x, yi, θ) ranges

over all bulk coordinates and similarly for xB. As shown in [30], the O(ε) correction g
(1)
AB

vanishes and, writing gyiyj = gyyδij, the O(ε2) correction is of the form

g(2)
xx (z, x) = (b′(x))

2
g(b′)2

xx (z/b) + (b(x)b′′(x)) g(bb′′)
xx (z/b),

g(2)
yy (z, x) = (b′(x))

2
g(b′)2

yy (z/b) + (b(x)b′′(x)) g(bb′′)
yy (z/b),

g
(2)
θθ (z, x) = α2

d

[
(b(x) b′(x))

2
g

(bb′)2

θθ (z/b) + b(x)3 b′′(x) g
(b3b′′)
θθ (z/b)

]
. (6.4)

Here the notation makes explicit all dependence on b(x); there can be no further implicit

dependence hidden in form of the coefficient functions g
(b′)2

xx (z/b), etc. These coefficient

functions were evaluated numerically in [30] with boundary conditions that ensure that

the boundary metric remains (5.9) and that the spacetime remains regular at the fixed

point set of ∂θ (with the period of θ taken to be 2π independent of b(x)).
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Below, we use the results of [30] to calculate O(ε2) corrections to the holographic

entanglement entropy. We also make use of two further results from [30]. The first is

that, for d > 2, in the adiabatic expansion the Fefferman-Graham representation of our

metrics takes the form

ds2
z�b =

`2

z2

[
dz2 + α2

d

(
b2 + ε2

b b′′

d− 1
z2

)
dθ2 +

(
1 + ε2

b′′

b(d− 1)
z2

)
dx2

+

(
1− ε2 b′′

b(d− 2)(d− 1)
z2

)
dyidyi +O(zd, ε4)

]
. (6.5)

The special case d = 2 is treated in appendix 6.A. The second is that near the fixed point

set of ∂θ the metric takes the form

ds2 = gRR|R=0

(
dR2 +R2dθ2

)
+ gXX |R=0dX

2 + gY Y |R=0

d−2∑
i=1

dY idY i +O(R2), (6.6)

with gRR|R=0, gXX |R=0, gY Y |R=0 functions of X alone, in terms of coordinates X,R that

satisfy

z = (1−R)b− ε2 1

3
16−1/db

(
b′

2
+

2

α2
dd

2
∂2
zg

(2)
θθ

∣∣∣
z=b

)
+O(ε3)

x = X + ε 16−1/d b b′
(
R +

1

2
R2 − 1

6
(d− 2)R3

)
+O(ε3, R4). (6.7)

The key point of (6.6) is that it ensures the desired regularity at R = 0 (where ∂θ = 0).

In terms of the Fefferman - Graham coordinates this set is described by z = b̃ where

b̃ = b− ε2

2
b2 ∂zg

(2)
θθ

∣∣∣
z=b

. (6.8)

This is the black hole horizon for the adiabatic thermofield double interpretation and the

IR floor for the confining one.
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6.3 Adiabatic Thermofield Doubles

We begin with the adiabatic thermal field double (ATFD) states defined by slicing

our CFT path integral along the surfaces θ = 0, θ = π fixed by the reflection symmetry

θ → −θ. It is convenient to denote the union of these two surfaces by CCFT . A slight

generalization of the Ryu-Takayangi proposal [23, 24] then states that the von Neumann

entropy of the CFT in some region RCFT ⊂ CCFT can be computed as follows. First,

find the dominant saddle for the corresponding bulk path integral. One expects it to

be invariant under a corresponding reflection, and that this reflection leaves fixed a co-

dimension one surface that we may call Cbulk. Now find the minimal-area surface Σ within

Cbulk that i) intersects the asymptotically AdS boundary on a set corresponding to the

boundary ∂RCFT of RCFT and ii) is homologous to RCFT within Cbulk [53, 74]. Since the

Lewkowycz-Maldacena argument [75] for the Ryu-Takayanagi proposal applies equally

well to this generalization, we shall use it freely below1. We also note that the above

prescription is equivalent to using the the covariant Hubeny-Rangamani-Takayanagi con-

jecture [43] in the Wick-rotated Lorentz-signature solution2.

For simplicity, we consider slab-shaped regions RCFT defined by conditions of the

form |x − x0| ≤ L, perhaps also restricted to one of the two boundaries (θ = 0 or

θ = π). The symmetries then reduce the problem of finding the minimal surface to

studying curves in the z, x plane, with the area being proportional to the volume of the

y directions. For purposes of displaying a finite result we take the y coordinates to range

over a torus of finite volume V . Since we are interested in the decompactified limit, we

1See [76] for a discussion of the homology constraint in the context of the Lewkowycz-Maldacena
argument.

2We thank Veronika Hubeny for pointing out that this follows from the maximin construction of [62].
Since the RT surface is minimal on the Cauchy surface Cbulk, its area can be no larger than that of
the maximin surface. But the time-reversal symmetry means that the RT surface is also an extremal
surface in the full spacetime. It can therefore have area no smaller than the maximin surface, as the
latter agrees with the area of the smallest extremal surface.
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will always assume each cycle of the y-torus to have length much larger than both b and

L. In particular, we assume that the dominant bulk saddle will continue to be given by

(6.2).

A technical issue is that the area nevertheless remains infinite due to the divergence

of the metric (6.2) at z = 0. As usual, we must renormalize this quantity in order to

present finite results. Thus we define

Aren = lim
z0→0

(
Abare(z0) +

∑
∂Σ

Act(z0)

)
, (6.9)

where Abare(z0) is the area of the part of the surface with z > z0 and where there is one

counter-term contribution Act(z0) for each boundary of the minimal surface Σ.

The general theory of such divergences is explained in [77], which shows that when the

bulk is described by pure Einstein-Hilbert gravity (with no additional matter fields) one

may use counter-terms determined by the boundary metric alone3, though these generally

involve both the induced geometry on ∂Σ, the extrinsic curvature of ∂Σ [79, 80], and even

derivatives of such extrinsic curvatures [81] in high enough dimensions. See also [82] for

a recent discussion of such counter-terms and their relation to [75].

To find a useful explicit form for our Act(z0) , we first write the area functional as

Abare = V `d−1

∫
λ

Abaredλ (6.10)

with

Abare = g
1
2

(d−2)
yy

(
z′(λ)2

z(λ)2
+ x′(λ)2gxx

)1/2

(6.11)

for any parameter λ along the associated curve in the z, x plane.

3Interestingly, this is not true in general; see [78].
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Near z = 0 it is useful to set λ = z and assume an adiabatic expansion of the form

x(λ) = x(0)(λ) + ε x(1)(λ) + · · · . (6.12)

The behavior of x(0) near z = 0 is determined by the minimal surface equation of motion

at order ε0. This may be written

0 =
(
(d+ 1)zd − (d− 1)bd

)
x(0)′(z)− (d− 1)

(
bd − zd

) (
1 + zd/bd

)4/d (
x(0)′(z)

)3

+ z
(
bd + zd

)
x(0)′′(z). (6.13)

Equation (6.13) admits a power series solution of the form

x(0)(z) = c0 + cdz
d + c2dz

2d + · · · (6.14)

Indeed, the result takes the form (6.14) in any metric having the same non-zero coefficients

in its Fefferman-Graham expansion. Since g
(1)
AB = 0, at order ε the ansatz (6.2) continues

to give the full metric. Noting that the endpoint conditions x(z = 0) = x0 ± L are

independent of ε then also gives

x(1)(z) = c̃dz
d +O(zd+1). (6.15)

So near z = 0 the area density (6.11) becomes

Abare =
1

zd−1
+

1

2

ε2

zd−1
(d− 2)g(2)

yy +O(z0, ε3), (6.16)

as any factors x(0)′(z) or x(1)(z) are of order zd and give corrections that vanish as z → 0.

