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ABSTRACT OF THE DISSERTATION

A numerical and observational investigation of short and long internal wave

interactions

by

Julie Crockett Vanderhoff

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2007

Professor Keiko Nomura, Chair

Professor James Rottman, Co-chair

The breaking of oceanic internal waves is an essential part of the deep-ocean

mixing processes that contribute to the general circulation of the ocean, the ex-

change of heat and gases with the atmosphere, the distribution of nutrients and the

dispersal of pollutants. It is essential to improve our understanding of how these

waves evolve toward dissipation. In this thesis ray theory, numerical simulations,

and observations are used to examine the refraction of short internal-wave packets

by time-dependent background shear profiles to test the validity and explore the

limitations of currently used models of short internal waves propagating through

steady shear in the deep ocean. Types of possible interactions due to initial short

wave parameters are categorized. An analysis of observational ocean data supports

the simulation results which show a change in the propagation of short internal

waves and their properties when time-dependence in the background shear profile is

taken into account. Through ray theory and simulations, a net exchange of energy

to the background wave is found, which is consistent with ocean data. It is found

through ray theory that the highest frequency short waves are the most likely to

break, and these calculated locations are also consistent with ocean observations.

The results of our simulations and analysis are enough to show that the ignored

physical effect of the time-dependence in the long-wave shear can make a significant

difference to short-wave behavior and should be taken into account in the models.
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I

Introduction

I.A Introduction

In any stratified fluid medium, if there is a disturbance to the fluid and

particles are displaced from their equilibrium, internal waves will result. For example

in the ocean, internal waves may be created by wind forcing at the surface, by tidal

flow over topography, or by small mixing processes. There are billions of internal

waves present in both the ocean and atmosphere, which are both stably stratified.

These internal waves in the ocean may have horizontal length scales on the order

of kilometers, or centimeters, and vertical length scales equal to that of the ocean

depth, or equal to that of a snail. Their frequencies range from as slow as 1 cycle per

day to as fast as 100 cycles per day, corresponding to the range between the buoyancy

and inertial frequency. Some of these internal waves are capable of carrying energy

across oceans. Other internal waves may break and dissipate their energy within the

ocean interior. Because of their ability to carry and dissipate energy, what happens

to internal waves as they propagate through the ocean interior is very important.

Waves may be affected by other internal waves, by themselves, by time-dependent

shears in the ocean, or by time-independent shears in the ocean. The results of these

interactions are exchanges of energy between different wavenumbers and frequencies,

as well as wave breaking resulting in energy dissipation.

1
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Some of the prevailing long waves in the ocean are downward propagating

waves of inertial frequency created by wind blowing over the ocean surface. These

waves are generally large-scale because of the scale of the energy input from the

strong winds. Many other waves in the ocean will inevitably propagate through these

large-scale inertial waves. Therefore a better understanding of what is occurring

when internal waves created within the ocean interior interact with these inertial

waves is necessary. Because of the long lengthscale of the inertial waves they can be

thought of as a time-dependent shear profile. In the past many studies were done in

which short waves interacted with time-independent shears, but observations have

shown that the presence of steady shear is much less common than unsteady shear

in the ocean. Thus there is an interest in short-wave interactions with unsteady

shears.

First we need to understand the basic dynamics of an interaction between

a small-scale, high-frequency wave and a large-scale, low-frequency wave. This in-

teraction may be thought of as Doppler spreading of short waves by longer waves,

where Doppler shifting is a shift in the short-wave frequency due to its refraction

by the long wave. We are also interested in a statistical study of a number of these

interactions occurring, as this is a more realistic setup with so many short waves

propagating through the ocean. The more we understand the interactions occurring

in the ocean, the closer we are to finding how and where energy is dissipating within

the ocean.

Munk and Wunsch [40] used TOPEX/Poseidon (T/P) satellite altimeter data

and tidal models to conclude that 2 terawatts (TW) of energy are necessary to

maintain the large-scale thermohaline circulation of the ocean through deep ocean

mixing. 1 TW of energy comes from the wind driving the surface of the ocean.

Wunsch [67] found surface kinetic energy estimates that support this. It seems that

the other half of the energy would be provided by the tides. Egbert and Ray [13]

used T/P satellite altimeter data of tidal elevations in the sea surface to estimate

that 1 TW of tidal energy is dissipated in the deep oceans. So the question is where



3

the tides will be most effective at mixing the ocean.

Initially it was thought that the principal sink of barotropic tidal energy

would be in the shallow seas because of the bottom friction there. But evidence of

diapycnal mixing affecting the deep ocean suggests barotropic tidal dissipation due

to flow over bottom topography may also be important. St.Laurent and Garrett

[51] used internal wave theory of tidal flow over topography and concluded less than

30% of energy flux created is at smaller spatial scales and subject to local dissipa-

tion, providing irreversible transport of momentum across isopycnal surfaces. The

larger scale waves propagate away from topography into the open ocean to interact

with background ocean shears. This was also seen in an observational study over

the Hawaiian Ridge where Rudnick et al. [48] directly measured turbulent energy

dissipation rates with a collection of profiling and towed instruments. Diapycnal

diffusivity was estimated from the dissipation. They found the isolated ridges were

important sinks for surface-tide energy and were sites of elevated mixing. How-

ever, this local tidal conversion at ridges which is an important source of energy

for mixing, could not account for the global eddy diffusivity of 10−4m2/s−1. Using

five different sets of T/P data Egbert and Ray [13] found that dissipation is clearly

enhanced over ridges and island chains oriented perpendicular to tidal flows, includ-

ing the Hawaiian ridge. Recently a field study experiment in which I participated,

the Hawaiian Ocean Mixing Experiment (HOME), tested this theory of strong mix-

ing over the Hawaiian ridge. They found 15 gigawatts (GW) of tidal energy being

dissipated there, which matches well with the data of Egbert and Ray [13] who cal-

culated dissipation energies of about 20 GW. Llewellyn Smith and Young [35] used

linear wave theory to find 90 GW of energy may be put into internal gravity waves

purely by flow over weak topography throughout the world oceans.

If these internal gravity waves evolve to small enough scales they may break

and cause mixing. The propagation and dissipation, mainly due to breaking, of

internal waves is an integral part of momentum transfer and mixing in the oceans

and atmosphere. Müller and Liu [39] tested, both theoretically and numerically in a
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two-dimensional finite-depth ocean, the scattering of tidal flow over topography and

found different topographical shapes would matter, with the most jagged and convex

portions of the topography being the most prone to scattering of internal waves in

wavenumber space, generally to higher modenumbers. The turbulence produced by

wave-breaking of small-scale, high modenumber waves may have a large effect on the

diapycnal mixing in the oceans [53]. There are many wave-wave interactions which

may be responsible for transferring energy of internal waves to to such small scales.

These processes include, but are not limited to, steady shear interactions (critical

layer), time-dependent shear interactions (caustic), self-acceleration, elastic scatter-

ing, and parametric subharmonic instability (PSI). Through some these mechanisms

it is possible for waves to reach high enough frequencies and small enough scales to

break and dissipate their energy. Which of these mechanisms are most dominant in

the ocean is not yet fully understood though, and must be addressed. It is a question

of high importance as global circulation models and coastal models are on the edge

of resolving small enough scales to include near-inertial shear effects. Calculating

more accurately the energy transfer between waves and mixing will improve models

of the earth and atmosphere which will in return provide better estimates of climate.

I.B Literature Review

This section is a review of the main papers relating to the subject of internal

wave interactions.

There is a question of dominance of mechanisms transferring energy to smaller

scales in the ocean and atmosphere. This is important because once the waves reach

these smaller scales they are able to break and dissipate, mixing the ocean interior

and affecting organisms, pollutants, and the general global circulation of the wind

and seas. These mechanisms include parametric subharmonic instability (PSI), in-

duced diffusion (including both critical layers and refraction at caustics), and elastic

scattering. Each of these mechanisms is argued to be the dominant mixing mecha-
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nism in the oceans and atmosphere, but each has strengths and weaknesses.

I.B.1 Wave-wave Interactions

The three basic mechanisms classified for the transfer of energy between

internal waves are elastic scattering, parametric subharmonic instability (PSI), and

induced diffusion. Elastic scattering is the vertical backscattering of a downward

propagating, high-frequency wave by a low-frequency near-inertial wave. PSI is the

breakdown of one wave into two waves of half the original frequency. For example

an M2 wave, created by the semidiurnal lunar internal tide (such that the resulting

M2 frequency is approximately 2 cycles/day), into two waves of 1 cycle/day, which

can only occur when that frequency is less than the inertial frequency at the specific

latitude. Induced diffusion efficiently transfers energy from high-frequency high-

wavenumber waves to other higher frequency waves through interactions between

short waves and steady or unsteady shear. In the past, studies of these types

of interactions have been most successful in describing the high-frequency wave

spectrum in the ocean.

Other mechanisms are also at work in the ocean, including self-acceleration,

which is the advection of short waves by their self induced mean flow. Sutherland

[57] found self-acceleration to be the dominant mechanism transferring energy to the

shorter length scales during the initial evolution of non-hydrostatic (high-frequency)

large amplitude internal waves. The simulations run by Sutherland [57] use a wide

range of wave packet widths, shapes, and amplitudes. Self-acceleration has not been

given much attention partially because it does not occur in laboratory experiments

because the waves are confined laterally by the tank side-walls so a mean horizon-

tal flow cannot develop. It is also not a dominant factor in plane waves because

the wave-induced mean flow is vertically uniform. But, through self-acceleration,

wave packets with sufficiently large amplitude, and thus a large self-induced mean

flow acceleration, can evolve to become convectively unstable, as Grimshaw [24],

Dunkerton [11], Fritts [15], and Sutherland [56] found.



6

Elastic Scattering

During elastic scattering the energy of the high frequency short waves in-

volved is mainly being transferred back and forth, acting to keep the high frequency

vertical wavenumber spectrum in the ocean in equilibrium, but not acting as a

mechanism actually taking energy from the lower frequency waves. This mechanism

therefore generally does not lead to short-wave breaking.

Parametric Subharmonic Instability

PSI can only occur when M2/2 is greater than the inertial frequency, or

Equatorward of 28.9◦. There has been a revival in the study of PSI as an effective

transfer mechanism since observations by Polzin, Toole, Ledwell, and Schmitt [46]

have shown energy at the M2/2 frequency. Then numerical simulations were done

by Hibiya, Nagasawa, and Niwa [30] as well as MacKinnon and Winters [36] where

M2 waves with coherent phases resulted in energy transfer time scales of days, which

would result in dissipation of the short-waves in deep water. But Olbers and Pom-

phrey [43] found that when these waves have random phases the result is energy

transfer time scales of hundreds of days. This is possibly because the theoretical

calculations of Olbers and Pomphrey [43] were based on an assumption that the

waves in question are in a statistical steady state with randomly distributed phase

and direction, which may not be appropriate near internal-tide generation sites.

MacKinnon and Winters [38] did simulations of M2 waves propagating pole-

ward, equatorward, and at the critical latitude. The simulations assume a ’hyper-

difusivity’, which cuts off any wave with a vertical wavelength smaller than 150

meters, as it is assumed such a wave will break and dissipate. Those waves which

are not cut off are absorbed at the ’thermocline’ (top layer of the simulation, sponge

layer). The simulations poleward of the critical latitude resulted in all the energy

being absorbed at the top layer: there was no energy dissipation throughout the

simulation. This is an idealized situation, as there must be other mechanisms work-

ing in the ocean because there is dissipation in the oceans poleward of the critical



7

latitude. MacKinnon and Winters mention these are the waves which propagate fur-

ther into the ocean and dissipate elsewhere. They find at the critical latitude, after

the simulation has reached a steady state, it shows energy dissipating in the first 1

km as the waves propagate upwards. Then there is a linear decrease up to about

3 km. This simulation displays the energy dissipating on a time scale of 2 days.

This coincides with the time scale of energy dissipation calculated using the formula

given by Staquet and Sommeria [53], L/U , where L is the vertical wavelength and

U is the rms horizontal velocity of the waves. If the time scale put forth by Olbers

and Pomphrey [43] were used, the waves would travel out of the simulation domain

before transferring energy to the small scales. The idealized simulation, with no

shear and no smaller scale waves, shows 80% of the energy input being dissipated in

the location of the critical latitude. Equatorward of the critical latitude MacKinnon

and Winters still find energy dissipation due to PSI, but less than at the critical

latitude. Here PSI transfers 40% of the initial wave’s energy to dissipation.

The latitude dependence of dissipation found from PSI follows the same

ideas as those found in Gregg, Sanford, and Winkel [22]: the mixing decreases with

decreasing latitude. They find when the same energy is input in the small-scale

internal waves at all latitudes, the lower latitudes result in less dissipation. This may

have to do with weaker background shears at lower latitudes. Results of MacKinnon

and Winters [36] imply an order-one dependence on latitude for the percentage of

generated energy lost in producing local mixing hotspots near tidal conversion sites

(St. Laurent and Nash [52] suggest on average 30% lost near hotspots). So PSI

dissipation rates range from 0% to 80% over a latitude range up to 28.9◦.

In the ocean, Nagasawa et al. [42] tested their earlier numerical experiments,

which showed that the energy cascade across the internal wave spectrum down to

small dissipation scales was under strong control by PSI. They used 106 expendable

current profilers in the North Pacific, including near the Aleutian Ridge (53◦ N,

165◦ W), the Hawaiian Ridge (22.8◦ N, 167.6◦ W), and the Izu-Ogasawara Ridge

(30◦ N, 144◦ E). The main conclusion was that at mid-latitudes (Equatorward of the
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critical latitude 28.9◦) there is significant enhancement of the 25 m vertical shear

over known locations of generation of semidiurnal internal tides, such as the ridges

above. At high latitudes this enhancement was not found. They found high vertical

wave number, near-inertial shear, as created by PSI, plays a key role in controlling

turbulent mixing processes.

A comparison is then made by Nagasawa et al. [42] between the internal

wave power spectrum measured and that of Garrett and Munk [19]. It is found that

at the lower latitudes (and lower depths) there is an increase in the ratio of Froude

numbers where Fr2
measured/Fr

2
GM is 4−6, whereas at the higher latitudes it is 1−3.

Even at the Izu-Ogasawara Ridge (30◦ N) it was seen that north of the location of

the ridge there was no significant increase in the above mentioned ratio, yet south

of the ridge there was. This relationship is consistent with PSI, which cannot occur

Poleward of 28.9◦.

Gregg [21] gave an empirical formula for the turbulent dissipation rate, which

Nagasawa et al. [42] used, but for a vertical shear with a vertical scale of 25 m

vertical shear (instead of 10 m). This dissipation rate is then used to estimate

the diapycnal diffusivity following Osborn [44]. Over the ridges below the critical

latitude of PSI the inferred diapycnal diffusivity reaches 2× 10−4m2/s. This is the

order of magnitude required to satisfy the large-scale advective-diffusive balance of

the meridional overturning circulation. It is better than previous microstructure

measurements carried out in the ocean interior where the diapycnal diffusivity was

estimated to be 10−5m2/s.

Hibiya, Nagasawa, and Niwa [30] used vertically two-dimensional numerical

simulations to test how energy supplied by M2 internal tides cascades through the

local internal wave spectrum down to dissipative scales. They looked specifically the

Aleutian Ridge (at 49◦ N) and the Hawaiian Ridge (at 28◦ N) because both generate

large-amplitude M2 internal tides. Two-dimensional Navier-Stokes equations under

the Boussinesq approximation were integrated with a finite-difference scheme by

applying centered differences and a leapfrog scheme. They input an instantaneous
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perturbation in the form of an energy spike at the lowest vertical wave number

and the M2 tidal frequency. They find that for the Hawaiian Ridge, because the

high vertical wave number, near-inertial current shear is intensified, high horizon-

tal wave number internal waves are efficiently Doppler shifted so that the vertical

wave number rapidly increases and enhanced turbulent dissipation takes place. The

elevated spectral density in the high vertical wave number, near-inertial frequency

band, which plays the key role in cascading energy to dissipation scales, is thought

to be caused by parametric subharmonic instability, PSI. In the Aleutian Ridge set

up this is not seen, as the M2 tidal frequency is 1.2 times the inertial frequency and

therefore free from PSI.

Luc Rainville [47] found observations of energy fluxes from FLIP indicate a

PSI-like mechanism occurring, but with a much shorter interaction timescale than

was originally thought possible for PSI. In both the near field and far field, the

energy flux in the diurnal band varies according to the presence or absence of strong

semidiurnal internal tides, and exhibits a more complex vertical structure (higher

modes) than the semidiurnal internal wave field. Because of the slow propagation

speed of the high modes and the synchronism mentioned, he interprets most of the

signal of the diurnal band to be at frequency M2/2, and a product of nonlinear

interactions of the M2 internal tide. This process might be PSI. Yet the short time

scale in the near field points towards a local and probably non-resonant mechanism.

The energy transfrerred to a new frequency propagates away from the interaction

region and is not available to transfer back to the original waves.

Furuichi, Hibiya, and Niwa [17] calculate bispectra in numerical simulations

of tidal energy transfer to show another type of triad interaction existing between

the lowest vertical wavenumber M2 internal tide and two nearly identical internal

waves with horizontal wavelengths of 0.5− 20 km and periods less than four hours.

Because the frequency and wavenumber of the M2 internal tide are both lowest

among the triad members it suggests this resonant interaction is induced diffusion.

But the amount of energy drained this way is an order of magnitude lower than by
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PSI.

MacKinnon and Winters [37] did an idealized numerical study of northward

propagating M2 waves which showed a dramatic loss of energy to small-scale sub-

harmonic instabilities near 28.9◦. After spinup, PSI acts as an effective filter of

northward tidal energy flux. Between 27.5◦ and 29.5◦ the steady-state northward

tidal energy flux drops from 1.6kW/m to 0.6kW/m. The instability growth is limited

at other latitudes in two main ways. First, the vertical group velocity of small-scale

subharmonic motions increases with distance Equatorward of the critical latitude

(as the subharmonic is increasingly super-inertial) leading to energy traveling hun-

dreds of meters vertically on a ten-day time scale. Energy flux divergences drain

subharmonic energy as it is generated, preventing the exponential buildup possible

at the critical latitude. Second, at lower latitudes there are additional terms in

the energy equation stemming from vertical velocity, displacements, and buoyancy

anomalies of the subharmonic waves which act to reduce the overall growth of the

subharmonic. Watanabe and Hibiya [62] also found that PSI increases energy at

the near-inertial frequency, which results in an increase in diapycnal diffusivity, but

only between 25◦ and 30◦. Thus within this latitude band PSI may enhance the

occurrence of interactions of short waves with unsteady shear.

I.B.2 Wave Interactions with Shears

Short waves interacting with shear profiles can also contribute to short-wave

breaking and the dissipation of energy in the ocean and atmosphere. The interac-

tion between steady shear and unsteady shear is dynamically different, and will be

covered in more detail later.

Steady Shear

One of the most widely studied mechanisms for the transfer of internal wave

energy to breaking scales is the critical layer. Critical layers are of interest be-

cause of the array of situations they present, the interaction of shear and buoyancy
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forces, fluid instability and stratified turbulence. Internal waves approach critical

levels as they propagate through larger-scale currents in the ocean and winds in

the atmosphere. A critical layer interaction occurs when internal waves encounter

a background shear and reach a state where the shifted frequency of the short wave

vanishes, generally resulting in absorption of the short wave into the mean flow at

the critical level. Depending on its initial amplitude, the short wave as it approaches

a critical layer may be almost completely absorbed by the mean flow, as the linear

theory of Booker and Bretherton [2] found for small amplitude waves, may be par-

tially reflected, as Winters and D’Asaro [65] found in numerical simulations, or may

break if it initially has sufficiently large amplitude.

Using theory and some supplemental experiments, Hazel [26] included the

effects of viscosity and heat conduction on a critical layer interaction. Hazel started

with the basic two-dimensional, steady, linear, Boussinesq equations of motion, and

then includes the viscosity and the coefficient of head conductivity. Viscosity and

heat conduction are more important than non-linear effects, and including them

results in a sixth order differential equation for the problem, which is not singular

at the critical level, but has non-negligible viscous solutions near the critical level.

The problem was solved assuming not only an input wave, but also a reflected and

transmitted wave, as well as two more viscous solutions both above and below the

critical layer, found using asymptotic analysis. Then the amplitudes were found

using the matching solution and its first five derivatives.

Hazel’s results agree with Booker and Bretherton [2]: the amplitude of the

wave transmitted through the critical level is severely attenuated, and when rescaled

to fit Hazel’s problem the same attenuating factor was found. The reflected wave is

non-existent when the most realistic initial conditions are used. The Reynolds stress

decreases approximately linearly through a region just below the critical level (when

the wave is traveling upward), until it has the constant small value it had above the

level. This decrease in stress below the critical level shows that the momentum

transfer to the mean flow takes place in this region. In short, Hazel finds the same
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factor of amplitude attenuation when accounting for viscosity and heat conduction

as has been previously found for inviscid, adiabatic critical layer interactions.