Combining the Fefferman-Graham expansion of the second order metric correction
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(6.5) with the results above we find

Abare =
1

zd−1
− ε2

2(d− 1)

b′′

b

1

zd−3
+O(z0, ε3), (6.17)

so we may choose

Act = V `d−1
[
− 1

(d−2)
1

zd−2
0

+ ε2 1
2 (d−1)(d−4)

b′′

b
1

zd−4
0

]
d 6= 2, 4 (6.18)

There are no explicit O(ε) counter-terms since g
(1)
AB = 0. One may check that this choice

of counterterms precisely implements the covariant counterterm prescription of [82] to

O(ε2). Following this prescription, the counterterms in d = 4 will include a logarithmic

as well as a constant piece, and in d = 2 we only have the logarithmic piece. These terms

are given by

Act = V `3
[
−1

2
1
z2
0
− ε2 1

6
b′′

b
log(z0/`) + ε2 1

12
b′′

b

]
, d = 4

Act = ` log(z0/`) , d = 2

(6.19)

where no factor of V appears in d = 2 because there are no y-directions.

For d = 3, the second counter-term in (6.19) vanishes; we nevertheless find that

including it in the manner explained below improves the convergence of our numerics.

In practice, we find it convenient to renormalize in the following way. Let Act =

− ∂z0Act|z0=z. Then we can write

Act =

∫ zmax

z0

Act dz + Act|z0=zmax
(6.20)

for any zmax. In particular, we can take zmax to be the maximal value of z on our bulk
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extremal surface. The renormalized area (6.9) can then be written

Aren = lim
z0→0

∫ zmax

z0

(
V `d−1Abare +

∑
∂Σ

Act

)
dz +

∑
∂Σ

Act|z0=zmax
,

=

∫ zmax

0

(
V `d−1Abare +

∑
∂Σ

Act

)
dz +

∑
∂Σ

Act|z0=zmax
. (6.21)

The integral in the second line now converges, and is more stable to compute numerically.

The price we pay is having to add the constant term involving zmax. For d = 3, we find

that including the second (vanishing!) counter-term in (6.19) in this way improves our

numerical convergence. This appears to be due to the fact that we perform these integrals

by changing variables to integrate over x instead of z, and that the above renormalization

removes an (integrable) singularity in the integrand that arises from the associated factor

of z′(x).

We are now ready to compute the entropies of our slabs |x − x0| ≤ L. For slabs

contained in a single boundary, we know on general grounds that the minimal surface

will remain close to the conformal boundary when L� b while for L� b it will track the

horizon closely over almost all of the interval |x− x0| ≤ L. The transition between these

behaviors is smooth. But if we take our slab to contain the regions |x− x0| ≤ L on both

the θ = 0 and θ = π boundaries one finds a well-known phase transition [83, 53, 43, 84]

when passing from the regime L � b0 to the regime L � b. In the former case, the

minimal surface consists of two copies of that found in the single-boundary case. In the

latter case the minimal surface again has two connected components, but each component

then stretches from θ = 0 to θ = π while remaining localized near x = x0 ± L. This is

the only context in which the minimal surface reaches or passes through the fixed point

set of ∂θ. In each case we find the general solution numerically below and compare it

with analytic approximations for L� b and b(ε b′)−1 � L� b. We also provide results
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for the case L � b(ε b′)−1 � b. The effect on the phase transition itself is analyzed in

section 6.3.3.

6.3.1 Entropy on a single boundary

We begin with connected slab-shaped regions RCFT of width 2L lying in a single

boundary. For generic values of the parameters, numerical calculations are required to

find the extremal surface. But certain limiting behaviors can be studied analytically. We

treat these cases first, and then compare the results with numerical studies of the general

case. In the rest of this section, we set x0 = 0 without loss of generality.

Analytically tractable limits

Our first special case will be the large L limit, as the fact that the minimal surface

closely tracks the horizon in this regime makes it particularly easy to study. To leading

order in L, the renormalized area is just the horizon area in the region |x| ≤ L. Using

the induced metric on the horizon found in [30] gives

S = V `d−1

4G

∫ L
−L dx

[
22−2/d

bd−1 + ε2 21−6/d

bd−1

(
(d− 2) g

(2)
yy

∣∣∣
z=b

+ g
(2)
xx

∣∣∣
z=b

+ b′2
)

+O(ε4)
]

+ . . . , (6.22)

where the . . . represent terms that do not grow with L when b remains bounded.

For L larger than or comparable to b/(ε b′), nothing more can be said without choosing

an explicit function b(εx). But in the regime b/(ε b′) � L � b we may define b0 = b(0),

b′0 = ∂xb|x=0, and b′′0 = ∂2
xb|x=0 and use the expansion

b = b0 + ε x b′0 +
1

2
ε2 x2 b′′0 +O(ε3) (6.23)
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to simplify (6.22). Writing Aren = A
(0)
ren + ε2A

(2)
ren + . . . , we find

A(0)
ren

∣∣
L�b0

∼ 23−2/dV `
d−1

bd−1
0

L, A(2)
ren

∣∣
L�b0

∼ 1

3
22− 2

d (d− 1)
V `d−1

bd+1
0

(
d b′0

2 − b0b
′′
0

)
L3, (6.24)

where ∼ indicates that we have found only the leading behavior for L � b0. Here we

were able to obtain an analytic expression at order ε2 because the L3 term comes only

from the O(ε2) term in (6.23) and thus can involve the metric only at order ε0 as given

by (6.2).

For L� b0 the minimal surfaces will be confined to z � b0, so we can estimate their

area by truncating the Fefferman - Graham expansion (6.5) for the metric to some order

in z. The Fefferman - Graham expansion for d = 2 has a non-trivial contribution from

the boundary stress tensor at order z2, so we treat this case separately in appendix 6.A.

Consulting the expansion (6.5), we see that to zeroth order in the adiabatic expansion

we have Poincaré AdSd+1. So for d > 2 we find

A(0)
ren = −2π

d−1
2

d− 2

Γ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

)
d−1

V `d−1

Ld−2
+O(L2). (6.25)

This leading term reproduces the standard result for slabs in Poincaré AdSd+1 as derived

in [23].

Since dθ = 0 on the surface of time reflection symmetry, the truncated induced metric

(6.5) depends on b only at order ε2 and there can be no O(ε) correction to the minimal

surface or its area. And the fact that the zero-order surface is minimal means that there

is no correction at order O(ε2) from the second-order displacement of the surface within

the zeroth-order spacetime. Thus the only O(ε2) contribution comes from evaluating the

change in the area along the zeroth-order minimal surface that comes from including the

O(ε2) parts of (6.5). This correction can be computed from the integral representation
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of the hypergeometric function found in equation (15.6.3) of [85] and yields

A(2)
ren =

π
d
2
−2

2F1

(
1
2
,− d−4

2(d−1)
; d+2

2(d−1)
; 1
)

3(d− 4)

(
Γ
(

d
2d−2

)
Γ
(

1
2d−2

))d−4
b′′0
b0

V `d−1

Ld−4
+O(L4) , (6.26)

for d > 2, d 6= 4 and

A(2)
ren =

[
1

18

(
5 + log

[
π3 Γ

(
2
3

)6

4 Γ
(

1
6

)6

])
− 1

3
logL

]
b′′0
b0

V `3 +O(L4) for d = 4 .

(6.27)

Numerics and comparisons

We now consider general values of L� 1/(ε b′). This allows us to again use (6.23) so

that the results can depend only on the parameters b0, b
′
0, and b′′0. For d 6= 2, 4 we write

Aren =
V `d−1

bd−2
0

A(L/b0), (6.28)

where the function form of A(L/b0) is determined only by dimensionless combinations

of b and its derivatives. For d = 2 and d = 4 it is useful to subtract the logarithmic

dependence on ` coming from the regularization scheme (6.19) and write

Aren = `A(L/b0) + ` log(b0/`) , d = 2

Aren =
V `3

b2
0

A(L/b0)− ε2 V `3 1

6

b′′0
b0

log(b0/`) . d = 4 . (6.29)

We may then use the adiabatic expansion to write

A(L/b0) = A(0)(L/b0) + εA(1)(L/b0) + ε2 A(2)(L/b0) +O(ε3) . (6.30)
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Now, the correction A(1)(L/b0) would have to be proportional to the first-order adiabatic

parameter b′0/b0. But the sign of this parameter changes under x→ −x whereas the area

must be invariant. So there can be no correction at this order. We thus consider only

the second order corrections, which must be linear in the two dimensionless second-order

adiabatic parameters (b′0)2 and b0 b
′′
0; i.e., we have

A(2)(L/b0) = (b′0)2A(b′)2

(L/b0) + b0 b
′′
0A

(bb′′)(L/b0), (6.31)

with A(b′2),A(bb′′) having no further dependence on b(x).
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(c) L = 5 b0

Figure 6.1: Numerical solutions for z(0)(x/L)/b0 for slabs of width 2L on a single
boundary with 2 ≤ d ≤ 7. As L increases from (a) to (c), the entangling surface
quickly approaches the horizon as expected.

Even at order ε0 we require numerics to solve for the surface that extremizes the
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area (6.11). We use the Newton-Raphson method outlined in [32]. Figure 6.1 shows the

solution for z(0)(x/L)/b0 with 2 ≤ d ≤ 7 and various interval sizes. Results for the zeroth

order area are shown in figure 6.2.
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A
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Figure 6.2: The rescaled zeroth order area A(0)(L/b0) for slabs of width 2L on a single
boundary with 2 ≤ d ≤ 7. The curves interpolate between a power law proportional
to −(b0/L)d−2 for L� b0 and linear growth for L� b0 where the entangling surface
tracks the horizon closely. For d = 2 the small L/b0 behavior is logarithmic.

Computing the second order change in area (6.31) requires only knowledge of the

surface to O(ε). This is because the order-zero surface is minimal, so changes in the area

computed with with zeroth order metric are quadratic in changes of the surface. The

first order equation of motion is complicated, but is straightforward to work out and can

be solved numerically by the same techniques as at order ε0. Results for z(1)(x/L)/(b0 b
′
0)

are shown in figure 6.3 for various dimensions and interval sizes. The second order

correction to the area then follows by summing the following three contributions: the

above-mentioned quadratic change in the area computed using the zeroth-order metric

due to the shift in the minimal surface at O(ε), the change in the area of the zeroth-order

minimal surface due to the inclusion of O(ε2) terms in the metric, and a cross-term linear

in both the O(ε) shift of the surface and the O(ε) correction to the metric. In terms of
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(c) L = 5 b0

Figure 6.3: Numerical solutions for z(1)(x/L)/(b0 b
′
0) for slabs of width 2L on a single

boundary with 2 ≤ d ≤ 7. Away from the end points, increasing L causes z(1)(x/L)

to approach the first order correction to the horizon location. Since g
(1)
AB vanishes

identically, this correction comes only from expanding b = b0 + b′0x + . . . within the
zeroth order ansatz. This correction is thus linear in x, given in this approximation

by z
(1)
H (x) = b′0 x.

the densitized area Aren, this correction takes the form

A(2)
ren =

1

2

∫
dx

(∂2A(0)
ren

∂z2
− d

dx

(
∂2A(0)

ren

∂z ∂z′

))∣∣∣∣∣
z(0)(x)

(
z(1)(x)

)2
+
∂2A(0)

ren

∂z′2

∣∣∣∣∣
z(0)(x)

(
z(1)′(x)

)2


+

∫
dx

(∂A(1)
ren

∂z
− d

dx

(
∂A(1)

ren

∂z′

))∣∣∣∣∣
z(0)(x)

z(1)(x)


+

∫
dx A(2)

ren

∣∣
z(0)(x)

, (6.32)
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where each line corresponds to one of the above three contributions described above.

Numerical results are shown in figure 6.4.
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Figure 6.4: Plots of (a) A(b′20 )(L/b0) and (b) A(b0b′′0 )(L/b0) for slabs of width 2L on
a single boundary with 2 ≤ d ≤ 7.

As a check on our numerics, we now compare with the analytic expressions of section

(6.3.1). We first consider the case b/(ε b′)� L� b0. At order ε0 we numerically compute

b0 A
(0)/L for large L/b0, while at order ε2 we compute b3

0 A
(2)/L3. Results are tabulated

in figure 6.5 which shows agreement with (6.24).

d b0 A
(0)/L Pred. b3

0 A
(b′0

2)/L3 Pred. −b3
0 A

(b0b′′0 )/L3 Pred.
2 4.000 4.000 1.33 1.33 0.667 0.667
3 5.04 5.04 5.04 5.04 1.68 1.68
4 5.66 5.66 11.3 11.3 2.83 2.83
5 6.06 6.06 20.2 20.2 4.04 4.04
6 6.35 6.35 31.7 31.7 5.29 5.29
7 6.56 6.56 45.9 45.9 6.56 6.56

Figure 6.5: Comparison of the numerically computed L� b0 scaling of A(L/b0) (left
colums) from figure 6.4 with the predictions (Pred., right columns) from (6.24) for
2 ≤ d ≤ 7. The numerical precision is at least three significant figures, estimated by
comparing results for 100 and 150 lattice points and for fitting intervals L/b0 ∈ [40, 50]
and L/b0 ∈ [50, 60]

Turning now to the case L� b0, we have verified that the coefficient of A(2) propor-

tional to b′0
2 vanishes quadratically as L� b0, and we may also numerically compute the

b0 b
′′
0 contribution to limL→0 L

d−4A(2). Our results are tabulated in figure 6.6 and shown
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to agree with the analytic results (6.26) and (6.27).

d Ld−2 A(0) Pred. Ld−4 A(b0b′′0 ) Pred.
3 −0.718 −0.718 −0.729 −0.729
4 −0.0802 −0.0802 −0.334 logL −0.333 logL
5 −0.00864± 0.00001 −0.00865 0.0897± 0.0020 0.0916
6 −0.000821± 0.000002 −0.000822 0.00850± 0.00039 0.00885
7 −0.0000684± 0.0000002 −0.0000685 0.000834± 0.000041 0.000871

Figure 6.6: Comparison of the numerically computed L� b0 scaling of A(L/b0) (left
colums) from figure 6.4 with the predictions (Pred., right columns) of (6.26), (6.27)
for 3 ≤ d ≤ 7. The numerical precision (estimated as in figure 6.5) is shown when it
falls below three significant figures.

6.3.2 Entropy for pairs of diametrically opposed slabs

We now consider the entropy of a pair of corresponding slabs on opposing boundaries.

Both slabs are defined by |x − x0| ≤ L, but one lies at θ = 0 while the the other lies at

θ = π. Without loss of generality we again set x0 = 0 in this section. As in [83, 84], for

L � b the minimal surface will be simply two copies of the one found in section 6.3.1,

so that the mutual information between these two slabs vanishes. But for L � b the

minimal surface represents a different phase, again having two disconnected pieces but

now with each localized near x = ±L. Here the slabs share non-zero mutual information

I. In this phase the entropy is independent of L and depends only on the local behavior

of b(x) near x = ±L. Note that the contribution from each surface is just the entropy

one would compute for a pair of half-spaces, both defined by x > L (or x < −L) but

on opposite boundaries. For simplicity we thus focus on this ‘half-TFD’ entropy below.