Thorpe [60] found viscosity plays an important role, though, when short

wave amplitudes are large enough to expect breaking. He studied critical layers

in an accelerating shear flow field using experiments and numerical solutions of a

model describing the weakly nonlinear development of the short waves. In the ex-

periments the floor has a sinusoidal corrugation, as opposed to the earlier triangular

obstacles used, and the internal waves that develop have a well defined wavelength

and are more amenable to theoretical description. The shear flow was created by

sharply tilting the tube through a small angle. Thickening dye lines show where the

slope was greatest. These strong slopes correspond to surfaces which are inclined at

increasingly shallower angles to the horizontal and are the most likely sites of grav-

itational overturn. Overturning occurred almost immediately above the troughs of

the corrugated floor, while the opposite occurred above the crests, resulting in a

Kelvin-Helmholtz looking profile. Yet there was no breaking, which Thorpe con-

cluded was because of the viscous damping, since in the corresponding numerical

simulations, where the effects of viscosity and diffusion were neglected, instabilities

at the critical level were seen.

The refraction of short internal waves by longer inertial scale waves is also the

main process modelled by Henyey and Pomphrey [27], Flatté, Henyey, and Wright

[14], and Henyey, Wright, and Flatté [28] (hereafter HP, FHW, and HWF respec-

tively),and Sun and Kunze [54, 55] in the ocean and in the atmosphere (Hines [32]).

The refraction models of HP, HWF and FHW assumed critical layer interactions

occur. Some major assumptions have been made in these models. The first is that

ray theory is applicable, or in other words the background waves or shear have

longer length and time scales than the shorter waves, and the background is not

affected by the short waves. This is not a bad assumption considering the large

difference in scales in the ocean between short waves and long near-inertial shears.

But time-dependence of the background wave was never introduced, the background
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was always a steady shear, which is not characteristic of the unsteady shears found

throughout the ocean interior. So the assumption that these time-dependent shears

may be modelled as steady shears is in question. Another drawback was that the

dissipation was calculated assuming the short waves broke when they reached a cer-

tain vertical wavelength, 5 meters. This may be a good assumption if the interaction

is definitely with a critical level, but if the waves are in an unsteady shear they may

refract to small wavelengths but stay intact. Finally, Henyey and Pomphrey did not

take into account the amplitudes of the short waves, which may not lead to a cor-

rect estimate of wave-breaking. Fritts [15] found that if the amplitude of the short

waves approaching a critical layer were small enough, no instability would occur at

all. Henyey and Pomphrey have also been able to match recent observations of the

latitude dependence of mixing in the ocean by Gregg, Sanford, and Winkel [22] and

Garrett [18]. But this may be purely because the dissipation model of Henyey and

Pomphrey depends on the energy in the Garrett-Munk spectrum, which decreases

at the lower latitudes, as does dissipation.

Gregg, Sanford, and Winkel [22] compared ocean data with the theory of

HWF [28] and found that the calculated dissipation rate very closely matches the

ocean field data. Although time-dependence of the background shear and amplitude

are not included in these calculations, it seems the model works well. The latitude

dependence of the model arises because the rate at which the evolving waves are

Doppler shifted depends on the ratio between their vertical and horizontal length

scales, which depends on their dominant frequency, which is slightly greater than

the Coriolis frequency, f and thus varies with latitude.

Winters and D’Asaro [64] performed high-resolution, two-dimensional numer-

ical simulations of an internal wave packet approaching a critical level. They were

able to compute accurately and carefully diagnose the internal wave propagation

and breakdown processes. They found that shear instabilities, and not convective

overturning, were the primary mechanism for breakdown, although the density field

contained statically unstable regions for several buoyancy periods prior to break-



14

down.

Later, Winters and Riley [66] found that the instability mechanism is fun-

damentally three-dimensional in nature and exhibits both shear and convective dy-

namics. They solved the ray equations using a Runge-Kutta scheme. Then they

also solve the sixth-order stability equation. The setup has strong shear regions

coincide with stable stratification while weak shear regions coincide with unstable

stratification.

The strong shear inhibits any streamwise convective instabilities, but span-

wise convective instabilities exist when three dimensions are considered. These can

grow and it is concluded that instability behavior is expected to be fundamentally

three-dimensional when both shear and convective effects are important. The two-

dimensional shear-driven instability studied by Winters and D’Asaro [64] occurred

suddenly after many buoyancy periods during which unstable stratification existed.

During this time the wave continued to shrink in scale and intensify its shear. The

vertical scale at which instability did occur may have been smaller than if the wave

were modelled in three dimensions. Thus it is possible that the energy partition and

mixing efficiency of wave-breaking events will be biased by the two-dimensionality

constraint.

Winters and D’Asaro [65] extended the three-dimensional work by study-

ing the prediction of linear stability theory (that instability should develop through

convective rolls oriented spanwise to the ambient shear) and quantifying the distri-

bution of energy between various components of the flow field (incident and reflected

waves, mean flow, mixing, and dissipation). It is known that the vertical wavenum-

ber of the test wave increases dramatically through interaction with the ambient

shear, and Winters and D’Asaro also expected that wave instability will produce

turbulent flow at even smaller scales.

The critical layer is studied through a numerical simulation of an initial value

problem using both large and small amplitude wave packets. Winters and D’Asaro

used large-eddy simulations with damping. The early propagation, critical layer
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interaction, and subsequent trapping of wave energy near the critical level is two-

dimensional. But three-dimensionality develops by transverse convective instability

of the two-dimensional wave. The initially two-dimensional flow eventually collapses

into quasi-horizontal vertical structures. It is found that one third of the initial

energy reflects, the same amount joins the mean flow acceleration, and the last third

cascades to small scales and is dissipated. Although this specific budget depends on

the wave amplitude, it is clear that when both convection and shear are important

three-dimensional dynamics may be important.

Unsteady Shear

Realistic environments have more complicated effects, such as time-dependent

and three-dimensional shear. When the background shear is time-dependent, instead

of short waves being absorbed, reflected, or breaking at a critical layer, the short

waves are strongly refracted to different vertical wavenumbers, thus changing their

group and phase speeds. Strong refraction occurs when the group speed of an in-

ternal wave is equal to the phase speed of the longer inertial wave. These locations

of strong refraction are called caustics and the interaction may be represented by

short waves propagating through longer waves in the ocean. Time-dependence of

the background flow is important because it removes the constraint that the abso-

lute frequency must be constant along the ray. In a steady horizontal shear flow

this constraint forces the frequency to return to the same value whenever the back-

ground horizontal velocity is zero, preventing permanent changes which can occur

when the background shear is time dependent. The time-dependence also eliminates

the occurrence of critical layers, which would otherwise be important for short-wave

dynamics.

Broutman [3] was motivated to study interactions of short waves with time-

dependent shears by a collection of observations and calculations including: obser-

vations by Pinkel 1983 and comments from T. B. Sanford indicating the presence

of many groups of downward-propagating inertial waves in the upper ocean; and



16

understanding how critical layers are modified when the background flow is time

varying. Hence Broutman [3] used ray tracing theory to investigate the interaction

between a single short wave packet and an inertial wave, making many of the same

assumptions as Henyey and Pomphrey, except using a time dependent inertia wave

with arbitrary amplitude. Broutman found that when a more realistic background

wave velocity (ocean values are of the order 20 m/s) is used, short waves that ini-

tially satisfy the condition of strong refraction, c = cg, are trapped in low-shear

regions and have little to no change in final wavenumber. If the short wave initially

has cg � c then he saw a decrease in final wavenumber, on average. It makes sense

that those waves that will make it out of the background wave will be those with

low wavenumber and large group velocity because they will have the speed to escape

the background near-inertial packet. Broutman discovered the strongest focusing of

the short waves occurred near locations of strong refraction by unsteady shear, not

critical layers. Thus strong interactions with a time-dependent background trans-

port wave properties to lower wavenumbers. This is opposite to weak-interaction

theory, which predicts transport to high wavenumbers. It also seems that there is

more energy in the test wave after its interaction with the inertial wave, resulting

in a damping of the downward-propagating group of inertial waves. Broutman [3]

found although there is a large net increase in the energy density of the wave, there

is a net decrease in both energy and the wave action because the group of test

waves has a larger volume after its interaction with the near-inertial wave packet.

Broutman, Macaskill, McIntyre, and Rottman [5] found that through refraction the

short waves may exit the time-dependent shear group with a full spectrum of verti-

cal wavenumbers. Observations of overturning near Point Argüello, California lead

Alford and Pinkel [1] to believe overturning, as characterized by a jump in strain

rate followed by a return to normal values, may result when small-scale internal

waves propagating through a slowy varying background flow become unstable.

Bruhwiler and Kaper [7] used ray tracing to better understand the evolution

of a distribution of short waves interacting with a single long wave. They defined a
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frequency spectrum using the number of waves at each frequency. Each of the short

waves has the same amplitude, so more waves are necessary for short-wave fre-

quencies which contain more energy. Starting with a realistic short-wave frequency

spectrum they found that after a single interaction with a long wave the short waves

generally refracted to a higher frequency. This corresponds to a decrease in vertical

wavenumber, leading to a decrease in probability of the short-wave breaking after

the encounter. Also, through their theory and simulations they expect a flat slope

for the short wave frequency energy spectrum, which was initiated with a −2 slope

on a log plot, if waves are sent through an inertial wave. But all their tests are

linear, the test wave amplitude and horizontal wavenumber are kept constant, and

they only test the interaction of upward propagating test waves with a single inertial

wave, so the resulting flat energy spectrum may not be representative of realistic

conditions in the oceans and atmosphere.

In the atmosphere, Eckermann [12] focused on the omission of the propaga-

tion of the other waves in the spectrum when determining the Doppler spreading

by a given gravity wave. This approximation has been shown to be invalid as waves

are refracted to shorter scales. So ray theory is used to study short-wave refrac-

tion within propagating long-wave fields. They find that although turning levels are

common, critical levels do not occur if there is no mean wind shear and the waves

propagate upwards. Thus the sharp increase in probability of wave breaking beyond

the previously decided cutoff vertical wavenumber no longer occurs.

Hertzog, Souprayen, and Hauchecorne [29] use ray paths and an experiment

to test the vertical evolution of the vertical wavenumber spectrum in the atmo-

sphere. They start with a background flow produced by both long waves and bal-

anced motion (baroclinic eddies) and launch rays at a constant altitude but with

differing vertical wavenumbers and frequencies. The interaction captured by the ray

techniques produces an efficient net spectral transfer of wave energy and is almost

entirely responsible for the formation of the observed spectra.

Sun and Kunze [54, 55] included vertical divergence of the background and
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found that it sped up the refraction of the short waves toward small dissipating

scales and hence increased the predicted dissipation rate of the HWF model to a

value closer to reality.

Sartelet [49, 50] investigated the interaction between single short waves and a

single long wave using ray-tracing and two-dimensional numerical simulations in the

atmosphere. She compared interactions between short and long waves travelling in

the same direction, resulting in critical layer interactions, and in opposite directions,

resulting in caustic interactions, to short waves interacting with a steady background

shear, resulting in a steady critical layer interaction. Using these comparisons she

addressed reflection and transmission of the short waves, the effect changes in the

long wave phase speed and amplitude, and the vertical wavenumber cutoff for short

wave breaking and resluting dissipation.

Her results for a short wave propagating in a steady shear show that as

the frequency of the short wave increases the more likely the short wave is to be

totally or partly reflected because of Doppler shifting. When the background is a

long wave though, the transmission and reflection of the short wave depend on the

direction of the phase speed of the long wave. If the long wave phase speed is in the

same direction as the short wave group speed the transmission and reflection are

smaller, but if the phase and group speeds are in opposite directions the transmission

and reflection are larger. When the phase speed of the long wave is decreased the

interaction between the short and long wave is weaker. It is not completely clear

whether this is because of the increase in the vertical wavenumber of the long wave,

or because of the resulting decrease in amplitude of the long wave in order to keep the

minimum background Richardon number constant. These are interesting statistical

results of short and long wave interactions, and they raise questions about what is

happening during locations of strong refraction in short-long wave interactions that

causes these differing results.

Sartelet [49, 50] calculated wave breaking due to refraction of the short waves

by either a steady shear or internal waves of realistic scales through a mixed shear
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and convective adjustment scheme, in which breaking is modeled via both convective

and Kelvin-Helmholtz instabilities. She compared the wavenumber cutoff of the

short waves (the wavenumber at which the short wave would break) in each case

and found when the background flow is time independent (steady shear) there is a

sharp transition, at a particular calculated vertical wavenumber, when short waves

break and are dissipated. In the cases with a time-dependent background there is no

distinct vertical wavenumber of the short waves at which breaking is certain, but her

results show breaking is most probable at locations of strong refraction (caustics or

critical layers depending on the directional relationship between the long and short

wave). She estimates that wave-breaking during interactions when the background

is time dependent will occur much less often than when the background is time

independent. So using the assumption of steady-shear in the atmosphere may lead

to an overestimate of dissipation. This extends to the ocean in that the time-

dependence of background shear is a significant factor in the wave-breaking leading

to mixing in the ocean.

I.C Summary and Outstanding Issues

We see that to keep the balance of the general circulation in the ocean there

is approximately 2 TW of energy dissipation necessary in the deep ocean. The

generation and breaking of internal waves over topography may be an important

part of this. It has been shown internal wave energy is enhanced over topography,

some of which contributes to immediate mixing, and some which propagates away to

contribute to mixing elsewhere. It is not yet understood exactly how this mixing is

occurring. Of the types of wave-wave interactions, PSI and induced diffusion are the

most capable of transferring energy between waves of different frequecies. Although

PSI seems to occur in laboratory and numerical simulations, the strength of the

mechanism depends on the coherence of the initial wave train. There is not strong

observational support of PSI and it can only occur equatorward of 29◦ latitude.
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Also, once these waves have broken down into two waves of half the frequency, they

may or may not be down to breaking scales. These waves may still need to interact

with other background phenomenon to reach breaking scales and dissipate their

energy.

Historically, induced diffusion has been the most successful mechanism in

describing the high-frequency wave spectra in the ocean and the spatial dependence

of dissipation. The process of internal waves propagating to waves of short enough

scales where breaking may occur is a type of this mechanism, but is not yet fully

understood. Henyey and Pomphrey made some assumptions about the dissipation

of short internal waves as they reached smaller scales which are still being used in

some models today. But these dissipation estimates do not take into account the

time-dependence of the shear in the ocean and assume a cutoff for wave-breaking

based on time independent background shears in the ocean.

Field data have shown that time-dependent shear profiles are more likely to

be occurring in the ocean than time-independent shears. Inertial waves created by

strong winds at the surface of the ocean propagate downward through the ocean,

providing a time-dependent shear for the broad spectrum of wavenumbers present

in the upper-ocean to propagate through. Thus it is important to study the effect

of time-dependent shear on internal waves, in addition to steady shear, and under-

stand their similarities and differences in the dynamics of the interaction if we are

to understand why these past models have worked. It is also important to follow

the short waves past the previous assumed cutoff vertical wavenumber for break-

ing, because when the background flow is time dependent the short waves do not

necessarily continue to get smaller and smaller once they reach a certain vertical

wavenumber. The short waves may interact with the background wave again, as it

is changing in time, and refract to a longer wave, which will not break.

This study will focus on those short waves which may be reaching small

breaking scales, since assumptions of steady shear in the ocean may not be accurate.

Therefore in this thesis the main mechanism explored to transfer short waves to
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smaller scales is specifically at induced diffusion, including refraction by steady and

unsteady shear. The most basic level, studying the dynamics of individual wave-

wave interactions utilizing both numerical and observational techniques, will be

covered first. This may give insights into why the more complicated models work

so well, and how they might be improved in the future. The background shear will

be time-dependent in order to to model a more realistic ocean, which has strong

near-inertial shears. Then a statistical analysis of a number of waves propagating

through a number of inertial waves is carried out, as this is more realistic than the

previous work which has covered only a set of short waves propagating through a

single inertial wave, with a single realization. Then observational data is analyzed

in an attempt to understand the mechanisms which may be affecting the flow in a

particular area of the ocean. Then the signature of this mechanism will be compared

to ocean data to see if short-waves propagating through near-inertial shear may be

occurring.

I.D Research Objectives

The general objective of this work is to increase the understanding of high

frequency, short-scale wave interactions with shears in the ocean. This work will

broaden the scope of previous work through analysis of theory, simulations, and

comparisons to and analysis of observational data. The main goals of this work are

outlined below:

• Achieve a better understanding of a single short wave propagating through

a time-dependent shear (in the form of an inertial wave), including how the

short waves propagate, what happens when they strongly refract, and where

they may reach small enough scales to break and dissipate.

Investigate, in depth, the changes in short waves as they are refracted strongly

by a longer wave. Study changes to the short wave parameters at the location

of strong refraction, and compare these dynamics to those of an interaction
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with a steady shear background. Test validity of ray tracing resluts through

fully nonlinear numerical simulations.

• Understand how a distribution of short waves will interact with more compli-

cated time-dependent shear, whether the general trend will be toward break-

ing.

Perform a statistical study using two-dimensional ray tracing and adiabatic

invariance theory to calculate different spectra of short waves propagating

through a number of inertial waves. Test a distribution of short waves prop-

agating through a distribution of inertial waves, as of course many waves are

present in the ocean, with energy in the spectrum accounted for by the number

of waves (each with the same amplitude).

• Relate numerical simulations to observations, creating a map of the possible

ocean profile if the main occurence were short waves interacting with inertial

waves.

Compare data collected over Kaena Ridge, Hawaii, supplied by Professor Rob

Pinkel, to the ray tracing and numerical simulations of both the single packet

interactions and the statistical study. Relate numerical simulations to collected

observational parameters to find footprint of these short-long wave interactions

occuring in the ocean

I.E Dissertation Outline

The technical content of this dissertation is arranged into six further chapters:

• Chapter 2 presents a description of the dynamics of a single small-scale wave

interacting with a time-dependent background shear in the form of a back-

ground long-wave of inertial frequency.

The basic problem is introduced and parameters are defined. The mathemat-

ical formulation for the ray theory and fully nonlinear numerical simulations
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are included, specifically the governing equations and solution method are dis-

cussed. We then solve the equations for a single interaction between a short

and long wave. We carry many important parameters through the analysis,

including the amplitude of the short wave as it propagates and the changes

in the short-wave vertical wavenumber. These parameters are compared to

results of an interaction of a short wave with a steady background shear. The

differences are clear and show that time-dependence in the background shear

can make a significant difference to short-wave behavior. The results lead to

an understanding of the necessity of including background time-dependence

in future modeling efforts.

• Chapter 3 presents a statistical study of sets of short waves propagating

through sets of inertial waves.

The problem formulation is much like that in the previous chapter, but many

simulations are run in order to find a statistical analysis of what a number of

waves will do when being refracted by a time-dependent background. In the

ray tracing simulations we include thousands of rays propagating through a

number of inertial waves to understand the results of having a broad range of

internal waves present. These waves are then distributed in frequency space as

they may be in the ocean and the results are compared to those of a random

set of initial waves. Adiabatic invariance theory is also used to compute the

same statistics. The results compare well and we conclude there are significant

changes to the short-wave frequency spectrum after the short waves a single

or multiple times with the inertial wave packet.

• Chapter 4 presents an analysis of observational data and compares the results

to the numerical studies presented in the previous chapters.

First there is an overview of the data collection process and location of the

observations necessary to put the results into the correct context.

A detailed mathematical description of the data analysis (coherence, phase,
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etc.) is presented. Then the results of these analysis are discussed. Then we

compare these results to those of the fully nonlinear numerical simulations and

ray tracing. We find some parameters coincide and believe we are seeing strong

interactions between short waves and inertial waves. There are also some

results which lead us to the conclusion that these are not the only interactions

occurring at this location, as we would expect.

The wave-breaking criteria is also outlined and we create a wave-breaking

map for short waves propagating through inertial waves. This is a signature

of what one may see in the ocean if the proposed short-long wave interactions

are occurring. If such relationships are not strong, it is possible this mechanism

of leading waves to breaking is not dominant in that particular location.

• Chapter 5 concludes the dissertation with a summary of significant findings

of this investigation. Through the simulations and observational analysis we

have found considerable evidence that interactions of short internal gravity

waves with time-dependent shears are vastly different from interactions of

these waves with time-independent shear. These differences lead to different

probable locations of wave breaking of the short waves, and in some instances

breaking will not occur where it was previously thought to if a steady shear was

present. These new locations calculated for wave breaking of short waves, as

well as calculations of short wave activity, coincide well with breaking locations

and short wave activity calculated for data from observations.