All quantities associated with the half-TFD problem will be marked with hats (̂) to

distinguish them from the corresponding quantities of section 6.3.1.

As before, computing the area to order ε2 requires only knowledge of the entangling
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surface to first order. It thus suffices to write

x̂(z) = x̂(0)(z) + ε x̂(1)(z) + · · · , (6.33)

At zeroth order the entangling surface relevant to this half-TFD problem lies at precisely

x̂(0)(z) = ±L and extends from one boundary to the other, passing through to the

horizon. The total area at this order may be computed analytically and we find

Â(0)
ren =V `d−1 21−4/d

bd−2

(
d− 4

d− 2

)(
2− 161/d

2F1

[
2

d
− 1,

4

d
;

2

d
;−1

])
. (6.34)

At first order we proceed numerically, with x̂(1)(z) satisfying the first order equation

of motion

0 = 2b4(d− 2)b′zd +
(
bd + zd

) (
bd + zd

)4/d
∂2
z x̂

(1)

+
1

z

(
(d+ 1)zd − (d− 1)bd

) (
zd + bd

)4/d
∂zx̂

(1) (6.35)

We simplify the analysis by using the symmetry that relates our two boundaries. We

thus compute the area for a surface extending from one boundary to the horizon and

multiply by 2. The boundary conditions are that x̂ = ±L at z = 0 and that dx̂
dR

= 0 at

the horizon R = 0, where R is the regular coordinate associated with (6.6). But since it

is convenient to work in terms of the original z coordinate, we note that to order ε this

is equivalent to imposing the boundary condition

x̂′(z)|z=b = − ε

16
b b′ . (6.36)

We solve numerically for the minimal surface in the region z ∈ [0, b] and simply approx-

imate x̂(z) by x̂ = ±L in the order ε2-sized region z ∈ [b, b̃]. Numerical solutions for
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x̂(1)(z/b) are shown in figure 6.7 for 2 ≤ d ≤ 7.

z / b

-0.25

-0.2

-0.15

-0.1

-0.05

1
b b'
x(1)(z/b)

0.2 0.4 0.6 0.8 1.0

2

3

4

5

6

7

Figure 6.7: Numerical solutions x̂(1)(z/b)
bb′ for the half-TFD problem with 2 ≤ d ≤ 7,

with bb′ evaluated at x = ±L. In the large d limit, one may show analytically that
this function vanishes everywhere except at the horizon.

The second order area correction now has an additional contribution due to the

O(ε2) shift in the endpoint of the minimal surface. This contribution can be computed

analytically and the full second order shift is given by

Â(2)
ren = Ã(2)

ren + ε2 V `d−1 2
2d−8
d

d3bd−3

(
2 d

(
2F1

[
1,−2

d
;

2

d
;−1

]
− 3

)
−

2
√
π Γ
(

2
d

)
Γ
(

1
2

+ 2
d

) ) ∂zg
(2)
tt

∣∣∣
z=b

(6.37)

where Ã
(2)
ren includes the area of only the part of the surface with z ≤ b. Note that

(6.37) depends on L only through evaluating b (and its derivatives) at x = ±L. We

compute (6.37) numerically. Results are displayed in figure 6.8 in terms of dimensionless

coefficients defined by

Â(2)
ren =

V `d−1

bd−2
Â(2) , with Â(2) = b′

2
Â(b′2) + b b′′Â(bb′′) , d 6= 2, 4. (6.38)

Here b, b′, b′′ are evaluated at x = ±L. For d = 2, 4 we use analogous notation but with

logarithmic subtractions as in (6.29).
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d Â(b′2) Â(b b′′)

2 0.00 0.00
3 0.531 -0.294
4 0.571 0.0716
5 0.815 -0.142
6 1.28 -0.562
7 1.93 -0.845

Figure 6.8: The coefficients Â(b′2) and Â(b b′′) for the half-TFD problem for 2 ≤ d ≤ 7.
The numerical precision is estimated by comparing results for 100 and 150 lattice
points, giving better than one part in 10−10.

6.3.3 Phase transition

We now analyze the transition between the I = 0 and I > 0 phases for a pair for

|x − x0| ≤ L slabs on opposite boundaries. In particular, we compute the effect of

inhomogeneities on the critical length Lcrit.

For this purpose, we should compare twice the area of the entangling surface for a

slab |x| ≤ L on a single boundary with that of the sum of the surfaces for the half-TFD

problems at x = ±L. The phase transition will occur when L is of order b, so at small

ε we have L � b/(εb′) and we may expand b(±L) in (6.38) in a Taylor series. At order

ε0, the surfaces at x = ±L have equal area, so we can determine the zeroth order value

of Lcrit by comparing (twice) the numerical value of (6.34) for b = b0 with (twice what is

shown in) figure 6.2. Results are displayed in figure 6.9.

As discussed in section 6.3.1, the first order correction to the area of the connected

surface vanishes. For the disconnected surfaces, we have a first order correction from

expanding (6.38). But this correction is proportional to x b′0, so the corresponding con-

tributions cancel between the surfaces at x = ±L; there can be no change in Lcrit at first

order.
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At second order, we can write Lcrit = L
(0)
crit + ε2L

(2)
crit and solve

2Aren(Lcrit) = Âren|x=Lc + Âren|x=−Lc . (6.39)

Here it is useful to note that Taylor expanding Âren|x=±Lc and then performing our

adiabatic expansion gives

Âren|x=Lc + Âren|x=−Lc = 2Âren|x=0 + L2
crit∂

2
xÂren|x=0 + . . .

= 2Â(0)
ren|x=0

+ε2
(

2Â(2)
ren|x=0 +

(
L

(0)
crit

)2 [
(b′0)2∂2

b Â
(0)
ren|x=0 + b′′0∂bÂ

(0)
ren|x=0

])
+O(ε4). (6.40)

Solving (6.39) to order ε2 then gives

L
(2)
crit =

(
L

(0)
crit

)2

2

(
(b′0)2∂2

b Â
(0)
ren|x=0 + b′′0∂bÂ

(0)
ren|x=0

)
+ Â

(2)
ren|x=0 − A(2)(L

(0)
crit)

∂LA
(0)
ren(L/b0)

∣∣∣
L

(0)
crit

. (6.41)

Figure 6.9 displays numerical results for 2 ≤ d ≤ 7 in terms of the coefficients defined by

L
(2)
crit/b0 = b′0

2
L(b′0

2) + b0b
′′
0 L

(b0b′′0 ) . (6.42)

In addition, figure 6.10 shows result for the mutual information between the slabs using

the notation

Î =
V `d−1

bd−2
0

Î(L/b0) ,

Î(L/b0) = Î(0)(L/b0) + ε2
(
b′0

2 Î(b
′
0
2)(L/b0) + b0b

′′
0 Î

(b0b′′0 )(L/b0)
)
. (6.43)
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d L
(0)
crit/b0 L(b′0

2) L(b0b′′0 )

2 0.441 −0.0285 0.0143
3 0.832 −0.00532± 0.00027 0.00111± 0.00012
4 0.314 0.0132± 0.0004 0.00417± 0.00021
5 0.197 0.00305± 0.00048 −0.00983± 0.00024
6 0.155 0.00300± 0.00057 −0.0104± 0.0002
7 0.133 0.00405± 0.00090 −0.00912± 0.00032
8 0.119 0.00872± 0.0015 −0.00834± 0.00045

Figure 6.9: The coefficients governing Lcrit to second order. The numerical precision
is shown when it falls below three figures when estimated as described in appendix
6.B. The numerical result for d = 2 (shown) agrees with analytic predictions from
appendix 6.A.
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Figure 6.10: The coefficients of I(L/b0) for 2 ≤ d ≤ 7 to second order. The mutual
information vanishes for L < Lcrit.