Suggestions for further work are also discussed.
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Dynamics of a Single Short - Long

Wave Interaction

We compare the results of ray tracing to numerical simulations. We also

discuss the differences between the dynamics of an interaction between a short wave

and a steady background shear, and the interaction of a short wave with an unsteady

background shear (long inertial wave).

After the basic setup of the problem is described, the governing equations

for ray theory are shown, and the equations necessary to solve the fully non-linear

problem are also described. Then the results are presented for both the ray tracing

and numerical simulations. There are three general outcomes for different short wave

packets propagating through a longer wave packet. These are called first, second,

and third kind encounters. The dynamics of each will be described in more detail

throughout the chapter.

II.A Idealized Problem Set-up

In the numerical simulations and ray tracing we consider the situation in

which a single packet of short waves approaches a single packet of inertia waves

either from above or below. Fig. II.1 depicts the initial wave situation with the

25
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Figure II.1: Schematic of a short wave packet approaching an inertia-wave packet
with basic parameters shown.

short wave below the inertia wave in this case. The coordinate system is (x, y, z)

with z positive upwards.

The waves of the inertia-wave packet have wavenumber K = (0, 0,M), where

M = 2π/λi and λi is the vertical wavelength of the inertial wave. The frequency

of the background is defined as the Coriolis or inertial frequency, f , thus the name

inertia-wave. The Coriolis frequency is defined by the rotation of the earth, which is

approximately 1 cycle/day, but decreases as you travel from the equator poleward.

We will assume it is constant. We also define an inertial period as Ti = 2π/f .

The velocity field of the inertia-wave is a purely horizontal, time-dependent current

u = (u, v, 0) extending infinitely far in the horizontal, but confined in the vertical

by a Gaussian envelope:

u+ iv = u0 e
−z2/L2

ei(Mz−ft) (II.1)

where L, the envelope size, and u0, the maximum horizontal velocity of the back-

ground, are constants, real and complex respectively.
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The short waves can be defined by their vertical displacement field:

ζ(x, z, t) = Re
{
ζ0 e

−(z−z0)2/`2ei(kx+ly+mz−ω̂t)
}

(II.2)

where `, the short wave envelope size, and z0, the initial vertical position of the short

wave, are real constants and ζ0 is a complex constant. The vertical displacement of

the short waves can also be written ζ = ζ0 exp(iθ) exp−(z − z0)
2/`2, from which the

wavenumber and wave frequency are given by k = ∇θ and ω = −θt, respectively,

and where ω = ω̂ + ku.

The wave-energy density E is related to ζ0 by

E =
1

2
ρ0ζ

2
0N

2

[
1 +

(
fm

Nk

)2
]

(II.3)

where ρ0 is the mean density of the fluid. The wave-action density A = E/ω̂.

The short waves have wavenumber k = (k, l,m), with k constant, and intrin-

sic frequency ω̂, which is the Doppler-shifted frequency, which are related through

the dispersion relation

ω̂2 = (N2k2 +N2l2 + f 2m2)/(k2 + l2 +m2) (II.4)

which simplifies to

ω̂2 ≈ N2k2

m2
(II.5)

when f 2 � ω̂2 � N2 and l = 0. We take k and ω̂ to be positive, and allow m to

have either sign. N is the Brunt-Väisälä buoyancy frequency, related to the natural

frequency of a particle if it were displaced from its equilibrium position within a

stably stratified fluid. It is a measure of the strength of stratification of the fluid,

the larger N is the stronger the stratification. Where N2 is defined as

N2 = − g

ρ0

dρ

dz
(II.6)

and g is the acceleration of gravity and ρ0 is the mean density of the fluid.

Other important parameters of the problem which are necessary to define in

order to understand the following equations include the group and phase speed of
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the short wave packets. The group velocity, cg, is defined as the velocity at which

the short wave packet travels. The energy travels at the group velocity.

cg =
∂ω̂

∂k
. (II.7)

The phase speed, c, is the speed at which the phases of the short wave travel

through the group. For internal gravity waves the phases travel perpendicular to

the direction in which the group velocity travels.

c =
ω̂

k
. (II.8)

II.A.1 Initial conditions

For the fully nonlinear numerical simulations the computational domain con-

tains one horizontal wavelength of the short waves in the horizontal direction and

one vertical wavelength of the inertia waves in the vertical direction. There are 512

grid points in the vertical direction, but only 8 grid points in the horizontal direc-

tion. The low horizontal resolution suffices for this problem – as has been verified

by tests at higher resolution – because the short waves, though strongly refracted,

are not strongly amplified, and remain well below breaking threshold. Periodic

boundary conditions are imposed in both the x- and z-directions. The maximum

wave-steepness ∂ζ/∂z of the short waves over the duration of the simulation is only

about twice its maximum value at the initial time, chosen to be 0.1. No viscos-

ity or filtering was necessary to stabilize the calculation. (An initial steepness of

0.2, however, leads to computational instability at this resolution if no filtering is

employed.)

For the numerical results shown, we use the following parameter values, which

are characteristic of internal waves in the deep ocean at mid-latitudes: M/k = 2,

N/(Mu0) = 2.4, and N/f = 75. In the ray-tracing integrations to catagorize the

types of interactions possible we use ML = 2π. For the numerical simulations,

the initial steepness |ζz| = |mζ0| = 0.1, where subscript z represents the partial

derivative with respect to z, ML = π/5 (this value will be used in the ray tracing as
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well to compare to numerical simulations), and `/L = 0.75. We will use the typical

value M = 2π/(100 m) in the deep ocean and f = 10−4 s−1, which with the above

parameters yields u0 = 0.05 m s−1.

II.B Ray Theory

Using ray theory we can calculate approximately the behavior of the short

wave encounter with the inertial wave group. To do this we assume that the inertial

wave is both unaffected by the short wave interaction and has a much larger length

scale than that of the short wave. Also we assume the short wave is determined by

the linear dispersion relation. Then an evolution equation in characteristic form can

be found for k.

II.B.1 The ray equations

The ray tracing equations are a set of equations that define the path on which

a short wave packet will travel. Therefore the group speed of the short wave packet,

cg, is defined as the change in spatial location over time:

dx

dt
= cg . (II.9)

The equations for wavenumber and wave frequency mentioned earlier, k =

∇θ and ω = −θt, respectively, where ω = ω̂ + ku, will help define the second main

ray equation. If we switch to the inertial-wave reference frame, which is important

for the Doppler shifting, the short wave frequency becomes

Ω = ω̂ + ku− Cm (II.10)

where C = f/M is the phase speed of the inertial wave.

We then relate these equations for wavenumber and wave frequency by taking

the time derivative of k and setting it equal to the spatial derivative of Ω. Then
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(∇θ)t = kt (II.11)

∇θt = ∇Ω . (II.12)

Then:

kt = ∇Ω . (II.13)

We are mainly interested in the changes in the vertical, as the background

long wave which is purely horizontal will only effect the vertical wavenumber of the

short wave. For the vertical position of the ray path and the vertical wavenumber

respectively:

dz

dt
= cg,

dm

dt
= −k∂u

∂z
. (II.14)

Here d/dt = ∂/∂t+cg∂/∂z. Because the expression (II.1) has no dependence

on x, the horizontal components (k, 0) of the wavenumber of the short waves are

conserved along the ray. Thus k is constant. To predict wave steepness a set of addi-

tional equations based on wave-action conservation is integrated. These equations,

which are described by Broutman [3] and here below, make consistent allowances for

structure near caustics in view of its likely importance for wave-breaking thresholds.

The following three equations furnish the ray amplitude:

dV

dt
= VGmm

∂m

∂z
, (II.15)

d

dt

∂z

∂z0

= Gmm
∂m

∂z0

, (II.16)

d

dt

∂m

∂z0

= −Gzz
∂z

∂z0

, (II.17)

where ω(z, t) = G(m, z, t). We use G and denote partial derivatives by subscripts

when m is to considered with z and t as an independent variable. Since there are

frequent caustics, the ray equations are expressed in terms of V, which measures

the volume of a ray tube and hence vanishes at the caustic. The quantity V is

essentially the inverse of the wave-action density, the only difference being that V
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changes sign each time the ray intersects the caustic. In (II.16)-(II.17) we treat

m and z as functions of their initial position z0. The solutions of (II.16)-(II.17)

combine to give
∂m

∂z
=
∂m/∂z0

∂z/∂z0

(II.18)

which is required to integrate (II.15). The full expressions for (II.15)-(II.17) include

terms proportional to Gmz, which is zero under present assumptions (as of course is

Gx). More information on the amplitude integration was accomplished by Broutman

[3], whose implementation is based on the theory of Hayes [25].

II.B.2 Caustics and Critical layers

We now turn to the problem of computing short-wave amplitudes at ray

singularities known as caustics, which occur in this problem near depths where

cg = c. Caustics occur where the slowly-varying assumption on which ray-tracing

is based, breaks down, producing infinite amplitudes that do not occur in the full

linear problem. We consider two measures of the short-wave amplitude: the wave-

steepness, defined as ζz, where ζ is the vertical displacement of the short waves;

and a component of the wave-induced shear u′z, where u′ is the x-component of the

particle velocity of the short waves.

In the ray approximation, the wave-steepness ζz has a magnitude |mζ0| that

reaches unity when the short waves are about to overturn. For ω̂ � N , the wave

steepness is related to the wave-action density A by

|ζz| = k (2/ρ0)
1/2 A1/2 ω̂−1/2 . (II.19)

This is derived from the dispersion relation and (II.3). The wave-induced shear u′z

is related to the wave-action density in the ray approximation by

|u′z| = Nk(2/ρ0)
1/2ω̂−1/2(1− f 2/ω̂2)−1/2A1/2 (II.20)

when ω̂ � N . The values of |ζz| and |u′z| are in fact computed in our ray integrations

from the more general formulae in which the low frequency approximation ω̂ � N
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is not made. It suffices to plot only |u′z|, since when normalized by their initial

values the above solutions for |u′z| and |ζz| differ only by the multiplicative factor

N(1− f 2/ω̂2)−1/2, which is a function of z.

The short-wave amplitude near a caustic can be estimated by applying stan-

dard Airy-function techniques to the case of a purely sinusoidal inertial wave in

which the frequency Ω defined in (II.10) and the wave-action flux B defined in

(II.24) are constants. Let the ray solution be given in the form

a = a0(z, t)e
iθ (II.21)

where k = ∇θ and |a2
0| = A is the wave-action density. Let the amplitude near

the caustic be of the form A0Ai(ρ), where Ai is the Airy function and ρ is a non-

dimensional distance from the caustic. Then as Broutman [3] showed,

A0 = |πB|1/2

(
32

Ω2
mmΩz

)1/6

(II.22)

where Ωmm and Ωz are evaluated at the caustic. Making use of (II.5) reduces (II.22)

to

A0 =

∣∣∣∣2πBkN
∣∣∣∣1/2

Ri1/12
c |mc| (II.23)

where we define Ric = N2/uzc
2 to be the Richardson number, a nondimensional

parameter relating the potential to kinetic energy, at the caustic.

II.B.3 Analytic ray solutions

An analytic ray solution describing short-wave refraction by inertia waves

appears in Broutman and Young [6] and is obtained by letting L approach infinity

in (II.1). The inertia-wave velocity u is then purely sinusoidal. In a reference

frame moving at the inertial-wave phase speed c, the inertial current appears steady.

Solutions then exist for which the short-wave frequency in the inertial-wave reference

frame, Ω, and the vertical flux of wave-action in the inertial-wave reference frame

B = (cg − c)A (II.24)
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are constants.

For our idealized model, caustics occur when

cg = c . (II.25)

Though derived for the case of infinite L in (II.1), (II.22) and (II.23) probably

give reasonable approximations when the inertia waves are localized by an envelope,

provided that B and Ω vary slowly, on the envelope scale L. Both B and Ω are

easily computed during the ray integration, so this slowly varying assumption can

be checked, and if satisfied (II.22) can be used to estimate the maximum amplitude

near the caustic from the numerical ray solutions.

A simplification of (II.23) is appropriate when the refraction is strong enough

to make |m| � |mc| on one side of the caustic. Then cg � c and the conservation

of wave-action flux (II.24) forces A to be approximately constant. Let that value be

A∗. Substituting B ≈ cA∗ in (II.23) and using

mc ≈ −
(
MkN

f

)1/2

= −
(
kN

c

)1/2

. (II.26)

gives a relationship between A∗ and the caustic amplitude A0

A0 = (2π)1/2Ri1/12
c (A∗)

1/2 . (II.27)

The Airy function attains the maximum value of approximately 0.54 near the caustic.

Thus a caustic-correction formula relating the maximum wave-action density Amax

near the caustic to the ray prediction A∗ is

Amax ≈ 1.8Ri1/6
c A∗ . (II.28)

To determine the corrected value for |u′z| near the caustic, we start with

the caustic correction for the wave-action density A in (II.24). The subscript max

denotes the maximum corrected value near the caustic, making the appropriate Airy

correction and taking into account the fact that the Airy function reaches its peak

on the illuminated side of the caustic. The subscript c denotes the value right at
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the caustic, and Ri = N2/uz
2. A∗ is the value of A away from the caustic in the

direction along the short-wave ray of decreasing vertical group speed cg. We shall

see in the next section that the wave-action density quickly approaches the value of

A∗ where cg � c.

Next we assume that near the caustic, |u′z| is related to A by the same ray for-

mula (II.20) that relates |u′z| and A away from the caustic. The justification behind

this assumption is that the Airy function correction valid near caustics associated

with cg = c describes the envelope of the short waves, and within this envelope the

short waves are sufficiently slowly varying that the ray-theory relationship between

A and |u′z| still holds to a first approximation. Using (II.24) to evaluate (II.20) near

the caustic gives

|u′z|max ∼ Nk(2/ρ0)
1/2×

1.81/2Ri1/12
c A∗

1/2ω̂c
−1/2(1− f 2/ω̂c

2)−1/2 . (II.29)

Introducing the subscript zero to denote an initial value, we then obtain

|u′z|max

|u′z|0
=

1.81/2Ri1/12
c

(
A∗

A0

)1/2
ω̂0

1/2(1− f 2/ω̂0
2)1/2

ω̂c
1/2(1− f 2/ω̂c

2)1/2
. (II.30)

All quantities in (II.30) are easily determined in the numerical ray integra-

tions. We do not actually match the ray solutions to the Airy function. Instead we

simply show plots in which the solution for |u′z| near the caustic is clipped to the

maximum value as calculated from (II.30).

After a strong refraction at the caustic, the properties of the short wave

change. The vertical wavenumber increases (decreases) and the frequency decreases

(increases), resulting in a decrease (increase) in vertical group speed of the short

wave packet. A cartoon of this idea is shown in Fig. II.2. Each drawn short-long

wave set is a different snapshot in time and shows how after a strong refraction the

previous explained changes occur to the short wave packet.
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Figure II.2: Schematic of a short wave packet propagating through an inertia-wave
packet. Dot-dashed line corresponds to the ray. Each short and long
wave drawn is for a different snapshot in time.

The vertical wavenumber mc of the short waves at the caustic is defined by

equation (II.26), which is derived using cg ≈ kN/m2, which follows from (II.5). In

this approximation Broutman and Young [6] find from (II.10) that the value of u at

the caustic is

uc ≈
Ω

k
− 2

(
Nc

k

)1/2

. (II.31)

Although substantial refraction occurs in many cases for both the free and

trapped solutions, the strongest focusing, where a defined ray tube shrinks in diame-

ter, of the short-wave rays occurs at the caustics, where the ray tube will vanish, and

these are found only in the trapped solutions. Therefore the trapped solutions are of

special interest and are singled out for additional discussion in the next subsection.

A useful result for inertia wave packets of finite length can be obtained by

noting that typically in our calculations Ω takes approximately the same value before

and after the encounter. This implies that large permanent changes in the vertical

wavenumber of the short waves can result from the encounter, as we now show. Let

the subscript i denote an initial value, before the encounter, and the subscript f

denote a final value, after the encounter. Then since ui and uf are zero, outside the

envelope of the inertia wave Ωi = Ωf implies from (II.10) that(
kN

mfmi

+ c

)
(mf −mi) = 0 , (II.32)
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where again we have used the approximation (II.5). Thus mf = mi is one possible

outcome of the encounter. Alternatively the first factor in (II.32), using (II.26) gives

mf

mc

=
mc

mi

. (II.33)

II.C Numerical ray solutions

We have calculated numerical solutions of the ray equations for a wide variety

of short-wave and background inertia wave groups. For a slowly varying packet of

inertial waves, these numerical ray integrations indicate that the analytical solutions

for the special case of an inertia-wave train provide useful approximations. Caustics

coincide approximately with cg = c; and the frequency Ω varies slowly along the ray

– more slowly than variations in m or ω̂ (see Figs. 5 and 6 of Broutman [3]).

Encounters between short waves and inertia waves, in which cg = c is satisfied

at some stage during the encounter, can be divided into three classes depending on

the value of c and on the initial value of cg, say cg = cg0 at t = 0. Sample ray

calculations for these three classes, which we will refer to as encounters of the first,

second and third kinds, are described in the next three subsections.

II.C.1 Encounters of the first kind cg0 � c

In the first-kind encounter the short-wave group approaches the inertial-wave

packet with small vertical wavenumber and large vertical group velocity. The initial

wavenumber in this example is m = −3k, giving the initial values ω̂ ≈ 24f and

cg ≈ 17c. The results of the ray integration are plotted in Fig. II.3. In each case the

time, in inertial periods, is given on the horizontal axis. The depth of the ray path

(upper left) is measured in wavelengths of the inertial wave (λi = 2π/M) relative

to the center of the inertial-wave packet at z = 0. The wave-action density A and

short-wave shear |u′z| are normalized by their initial values.

The shaded, quasi-elliptical regions in Fig. II.3a show the phase propagation

of the inertia waves: more precisely, the long axis of each shaded region marks the
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Figure II.3: An encounter of the first kind: (a) the ray path, where the boundaries
of the shaded, quasi-elliptical regions mark the locations where, at a
given instant t, the strong-refraction condition cg = c can be satisfied
(see text); (b) the wave-action density of the short waves, normalized
by its initial value, with the dotted line indicating the singular ray so-
lution, and the solid line clipped to indicate the maximum value, Amax,
near the caustic, where A∗ = 15.5; (c) the vertical wavenumber (solid
line) and intrinsic frequency (dashed line); (d) the short-wave shear |u′z|
normalized by its initial value, with the dotted line indicating the sin-
gular ray solution and the solid line clipped to indicate the maximum
amplitude near the caustic. All plots have the same horizontal axis, the
time in inertial periods.
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spacetime locus of a crest or maximum in the u field of the inertia wave. Each quasi-

ellipse, i.e., the boundary of each shaded region, marks the approximate depths and

times (to leading order in the slow-modulation approximations for the wave packets)

at which cg = c can be satisfied for the given wave parameters.

Since the initial vertical wavenumber of the short-wave group in this example

is mi ≈ mc/4, we expect from (II.33) that some short-wave groups entering into the

inertial-wave packet at a different phase of the inertial wave will emerge from the

encounter with their wavenumber increased by a net factor of about 16. Only in

a small number of cases, however, does the final wavenumber actually increase in

magnitude to the larger value whose possibility is predicted by (II.33). The reason

why high-wavenumber outcomes are uncommon is that at high wavenumber the

short-wave group propagates very slowly and is therefore unlikely to escape from

the inertial-wave packet before the next crest of the inertial wave catches up with

the short-wave group and refracts the short-wave group to low wavenumber and fast

group velocity [6], [7]. In most cases, therefore, first-kind encounters conclude with

mi ≈ mf . For this example, the final value of the vertical wavenumber is mf =

−3.01k = 1.003mi . Permanent changes are more likely in third-kind encounters.

Fig. II.3 illustrates one of the most important points about the refraction of

short internal waves by an inertia wave: the refraction is strongest where cg ≈ c,

and not (necessarily) where the inertial shear is strongest or where the short-wave

wavenumber is largest. A second important point, to be addressed further in the

next section, is that between the caustics in Fig. II.3, the wave-action density levels

off to an approximately constant value, A∗. This is predicted from (II.24), which

indicates that a constant wave-action flux B implies an approximately constant

wave-action density A when cg � c.

We apply the caustic correction formula (II.28), using A∗ ≈ 15 and Ric

approximately 27 and 35 at the first and second caustics respectively. The corrected

value of A near the caustic is then approximately 50. The maximum value for |u′z|

near the caustic, corrected for the ray singularity using (II.29), is indicated on the
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plot for |u′z|. The solid line is clipped at this maximum value, while dotted lines

represent the singular ray solution.

As regards its relevance to short-wave dissipation, therefore, this first strong

refraction resembles the refraction toward a critical level in steady shear except that

the steepness is amplified by a finite factor only, reducing though not eliminating

the likelihood of wave breaking. Fig. II.4 contrasts the focusing of rays in a first-

kind encounter (left column) with the focusing of rays in a non-rotating critical

layer situation of the classic Booker and Bretherton type (right column). The left

column has m/k = −3 initially and is the same case as shown in Fig. II.3; the

classic critical-layer case, the right column of Fig. II.4, has m/k = −5 initially and

f = 0 throughout, i.e., f = 0 both in (II.1) and also in the short-wave dynamics.

For the first-kind encounter, five rays are shown, each originally separated in time

by a sixtieth of an inertia period. After the short-wave rays glance the cg = c quasi-

ellipse, they propagate into a region of stronger shear while refracting to still higher

vertical wavenumber. However, the short-wave focusing weakens as the inertia-wave

shear strengthens. This is clear from the plot: the rays become parallel.

As explained by Broutman, Macaskill, McIntyre, and Rottman [5], the wave-

action density A becomes approximately constant as the rays become parallel. This

can be anticipated theoretically using arguments similar to those of Broutman and

Young [6]: in the reference frame moving vertically at the phase speed of the inertia

waves the vertical flux of wave-action density, (cg − c)A, is approximately constant,

and therefore

cgA ' constant whenever cg � c (II.34)

A ' constant whenever cg � c . (II.35)

The limit of constant cgA is relevant to many steady-shear refraction and critical-

layer models, and it is this limit that Hines [31] assumes from the very start of his

analysis. But at high vertical wavenumbers for which cg � c, it is the wave-action

density A, not the wave-action flux that becomes constant. This is similar to the
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steady-shear refraction model proposed by Phillips [45] (included in the first edition

only) and related to the original sheared-disturbance theory of Thomson [59], in

which the short-wave rays do not converge but instead remain parallel during the

refraction.

In a model such as ours, a quantity that measures the degree of ray focusing

is m−2∂m/∂z. This is the fractional change in the vertical wavenumber over a

vertical distance of m−1. Its value can be computed in a ray calculation, and in fact

∂m/∂z is required anyway to calculate the wave-action density from (II.15). When

neighboring rays cross at a caustic m−2∂m/∂z diverges. When neighboring rays

are parallel m−2∂m/∂z vanishes. Fig. II.4 includes a plot of m−2∂m/∂z, computed

numerically for the first ray to reach the caustic in the upper left plot of Fig. II.4.

Consider again the simple ray model (subsection II.B.3) for the case of an

inertia wave that is infinite in extent, i.e. with no Gaussian envelope. In the

reference frame moving vertically at the phase speed of the inertia wave we find

a steady ray solution for m−2∂m/∂z. In the limit ω̂2 � N2 we have from (6),

(cg − c)∂m/∂z = −kuz, so that

1

m2

∂m

∂z
= −uz

N

[
1

(1− f 2/ω̂2)1/2 −m2/m2
c

]
(II.36)

where we have used c = cg(zc) ≈ kN/mc
2 to obtain the above expression.

If we first consider a steady shear by letting c→ 0 and consequentlymc →∞,

we find that m−2∂m/∂z is proportional to the local shear uz. Thus, if rotation is

ignored the rays will approach a critical layer sharply focused if the shear is strong.

An example of focused rays approaching a critical layer (without rotation) is shown

in the right column of Fig. II.4. If rotation is included, ray theory itself breaks

down in the approach to a critical layer, as ω̂ → f , and ray theory’s slowly varying

approximation is violated. But for time-dependent inertial shear, i.e. nonzero c and

finite mc, the combined limit of large vertical wavenumber m and ω̂ → f becomes

one of vanishing m−2∂m/∂z.

The Phillips limit illustrates that strong refraction is not the same as strong

focusing. In the Phillips limit (II.35), unlike limit (II.34), the wave-energy density
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Figure II.4: Comparison of the first-kind encounter (left column) with the approach
to a critical layer (right column). The plots of m−2∂m/∂z, m, ω̂, and A
are for the first ray in the corresponding upper plot. For the first-kind
encounter minitial/k = −3. The rays originate from z = −2λi every
1/60th of an inertial period starting from t = 0. The wavenumber and
wave-action density plots are identical to Fig. II.3 (redrawn for conve-
nience). For the critical-layer calculation minitial/k = −5. Since f = 0
in the critical-layer calculation, the time axis and intrinsic frequency ω̂
are scaled by 2π/f0 and f0 respectively, where f0 = N/75. The rays
originate from z = −4λi at intervals of 1/60th of 2π/f0.
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(II.3) decreases as the vertical wavenumber m increases, as seen in Fig. II.4. Wave-

induced shear and wave steepness increase as m increases, but at a slower rate than

they would if the wave-action flux, rather than the wave-action density, were con-

stant. An internal wavefield which obeys the Phillips limit rather than limit (II.34)

may be able to sustain larger amplitudes at lower wavenumber without saturation

at high wavenumber.

II.C.2 Encounters of the second kind cg0 ≈ c

These short waves, with m/k = −12.25 initially, satisfy cg = c immediately

upon entering the inertia-wave packet. But, despite this, refraction is weaker than

in the first-kind encounter, because the short-wave group becomes trapped around

the low-shear trough of the inertia wave midway between two shaded regions. We

refer to this case as an encounter of the second kind.

The initial condition for the second kind encounter in Fig. II.5 is m =

mc ≈ −12.25k, or ω̂ ≈ 6.2f . These short waves find caustics immediately upon

entering the outer fringes of the inertial-wave packet. Nine caustics occur during the

encounter. Toward the center of the inertial-wave packet the quasi-ellipses expand

in size, as the caustics migrate toward the nearest trough of the inertial waves.

Hence the short waves are trapped by refraction in a region of low inertial shear

and experience smaller variations in vertical wavenumber than those experienced in

first-kind and third-kind encounters. The equation (II.33) suggests that the final

wavenumber should be close to the initial one, as both roots of that equation predict

mf = mi. The ray integration gives mf = −9.8k, the discrepancy being attributed

to a net change in Ω.

II.C.3 Encounters of the third kind cg0 � c

In third-kind encounters, the short waves approach the inertial-wave packet

very slowly. The ray integration in Fig. II.6 is initialized with m/k = −30 or
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Figure II.5: An encounter of the second kind. Plot details are as in Fig. II.3, but note
the different scalings on the time axes, and that, despite appearances,
the inertia wavenumber M and packet envelope scale L are the same;
it is only the short-wave parameters and the location of the condition
cg = c that vary. The values for A∗ in (b) in order of occurrence are:
0.96, 0.75, 0.51, and 0.23.

ω̂ = 2.7f , implying cg ≈ 0.17c The first 6 inertial periods are omitted from the

plots.

Despite their slow propagation, the short waves never find critical layers, as

they would in a steady current of similar strength. (The horizontal phase speed

of the short waves is less than 0.2u0 before the encounter.) Nor is there much

amplification near the caustics, relative to the initial amplitude, when correction is

made to the singular ray solution.

The post-encounter wavenumber is m/k ≈ −3.6. Equation (II.33) predicts

mf/k ≈ −4.3, but was derived assuming that the initial and final values of Ω are

the same, whereas in this example they are different by about a factor of 1.2. This

large permanent decrease in the vertical wavenumber is a common outcome of third-

kind encounters, as illustrated in Figs. 7 and 9 of Broutman and Young [6], and

in many examples provided by Bruhwiler and Kaper [7]. We call this effect the

wavenumber downshift. If this were a steady depth-dependent current, instead of
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Figure II.6: An encounter of the third kind. Plot details are as in Fig. II.3, but note
the different scalings on the time axes, and that, despite appearances,
the inertia wavenumber M and packet envelope scale L are the same;
it is only the short-wave parameters and the location of the condition
cg = c that vary. The values for A∗ in (b) in order of occurrence are:
0.95, 0.6, and 0.2.
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a time-dependent one, the wavenumber downshift would be impossible as it would

violate the conservation of the frequency ω̂ + ku along the ray. The conservation of

Ω leads instead to a quadratic formula for m, permitting different initial and final

wavenumbers.

As a result of the wavenumber downshift, the short-wave group expands in

size as it leaves the inertial-wave packet. This is because during the downshift the

leading edge of the short-wave group momentarily climbs upward at a faster speed

than the trailing edge. Since the integral of the wave-action density over the volume

of the short-wave group is constant, the wave-action density itself must decrease,

as indicated in the bottom panel of Fig. II.6. Changes to the inertial waves as the

result of this encounter are discussed by Broutman and Grimshaw [4].

Now recall that short waves entering into the first-kind encounter face in-

tense focusing and amplification near their initial caustic. If the short waves are

to propagate past the caustic without breaking, and hence persist into the Phillips

high-wavenumber regime, the short waves must initially have very small amplitude

with very low frequency. Here is a scenario for how this might happen in the ocean.

Suppose small-amplitude short wave groups are generated at low frequency

(where the sources of oceanic internal waves – at least large-scale internal waves –

are most energetic), and then interact with large-scale internal waves. They initially

enter into third-kind encounters, but thereafter are more likely to participate in first-

kind encounters because of the wavenumber downshift – the net decrease in vertical

wavenumber. Thus third-kind encounters may evolve into first-kind encounters.

As illustrated in Fig. II.6 of the present paper, and by Broutman and Young [6],

such third-kind encounters culminate with short waves of greatly reduced wave-

action density and wave-induced shear. Hence the amplification in the subsequent

first-kind encounter would only restore the short waves to their original but small

amplitude.

We will refer to those first-kind encounters that evolve from third-kind en-

counters as upgraded first-kind encounters, or simply upgraded encounters. An ex-
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Figure II.7: A third-kind encounter followed by an upgraded first-kind encounter.
All plots have the same horizontal axis, the time in inertial periods.
Top: the ray path, which originates from z = −4λi at t = 0, and the
vertical profile of the inertial velocity u at t = 0. The lower inertial-
wave packet is centerd at z = −2λi, and the upper one is centerd at
z = 2λi. The two inertia waves are the same as shown in Fig. II.3
The initial wavenumber of the short waves is m/k = −30. Middle: the
short-wave shear |u′z|, with the dotted line to indicate the singular ray
solution and solid line to indicate the maximum value near the caustic.
Bottom: the wave-action density, with the dotted line indicating the
singular ray solution and the solid line indicating the maximum value
near the caustic.
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ample is shown in Fig. II.7. Here the short waves propagate through two vertically

separated inertial-wave packets. The lower one, below the horizontal dashed line on

the plot of the ray path, is a third-kind encounter; the upper one, above the dashed

line, is an upgraded encounter.

II.D Numerical Simulations

For comparison with ray theory, which is linear and which assumes, formally,

a slowly varying background and slowly modulated wave packets, we now present

numerical results obtained by integrating the fully nonlinear inviscid, Boussinesq

equations of motion described earlier.

The full Navier-Stokes equations, defined as:

continuity
∂ρ

∂t
+∇ · (ρv) = 0 , (II.37)

and momentum

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ ρg + µ∇2v . (II.38)

are changed to fit this problem. The inviscid assumption results in a loss of the shear

force terms which are multiplied by ν which goes to zero. Under the Boussinesq

approximation, since the deviation of the fluid density from the reference level ρ0 is

small, ρ0 is only retained in the inertial terms on the left side of momentum equation.

On the right side, however, even a small deviation in fluid density from the reference

level can produce significant buoyancy effects that cannot be neglected, thus the

entire density term must be retained. In their vorticity-streamfunction form, the
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equations are:

∂2ψ

∂x2
+
∂2ψ

∂z2
= q (II.39)

∂q

∂t
− J(ψ, q)− ∂σ

∂x
− f

∂v

∂z
= 0 (II.40)

∂v

∂t
− J(ψ, v) + fu = 0 (II.41)

∂σ

∂t
− J(ψ, σ)−N2w = 0, (II.42)

where q is the y-component of vorticity and J(ψ, q) the Jacobian with respect to

(x, z). Here the fluid velocity u = (u, v, w), and the stream function ψ is defined

such that u = ∂ψ/∂z, w = −∂ψ/∂x, and q = ∂u/∂z − ∂w/∂x. The scaled density

perturbation due to the presence of internal wave motions is σ = gρ′/ρ0 where g is

the acceleration due to gravity; the density ρ = ρ′+ρ0, with ρ0(z) the mean density

profile. Because of rotation, there is a nonzero v field, but all variables are assumed

to be independent of y.

II.D.1 Solving the Equations

The equations are solved using a Fourier spectral collocation technique with

third order, low-storage, Runge-Kutta time stepping, first introduced by Williamson

[63] and further discussed by Canuto, Hussaini, Quarteroni, Zang [9]. The nth-order

explicit Runge-Kutta scheme to advance a set of differential equations

ẋ = f(x) (II.43)

over a step h is

x(h) = x(0) +
n∑

j=1

wjkj , (II.44)

kj = hf

(
x(0) +

j−1∑
i=1

βjiki

)
, (II.45)

αj =

j−1∑
i=1

βij , (II.46)
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Figure II.8: An encounter of the first kind: (a) the perturbation density as a function
of depth and time as computed by the spectral numerical method. Over-
laid on the plot are ray paths computed as described in section II.B; (b)
the time-averaged vertical wavenumber vertical displacement spectrum
(solid line). The dashed line is the initial spectrum and the straight line
has slope −2.9.

n∑
j=1

wj = 1 . (II.47)

Where the vector x represents the N variables, which include the independent vari-

able if f depends explicitly on it. We have chosen the following values for the

coefficients: α2 = 1/3, α3 = 3/4, β32 = 15/16, w1 = 1/6, w2 = 3/10, and w3 = 8/15,

which correspond to Williamson [63] case 7.

II.D.2 Results

Fig. II.8a shows the perturbation density field computed from the numerical

model as a function of depth and time at a fixed horizontal location. It is an

example of a first kind encounter where m/k = −3 initially. Ray paths in the t− z

domain were computed for this example and are superimposed on the figure for

comparison. The inertia-wave packet does not show up directly in the figure, as

there is no corresponding density perturbation. These figures look much like those

by Sartelet [49], Figures 1-3, where she addressed each of the three encounters in

the atmosphere to test for wave-breaking. Looking closely we can see the rays do

not match all that well in some of those figures. This may be attributed to the
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single vertical wavelength seen in each short wave envelope. Because the vertical

envelope size for each of the short waves is very small, as can be seen in the work

of Sartelet [50] Figure 3, the initial spectrum of the short wave is broader than

the spectra presented here, so the rays calculated at a single vertical wavenumber

are not a true representation of the numerical simulations, which have too small of

envelopes. We are careful to have envelopes large enough to include at least four full

vertical wavelengths to ensure our ray tracing calculations are as close as possible

to the spectrum of short waves input into the numerical simulation. Then the

previously shown calculations of wave action, shear, and vertical wavenumber along

a ray would match the numerical simulations seen in Fig. II.8 and the following like

figures for each encounter. Then general conclusions may be made about short-long

wave interactions which include information taken from both simulations and ray

theory.

After the short wave is refracted some of the rays follow the same behavior

as seen in Fig. II.3, and others propagate upward. This is a result of the position of

the ray and thus where and when it reaches the inertia-wave packet. The first ray

which is refracted horizontally has been strongly refracted by the upper bound of

the first caustic location, the last ray of the set which is refracted horizontally has

been strongly refracted by the second caustic location but near the lower bound.

Because of the packeting of the short wave there is a spread of initial wavenumbers

of the short wave in the numerical simulation, as can be seen in Fig. II.8b. In order

to see the wave propagation occurring just above the inertial wave we include a ray

with slightly smaller initial vertical wavenumber, but which is still within the spectra

shown, which propagates in this location. It is the second ray down and has initial

wavenumber 0.94mi. It is important to include in this case because the locations

of strong refraction here are very small, so even a small change in wavenumber will

make a difference in whether or not the short wave will refract strongly.

Fig. II.8b shows the vertical-wavenumber spectrum of the vertical displace-

ment ζ, obtained by averaging spectra over the last half of the simulation. Starting
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Figure II.9: Initial parameters as those in first-kind except with positive mi and z0.
Plot details are as in Fig. II.8a.

Figure II.10: An encounter of the second kind. Plot details are as in Fig. II.8, but
with straight line slope in (b) −1.7.

from a single short-wave packet, which is refracted by a single inertia-wave packet,

the spectrum develops a region with slope of about −2.9 within one inertia period

which is in the range of the −2 to −3 high-wavenumber slopes typically measured

in the ocean. But there is still a strong peak at the initial vertical wavenumber,

showing that in this case many waves exit the interaction with mf = mi. This is

one of the features of the first-kind encounter.

Fig. II.9 shows the perturbation density field for the same initial parame-

ters as the first-kind encounter except with mi positive and z0 above the inertial

wave. The short waves are being refracted in the form of non-resonant interactions.

Strong refraction will not occur because cg = c will never be satisfied as these two

parameters are opposite sign.
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Figure II.11: An encounter of the third kind. Plot details are as in Fig. II.8, but
with straight line slope in (b) −2.5.

Fig. II.10a is the perturbation density field for a second-kind encounter where

for the short wave packet m/k = −14.7 initially. The dimensionless inertia-wave

packet scale ML = π/5, or 1/10 of one inertial wavelength, is a smaller value than

that used for the ray integrations of the previous section.

Once again the short-wave packet is almost immediately refracted with rays

propagating both horizontally and vertically. As the rays come back into the compu-

tational domain they are refracted again, and we see many rays concentrated in the

center of the domain. Multiple refractions occur in the second half of the domain,

displaying the trapping of the inertial waves that occurs in second-kind encounters.

The graph of the wave energy spectrum, Fig. II.10b, shows a region with a

slope of about −1.7 in the second half of the time domain. This is just below the

range of typical high-wavenumber slopes within the ocean.

The perturbation density plot of Fig. II.11a is, in most of its essentials, an

example of a third-kind encounter. Initially, m/k = −35. Once again the inertial

wave has the same characteristics as described above for the second-kind encounter

perturbation density plot.

The short-wave packet can be seen propagating upwards and then refracting

strongly after about one inertia period, in much the same way as in the first strong re-

fraction event seen in Fig. II.6, i.e., illustrating a cg = c interaction. Just afterward,

some short-wave energy escapes rapidly from the inertia-wave packet, illustrating
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the permanent decrease in vertical wavenumber m that is the most striking feature

of a third-kind encounter. However, because of the fanning out of the rays above

the inertia-wave packet, more of a spread of m values is produced, in this case,

than in the case shown in Fig. II.6. Refraction and the vertically periodic bound-

ary conditions soon spread the short-wave energy throughout the computational

domain.

It is interesting that when starting from a single short-wave packet, which

is refracted repeatedly by a single inertia-wave packet, the spectrum in Fig. II.11b

develops a broad region with slope of about −2.5 within two inertia periods, – in

the range of the -2 to -3 high-wavenumber slopes typically measured in the ocean.

For a computational domain of 100m depth, the region of −2.5 slope extends from

a scale of about 12 m to about 3 m. This was also seen in work done by Broutman,

Macaskill, McIntyre, and Rottman [5] and is similar to what Winters and D’Asaro

[64] found in their critical layer case.

II.E Discussion

The ray and numerical simulations summarized here show that short-wave

focusing is sharply concentrated around those (time-evolving) depths where cg = c,

and that short-wave focusing is relatively weak everywhere else. The calculations

have also reminded us that, in order to understand and adequately model the role of

Doppler spreading in realistic oceanic and atmospheric spectra, the usual assump-

tions about critical levels in steady shear need to be treated with caution since they

may fail, sometimes drastically, in time-dependent shear. Similar caveats have been

put forward by Eckermann [12].

What are the consequences of our conclusions for the interpretation of Henyey’s

ray simulations? Upgraded encounters may be useful in interpreting the results of

Henyey and Pomphrey [27], who ray-trace short-wave groups through a background

composed of internal waves of many frequencies and wavenumbers, combined with
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the amplitudes prescribed by the Garrett-Munk internal-wave model (see the work

of Munk [41]). They initialize each short-wave group with high intrinsic frequency

and low vertical wavenumber and terminate the ray integrations if the short-wave

group refracts to 5-meter wavelength, supposing critical-layer dissipation in such

cases.

It seems likely that the rapid increases in wavenumber pictured in Henyey

and Pomphrey’s Figure 6 are associated with the temporary satisfaction of cg = c,

involving the short-wave group and some near-inertial component of the background

wavefield. If so we would classify them as first-kind encounters. Alternatively, the

same results might represent upgraded first-kind encounters. The amplification in

a first-kind encounter is strong, upgraded or not, but the likelihood of achieving

instability and wave breaking is much less if the encounter is an upgraded one: the

short-wave group enters into the upgraded encounter having inherited a very small

amplitude from the preceding third-kind encounter. Flatté, Henyey, and Wright

[14], [28] extend the Monte-Carlo ray simulations of Henyey and Pomphrey [27],

but they make a key change: the initial horizontal wavelength of the short waves is

lengthened to 1000m, up from 200m in Henyey and Pomphrey. It is then found, in

contrast to Henyey and Pomphrey, that changes in the horizontal wavenumber of the

refracting short waves become as important as changes in the vertical wavenumber

in affecting the spectral transport of wave-action.