We find to second order that Î has an interesting dependence on dimension. First

although Î(b
′
0
2) is positive for most L > Lcrit, for d ≥ 4 it becomes slightly negative near

Lcrit. As a result, a non-zero b′0 causes Lcrit to increase for d ≥ 4 and decrease for d = 2, 3.

168



Adiabatic Corrections to Holographic Entanglement Chapter 6

The effect of second derivatives depends on dimension as well: a positive b′′0 increases Lcrit

for 2 ≤ d ≤ 4 but decreases Lcrit for 5 ≤ d ≤ 7. For d = 2 the above behavior is derived

analytically in appendix 6.A; it would be interesting to develop an analytic understanding

of the higher dimensional results as well. Due to the many interesting features in this

data, we take extra care to understand the convergence of our numerics in appendix B.

6.4 States of Confining Theories

We now turn to the second interpretation in which our path integral computes the

ground state of a confining gauge theories on the surface y1 = 0. This necessarily restricts

our discussion to d ≥ 3.

We again consider slabs |x−x0| ≤ L. As in section 6.3.2, there are two possible phases

for the minimal surface. For L� b the minimal surface is connected and does not reach

R = 0. But there is also another local extremum of the area given by a disconnected

surface that consists of two disks, each localized near x − x0 = ±L. At small L the

disconnected surface has larger area, though increasing L leads to a phase transition at

which the disconnected surface becomes minimal. Interestingly, at still larger values of

L the connected extremum becomes singular and ceases to exist. The two phases are

shown in figure 6.11 and will be studied in sections 6.4.1 and 6.4.2 below.

The general feature that the entanglement becomes independent of L at large L is to

be expected in confining theories, as they have finite correlation lengths. But the sharp

phase transition seen here is a feature of large N [86, 87].

Below, we find it useful to write

Abare = 2π Ṽ `d−1

∫
Abare dλ for
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(a) (b)

Figure 6.11: Possible topologies for the extremal surfaces for a strip on the boundary.
As shown in (a), for thinner strips the connected surface has minimal area. For thicker
strips, the disconnected surface consisting of two disks shown in (b) has minimal area.

Abare = g(d−3)/2
yy g

1/2
θθ

(
z′(λ)2

z(λ)2
+ x′(λ)2 gxx

)1/2

, (6.44)

where Ṽ is the volume of a (d − 3) torus that we use to regularize the y2, . . . , yd−2

directions. To compute the entropy, we must as usual find the minimal surface to O(ε).

We will also need the explicit counterterms that renormalizing the area functional to

second order. The computations are analogous to those in section 6.3, though now the

minimal surface equations lead to the asymptotic expansion

x(z) = xB +
ε b′

2 (d− 2)
z2 + cd z

d +O(zd+1, ε2) , (6.45)

where xB is the point of intersection with the boundary. Inserting (6.45) into (6.44) gives

Abare =
αd b

zd−1
− ε2 αd(d− 3)

2(d− 2)2

b′2

b

1

zd−3
+ ε2

αdb
′′

2(d− 1)(d− 2)

1

zd−3
+O(z0), (6.46)
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so for d > 4 we may take

Act = 2πṼ αd `
d−1

[
− 1

(d− 2)

b

zd−2
+ ε2

(d− 3)

2(d− 2)2(d− 4)

b′2

b

1

zd−4

−ε2 b′′

2(d− 1)(d− 2)(d− 4)

1

zd−4

]
. (6.47)

In lower dimensions we have

Act = 2π αdṼ `
3

[
−1

2

b

z2
+ ε2

(
b′′

12
− 1

8

b′2

b

)
log(z/`) + ε2

(
− b
′′

24
+

1

8

b′2

b

)]
d = 4

Act = −2π αd `
2 b

z
d = 3 , (6.48)

where the counterterms again match the covariant prescription of [82], whose details we

have again used to fix the z-independent terms for d = 4. We can now compute the area

of the minimal surface for the regimes L� b and L� b and study the phase transition

between connected and disconnected topologies. Additionally, without loss of generality

we set x0 = 0 for the rest of this section.

6.4.1 Narrow slabs

We begin with the regime L � b, where the entropy will be given by the connected

surface [86, 87]. The computations proceed much as in section 6.3.1, though we are no

longer able to obtain analytic results for the second order area in the large and small L

limits. Indeed, this phase fails to exist at sufficiently large L, while for the small L limit

the first order correction z(1)(x) must be computed numerically even in the approximate

geometry (6.5). However, the expansion (6.5) does require the leading small L behavior

of A
(2)
ren to be of order L4−d. As a test of our numerics, we compare below the coefficient

of L4−d computed using the full metric against that computed using the truncated metric
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(6.5). At zeroth order we can compare against an analytic prediction, as at this order

(6.5) is just Poincaré AdSd+1 and θ acts just like a y-coordinate with period 2παdb. As

a result, the area is given by (6.25) with V = 2παd b Ṽ .

As in section 6.3.1, we consider the case L� b/(ε b′) so to order ε2 the inhomogeneities

are described by b0, b′0, and b′′0. We state our numerical results for the connected area in

terms of the dimensionless function Ac(L/b0) defined for d 6= 4 by

Aren =
2πṼ `d−1

bd−3
0

Ac(L/b0) . (6.49)

where the subscript c will denote quantities associated with the connected entangling

surface. For d = 4 it is useful to explicitly remove the log(`) dependence introduced by

our regularization scheme. We therefore write

Aren =
2πṼ `3

b0

Ac(L/b0) + ε2 2παdṼ `
3

(
b′′0
12
− 1

8

b′0
2

b0

)
log(`/b0) . (6.50)

As before, we use the adiabatic expansion to write

Ac(L/b0) = Ac
(0)(L/b0) + εAc

(1)(L/b0) + ε2 Ac
(2)(L/b0) +O(ε3)

with Ac
(2)(L/b0) = (b′0)2A

(b′0
2)

c (L/b0) + b0 b
′′
0A

(b0 b′′0 )
c (L/b0) , (6.51)

where symmetry under x → −x again requires the first order correction to vanish. Nu-

merical results are displayed in figure 6.12.

As a check on our numerics, we extract limL→0 L
d−2A

(0)
ren and limL→0 L

d−4A
(2)
ren and

compare in figure 6.13 with the same coefficients as determined by approximating the

metric to O(z2) in the Fefferman - Graham expansion (6.5).
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Figure 6.12: Numerical results for A
(0)
c (L/b0), A

(b′0
2)

c (L/b0), and A
(b0b′′0 )
c (L/b0) for 3 ≤ d ≤ 7.

6.4.2 Wide slabs

For L � b, the entangling surface is given by two disconnected disks each localized

near x = ±L. As in section 6.3.2, the entropy depends on L only through the local

behavior of b(x) near x = ±L. Furthermore, the contribution from each surface is just

the entropy one would compute for the corresponding half-space x > L or x < −L. For

simplicity we thus focus below on this notion of ‘half space entropy’ and choose RCFT to

be the region x > ±L. Note that our geometry ends at z = b̃, with the extremal surface

obeying the boundary condition of regularity (6.36).

The detailed computations are much as in section 6.3.2, so we simply display the

results. The area of the disconnected surface can be written in terms of the dimensionless

functions described in (6.49) and (6.51) after replacing Ac(L/b0) with Ad. We compute the

zeroth order coefficients analytically, but the second order coefficients require numerics.
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d limL→0 L
d−2Ac

(0) Pred.
3 −0.301 −0.301
4 −0.0283 −0.0283
5 −0.00262 −0.00262
6 −0.000218 −0.000217
7 −0.0000161 −0.0000160

(a)

d limL→0 L
d−4∂(b′0)2Ac

(2) Approx.