In our encounters, increasing the horizontal wavelength of the short waves

while keeping the strength of the inertial shear fixed weakens the short-wave re-

fraction in the same way as decreasing the inertial shear while keeping the hori-

zontal wavelength of the short waves fixed, as is seen in the work of Broutman [6],

Section 2. Either way, the refracting short waves experience smaller variations in

vertical wavenumber. In the limit of increasing horizontal wavelength, first-kind

and third-kind encounters gradually disappear, leaving only second-kind encounters

which themselves become progressively weaker. In this limit, only short waves with

m ≈ mc before the encounter will ever satisfy cg = c during the encounter. Thus
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the relative importance of horizontal wavenumber variations in the studies of Flatté,

Henyey, and Wright [14], [28] may be related to the relative unimportance of the

cg = c condition. As the short waves in the simulations of Flatté et al. and Henyey

et al. refract to shorter horizontal wavelength, we would expect cg = c to be more

readily satisfied and consequently the refractive changes in vertical wavenumber to

dominate the refractive changes in horizontal wavenumber. In this regard, we note

that it is only after the short waves refract to the shorter horizontal wavelength of

approximately 100 − 300 m that Henyey et al. find significant refraction to short

vertical wavelength, which they associate with dissipation.

A comparison of the encounters with oceanic measurements is suggested by

the magnitude of mc, the vertical wavenumber at cg = c, which by (II.26) is approx-

imately (kMN/f)1/2. Suppose we take N/f = 50, and use 2π/100m for both the

vertical wavenumber of the inertial wave M and the horizontal wavenumber of the

short waves k. These values give (ignoring the sign) mc ≈ 2π/14m. In estimating

mc, a good indication of N and M is often obtainable from vertical profiles of den-

sity and horizontal velocity respectively, but an appropriate value to use here for k

is more difficult to assess. However there is only a square root dependence on k, and

there are lower and upper bounds for k beyond which the short waves propagate

either too quickly or too slowly to satisfy cg = c. If we take as a crude lower bound

k ≥ N/u0 (closer to a condition for critical layers), where u0 is the maximum speed

of the inertial current, then

mc ≥M

(
N

f

)1/2(
N

bu0

)1/2

. (II.48)

Choosing N/f = 50 and the minimum Richardson number (N/Mu0)
2 to be O(1),

we find that mc is about seven times the vertical wavenumber of the background

inertial wavefield.

By these estimates mc falls in the range of wavenumbers at which a rolloff

in the slope of temperature spectra has often been observed in the ocean, [23].

Eq. (II.48) indicates that mc increases with decreasing latitude and is only weakly
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dependent upon the total energy level of the internal wavefield, if that total energy

is proportional to u2
0. Both these characteristics are generally consistent with the

measurements of Gregg, Winkel, and Sanford [23].

The steepening slope may thus be related to the importance of parallel-ray

refraction at high vertical wavenumber. In this ”Phillips limit”, (II.35) constrains

the wave-action density A to be approximately constant. An increase in m, or

equivalently a decrease in ω̂ then causes a reduction in the wave-energy density

E = ω̂A of the refracting short waves. The lost wave-energy goes into a mean flow,

which takes the form of forced and trailing inertia waves, [4]. Temperature spectra

might steepen slightly more than velocity spectra because the short-wave generated

inertial waves have no vertical displacement.

What are the consequences of our conclusions for Hines’ theory for the high-

wavenumber shape of internal-wave spectra? The context here is the upper atmo-

sphere, where unlike the ocean, the short waves and the long waves are believed to

propagate energy predominantly upwards. Hines models upward propagating inter-

nal waves only; hence cg = c interactions do not occur in his model. In such cases,

our computations, and those of Eckermann [12] and Sartelet [49, 50], suggest that

a steady-shear assumption is likely to lead to an overestimate, perhaps significant,

of the strength of the refraction and of the rates of dissipation.

A statistical study done by Bruhwiler and Kaper [7] addresses the question

of the high-wavenumber shape of internal-wave spectra as well. Using ray theory

they let a set of short waves with a realistic frequency spectrum propagate through

a single inertial wave. The spectrum is accounted for by the number of waves, where

each wave has the same initial amplitude. They find a general trend of short waves

propagating to higher frequencies, and therefore smaller vertical wavenumbers. It is

interesting though that they find a flattened short wave frequency spectrum when

the initial spectrum had a slope of −2. There is much more statistical work to be

done, such as including changes in short wave horizontal wavenumbers and propa-

gation through more than one inertial wave.
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What are the consequences of our conclusions for the interpretation of ocean

finestructure measurements? Firstly, the absence of high-wavenumber focusing may

allow the short waves to refract to very large vertical wavenumber and near-inertial

frequency before, or without, becoming unstable, providing a source for the near-

inertial finestructure observed in the deep ocean by, for instance, Kunze, Williams,

and Briscoe [34]. Their observational work shows evidence that the finest-scale near-

inertial waves in the main thermocline of the deep ocean have upward-directed group

velocities. Since the strongest refraction occurs for those short waves that satisfy

cg = c, there should be a predominance of finestructure with energy propagating

in the opposite direction to that of the larger-scale near-inertial waves, which are

created at the surface of the ocean by strong winds and then propagate downward

into the ocean. This would typically mean that the fine-scale near-inertial waves

propagate energy upwards. This is what Kunze, Williams, and Briscoe [34] have

found in their data.

Secondly, we mention the observed rolloff in temperature and velocity vertical-

wavenumber spectra measured in the ocean. The rolloff begins at a vertical scale

of 10 m. Is this scale related to the effects of time-dependent shear? For example,

do short waves of cg less than c of the dominant background waves begin to domi-

nate the spectrum at these scales? There is some evidence from the calculations of

Henyey et al. (1986) that this is the case. If so, and if the short-wave focusing is

weak at these scales, then the generation of slowly varying mean flows by the short

waves becomes important, and may result in steeper spectral slopes. The mean flow

takes the form of forced and trailing inertia waves [4].



III

Statistical Study of Wave-Wave

Interactions

In this chapter we show and discuss the results of having a number of short

waves propagating through a number of inertial waves. This will give us a statisti-

cal understanding of short wave propagation in areas where many short waves are

present, which is a realistic assumption.

III.A Problem Parameters

For the statistical study, there are two main nondimensional parameters

which define the problem, ε and µ.

ε =
1

2ML
(III.1)

defines the relative envelope size of the long wave: the smaller ε is, the closer the

long wave is to an infinite wave train, and therefore solutions should be closer to

adiabatic invariance theory.

The second parameter,

µ0 = u0(k/Nc)
1/2 (III.2)

58
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is a measure of the size of the short wave with respect to the long wave. This

parameter defines the range of possible initial m values the short wave can have

to be strongly refracted. As µ0 increases the range of short waves which may be

refracted by the inertial wave increases. µ0 can also be thought of as a measure of

the size of the contours of constant Ω in phase space. As µ0 increases so does the

size of the closed contour. But µ0 can decrease so much that the closed contour is

only a line, and the final vertical wavenumber of the short wave must be equal to

the initial because no strong refraction will occur.

We do not look at some of the usual nondimensional parameters, such as the

Richardson number because it is only a measure of the background shears and does

not include the horizontal wavenuber of the short waves, which is important in the

equation Ω = ω̂ + uk − cm = constant. In the cases shown throughout this chapter

the nondimensional vertical wavenumber m∗ = m(c/Nk)1/2 values range from 0.2

to 2.9, and the nondimensional frequency is defined as ω∗ = ω(M/Nkf)1/2.

III.B Ray and Adiabatic Invariance Theory

III.B.1 Ray theory

As explained in the previous chapter, we can use ray theory to calculate

approximately the behavior of short wave encounters with the inertial wave groups.

To do this we assume that the inertial wave is both unaffected by the short wave

interaction and has a much larger length scale than that of the short wave. Also

we assume the short wave is determined by the linear dispersion relation. Then an

evolution equation in characteristic form can be found for k.

III.B.2 Adiabatic Invariance Theory

Through adiabatic invariance theory we can average the solution of ray the-

ory over many phases, thus assuming the long-wave is an infinite wave train, and
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calculate two possible final short-wave vertical wavenumbers, one of which is the

initial vertical wavenumber, and the other which can be found using the theory.

The ray equations are a form of the classical Hamiltonian equations. It has

been shown by Cary, Escande, and Tennyson [10], and Kruskal [33] that a slowly

varying Hamiltonian with one degree of freedom has an adiabatic invariant. In the

context of a short wave propagating through a long wave this means the long wave

must be slowly varying and have a purely horizontal velocity, which are both satisfied

in this problem. The adiabatic invariant is conserved to all orders of the slowness

parameter, ε, except when orbits in phase space cross a separatrix, which coincides

with a caustic. The lowest-order adiabatic invariant is the action, which is the area

enclosed by a contour of constant energy and can be calculated by integrating the

canonical momentum around a phase-space trajectory. The value of the adiabatic

invariant is discontinuous across the separatrix because it is defined by a different

integral above, on, and below the separatrix (in phase space). The action on the

separatrix is defined by taking the limit of the action as the contours of the frequency

in phase space approach the limit, Ω → µ(λ)+2. We are then left with the following

values of action near and on the separatrix [7]:

Ya,b(λ) = ±2π(1 + µ/2)

+ 4(µ/2)1/2 + (1 + µ/2) tan−1[(µ/2)1/2] , (III.3)

Yc(λ) = Ya(λ) + Yb(λ) , (III.4)

where the subscripts on Y are used to indicate the relevant region of phase space. λ is

the average vertical position of the test wave within the envelope of the background

wave, λ = Mz. The λ-dependence in the equations arises through µ(λ). Location a

is above the separatrix in phase space and corresponds to Ω > µ+ 2 and |m∗| < 1,

leading to the short-wave group speed being greater than the phase speed of the

background wave. Location b is below the separatrix in phase space and corresponds
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to Ω < µ + 2 and |m∗| > 1, leading to the short-wave group speed being less than

the phase speed of the background wave. Location c is on the separatrix, where the

group speed of the short wave is equal to the phase speed of the long wave.

At the separatrix crossing the local background wavepacket amplitude is

µx ≡ µ(λx), and is defined implicitly by the relation:

− 2π

|m∗
i |

= −2π(1 + µx/2)± 1

2
Yc(λx) , (III.5)

where the + corresponds to |m∗
i | > 1 and the − corresponds to |m∗

i | < 1. If the

short wave escapes in a different region than it began in, then the final value of

the vertical wavenumber can be calculated by relating the initial action to the final

action, Ya − Yb or vice-versa. This is the action far from the inertia-wave packet

before and after the interaction. At these locations we can calculate the action in

the limit of vanishing shear amplitude. Letting µ(λ) → 0 we find

Ya =
2π

|m∗|
, (III.6)

and

Yb = − 2π

|m∗|
. (III.7)

Then if the short wave begins below (above) the separatrix and exits above

(below) the final short wave vertical wavenumber can be found using

1/|m∗
i |+ 1/|m∗

f | = 2 + µx . (III.8)

Cary, Escande, and Tennyson [10] have shown that for general planar adia-

batic Hamiltonian systems, given an ensemble of trapped trajectories with the same

action and uniformly distributed in phase, the probability of the short wave escaping

above the separatrix is Ra ≡ Y ′
a(λx)/Y

′
c (λx), and the probability of the short wave

escaping below the separatrix is Rb ≡ Y ′
b (λx)/Y

′
c (λx), where the prime here denotes

differentiation with respect to λ. In terms of already calculated parameters these

probabilities are:
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Ra(λ) =
(π/2)(µ/2)1/2 tan−1[(µ/2)1/2]

21 + (µ/2)1/2 tan−1[(µ/2)1/2]
, (III.9)

and

Rb(λ) = 1−Ra(λ) . (III.10)

The wavenumber limits beyond which these wave-wave interactions cannot

occur can be calculated by equating the initial adiabatic invariant far from the

wave packet with the separatrix action associated with the maximum wavepacket

amplitude, µ0. Doing this both above and below the separatrix yields:

|Ma,b|−1 = (1 + µ0/2)± 1

4π
Yc(λ0) . (III.11)

The importance of this parameter is that test waves with an initial vertical wavenum-

ber |m∗
i | > |Mb| or |m∗

i | < |Ma| will not interact resonantly with the background

wave, because their phase-space trajectories will never cross the separatrix, so cg = c

will never occur.

III.C Numerical ray solutions

We have produced numerical solutions of the ray equations for a wide variety

of short-wave and background inertia wave groups. For a slowly varying packet of

inertial waves, these numerical ray integrations indicate that the analytical solutions

for the special case of an inertia-wave train provide useful approximations. Caustics

coincide approximately with cg = c; and the frequency Ω varies slowly along the ray

– more slowly than variations in m or ω̂ (see Figs. 5 and 6 of Broutman [3]).

Encounters between short waves and inertia waves, in which cg = c is satisfied

at some stage during the encounter, can occur more frequently as µ0 increases.

Initially we look at these ideal interactions, where strong refraction is possible.

There are some interesting phenomenon seen in the plots of Bruhwiler and Kaper

[7] which we first explain.
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Figure III.1: As in Figure 5 in Bruhwiler and Kaper [7]. Lines are from adiabatic
invariance theory, and dots from the ray tracing. Scatter plots show
the results of simulating 1000 test waves for µ0 = 2.0 and (a) ε = 0.2,
(b) ε = 0.1, and (c) ε = 0.05.

III.C.1 Wave sets

For the initial statistical analysis, 1500 waves were traced using ray theory

through an inertial wave, which resulted in Figure 5 by Bruhwiler and Kaper [7]

which is analogous to Fig. III.1. The nondimensional vertical wavenumber m∗

values range linearly from 0.2 to 2.9. The horizontal wavenumber is constant at

k = 2π/200 and the frequency is defined by the dispersion relations. The dots

represent actual short waves ray traced through an inertial wave. They are scattered

around the theoretical lines created by adiabatic invariance theory. As the length of

the inertial wave envelope increases, ε decreases and there is less variability in the

results of the ray tracing. In Fig. III.1c, where ε = 0.05 the ray tracing results lie
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almost exactly along the theoretical lines. Values of ε = 0.08 are generally seen in

the ocean [7].

There is a theoretical line atmf = mi which corresponds to short waves which

may not be interacting with the long wave, or fast travelling waves corresponding

to first kind encounters which exit the inertial wave interaction with approximately

the same final small vertical wavenumber as initial. The points created by ray

tracing are scattered around this theoretical line. There are fewer dots in ther

upper portion of the final vertical wavenumber domain, m∗
f > 1, because as we have

already discovered the general trend is for short waves to propagate to lower vertical

wavenumbers which correspond to a higher group speed.

The second theoretical line is curved, and makes the structure of the two

lines look somewhat like a wing. This line represents short waves which interact

with the inertial wave and exit the interaction with a new wavenumber. We can

see that for m∗
i < 1 this results in an increase in short wave vertical wavenumber.

We have seen this isn’t very common, so again the scarce number of dots scattered

about this portion of the line makes sense. The nondimensional parameter µ0 will

also affect this theoretical line. As µ0 decreases the range of short waves which can

be strongly refracted also decreases, as will be shown shortly. This results in the

second theoretical line being shortened because as fewer waves are able to refract,

fewer are then able to exit the interaction with a different wavenumber than they

entered with.

It is of interest to note that in these plots with nondimensional vertical

wavenumber as the parameter, those locations where m∗ < 1 correspond to first kind

encounters and those with values of m∗ > 1 are third kind encounters. This can be

seen by using the mid-frequency approximation where ω = Nk/m, so cg = Nk/m2.

Manipulating the equation for the nondimensional vertical wavenumber we have

m∗ = (C1/2)/(c
1/2
g ). This relates the phase speed of the inertial wave to the group

speed of the short wave. When C � cg then m∗ < 1 and it is a first kind encounter.

Fig. III.2 shows the change in maximum and minimum bounds on m∗ for
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Figure III.2: Maximum (upper dashed line) and minimum (lower line) nondimen-
sional vertical wavenumber values of the short wave for which strong
refraction can occur at each µ0 shown on the horizontal axis. Dot-dash
line is located at the location µ0 = 2.
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a range of µ0 values, within which the short wave may refract strongly and exit

the inertial wave with a different final vertical wavenumber. The values plotted

are calculated using Eq.III.11, where Ma is the minimum possible nondimensional

vertical wavenumber of the short wave which will be strongly refracted. Mb is the

maximum. Therefore the larger the space between the two lines the greater the

chance of a change of final vertical wavenumber as defined by adiabatic invariance

theory. We can see the difference between the maximum and minimum cutoff ver-

tical wavenumbers for the short wave decrease as µ0 decreases. This results in a

decrease in separation between minimum and maximum short wave frequencies as

well. Another result of decreasing µ0 is that the wings on Fig. III.1 will decrease

until at µ0 = 0 we are left with a single line of slope 1. The smaller µ0 becomes the

smaller the range of affected short waves becomes.

Each plot in Fig. III.1 has areas with sets of values with about the same

final value along the line mf = mi, and then empty spaces between the these sets

where all the final values are along the theoretical line where mf = mi. We want to

understand why the wave sets and other higher order phenomenon within the wave

sets that can be seen in Fig. III.1 exist.

The breakdown along the curves of wave sets occurs because of the time-

dependence of the background long wave. As the phases of the background wave

pass through the envelope domain so do locations of strong refraction. As the short

waves reach their location of strong refraction, cg = c, they are caught up in that

particular phase of the background. Often a few different short waves (different m

values) will become trapped during a single phase because the rays are at about

the same z location and have approximately the same initial m value and thus

approximately the same corresponding uc value of the background necessary for

strong refraction as well. This can be seen in Fig. III.3, where 60 rays from m∗
i = 1.6

to 2 are equally spaced and allowed to propagate through a background wave with

(a) ε = 0.2 and (b) ε = 0.05. Sets of rays are caught between locations of strong

refraction. Each individual set of rays is made up of all the rays which were picked up
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Figure III.3: Ray paths for 60 rays when (a) ε = 0.2 and (b) ε = 0.05. Boundaries
of the shaded quasi-elliptical regions mark the locations where, at a
given instant t, the strong-refraction condition cg = c can be satisfied
(see text)
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by the same phase of the background wave. Different locations of strong refraction

are present for different rays because of differing initial m values or z locations, but

the locations are generally close if the initial m values are close and the rays are

started about the same distance from the background. Thus sometimes a few rays

will be refracted by the same passing phase of the background, and sometimes since

they have not reached their point of strong refraction yet they do not get caught up

in the background until a later phase comes through. Therefore we get a number of

rays caught in the background as sets.

As the sets of rays exit the background phase they are more likely to exit

with a lower m value because it corresponds to a higher cg which means it can escape

from the background. This can also be seen in Fig. III.3, where most of the exiting

rays have an increased slope, which means mf < mi and cg has increased. The

final refraction occuring may be slightly weaker because of the envelope and thus

we get a small spread of final m values around the theoretical line. This is possible

no matter what the final refraction, as we can see variability in the theoretical line

where mf = mi as well. The first few rays in the set of many rays with comparable

mi values which enter a background phase together refract the most times and exit

with mf < mi, and cg increased. The last few rays enter so late they may refract

only a few times (depending on the envelope size) and exit with mf = mi. Therefore

as m∗ increases above 1 we have the sets seen in Fig. III.1 consisting of first an area

where most of the rays end with mf < mi (the first many rays caught in a phase of

the background) then a few rays around the line mf = mi (the last few rays caught

in the phase). This process repeats itself as mi increases and rays are caught in

later phases.

For further understanding, Fig. III.4 shows background velocity profiles for

three different times. The vertical dot-dash lines outline possible values of uc neces-

sary for strong refraction. There is a small spread of values because there is a small

spread of initial m values for the short waves. At t/Ti = 3.75 the rays that have

reached a height of about −120m and have the minimum uc = 0.0049 value neces-
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Figure III.4: Background velocity profiles for ε = 0.2. Solid line is at t/Ti = 3.75,
dashed line is at t/Ti = 4, and dotted line is at t/Ti = 4.25. Dot-
dashed lines are minimum and maximum uc values, 0.0049 and 0.0094
respectively. Triangles represent a single phase.

sary for strong refraction will refract. Later, at t/Ti = 4, rays that have propagated

just further will be refracted by the dashed line phase. This will be a set of waves

since a set of rays have reached this location. At t/Ti = 4.25 we see rays must have

reached z = −100m to make it into the phase we have been following (marked by

a triangle at the tip of the phase). Since most will not have made it that far, they

continue to propagate until the next phase comes through to pick them up.

Another way to visualize this phenomenon is shown in Fig. III.5. Here we

have zoomed in on the first few strong refraction locations for the rays shown in

Fig. III.3. Also shown is the value of the background wave over time for the locations

z = −97m (solid line) and z = −86m (dashed line). The first rays reaching the

background wave are those with smaller m values, because their vertical group

speed is greater. The corresponding uc values necessary for strong refraction are

also smaller than those for larger m. So the first rays which reach about z = −97m

are being refracted, as shown by the rays which curve upward within the first two
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Figure III.5: (a) A closer look of Fig. III.3a. (b) The corresponding background
velocity values at z = −97m (solid line) and z = −86m (dashed line).
The first two heavy dotted lines correspond to the first initial and final
locations of strong refraction, the third is the next location of strong
refraction.
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Figure III.6: Snapshot of background velocity U at different times throughout a
short-long wave interaction. The vertical dot-dash lines outline the uc

values for which strong refraction will occur. For each snapshot we
follow cartoon rays, depicted as solid and dotted lines, propagating
upward through the long wave. The solid lines correspond to the first
rays which are strongly refracted and the dotted lines correspond to
the next set of rays which are strongly refracted.

heavy dotted lines, which outline the location of strong refraction. The slower short

waves, with larger m, get to z = −97m too late and are not refracted yet by the

long background wave. Instead they continue to propagate to about z = −86m

where the new background U value is plotted as a dashed line. The heavy dotted

line corresponds to the first location of refraction for these short waves.

The cartoon shown in Fig. III.6 depicts an idea of what is going on as sets of

rays are strongly refracted by the background wave. The background wave velocity

is shown by the solid sine wave with an envelope, and the vertical dot-dash lines

outline possible values of uc necessary for strong refraction. Again there is a small

spread of values because there is a small spread of initial m values for the short

waves. The solid lines depict the first few rays, which will be refracted first, and the
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heavy dotted lines represent the second set of rays, which are not strongly refracted

until a later phase of the background wave. Notice these rays all have a shallow

propagation angle, corresponding to a slow initial vertical group speed of the short

wave, so cg < c in this example. We see the first set of rays reaches a location of

strong refraction within the background wave almost immediately, and is strongly

refracted, resulting in an increase in group speed and a slope in z− t space which is

almost vertical (shown as vertical in the cartoon for easy viewing) at the next time

snapshot. We see the rays with slower group speed (not obvious in the cartoon slope

of the rays, but they are lower in z so they must have been going more slowly) have

not yet reached a point of strong refraction and are passed over by this first phase,

so they continue to propagate slowly throughout most of these time snapshots. In

the next time snapshot, t/Ti = 5, the rays are all slowly propagating and have not

yet reached another location of strong refraction, or rather such a location has not

yet reached them, as cg < c. Finally, at t/Ti = 5.5, two of the rays from the first

set have reached another location of strong refraction and in the next plot they

have become vertical and it is obvious they will be escaping the background wave

as there are no other possible locations of strong refraction. These represent the

majority of the rays in the set, which exit the long wave with an increase in vertical

group speed and a decrease in m, mf < mi. The single ray of the set which was

left behind will also exit the background wave without another refraction, but just

barely. This wave represents the few rays in the set which may exit the long wave

with approximately the same vertical group speed as it began with, mf = mi. At

t/Ti = 6 the other set of short waves has finally reached a point of strong refraction

and these waves begin their trip through the background wave as the others are

exiting.

Once we understand why these wave sets occur then we ask why the number

of wave sets increase and the spacing between them decrease as ε decreases (getting

closer to theory). As the long wave approaches an infinite wave train a couple things

are happening. First there are fewer rays being caught up with each background
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Figure III.7: Initial background velocity profiles (solid lines) for (a) ε = 0.2 and
(b) ε = 0.05. Dot-dash line is envelope, dashed lines correspond to
minimum and maximum uc values for the range of initial rays used,
and highlighted area is equal on both graphs.

phase, and therefore fewer rays in each phase set, but more sets of rays being

caught in other phases. This can be seen in the Fig. III.3, where the upper plot

is representative of a background wave with M = 2π/100 and ε = 0.2 and the

lower plot has ε = 0.05 (closer to infinite wave train). Both plots have 60 rays

equally spaced in m, but Fig. III.3a has less rays being trapped in each phase.

Fig. III.7 shows the corresponding initial background velocity and envelope for the

cases. From the rectangular highlighted boxes superimposed on the figure, which

are both the same size and begin at the first location of possible strong refraction

when taking the envelope into account, we can see that a larger range of possible U

values is available when the envelope is smaller (ε = 0.2). This is because when the

envelope size is increased the angle of the envelope as it opens and closes decreases

(is much more shallow). With the smaller envelope, as soon as it opens there is

a wide range of u values available for the background wave to take on, and many

rays are strongly refracted. So in the same amount of z space the shorter envelope

has more possible uc values for strong refraction. Thus in the figures we see more

rays being caught in each phase of the background when it has a smaller envelope.
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Figure III.8: As in Fig. III.1. Scatter plots showing the results of simulating test
waves for µ0 = 2.0 and (a) ε = 0.2, (b) ε = 0.1, and (c) ε = 0.05, where
an example set of waves is circled in each graph.

As the length of the envelope increases the rays being refracted are more confined,

just the few which have reached this small region of uc values necessary to strongly

refract will be caught in the particular phase of the background wave. Thus we see

smaller sets of waves which are closer in m-space when the background wave has a

larger envelope size (decrease in ε).

There is a strong relationship between the space between sets and the value

of ε. If we are to call the size of a set the distance from the beginning of the set

on the mf theory line and ending on the mf = mi line, as is shown in Fig. III.8,

we can see as ε decreases so does the set size. It seems to be a linear relationship.

If we account for the terms of most importance - or to first order - as mentioned
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before the slope of the opening envelope matters. Calculating d(envelope)/dz we

find it is proportional to 1/L for a given z = XL value, where XL is the distance

from the center of the envelope. As the slope of the inertial wave envelope increases,

the size of the sets increases since more waves’ uc value is attained more quickly.

Another important factor we have not yet discussed is the vertical wavelength of

the inertial wave. As the vertical wavelength increases we have a longer period of

time when the inertial wave satisfies uc for the short waves (it is not rushing to start

another wavelength if there are merely say 2 in the packet instead of 10). Since

λZ , the vertical wavelength of the inertial wave, is proportional to 1/M , as 1/M

increases, so do the set sizes. We can also think of this in terms of the phase speed,

f/M . If it is increased, even if the envelope has a very shallow slope, more uc values

can be attained in a shorter amount of time while the short waves are all near the

same z location since the waves move quickly through it. So we conclude: set size

∝ 1/L ∗ 1/M ∝ ε. ε values ranging from 0.025 to 0.3 were tested and it was found

that the average set size = 2ε.

In the ray tracing plots we can see that the farther the rays propagate the

more spread they become because of their different cg values. The waves with greater

mi values have slower group speeds and therefore encounter the background wave at

a later time. The slower the wave-group, the shallower the slope and the longer the

short wave lingers near the same z location as the phase of the background passes

through, so more rays can get caught in a single phase so the set (set at mf > mi

and set at mf = mi) is larger.

There is less variability in the wave sets themselves as ε decreases. This is

because as the long wave becomes closer to an infinite wave-train it gets closer to

the theoretical line. With many refractions occurring we are getting closer to an

infinite wave-train. Also, as the waves exit there again will be less variability (as

there was when the waves entered the background envelope).

It is interesting to note that even if we are to initialize the short waves

at random depths, the results are the same as we have seen here, with wave sets
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Figure III.9: As in Figure 8 in [7]. Frequency spectrum from a number of short
waves, energy accounted for by number of waves in each frequency bin.
ε = 0.1, µ0 = 2, and k = 2π/200. Initial frequency spectrum (solid
line), final spectrum calculated through ray tracing (dashed line), final
spectrum calculated through adiabatic invariance theory (dotted line).

occurring along the theoretical lines. Because the relationship between the slope of

the advancing ray and the slope of the region of strong refraction is the same, the

short waves will still have a preferred final vertical wavenumber. Thus we see the

wave set phenomenon.

III.C.2 Short wave horizontal wavenumber changes

We have reproduced Figure 8 from the work of Bruhwiler and Kaper [7], and

it is shown in Fig. III.9, which is the short wave frequency spectrum after a set of

short waves has propagated through a single inertial wave where the initial short

wave vertical wavenumber is k = 2π/200, ε = 0.1 and µ0 = 2. Here the energy is

accounted for by the number of rays in the simulation: each short wave has the same

amount of energy initially, so more waves at a particular frequency results in more

energy at that frequency. In Fig. III.9 we see a frequency spectrum with an initial

slope of −2 has a final slope of approximately 0 after the short waves interact with a

single inertial wave. We note the ray tracing and adiabatic invariance theory results
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Figure III.10: Number of waves with initial (solid line) and final frequency spectrum
calculated through ray tracing (dashed line), final frequency spectrum
calculated through adiabatic invariance theory (dotted line), where
ε = 0.1, µ0 = 0.3, and k = 2π/5000.

match quite well. This result shows a general trend of short waves propagating

to higher frequencies (shorter vertical wavenumber), as was seen in the third-kind

encounter.

Extending these results to include other horizontal wavenumbers results in

a decrease in the range of initial vertical wavenumbers in order to keep the short

wave frequency between the inertial frequency and the buoyancy frequency while

still keeping the short wave vertical wavelength smaller than that of the inertial

wave. Results like those in Fig. III.9 but for k = 2π/5000 and µ0 = 0.3 are shown

in Fig. III.10. As k decreases, so does µ0, and a decrease in µ0 results in a decrease

in effective strong refraction because fewer waves can be refracted as was seen in

Fig. III.2. We can see the decrease in the vertical wavenumber extent of the flattened

area, which corresponds to a group of waves with are refracting to different final

vertical wavenumbers, due to the decreased value of µ0. But we can use a larger

value for u0, up to about 30cm/s as that is about the greatest velocity of inertial

waves observed, to counter-act the decrease in k and keep µ0 = u0(k/Nc)
1/2 realistic
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Figure III.11: As in Fig. III.9 but for initial values of k having a −2 log slope,
ranging from (a) k = 2π/10000 to k = 2π/200, and (b) k = 2π/500
to 2π/200. ε = 0.1, u0 = 4cm/s, and 0.2 < µ0 < 2.0. 30 bins are
used to find the energy at each ω value. Solid line is initial spectrum,
dashed line is final spectrum calculated from ray theory, dotted line
is final spectrum calculated from adiabatic invariance theory.

(µ0 > 1). Since the same range of ω values for Fig. III.10 were used in Fig. III.9

but k is larger, the result is a decrease in overall m values, in this case m∗ < 0.75.

With this k decrease we see that only a few short waves are affected by the long

wave, resulting in new vertical wavenumber values, highlighting the importance of

the short-long wave relationship in strong refraction occurrences.

To extend the calculations we include a −2 slope for both the frequency and

horizontal wavenumber of the short wave and let them vary from k = 2π/10000

to k = 2π/200 and ω = 2f to ω = N/2. The results are shown in Fig. III.11a.

For these figures ε = 0.1, u0 = 4cm/s, and 0.2 < µ0 < 2.0. Fig. III.11 shows

the strong relationship between the initial and final ω values. Because of the −2

slope imposed on the horizontal wavenumber spectrum there are a large number of

waves with values of k too small to allow for strong refraction by the long wave.

These waves dominate the final results so the short wave frequency spectra does

not significantly change throughout the interaction. In decreasing the value of k,

and therefore accounting for longer horizontal wavelengths of the short waves, we

introduce a spectrum of waves that does not change much after propagating through

an inertial wave. We also introduce short-wave vertical wavenumbers smaller than
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that of the inertial-wave, resulting in short waves that are not small scale. If we

then also choose to decrease the vertical wavenumber of the long wave, we decrease

µ0 even more and are left with a final spectrum almost exactly equal to the initial.

Fig. III.11b, has a smaller range of short-wave horizontal wavenumbers than

Fig. III.11a in order to have more short waves within the region of strong refraction,

yet still have the −2 slope in the k parameter. The horizontal wavenumber range

is k = 2π/500 to 2π/200, with ε = 0.1, and µ0 = 2. We use both ray tracing and

adiabatic invariance theory to calculate the short wave frequency spectrum, and the

two methods match quite well. These plots also agree with the general theory of

Bruhwiler and Kaper [7] in that the frequency spectrum is flattened. But the range

of horizontal wavenumber values for the short wave is very narrow.

Hence there are a limited number of k values available to use and still stay

within the bounds of a realistic and small short wave vertical wavelength. The

assumptions to watch because they are affected by changing k include keeping µ0 > 1

and having the short wave be a smaller spatial scale than the long wave. When k

is altered it is important to make sure the short-waves are still small scale. As

k decreases, m also decreases if ω is constant (the bounds of ω are approximatly

constant to satisfy the mid-frequency approximation), so at k = 2Mω/N , then

m = 2M , and if k gets any smaller the vertical spatial scale separation will not be

enough to call the short waves small scale. Although decreasing M will increase

the possible spread of k values to keep m > 2M (assuming this will keep the waves

spatially separated), it will even further constrict the range of m values subject to

strong refraction by decreasing µ0 more.

III.C.3 Propagation through many inertial waves

Another step from what Bruhwiler and Kaper have done is to test what

happens when a set of short waves propagates through a set of inertial waves. Using

adiabatic invariance theory as Bruhwiler and Kaper [7] do, we calculate a set of

mf , and ωf values after starting with the same set as in Fig. III.9. Then this final
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Figure III.12: Initial and final short wave frequencies (values binned): (a) using
adiabatic invariance theory, (b) using ray tracing. Note the difference
in scales, as more waves were used in the theoretical case because of
the fast calculation time. The solid line shows the initial frequencies,
k = 2π/500 to k = 2π/200, the dashed line is after first long wave
interaction, and the dotted line represents the final frequencies after
the short wave has propagated through eight inertial waves.

set of rays become the initial set of rays and their propagation through the inertial

wave is calculated again for these new values. Fig. III.12a shows what the final

spectrum will look like after the first interaction (dashed line), and then after eight

interactions (dotted line) when using adiabatic invariance theory. We can see the

spectrum seems to flatten out more after many interactions with the inertial wave.

The spectrum actually fluctuates back and forth between a flat spectrum and a

spectrum with a slightly negative slope, yet after many interactions the spectrum is

almost totally flat.

The resulting frequency spectra, after a set of short waves propagates through

eight identical inertial waves in ray tracing, yeild the same type of results as adiabatic

invariance theory does. Fig. III.12b shows that when using ray tracing, after more

interactions with the inertial wave, the variability around the horizontal line (a

perfectly flat spectrum) decreases, and the spectrum of all the rays is eventually

horizontal.

The consequences of such results is that the general trend is for low frequency

waves to propagate to higher frequencies. This is consistent with the previous results
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of Bruhwiler and Kaper [7] and Vanderhoff, Nomura, Rottman, and Macaskill [61]

showing the idea of propagation of short waves to smaller vertical wavenumbers.

Although this final spectrum is not necessarily more likely to break, since for that

we would want short waves at larger vertical wavenumbers which would result in

smaller vertical wavelengths leading to breaking, there is a possibility of breaking

within the short-long wave interaction, specifically at the caustics. If the waves do

not break, though, we would expect this flat frequency spectrum to emerge when a

broad ensemble of short waves with a −2 slope (close to ocean values) propagates

through inertial waves. Since this does not seem to be the result in the ocean, as the

−2 slope seems to be constant throughout the ocean, other interactions or three-

dimensional effects are probably present. One such mechanism occurring which is

not calculated here is short wave breaking, which may be occuring within this region

of strong refraction.

III.D Discussion

The statistical results of this chapter show that if a set of short waves with

realistic ocean frequency spectra propagate upward through a downward propagat-

ing inertial wave, the resulting frequency spectrum is no longer that of a realistic

ocean. The frequency spectrum is instead almost horizontal. There is a question

of what type of spectrum can be input to have the output resemble that of the

ocean, and if that input spectrum can also resemble the observed ocean spectrum.

The general trend of short-waves of low frequencies propagating to higher frequencies

corresponds to short waves exiting with smaller vertical wavenumbers. These results

match previous numerical and ray tracing studies. What is not taken into account

in these statistics is the decrease in amplitude of these waves. In this study we sim-

ply count the number of rays at each frequency, but do not take into account their

energy, which is also important. The work here has been purely two-dimensional

and the −2 slope in the vertical wavenumber has not been accounted for either.
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Because a horizontal frequency spectrum is not seen in the ocean, something must

be occurring to keep the short waves from attaining this flattened spectrum. It is

possible that the short waves are not interacting with the inertial wave and therefore

there would be no change in the frequency spectrum. However, the next chapter

will show the relationship between inertial waves and short wave activity suggests

there is definitely some sort of interaction between the two. Another conclusion may

be that some of those short waves which can interact are breaking and dissipating

their energy, and others which are interacting are transferring their energy down to

those scales which had originally broken. This idea will be discussed further in the

next chapter when breaking locations are calculated.



IV

Observational Analysis

This chapter will cover the observational setup, location, instruments used

to collect data, and an analysis of that data. Then I will compare the results of

the observations to results from both numerical simulations and ray tracing simula-

tions. I will make conclusions about possible mechanisms affecting the flow at these

locations within the ocean, and what signature may be seen in the ocean which can

be a clue to the observer that strong refraction in the form studied here is occurring

within the ocean and atmosphere.

The data being analyzed here was collected as a part of the Hawaiian Ocean-

Mixing Experiment, HOME. The purpose of HOME was to test the theory that

mixing does not occur uniformly over the entire ocean, which has been supported

by recent measurements which show an increase in mixing over topography [46]. As

mentioned previously, turbulent mixing is an important process in the ocean, which

redistributes nutrients, heat, pollutants, momentum, and other ocean properties.

Both observations and computational modeling of flow over the Hawaiian Ridge were

used as a part of HOME to better understand turbulent mixing over topography.

The Hawaiian Ridge is an ideal location because of its steep slopes and regular energy

input from tides flowing perpendicular to the ridge. Also, there had previously been

observational equipment moored near the Hawaiian Ridge collecting data which

could be analyzed and used to support the present HOME data.

83
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Figure IV.1: Observational cruise paths from 2000 to 2002 along and around the
Hawaiian Ridge. Figure provided by HOME researchers on chow-
der.ucsd.edu/home/index.html

The modelling aspect of HOME consisted of model-based data assimilations,

based on historical data, satellite altimetry data, plus data collected during HOME,

which resulted in general ideas for enhanced tidal mixing over topography which

could be applied globally.

The observational aspect of HOME included a number of ocean cruises to

collect data all along the ridge, in a specific location above Kaena Ridge, and far

from the ridge. First a survey of the Hawaiian Ridge was done in order to quantify

geographic variability of turbulent mixing around the Hawaiian Ridge, as well as to

find an ideal location for the more specific Nearfield region, which would be further

studied as a part of HOME. This was accomplished over five cruises. These are

drawn in red in Fig. IV.1. After this survey the Eastern Kauai Channel, between
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Oahu and Kauai, was chosen to be further studied, which includes Kaena Ridge.

Then observations were taken in the Farfield region, where models had ap-

proximated the propagation of energy away from the Eastern Kauai Channel out

into the open ocean. The cruise path was then chosen and is drawn in green in

Fig. IV.1. There was also one stationary location where data was collected on the

FLoating Instrument Platform, whose location is also shown in Fig. IV.1. The data

collected here was necessary to show how much energy escaped the Hawaiian Ridge

and made it into the open ocean without breaking and causing turbulent dissipation.

In general the energy lost from the barotropic tide is equal to the baroclinic tide

radiative energy plus the local dissipation. The first two pieces of this equation are

quantified by the farfield observations.

The last piece of this equation, local dissipation, is found by the final obser-

vational component in the Nearfield, which consisted of cruises shown by blue lines

in Fig. IV.1. Again these cruises included both moving ships collecting data and a

stationary setup just above Kaena Ridge. This stationary location will be described

in more detail in the next section, as it is the location at which the data being

analyzed here was taken. The purpose of the Nearfield is to observe the mixing

processes above the ridge in enough detail to understand the dynamics behind the

mixing.

Through satellite altimetry, HOME researchers Zaron and Egbert [68] found

that 26 gigawatts of tidal energy is dissipated in the region of the Hawaiian Ridge.

This shows a definite increase in tidal mixing at this location near topography.