3 −0.186± 0.003 −0.186± 0.003
4 −0.0828± 0.0006 −0.0828± 0.0006
5 0.0678± 0.0044 0.0678± 0.0044
6 0.0189± 0.0027 0.0189± 0.0027
7 0.00400± 0.00077 0.00400± 0.00077

(b)

d limL→0 L
d−4∂b0 b′′0Ac

(2) Approx.

3 0.740± 0.003 0.740± 0.003
4 0.516± 0.0008 0.516± 0.0008
5 −0.00948± 0.00004 −0.00949± 0.00004
6 −(5.70± 0.08)× 10−4 −(5.70± 0.08)× 10−4

7 −(3.49± 0.12)× 10−5 −(3.49± 0.12)× 10−5

(c)

Figure 6.13: Comparison of the numerically computed L � b0 scaling of A(L/b0) for
3 ≤ d ≤ 7 from figure 6.12 (left columns) with that determined by truncating (6.5)
at order z2 (right columns, with “Pred.” and “Approx.” referring to analytic and
numerical results respectively). The numerical precision is shown when it falls below
three significant figures, estimated by comparing results for 100 and 150 lattice points
and for fitting different ranges of L depending on the dimension.

Half-space entropy results for 3 ≤ d ≤ 7 are tabulated in figure 6.14 using our by-now

standard notation.

6.4.3 Phase transition

Finally, we turn to the effect of adiabatic variations on the critical value Lcrit at which

the dominant phase becomes disconnected. As in section 6.3.3, we do so by comparing

the area of the connected surface (figure 6.12) with the area of the disconnected surface
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d Ad
(0) Ad

(b′2) Ad
(b b′′)

3 −0.667 −0.0882 0.0882
4 −0.354 −0.0424 0.0283
5 −0.232 −0.0875 0.0437
6 −0.167 −0.135 0.0540
7 −0.126 −0.158 0.0527

Figure 6.14: The coefficients Ad
(0), Ad

(b′2), and Ad
(b b′′). The numerical precision is

around six significant figures, estimated by comparing results for 100 and 150 lattice
points.

evaluated at x = ±L (figure 6.14). Since the phase transition occurs at L� b/(εb′), we

again expand b(x) in a Taylor’s series to compute Ad. The second-order coefficients of

of Lcrit are again given by (6.41) with the replacements 2Aren → Ac, Âren → Ad. We

determine Lcrit numerically to second order, and display these results in figure 6.15 using

the notation of (6.42).

d L
(0)
crit/b0 L(b′0

2) L(b0b′′0 )

3 0.249 −0.0475± 0.0002 0.0116± 0.0002
4 0.217 −0.0694 0.287
5 0.191 −0.107± 0.004 0.0233
6 0.170 −0.167± 0.017 0.0194
7 0.152 −0.237± 0.036 0.0157

Figure 6.15: Numerical values of Lcrit/b0 and the coefficients L(b′0
2) and L(b0b′′0 ) from

(6.41) for the RT phase transition for slabs |x| ≤ L in our confined ground state
with 3 ≤ d ≤ 7. The numerical precision is shown when it falls below three figures,
estimated by comparing results for 100 and 150 lattice points.

6.5 Discussion

In the above work, we computed the leading (second order) effects of inhomogeneities

on the holographic entropy of slab-shaped regions defined by |x − x0| ≤ L. We studied

thermofield-double states on spacetimes where the redshift changes slowly with position,

and the ground states of certain confining theories with corresponding slow changes in
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the confinement scale. In each case, we studied the effect on the length scale Lcrit

associated with a Ryu-Takayanagi phase transition. Most of our results were numerical,

though the special case d = 2 (AdS3) was treated analytically in appendix 6.A. In higher

dimensions, some analytic results were also available in special limits and were used to

check our numerics.

For the thermofield double, Lcrit is a measure of the non-locality of entanglements

between opposite CFTs. The second-order coefficients (figure 6.9) governing the response

of Lcrit to inhomogeneities turn out to be numerical small. Some insight as to why is

provided by the analytic d = 2 treatment of appendix 6.A, which shows these coefficients

to be proportional to (Lcrit/b)
3. So the small values of Lcrit/b lead to even smaller

coefficients L(b′0
2), L(b0b′′0 ).

The coefficients shown in figure 6.9 display highly non-trivial structure with respect

to the dimension d. For d ≤ 3, gradients decrease Lcrit, while they increase Lcrit for d ≥ 4.

This remains true whether one studies the local response to b′0 or the average change over

all x. The former is precisely the sign of L(b′0
2) in figure 6.9. But averaging L

(2)
crit over x

allows one to use either periodic boundary conditions or b → constant as x → ±∞ to

integrate b2b′′ by parts, giving a positive-definite quantity multiplied by (L(b′0
2)−2L(b0b′′0 )).

It turns out that both change sign between d = 3 and d = 4. Interestingly, it is the large

d behavior that corresponds to the naive expectation that that the response is given by

averaging b(x) over a scale |x − x0| . b, as such averaging would decrease Lcrit near a

maximum of b(x) and thus require L(b0b′′0 ) < 0. This is the opposite sign to that found

analytically for d = 2 in appendix 6.A.

One also notes that the coefficients L(b0b′′0 ) are not monotonic with d, but appear to

have a local minimum near d = 6. In contrast, L(b′0
2) appears to be monotonic in d but is

also highly non-uniform. In particular, while most cases exhibit a clear increase in value

with d, the coefficients for d = 5 and d = 6 are remarkably close. The in-depth analysis
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of numerical convergence in appendix 6.B appear to confirm that these features are real

and are not just numerical artifacts. It would be useful to have an analytic understanding

of these dimension-dependent features; the large d limit may be worth particular study.

In contrast, the response of our confining ground states is both larger and more

uniform in d; figure 6.15 shows no changes of signs. It is nevertheless interesting that

gradients – either local or averaged – always decrease Lcrit. This is naturally understood

as a corresponding decrease in the length scale characterizing confinement. But compar-

ing our results with [30] challenges this interpretation. For d ≤ 5, [30] found that the

gradients decrease the tension of flux tubes aligned in their direction, while the increase

of tension one would expect from a decrease in the confinement length scale occurred

only for d ≥ 6. Furthermore, for d > 3 it found that gradients always raised the neg-

ative energy of the confining ground state – a result naturally associated with a larger

confinement length scale. The main conclusion appears to be that confinement is not

generally characterized by a single scale, but that changes in different confinement-related

phenomenon under small perturbations are often uncorrelated. It would be interesting

to develop more analytic understanding of such effects, and also to determine to what

extent our results apply to other systems with spatially-varying confinement scale such

as those that might be constructed in a condensed matter laboratory.

6.A Adiabatic Thermofield Doubles in 1+1 Dimen-

sions

Holographic 1+1 CFTs have asymptotically AdS3 bulk duals. Due to the lack of local

gravitational degrees of freedom in 2+1 dimensions, all complete asymptotically locally

AdS spacetimes are diffeomorphic to global AdS3 (or to a quotient thereof). This fact
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greatly simplifies the associated minimal surfaces, allowing us to compute properties of

adiabatic thermofield-double analytically for d = 2. We do so here in an attempt to gain

insight into our numerical results, and also as a check on our numerics.