Using two vertical profilers and a towed body over six cruises along Kauai Channel,

it was shown that there is strong internal wave generation and energy there, with

high turbulence near the bottom and over the ridge crest. This turbulence decayed

further from the topography, and by 60 km away the mixing values had fallen to the

open-ocean values. These general results support the theory that mixing is enhanced

over topography in the ocean.
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Figure IV.2: Location of FLIP during August 2002 HOME Nearfield data collection.
The blue circle represents the location of FLIP, the red circles are the
locations of the moorings. The solid lines denote cross-ridge and along-
ridge directions.

IV.A Observational Setup

During the Nearfield study in August, 2002, the FLoating Instrument Plat-

form, FLIP, was moored as shown in Fig. IV.2, just east of the crest of Kaena

Ridge, Hawaii, a submerged western extension of the Hawaiian island of Oahu. It

extends west-north-west from Oahu for about 60 km, half of the distance to Kauaii.

At the location of FLIP the ridge is approximately in a North-South orientation.

The crest depth is about 1100 meters deep, with surrounding areas at 5 km depth,

and located at 21.7◦ North, 158.6◦ West. Instruments deployed on FLIP, includ-

ing an eight-beam, coded-pulse Doppler sonar measuring velocity and two current-

temperature-density profilers, CTD’s, collected data in a range from 80 meters to

820 meters depth. The two CTD’s are a Seabird SBE 9 CTD’s, which measure

current, temperature, and pressure, from which salinity, depth, and density can be

calculated. There is also a micro-conductivity cell mounted on the instrument which

can resolve temperature-salinity fluctuations down to 10 cm scales. The instruments
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Figure IV.3: View of Kaena Ridge from the east looking west.

are pulled up and down every four minutes using two computer controlled winches

which run at 3.5 m/s, resulting in 1.1 meter vertical resolution. The sonar can pro-

file a 600 − 800 meter vertical range, with 3 meter vertical resolution, one minute

temporal resolution and 1 cm/s precision. A current meter was also deployed at

800 m, from which we could read the velocity of the current from a rotor, and the

direction of the current from the tail of the instrument, which acts to align the

instrument such that the body will face into the oncoming current.

Slopes as steep as 1:4 define the north-north-east and south-south-west sides

of the ridge. Fig. IV.3 is a view from the south of the ridge, looking north toward the

ridge. Fig. IV.4 is a view of the ridge from east-south-east looking west-north-west,

or along the ridge (along-ridge). Fig. IV.5 is a view of the ridge from south-south-

west looking north-north-east, or across the ridge (cross-ridge).

The ridge is oriented roughly normal to local semi-diurnal barotropic tidal

flow. The S2 (12 hour semidiurnal solar) tidal current has amplitude 2.8 cm/s East
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Figure IV.4: View of Kaena Ridge from east-south-east looking west-north-west.

Figure IV.5: View of Kaena Ridge from south-south-west looking north-north-east.
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and 5.2 cm/s North. The K1 (24 hour diurnal solar) tidal current has amplitude 3.2

cm/s East and 4.6 cm/s North. The M2 (semidiurnal lunar - 12 hour 25 minute) tidal

current has amplitude 6.4 cm/s East and 11.7 cm/s North, and is the dominant tide.

It has a pronounced fortnightly cycle. The currents do not reach the deep sensors

on the moorings, and are apparently generated above the ridge crest.

Above 500 meters depth energy and momentum fluxes are upward and south-

ward (1dyne/cm2 during spring tide). Below 500 meters depth the fluxes are upward

and northward. Above the ridge crest, power spectra of horizontal velocity and ver-

tical displacement have pronounced D2 (diurnal - 12 hour) peak, but there is little

evidence of it in the shear field, as we will see later. The cruise covered two neap

and two spring tides. The first neap tide was covered from year day 257 (September

14, 2002) to year day 261 (September 18, 2002). The first spring tide was from year

day 262 to year day 269.

As a preliminary analysis of the dynamics of the flow around Kaena Ridge

we have calculated the background mean currents, which are shown in Fig. IV.6.

Also shown are the mean currents over the week of most interest to us (which will

be explained later). The U velocity is zonal, where positive is eastward current. The

V velocity is meridional where positive is northward current.

The buoyancy frequency was calculated using the conductivity and tem-

perature readings of the CTD’s, from which a profile of density can be obtained.

Using this data the buoyancy frequency along the water column is calculated as

N =
√
g/ρ∆ρ/∆z. These values are averaged over year day 258 to year day 290,

and then fit using a cubic spline to smooth the curve. The final result is plotted in

Fig. IV.7, which shows the decrease in buoyancy frequency with decreasing ocean

depth. We can also see the location of the thermocline at about 100 m, where the

buoyancy frequency increases rapidly to about 10 cycles per hour.

Cross-ridge velocity and shear calculated over one week, from year day 260 to

year day 267 are shown in Fig. IV.8. Peaks can be seen in the observations in both

the velocity and shear spectra at the inertial, diurnal, and semidiurnal frequencies.
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Figure IV.6: Average current over time. (a) Average zonal velocity (where positive
is eastward) over depth for year days 258 to 291. (b) Average merid-
ional velocity (where positive is northward) over depth for year days
258 to 291. (c) Average zonal velocity over depth for year days 260 to
267. (d) Average meridional velocity over depth for year days 260 to
267.
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Figure IV.7: Average buoyancy frequency over 32 days, fit with a cubic spline.
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Figure IV.8: Observations from sonar data over Kaena Ridge for one week (year day
260 to year day 267) over all depths (100 meters to 800 meters). Iner-
tial, diurnal, and semidiurnal frequencies are labelled. A line with slope
of −2 is superimposed on both the frequency and vertical wavenumber
graphs for the velocity. (a) Frequency spectrum for cross-ridge velocity
averaged over all depths (371 data points). (b) Vertical wavenumber
spectrum for cross-ridge velocity averaged over one week (2520 data
points). (c) Frequency spectrum for cross-ridge shear, Uz, averaged
over all depths (371 data points). (d) Vertical wavenumber spectrum
for cross-ridge shear averaged over one week (2520 data points).
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Notice that in the shear spectrum the inertial and diurnal frequencies have the high-

est peaks, yet in the velocity spectrum it is the semidiurnal frequency which has the

highest peak. From this we see the near-inertial shears we are assuming in previous

calculations are being seen in the ocean. The large signature of the semidiurnal

frequency in the velocity spectrum occurs because of the tidal flow over the ridge.

There is energy in the velocity at the semidiurnal frequency, but the strongest shears

are at the inertial and diurnal frequencies. Also, an approximately −2 high vertical

wavenumber slope and high frequency slope can be seen in Fig. IV.8a and b.

IV.B Mathematics and Analysis

The observations are made up of a time series of current, temperature and

pressure data points from approximately 100 meters deep to 800 meters in the

ocean, taken over a few weeks. The calculations necessary to do a preliminary

analysis of the observational data include calcualting power spectral density, cross

spectra, cospectra, coherences, and phases. The following is an overview of how this

is accomplished.

The eight-beam, coded-pulse Doppler sonar system measures velocity. Hor-

izontal velocity is calculated by taking into account the slanted orientation of the

beams. The shear is then obtained by differencing this horizontal velocity in depth.

The CTD’s measure conductivity, temperature, and pressure at each meter depth

every 4 minutes, from about 50 meters to 950 meters depth. From the conductivity

and temperature readings, profiles of density and velocity can be obtained.

The vertical velocity can be defined as the change in isopycnal displacement

over time, as follows:

ŵ =
∂ζ

∂t
. (IV.1)

The rate of strain is defined as the change in the vertical velocity over depth,
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as follows:

strainrate =
∂w

∂z
=

∂2ζ

∂z∂t
. (IV.2)

For calculating spectral estimates, we define the number of data points as

n, and the record length in time as 2T . Frequency steps are defined as σn =

2πn/2T , where the lowest resolvable Fourier frequency is π/T . Then the separation

in frequency between Fourier estimates is: ∆σ = 2π/2T in radians / record length

in time.

We can plot the energy spectral density in two dimensions, which gives us

an idea of how the energy in the ocean is distributed among short and long scale

waves (in terms of vertical wavenumbers) and fast and slow waves (in terms of

frequencies). Consider data B(x, t) where −X < x < X defines the spatial bounds

and −T < t < T defines the time bounds on the data. Then B is given uniquely by

B(x, t) =
∞∑

n=−∞

∞∑
m=−∞

= Bnme
i(αmx+σnt) (IV.3)

where αm = 2πm/2X and σn = 2πn/2T . The associated spectral estimate is

Ê(αm, σn) =
|Bnm|2

∆α∆σ
. (IV.4)

To compare data, we define a pair of time series data as A(t, x1) ≡ A1(t)

and A(t, x2) ≡ A2(t), where the energy spectrum of the two time series are Ê1(σ) ≡

2 |A1(σ)|2 /∆σ and Ê2(σ) ≡ 2 |A2(σ)|2 /∆σ, when σ > 0. Where x1 and x2 are

two different properties defined at specific spatial locations over time. For example

property 1 may be the horizontal velocity of the high frequency waves, and property

2 may be the low frequency shear, both of which are calculated from the same time

series, but represent different data. To find relationships between the two we start

by selecting a trial value of the number of degrees of freedom, N . Then we break the

records up into N/2 segments. Fourier transform each individual segment and create

the products, A∗
1(σ)A2(σ), where the ∗ represents a complex conjugate. Then we

average these together to get an N degree of freedom estimate of the cross spectrum,
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Ĉ12(σ) =
2
N

∑N/2
n=1A

n∗
1 (σ)An

2 (σ)

∆σ
(IV.5)

(we divide by ∆σ to get the cross spectral density).

The real part of the cross spectrum is the Co-spectrum (Ĉo12(σ)), and the

imaginary part is the Quadrature spectrum (Q̂12(σ)). Now we can define the phase

of the cross spectrum as the angle of the cross spectrum:

Φ̂12(σ) = tan−1 Q̂12(σ)

Ĉo12(σ)
. (IV.6)

This is a measure of whether or not the two data series are in phase or out of phase.

The coherence of the cross spectrum is defined as:

Ĉoh12(σ) =

∣∣∣Ĉ12(σ)
∣∣∣[

Ê1(σ)Ê2(σ)
]1/2

. (IV.7)

This is the normalized absolute value of the cross spectrum. The maximum value of

the coherence is 1, which corresponds to two completely coherent data series. This

would occur if the two series were exactly the same, or if one of the data series was

completely dependent on the other. A coherence of 0 means the two data series

have nothing to do with each other, and are not even randomly coherent. A greater

coherence shows a stronger relationship exists between the two data series.

The observational data collected on FLIP over the Kaena Ridge supports the

idea of strong refraction by time-dependent shears as a mechanism for transferring

internal gravity waves to smaller, breaking scales. Correlations between the near-

inertial shear and high-frequency (1 to 5 hour period) wave strain rate have been

detected. This can be seen in Fig. IV.9 which is an image of the shear normalized

by the buoyancy frequency over one week down to approximately 800 meters depth

and the strain rate squared, which represents high frequency wave activity. The

sideways ”v” shapes in the shear are characteristic of upward and downward prop-

agating near-inertial waves, as can be seen by their period of approximately 24 to

30 hours, relating to a frequency of about 1 to 1.3f . The dominant vertical vertical



96

Figure IV.9: (a) Cross-ridge shear normalized by buoyancy frequency (dimension-
less) calculated from the sonar data. (b) Strain rate squared [1/days2]
calculated from the sonar data.
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wavelength is 75 meters. For the upward propagating near-inertial wave locations,

between about 400 meters and 500 meters depth, have positive shear regions which

correspond directly to a modulation in the squared strain rate field, which is a mea-

sure of the high frequency wave activity. In the presence of large positive shear due

to near-inertial waves, high frequency waves are suppressed, which may be explained

by a strong interaction occurring between the two waves, such as refraction.

To confirm this we test the frequency spectrum for each field, the shear

and the strain rate squared, to see if there is any indication of this interesting

behavior. Fig. IV.10 shows the 52-degree of freedom estimate, used for averaging,

of the frequency spectra for these two fields over the week of interest, year day 260

to 267, and the specific depths of interest, 425 to 475 meters. We can see a peak in

both the shear and strain rate squared spectra around a near-inertial frequency of

0.9 cycles per day.

The trend is even easier to see when we use a basic band pass filter to see

only low frequencies in the shear field, between 0.6 cpd to 1.4 cpd, and smooth the

squared strain rate field with a 30 meter, 6 hour finite impulse response filter. The

results of this smoothing are shown in Fig. IV.11, where the locations of increased

shear corresponding to locations of decreased squared strain rate are again circled.

The strong squared strain rate at lower depths corresponds to increased short wave

activity due to nearby bathymetry exciting short waves and affecting the flow pa-

rameters at depths below about 500 meters. Above this these features do not exist

or affect the flow.

A numerical simulation, done as described in Chapter II, of a situation similar

to that observed is shown in Fig. IV.12. Here two short waves, one of which interacts

as an encounter of the second kind and the other as a third kind, are input and

followed as they interact with a wave of frequency 1 cpd. Fig. IV.12a shows the

shear, which is directed at an opposite angle to the observations because in the

observations the inertial waves have an upward group speed and downward phase

speed, but the net propagation of the crests is upward because the group speed
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Figure IV.10: Observations over Kaena Ridge. Line at location of near-inertial fre-
quency of 0.9 cycles per day. Data over the one week of interest, year
day 260 to 267, and the depths of interest, 425 to 475 meters. This
is a 52 degree of freedom estimate. (a) Cross-ridge shear frequency
spectra normalized by the buoyancy frequency calculated from the
CTD profiles. (b) Strain rate squared frequency spectra calculated
from the CTD profiles.
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Figure IV.11: (a) Cross-ridge shear normalized by buoyancy frequency [dimension-
less] calculated from the CTD profiles, filtered to only include low
frequencies. (b) Strain rate squared [1/days2] calculated from the
CTD profiles, smoothed with a 30 meter, 6 hour smoothing function.

Figure IV.12: Numerical simulation results. (a) The shear from the near-inertial
wave, the colorbar units are [1/days]. (b) The squared strain rate of
the short wave as defined in the text, colorbar units are [1/days2],
and include only high frequency waves.
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Figure IV.13: Coherence and phases between the near-inertial cross-ridge shear and
the high frequency squared strain rate in the area of modulation.
This is a 52 degree of freedom estimate. (a) Coherence in observa-
tions, (where the squared strain rate is smoothed using a 30 m 6 hr
smoothing) over one week at depths 424 m to 476 m. (b) Phase cor-
responding to (a). (c) Coherence in numerical simulation over one
week and 50 m depth. (d) Phase corresponding to (c).

is greater than the phase speed. Again a strong relationship between shear and

squared strain rate is seen. These short waves are not propagating very far into the

location of positive shear. In the observations this is the case as well.

A calculation of the coherence between these two fields, in the observations

between 424 meters depth and 476 meters, and in the numerical simulations between

−25 meters depth and 25 meters, is shown in Fig. IV.13, along with the phase of

the relationship. This is a 52-degree of freedom estimate. There is a spike near the

diurnal frequency in the coherence in both the observations and numerical simula-

tions. The phase shows the two quantities at this frequency are about −150◦ out of

phase from one another in the observations and close to −180◦ out of phase from

one another in the numerical simulations. There is a strong relationship between

the two fields in both the ovservations and numerical simulations which suggests the
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same type of interactions may be occuring in both.

This preliminary analysis leads us to believe that short internal wave pa-

rameters and possibly breaking are dependent on their propagation through time-

dependent shears in the ocean, specifically inertial waves. These results present a

strong argument for a need to understand how the squared strain rate field is af-

fected by the near-inertial waves, whether it is by unsteady shear interactions or

not, and that single wave-wave interactions may be able to provide a good basis for

understanding the basics of this phenomenon.

IV.C Triple Product

A study of the triple product will help us better understand where, during

the interaction between the short wave packet and long wave packet, turbulence

is being produced. This particular quantity which we call the triple product has

not been used for analysis in previous observations because the necessary data has

not been available. Now, with all the data collected on FLIP during HOME we

have the ability to calculate this parameter and can compare it to other methods of

calculating internal wave propagation. The triple product is defined as:

TP = uw
∂U

∂z
(IV.8)

where lowercase letters are for the small-scale, high-frequency waves and the capital

letters denote background inertial wave parameters. Note that here, uw is the

Reynolds stress divided by the density.

The significance of the triple product is its relationship to the turbulent

energy production,

−ρuiujSij (IV.9)

where Sij is the mean rate of strain defined as:

Sij =
1

2

(
∂Ui

∂xj

+
∂Uj

∂xi

)
(IV.10)
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which for our idealized case, where V ≈ 0, relates directly to the triple product,

TP = −ρuiujSi,j(−2/ρ) . (IV.11)

For this system we assume the background is a quasi-steady mean flow and the short

waves are small fluctuations to that flow. Then the total velocity of the flow is the

sum of the background and short wave (utotal = U+u). We assume ∂U/∂t = 0 (this

is true for the average velocity) in order to use the equations of motion for turbulent

flow.

The equations of motion for the steady mean flow in an incompressible fluid

are

Uj
∂Ui

∂xj

=
∂

∂xj

(
Tij

ρ

)
(IV.12)

and
∂Ui

∂xi

= 0 . (IV.13)

The equation for mean flow energy, 1
2
UiUi, is then obtained by multiplying

IV.12 by Ui. The stress tensor is Tij = −Pδij +2µSij−ρuiuj (Tennekes and Lumley

[58]). P is a mean value, ν is the kinematic viscosity, and the resulting equation is:

Uj
∂

∂xj

(
1

2
UiUi

)
=

∂

∂xj

(
−P
ρ
Uj + 2νUiSij − uiujUi

)
−2νSijSij +uiujSij . (IV.14)

The first term on the right hand side of the equation is a measure of the pressure

work, the second term is the transfer of mean flow energy by viscous stresses, and the

third term is the transfer of mean flow energy by Reynold’s stresses. Since turbulent

stresses perform the deformation work, the kinetic energy of the turbulence benefits

from this work. Thus −ρuiujSij is called the turbulent energy production. So when

the triple product as defined here is positive the there is a transfer of energy to

the background, longer waves. When the triple product is negative then there is

turbulent energy production, and energy is being transferred to smaller scales.
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Figure IV.14: Numerical simulations of a third-kind encounter, m/k = −35 initially.
(a) Triple product averaged over time [m2/day3], uwUz. (b) Triple
product [m2/day3]. (c) Background shear [1/day].

IV.C.1 Triple Product in Numerical Simulations

We now compute these same diagnostics for the numerical simulations in

order to make a comparison with observational data.

The triple product in the numerical simulations for a third-kind encounter,

as well as the background shear, is shown in Fig. IV.14. The initial setup for

this simulation is the same as previously, where the short waves are approaching

from below the inertial wave with an initial vertical wavenumber of m = −35k.

Fig. IV.14a is the triple product averaged over time, defined as uwUz. Fig. IV.14b

is the triple product at each location in the flow. Fig. IV.14c is the background

shear in the simulations. This data shows the triple product is greatest where the

shear is strong, but generally has a different sign than the shear.

Fig. IV.15 shows the triple product and Reynolds stress averages over five

inertial periods. We can see that for this single interaction the Reynolds stress is

negative where the shear is largest and the short wave is refracting strongly as it

goes through the inertial wave. Elsewhere the Reynolds stress is positive. The triple

product also changes over the interaction, becoming both positive and negative, but

at both the entrance and exit it is positive. The triple product is negative at loca-

tions of strong refraction where the short wave is extracting energy from the long

wave. Since the average of the shear over time in this ideal setup is zero, it is ben-
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Figure IV.15: Numerical simulations of a third-kind encounter. Average
Reynolds stress (×10) [m2/day2], uw, (blue), average triple product
(×500)[m2/day3], uwUz, (green), and rms shear [1/day],

√
U2

z , (red).
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Figure IV.16: Numerical simulations of a third-kind encounter. Average positive
shear over time and average negative shear over time [1/day] (red
positive, blue negative), average triple product at positive shear loca-
tions [m2/day3] (light blue), average triple product at negative shear
locations [m2/day3] (green), and sum of the average triple products
[m2/day3] (purple).
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eficial to look at the average triple product since it relates to positive or negative

shear. Fig. IV.16 shows the triple product averages split between locations when the

shear is positive and when the shear is negative. In this case we see the triple prod-

uct averages are approximately opposite, with the average triple product generally

corresponding to negative shear areas dominates the total average triple product.

This would suggest strong interactions mainly occuring in regions of negative shear.