For d = 2, the zeroth order ansatz (6.2) becomes simply

ds2 =
1

z2

[
dz2 + b2

(
1− z2

b2

)2

dθ2 +

(
1 +

z2

b2

)2

dx2

]
. (6.52)

As shown in appendix A of [30], the second order corrections are

g
(2)
θθ =

z2 (b2 − z2) b′2

2 b2

g(2)
xx =

z2 (b2 + z2)
(
2 b b′′ − b′2

)
2b4

. (6.53)

Using (6.8), this places the horizon at

zH = b+ ε2
1

8
b b′

2
+O(ε4). (6.54)

We can now compute various entropies. Taking RCFT to be the half space x > 0 in

the union of the two CFTs, the equation of motion for the first order correction x(1)(z)

to the entangling surface reduces to

0 =
(
b2 − 3z2

)
∂zx

(1)(z)− z
(
b2 + z2

)
∂2
zx

(1)(z), (6.55)

and the boundary conditions become

x(1)(0) = 0

x(1)(b) = −1

4
b b′ . (6.56)
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The solution is given by

x(1)(z) = − b b′ z2

2 (b2 + z2)
. (6.57)

Comparing (6.57) to our numerics for d = 2 gives agreement to one part in 1016. Turning

now to the renormalized entropy, using (6.54) we find that the second order contribution

coming from integrating the zeroth order surface over the region z ∈ [b, zH ] precisely can-

cels the second order contribution associated with the first-order shift of extremal surface

within the zeroth order background. As these were the only possible contributions to this

order, in agreement with our numerics we find that the full second order contribution

vanishes exactly.

We may also analytically compute the entropy of a strip (analogous to our slabs

in higher dimensions). We take the strip to be thin compared to the adiabatic scale

(L� b/εb′). Solving the equations of motion gives

z(0)(x) = b0

√√√√cosh 2L
b0
− cosh 2x

b0

cosh 2x
b0

+ cosh 2L
b0

z(1)(x) = b′0

(
−2 (b2

0 − 2x2 + 2L2) sinh 2x
b0

cosh 2L
b0

+ 2b0x cosh 4L
b0

+ b0

(
b0 sinh 4x

b0
− 2x cosh 4x

b0

))
4
√

cosh 2L
b0
− cosh 2x

b0

(
cosh 2x

b0
+ cosh 2L

b0

)
3/2

.

(6.58)

The numerically derived surfaces agree with the above to one part in 1014 to zeroth order

and one part in 107 to first order. Computing the entanglement entropy gives

A(0)
ren = 2 log sinh

2L

b0

A(2)
ren =

(
−L

2

b2
0

+
4

3

L3

b3
0

coth
2L

b0

)
b′0

2
+

(
L2

b2
0

− 2

3

L3

b3
0

coth
2L

b0

)
b′′0. (6.59)
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Comparing this result to our d = 2 numerics shows discrepancies only at the level of one

part in 104 level for the coefficient of b′0
2 and one part in 1015 for the coefficient of b′′0.

With these expressions for the area, we can compute the location of the phase transi-

tion between vanishing and non-vanishing mutual information to second order. To zeroth

order, for the half space entangling surface we have Â(0) = 0 so from (6.59) Â
(0)
ren = A

(0)
ren

gives

L
(0)
crit =

b0

2
sinh−1(1) . (6.60)

At first order it is manifest that A
(1)
ren = 0. In contrast, keeping in mind the renormal-

ization prescription (6.29), the area of the entangling surface for half space x < L does

have a first order correction. But it is canceled by the corresponding correction to the

entangling surface for x > −L, so the O(ε) correction L
(1)
crit to Lcrit vanishes.

However, at second order we find

Â(2)
ren = − `

2

L2

b2
0

b′0
2

+
`

2

L2

b0

b′′0 . (6.61)

Comparing with (6.59) and using (6.41) yields

L
(2)
crit = − b0

48
sinh−1(1)3(2b′0

2 − b0b
′′
0) . (6.62)

This result agrees with the results in figure 6.9 to one part in 104.

As a final check on our d = 2 results we can solve for the diffeomorphism taking g
(0)
µν

with constant b0 to g̃
(0)
µν := g

(0)
µν + ε2 g

(2)
µν . Working near x = 0, we find that the correct

diffeomorphism beomes

z̃ = z + ε z
x b′0
b0

+ ε2 z
(2x2 (b2

0 + z2) (b′0
2 + b0 b

′′
0)− z2 b2

0 b
′
0

2)

4b2
0 (b2

0 + z2)
+O(ε3)
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x̃ = x+ ε
b′0 (b2

0(x2 − z2) + x2z2)

2b0 (b2
0 + z2)

+ ε2
x (b2

0 (x2 − 3z2) + x2z2) (b′0
2 + b0b

′′
0)

6b2
0 (b2

0 + z2)
+O(ε3),

(6.63)

which indeed takes the entangling surfaces of global AdS3 to (6.58) as desired. One may

also check that (6.63) maps the phase transition for b(x) = constant (given by (6.60)) to

the value specified by (6.62).

6.B Estimation of Numerical Uncertainty

We have used two distinct methods to estimate the numerical uncertainty of our

results. First, for the majority of the tables we merely make a rough estimate by com-

puting a particular coefficient using a variety numerical parameters. We then take the

approximate error to be given by the standard deviation of this set. For example for

the L� b0 scaling of figure 6.5, we compare values calculated using 100 and 150 lattice

points and for fitting intervals L/b0 ∈ [40, 50] and L/b0 ∈ [50, 60]. The estimated error

is the standard deviation of this four point data set. The value displayed in the table is

the mean.

However, as noted in the main text, the values tabulated in figure 6.9 are rather

less uniform than one might expect. As a result, we now take extra care to analyze

the numerical results reported there. After investigating the possible sources of error by

varying the precision of different parts of the computation, we find the dominant error

(by far) to come from using a finite number N of lattice points in the interval [−L,L].

We now study how our results change with N .

We first compute Lcrit using N = [50, 300] lattice points in steps of 10. Next, we
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approximate the function dLcrit

dN
by choosing an appropriate p so that the data

DN =
1

10
[Lcrit(N)− Lcrit(N + 10)]Np (6.64)

appears constant to the eye. See figure 6.16 for examples. We then compute the average

D̄ of DN over the data set and model our results by

dLcrit(N)

dN
= D̄ Np . (6.65)

Given (6.65), we can compute ∆(N0) = Lcrit(N0)−Lcrit(∞). We have reported the values

∆(N0) for N0 = 300 as the numerical uncertainties in figure 6.16. Though we do not

fully understand the particular values of p found in this way, we believe this to be a

conservative estimate of our errors (especially when DN clearly decreases). We display

D̄ as well as the determined value of p for 2 ≤ d ≤ 8 in figure 6.17.
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▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

100 150 200 250 300
N

-0.03

-0.02

-0.01

0.01

A
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● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

100 150 200 250 300
N

-0.03

-0.02

-0.01

0.01

A

(b) d = 6, p = 7/4
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● (b0′)2

▲ b0 b0′′

(c) d = 7, p = 13/8

Figure 6.16: Plots of DN as defined in (6.64) vs. N with d = 5, 6, 7 for the b′0
2 and

b0b
′′
0 coefficients (triangles and disks respectively). We choose p so that the datasets

are either flat or slowly approaching zero.

d D̄(b′0
2) D̄(b0b′′0 ) p

2 0.00301 1.94× 10−8 2.75
3 −0.0819 0.0365 2
4 −0.0224 0.0116 1.75
5 −0.0256 0.0130 1.75
6 −0.0309 0.0131 1.75
7 −0.0199 0.00710 1.625
8 −0.0128 0.00391 1.5

Figure 6.17: We display the estimated values of D̄ for each of the coefficients b′0
2 and

b0b
′′
0 and p for 2 ≤ d ≤ 8.
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Chapter 7

Outlook

In this dissertation, we explored various classical black hole spacetimes and their role in

holography. Black holes are the source of some of the toughest conceptual hurdles toward

constructing a theory of quantum gravity; although, as we see through the AdS/CFT

correspondence, further study of these objects also provides some guidance for the res-

olution of their mysteries. In this sense, black holes are an excellent testing ground for

exploring quantum gravity.

We considered how black hole states of non-trivial topology might be associated

naturally with an operator through holography in chapter 3. In particular, we constructed

a class of states by acting on the vacuum with an operator defined in the CFT via a path

integral over a torus with two punctures. For finely tuned moduli, one might expect to

be able use this operator to add arbitrarily high topology behind the horizon. However,

we found the unexpected result that with certain mild restrictions on the operator, the

solutions of high topology never dominate the gravitational path integral. Additionally,

investigation into the ground state of this operator resulted in a puzzle related to its

positivity, signaling a need for better methods of categorizing these semi-classical saddle

points.

184



Next in chapter 4 we explored the allowed subregion entanglement entropies of holo-

graphic states. We evaluated a proposal for a set of constraints on these entropies by

constructing the gravitational dual of states at the extremum of the allowed values, with

the dual states given by multi-boundary wormhole geometries. We were unable to find

such states, possibly suggesting that there might be further constraints on the entropies

or that a more complicated construction procedure is needed to find these states.

Further, in chapters 5 and 6 we showed how we could use a perturbative expansion

about black hole solutions to study various CFT states. We considered the effect of

spatial curvature on properties of confinement as well as entanglement in the confining

vacuum state. Additionally, we considered a thermal CFT state with a spatially varying

local temperature and studied how this temperature gradient changed the entanglement

structure of the thermal vacuum. These techniques could also be applied to study the

confinement/deconfinement phase transition in similar regimes.

We hope that the main takeaway of this dissertation is that black hole spacetimes

have great potential to probe various aspects of quantum gravity. The examples given

only represent a fraction of the work that has been done, and also point the direction

toward interesting avenues to explore. In particular, in three dimensions one has control

over a large class of solutions with non-trivial topology, providing a powerful framework

for exploring the significance of these states in the context quantum gravity. As such, in

chapter 2 we have provided a pedagogical introduction to the methods used to study these

spacetimes, as well as a practical set of tools implemented in a Mathematica package.

While we have only skimmed the surface of addressing the issues laid out in the

introduction, we have taken some steps toward gaining insights into black holes and

quantum gravity. On this subject, holography is an incredibly powerful tool with many

active avenues of research. There is plenty of more work to be done!

185



Bibliography

[1] A. Einstein, Die grundlage der allgemeinen relativitätstheorie, Annalen der Physik
49 (1916) 769822.

[2] K. Schwarzschild, über das gravitations-feld eines massenpunktes nach der
einsteinschen theorie, Sitzungsberichte der Königlich Preussischen Akademie der
Wissenschaften zu Berlin 7 (1916) 189196.

[3] R. Penrose, Gravitational collapse and space-time singularities, Phys. Rev. Lett. 14
(Jan, 1965) 57–59.

[4] B. Balick and R. L. Brown, Intense sub-arcsecond structure in the galactic center,
Astrophysical Journal 194 (Dec, 1974) 265–270.

[5] LIGO Scientific and Virgo Collaboration, B. P. Abbott et. al., Observation of
gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116 (Feb,
2016) 061102.

[6] LIGO Scientific and Virgo Collaboration, B. P. Abbott et. al., Gw151226:
Observation of gravitational waves from a 22-solar-mass binary black hole
coalescence, Phys. Rev. Lett. 116 (Jun, 2016) 241103.

[7] LIGO Scientific and Virgo Collaboration, B. P. Abbott et. al., Gw170104:
Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2, Phys.
Rev. Lett. 118 (Jun, 2017) 221101.

[8] J. M. Bardeen, B. Carter, and S. W. Hawking, The four laws of black hole
mechanics, Communications in Mathematical Physics 31 (June, 1973) 161–170.

[9] S. W. Hawking, Black hole explosions, Nature 248 (1974) 30–31.

[10] J. D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim. 4 (1972)
737–740.

[11] J. D. Bekenstein, Black holes and entropy, Phys. Rev. D7 (1973) 2333–2346.

[12] J. D. Bekenstein, Generalized second law of thermodynamics in black hole physics,
Phys. Rev. D9 (1974) 3292–3300.

186



[13] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy,
Phys. Lett. B379 (1996) 99–104, [hep-th/9601029].

[14] J. M. Maldacena, The Large N limit of superconformal field theories and
supergravity, Int. J. Theor. Phys. 38 (1999) 1113–1133, [hep-th/9711200]. [Adv.
Theor. Math. Phys.2,231(1998)].

[15] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Gauge theory correlators from
noncritical string theory, Phys. Lett. B428 (1998) 105–114, [hep-th/9802109].

[16] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998)
253–291, [hep-th/9802150].

[17] D. Marolf, W. Kelly, and S. Fischetti, Conserved Charges in Asymptotically
(Locally) AdS Spacetimes, arXiv:1211.6347.

[18] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, Large N field
theories, string theory and gravity, Phys. Rept. 323 (2000) 183–386,
[hep-th/9905111].

[19] E. D’Hoker and D. Z. Freedman, Supersymmetric gauge theories and the AdS /
CFT correspondence, in
Strings, Branes and Extra Dimensions: TASI 2001: Proceedings, pp. 3–158, 2002.
hep-th/0201253.

[20] J. Polchinski, Introduction to Gauge/Gravity Duality, arXiv:1010.6134.

[21] J. M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021,
[hep-th/0106112].

[22] E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in
gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505–532, [hep-th/9803131].

[23] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from
AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602, [hep-th/0603001].

[24] S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP
08 (2006) 045, [hep-th/0605073].

[25] J. B. Hartle and S. W. Hawking, Wave function of the universe, Phys. Rev. D 28
(Dec, 1983) 2960–2975.

[26] V. Balasubramanian, P. Hayden, A. Maloney, D. Marolf, and S. F. Ross,
Multiboundary Wormholes and Holographic Entanglement, Class. Quant. Grav. 31
(2014) 185015, [arXiv:1406.2663].

187

http://xxx.lanl.gov/abs/hep-th/9601029
http://xxx.lanl.gov/abs/hep-th/9711200
http://xxx.lanl.gov/abs/hep-th/9802109
http://xxx.lanl.gov/abs/hep-th/9802150
http://xxx.lanl.gov/abs/1211.6347
http://xxx.lanl.gov/abs/hep-th/9905111
http://xxx.lanl.gov/abs/hep-th/0201253
http://xxx.lanl.gov/abs/1010.6134
http://xxx.lanl.gov/abs/hep-th/0106112
http://xxx.lanl.gov/abs/hep-th/9803131
http://xxx.lanl.gov/abs/hep-th/0603001
http://xxx.lanl.gov/abs/hep-th/0605073
http://xxx.lanl.gov/abs/1406.2663


[27] D. Marolf, H. Maxfield, A. Peach, and S. F. Ross, Hot multiboundary wormholes
from bipartite entanglement, Class. Quant. Grav. 32 (2015), no. 21 215006,
[arXiv:1506.0412].

[28] D. Marolf and J. Wien, The Torus Operator in Holography, arXiv:1708.0304.

[29] D. Marolf, M. Rota, and J. Wien, Handlebody phases and the polyhedrality of the
holographic entropy cone, JHEP 10 (2017) 069, [arXiv:1705.1073].

[30] D. Marolf and J. Wien, Holographic confinement in inhomogeneous backgrounds,
JHEP 08 (2016) 015, [arXiv:1605.0280].

[31] D. Marolf and J. Wien, Adiabatic corrections to holographic entanglement in
thermofield doubles and confining ground states, JHEP 09 (2016) 058,
[arXiv:1605.0280].

[32] O. J. C. Dias, J. E. Santos, and B. Way, Numerical Methods for Finding Stationary
Gravitational Solutions, arXiv:1510.0280.

[33] B. Way, Holographic Applications for Black Holes and Condensed Matter. PhD
thesis, University of California, Santa Barbara, 2013.

[34] F.-J. Sayas, A gentle introduction to the finite element method, .
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