The setup here is an interesting one though, as there is a single short wave

interacting with a single long wave. There are no short waves which are not strongly

refracted averaging into the equations for the triple product. With just this single

interaction we see a general trend of short waves taking energy from the inertial wave

initially, but giving back more before the short wave exits, resulting in a net transfer

of energy to the inertial wave. This matches the results in the previous chapters

showing the amplitude of the short waves in the third-kind encounter decreasing

as they exit the inertial wave. This drop in amplitude is not as drastic for a first-

kind encounter, where the first refraction is to higher vertical wavenumber and

smaller group speed, and the final refraction is generally back to its initial vertical

wavenumber and group speed, resulting in almost no loss in the final amplitude of

the short wave.

IV.C.2 Triple Product in Ray Tracing

Although the results of the previous section are interesting and give us a feel

for how a single interaction will affect the different properties of interest, because

there are many more waves in the ocean it seems a good idea to create a statistical

set of data from ray tracing simulations. In this sense we can cover all types of

encounters at once and average over them all. We input 1500 rays total, with 500

different equally spaced frequencies between 2f to 0.99N , 3 rays at each frequency

have different initial positions, within 3 meters of one another.

In Fig. IV.17a all of the 1500 short waves are travelling upward through

the inertial wave and they strongly refract as they propagate through the inertial
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Figure IV.17: Ray tracing calculations of a set of 1500 waves with different initial
depths and frequencies ranging from 2f to 0.99N . Average shear
(×105) over time [1/day] (red positive, blue negative), average triple
product (×107) at positive shear locations [m2/day3] (light blue), av-
erage triple product (×107) at negative shear locations [m2/day3]
(green), and sum of the average triple products (×107) [m2/day3]
(purple). (a) Upward travelling waves. (b) Downward travelling
waves. (c) Equal number of upward and downward travelling waves.
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wave. We can see there seems to be a greater average negative shear for the ray

tracing. This is because the shear is being calculated only along the ray, so a

greater average negative shear means the short waves are spending more time in

locations of stronger negative shear. Although there are many different locations

of strong refraction there is a more regular trend of a positive triple product at

locations of negative shear. This dominates the triple product calculation, and the

average triple product at locations of positive shear, which is generally negative, has

a small effect on the total average triple product. So again we see the negative shear

locations dominating the triple product calculations. Also, because the overall triple

product is positive the short waves are transferring energy to the inertial wave as

they strongly refract.

In Fig. IV.17b all of the 1500 short waves are downward travelling waves

which refract as in the critical layer case, but because of the propagating phases of

the background the critical layer soon vanishes and the wave propagates unchanged

again. There is a strong signal of a negative triple product when the shear is

negative, and a positive triple product when the shear is positive. These combine

to give a near-zero triple product throughout the simulation. Little energy is being

transferred between the short and long wave during this interaction. In this scenario

the short waves may begin to approach a critical level and refract, but then as the

phases of the long wave propagate through the critical level also propagates through

and the short wave refracts back to its original properties with no net exchange of

energy between the long and short wave.

When we have an equal number of upward and downward travelling waves,

as in Fig. IV.17c, where 750 short waves are initiated below and 750 above the

inertial wave, we see a smaller triple product, although overall it is still positive.

Here the downward travelling waves, which have a positive triple product during

positive shear locations, seem to dominate. This makes sense as the short waves

transfer energy as they strongly refract, but generally exit with a smaller amplitude,

therefore having lost energy to the inertial wave, whereas those short waves which do
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Figure IV.18: Observational analysis of flow over Kaena Ridge for two days over 200
meters. (a) Triple product averaged over time [m2/day2], uwUz/N(z).
(b) Triple product [m2/day2]. (c) Background shear [1/day].

not strongly refract will keep their energy throughout the interaction. (Although in

these cases we do not actually see changes in the inertial wave because it is set as a

constant, and although it may be increasing in energy the change is small compared

with its original energy.) The result is that overall, short waves which interact with

the inertial wave are transferring energy to it and leaving the interaction less likely

to break, unless they break during the interaction, which will be investigated later.

IV.C.3 Triple Product in Observations

For the observational calculations we divide the shear by the buoyancy fre-

quency because it changes over the depth of the ocean. Fig. IV.18a shows the triple

product averaged over time, defined as uwUz/N(z). Fig. IV.18b is the triple prod-

uct at each data point collected. Fig. IV.18c is the background shear calculated

by filtering the data to see only the near-inertial shear. Here we can see the triple

product is greatest, positive or negative, in locations of strong positive or negative

shear. Fig. IV.18a shows the average triple product is generally positive, as we have

seen in previous cases.

Fig. IV.19 is the result of calculating the Reynolds stress and triple product

from observational calculations and averaging over two days. The two days were

chosen to be those where the inertial waves propagating upward through the ocean
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Figure IV.19: Observational analysis over Kaena Ridge, averaged from year day 262
to 264. Shear is divided by the buoyancy frequency as it is variable
over the ocean depth. Average Reynolds stress [m2/day2], uw, (blue),
average triple product (×500)[m2/day2], uwUz/N(z), (green), and
rms shear (×2000) [dimensionless],

√
U2

z /N(z), (red).
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Figure IV.20: Observational analysis over Kaena Ridge, averaged from year day 262
to 264. Shear is divided by the buoyancy frequency as it is variable
over the ocean depth. Average shear (×105) over time [1/day] (red
positive, blue negative), average triple product (×105) at positive
shear locations [m2/day2] (light blue), average triple product (×105)
at negative shear locations [m2/day2] (green), and sum of the average
triple products (×105) [m2/day2] (purple).
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were dominant. We see the Reynolds stress is both positive and negative, but the

average triple product is positive almost everywhere. Fig. IV.20 is averaged for the

same two days and shows that during positive shear regions the triple product is

positive, as it is in the negative shear regions as well. This looks somewhat like

Fig. IV.17c, which is the ray tracing of short waves propagating both with and

against the inertial wave. The balance between upward and downward propagating

waves would be important in defining the value of the triple product, as well as the

location of short waves. Since they are spread out initially, the short waves have the

negative triple product regions seen in Fig. IV.16 but they will not show up with the

greater positive triple product from other averaged areas. Also, the positive shear

locations have a positive triple product as the waves propagating downward are not

strongly refracting, but keeping most of their energy.

When the triple product is positive the short waves are transferring energy

to the long waves. This is occurring in numerical simulations, ray tracing, and

observations. This corresponds to short waves strongly refracting through longer

waves, exiting with a smaller vertical wavenumber and decreased amplitude. In the

next section we will see why it is the negative shear areas that dominate when the

short waves may be strongly refracted and possibly break.

IV.D Wave Breaking

We calculate wave-breaking by calculating when isopycnal displacements are

such that ζz > 1, where ζz is a measure of the wave steepness as discussed previously.

This leads to overturning within the fluid and resulting turbulence. This can be

calculated in the numerical simulations and observations by finding ∆ζ/∆z.

IV.D.1 Wave Breaking in Numerical Simulations

A wave breaking map for the numerical simulation is shown in Fig. IV.21b.

Next to it, Fig. IV.21a, is the corresponding background wave shear field. Notice the
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Figure IV.21: Numerical simulation of a third-kind encounter, where initiallym/k =
−35, and ζz = 0.1. (a) Background shear [1/days]. (b) Possible
breaking map for numerical simulation of a third kind encounter. The
colorbar represents ζz

colormap in Fig. IV.21b represents the wave-breaking parameter ζz, and does not

ever go to 1. So breaking is not occurring in these simulations, as we already knew,

but we can see where the wave steepness is greatest and therefore if the amplitude

of the original short wave were increased these would be the locations of probable

breaking. In the numerical simulations the short wave travels in between locations of

high and low shear, through locations of zero shear, going from negative to positive

shear. We can see the wave steepness begins to increase as soon as the short wave

is first strongly refracted, which is at a location where the background shear is

negative for first kind encounters, and positive for third kind encounters (this will

be described further in the next section addressing ray tracing). Where negative

shear corresponds to the velocity of the inertial wave, in the direction of short-

wave propagation, decreasing with depth. The increase in short-wave steepness

at the location of strong refraction makes sense as we have seen the amplitude of

the short-wave increases at locations of strong refraction. If the background velocity

were large enough the strong refraction locations would be in areas of relatively large

positive and negative shear because they would be relatively far from the maximum

and minimum velocity locations.

In the first-kind encounter we expect to see breaking in regions of negative
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Figure IV.22: Numerical simulation of a first-kind encounter, where initially m/k =
−3, and ζz = 0.6. (a) Background shear [1/days]. (b) Possible break-
ing map for numerical simulation of a first-kind encounter. The col-
orbar represents ζz

shear, which can be seen in Fig. IV.22. This displays breaking of short waves which

propagate into a region where the background wave velocity is increasing in the

direction of vertical short wave propagation. Also the short waves are propagating

in the positive horizontal direction.

If we increase the initial wave steepness of the short wave to ζz = 0.9 than we

are almost positive breaking should occur. Fig. IV.23 shows this situation for the

third kind encounter. Since the numerical simulations are only two-dimensional and

breaking is three-dimensional the breaking will not be resolved. In these simulations

what we see is instability within the short wave packet. There is no longer a clean

packet with nice phases, but the crests are altered and look wavy. This is showing

locations of breaking within the short wave. These begin at the first location of

refraction corresponding to each area of the short wave packet, which was at a

location of negative shear as can be seen in Fig. IV.21. The short wave seems to

curve around the negative shear area as it is refracted. This is what we would expect

from the previous results of where the wave steepness parameter, ζz is greatest.

If we increase the initial wave steepness even further, for the wave to be

unstable initially, ζz = 1.5, the results can be seen in Fig. IV.24. At the initial time

we see the same type of unstable behavior as seen in Fig. IV.23 at the locations
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Figure IV.23: Breaking map for numerical simulation of a third kind encounter with
an initial wave steepness of ζz = 0.9 and m/k = −35. The colorbar
represents ζz

Figure IV.24: Breaking map for numerical simulation of a third kind encounter with
an initial wave steepness of ζz = 1.5 and m/k = −35. The colorbar
represents ζz
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Figure IV.25: Ray paths for different rays within the ray tracing simulation where
the filled in ellipses are outlined by locations of strong refraction
and corresponding ζz values along the ray. (a) First-kind encounter,
m/k = −3. Notice the locations of positive and negative shear which
outline the ellipses. (b) Second-kind encounter, m/k = −12.25. (c)
Third-kind encounter, m/k = −35.

of strong refraction. But in Fig. IV.24 at the locations of strong refraction the

numerical simulations are not only somewhat unstable, but seem to be turbulent,

which is not at all resolved by these numerical simulations. Again, we see the

strongest instability occurring at the first location of strong refraction corresponding

to negative background shear. We also notice the curviture of the short wave as it

is refracted and breaks, as later this will match the observations.
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IV.D.2 Wave Breaking in Ray Tracing

The calculations for finding breaking in the ray tracing are harder and we

only see the wave-breaking parameter along the paths of the short waves. A different

approach as there is not information over the entire spatial domain, but only along

each short wave ray path. For this we use the dispersion relation and (II.3) to derive:

ζz = −m

∣∣∣∣∣
(

2Aω̂

ρ0

)1/2

N−1

∣∣∣∣∣ . (IV.15)

Fig. IV.25 shows the ray lines, locations of strong refraction outlined by

filled in ellipses, and the corresponding ζz values. These values are estimated at the

caustics with the corrected amplitude calculated previously. We see that in each of

the three encounters the largest steepness is at locations of strong refraction. In the

second and third kind encounters these locations correspond to refraction at positive

shear. The locations of positive and negative shear within the ellipses is shown in

Fig. IV.25a, which shows the upper left portion of the ellipse corresponds to positive

background shear and the lower right portions correspond to negative background

shear. These plots look much like those shown previously for the amplitude of

the short wave. In the ray tracing calculations the amplitude of the short wave

approaches infinity as the caustic is approached. We see the first-kind encounter

has the largest increase in wave-steepness at the caustic, and would be most likely

to break if each of these short waves had the same initial wave steepness.

If we look back to Figs. II.3, II.5, and II.6 we can see that there is a drop

in the vertical wavenumber at locations of strong refraction. This drop is very small

in the first kind encounter, and an order of magnitude in the third kind encounter.

This may have an effect on the steepness, ζz = mζ0, at the location of strong

refraction. For constant initial wave steepness, ζ0 will be smaller for the third-kind

encounter because its vertical wavenumber is larger. But at the location of strong

refraction the vertical wavenumber drops an order of magnitude, and the amplitude

is corrected as discussed previously. Whereas in the first-kind encounter the vertical

wavenumber has only a slight decrease in value at the location of strong refraction,
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Figure IV.26: Observational analysis over Kaena Ridge for two days over 200 meters
depth. (a) Inertial shear divided by buoyancy frequency. (b) Wave
breaking map calculated from CTD data. The colorbar represents ζz.

and the amplitude is again corrected.

Also relating this back to the statistical analysis, breaking of the short waves

of the first kind would result in taking energy from the highest frequencies, but then

the third-kind encounters interact and transfer their energy, although less than their

original energy, back to the higher frequencies. This shift may keep the balance,

resulting in a realistic ocean spectrum that may have shifted to less energy because

of the loss of energy to mixing and to third kind encounters upgrading to first kind

encounters. As we saw in Chapter II, the final energy spectrum for a single third

kind encounter interacting with an intertial wave has a realistic ocean slope. If the

first-kind encounters are breaking and the third kind encounters are redistributing

their energy, the realistic energy spectrum may be kept intact while we see breaking

in the negative shear regions of the ocean where the encounters of the first kind are

breaking.

IV.D.3 Wave Breaking in Observations

The observational results of calculating the breaking parameter, ζz, from the

CTD data over two days and 200 meters depth are shown in Fig. IV.26b. The

corresponding filtered inertial shear is shown in Fig. IV.26a. These results show a
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strong relationship between breaking and negative shear, as we did in the ray tracing

and numerical simulations. Wave breaking coincides with negative shear.

If the waves are of large enough initial amplitude to break, they will break

just after the first strong refraction location. Therefore, whether or not the shear is

positive or negative when the short waves break, they may be able to have a relative

effect on the background shear in the form of acting to push the wave upwards as

the short waves propagate upwards and proceed to distribute their energy near the

base of the inertial wave, acting with a net positive effect on the background.

In the simulations, ray tracing, and observations, it seems that breaking

is occuring at locations of negative shear. In the numerical simulations and ray

tracing the short waves most likely to break are first strongly refracted in a location

of negative shear. The corresponding observational plots then have locations of

breaking mainly where the background shear is negative as well.

Why do the short waves first refract when the shear is negative? As the iner-

tial wave phases propagate downwards, the first possible location of strong refraction

within the shaded locations of strong refraction as shown in Fig. II.3a corresponds

to high negative shear. The short waves that refract strongly at these locations are

first-kind encounters, and they are also the most likely to break because of their

large increase in wave steepness at the location of strong refraction. It is also inter-

esting again to notice the curvature of some of the breaking regions in Fig. IV.26b,

which match the curvature seen in the numerical simulations when the single short

wave packet first interacts with the inertial wave in Fig. IV.21b.

If some short waves of the spectrum are able to be refracted, they will create

internal wave activity at locations between negative and positive shear locations.

Those short waves that cannot be strongly refracted will have wave activity at all

locations and not depend on the sign of the background shear. We have seen that

short waves which can be strongly refracted and have the highest probability of

breaking will generally break in a region of negative shear. Waves which enter the

inertial wave with a slow vertical group speed, which may break in regions of positive
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shear, also have a smaller wave steepness at locations of strong refraction and thus

are less likely to break. So they may not be as important to the breaking dynamics.

Then the net total of a number of waves travelling through an inertial wave will be

an increase in short wave breaking mainly at negative shear locations. But if these

waves were to travel in the opposite direction, such as westward travelling waves

instead of eastward, they would be breaking in locations of positive shear instead

of negative. So these results of breaking during negative shear locations show a

possibility of short waves propagating in one direction for a period of time.

IV.E Discussion

The results shown in this chapter have given us insight into one of the mecha-

nisms of short wave breaking in the ocean. This is when short waves created by flow

over topography, small mixing patches, etc., propagate upward through the ocean

and propagate into long inertial waves. Observations have shown these phenomenon

occurring, and this analysis shows the same results when looking at the phenomenon

in the ocean, numerical simulations, and ray tracing. We see breaking occurring at

locations where the background shear is decreasing with increasing depth and the

short waves have a group speed in the positive horizontal direction. The importance

of these methods matching is that they can be used simultaneously, in sequence, or

individually and the results should be comparable. This means that in the future we

can more confidently use ray tracing, which is very fast, and numerical simulations,

which are still faster than collecting observational data, to understand short-wave

propagation throughout the ocean.

We also found that when the short waves do not break they have a net transfer

of energy to the inertial wave. This is because the short waves generally exit with

a faster group speed and smaller vertical wavenumber. These short waves are then

less likely to break when the next inertial wave propagates downward through the

ocean.
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Combining information from all three methods, we have found short-wave

breaking in regions of negative shear in the ocean, corresponding to high-frequency

waves travelling in the same direction breaking and dissipating their energy within

the inertial wave interaction. Then the lower frequency waves which interact with

the background wave redistribute their energy to those high frequencies, resulting in

a realistic ocean spectrum both before and after the short waves propagate through

the inertial wave.
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Conclusions

For the thermohaline circulation to continue working as it does today there

are certain energy constraints that must be met. As mentioned previously, approxi-

mately 1 TW of energy is input into the deep ocean from the tides, in addition to the

approximately 1 TW already input by wind-driven waves. Recent data has shown

a strong case for some of the tidal energy being dissipated by flow over topography

creating internal gravity waves. These waves break, some immediately, and some af-

ter propagating further into the ocean and interacting with other waves, and mixing

results. It is important to study each of these parts of this energy cascade from tidal

energy, to internal gravity waves, to smaller breaking scale waves, to turbulence and

mixing, to understand how the process fits into the overall ocean circulation model.

The process of internal waves’ propagating to waves of short enough scales

where breaking may occur is one of these important pieces. Henyey and Pomphrey

made some assumptions about the dissipation of short internal waves as they reached

smaller scales which are still being used in some models today. These dissipation

estimates do not take into account the time-dependence of the shear in the ocean

and assume a cutoff for wave-breaking based on a steady background shear profile.

Field data has shown that inertial waves propagate downward through the ocean,

providing a time-dependent shear for the broad spectrum of wavenumbers present in

the upper-ocean to propagate through. This work has addressed these interactions
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through a detailed study of the dynamics of an interaction between a short wave and

an inertial wave, a statistical study of a number of short waves propagating through

a number of inertial waves, and an observational study of this phenomenon. Results

have shown good agreement between the three methods, which supports further

use of ray tracing and numerical simulations as a means to study a broader range

of situations within the ocean. We have also found a strong signal of short wave

breaking within inertial waves, specifically the negative shear regions which shows

a directional dependence on the waves in the region studied. This corresponds to

short-waves of high frequencies propagating upward through the downward propa-

gating inertial waves and breaking at their first strong refraction by the inertial wave.

This breaking may be seen in other oceanographic data, and may be attributed to

this type of interaction.

V.A Summary

The overall goal of this work has been to investigate short-wave dynamics as

they propagate through a realistic ocean background in an effort to understand how

and where short waves may break and dissipate their energy. It has been found,

through a series of numerical and observational techniques, that short waves which fit

the criteria to strongly refract will do so and will break at the first location of strong

refraction. If this were not the case we would see a flat frequency spectrum within

the ocean, as we saw in the statistical analysis. These short waves are breaking at

their first location of strong refraction because of the increase in amplitude there.

This creates a large wave steepness, resulting in breaking. We also saw that the

short-waves with the highest probability of breaking – first-kind encounters with

initially high frequencies – will strongly refract first at a location of negative shear.

Those which do not are lower frequency short-waves and are propagating to higher

frequencies, but smaller amplitudes while transferring energy to the background long

wave. Thus we see a trend of upward propagating short waves breaking at locations
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of negative shear created by long inertial waves travelling downward through the

ocean.

Because of the strong correlation between fully nonlinear numerical simula-

tions, ray tracing, and the observations, we are confident in our modeling capability.

This is important as we can trace many short waves through many long waves in a

number of minutes using ray tracing, where numerical simulations would take a few

hours, and the observations would take however long you wanted to track the short

waves, as well as the time to analyze the data.

V.A.1 Single Short and Long Wave Interaction

In investigating the effect of time-dependent long-wave shear on short internal

waves using ray theory and fully nonlinear numerical simulations, we have found that

critical layers are rare if the model is a realistic oceanic flow. When the interactions

occur, cg = c, short-wave focusing results and after being refracted, the vertical

wavelength of the short wave may be affected. As m is increased, there is a decrease

in wave-energy, which will be transferred to the mean flow. The dissipation will

depend on both the initial vertical wavelength and the initial amplitude of the short-

wave. Previous assumptions about critical levels in steady shear must be carefully

considered in time-dependent shear because they may not be true.

Although these results are for mid-latitude deep oceanic flows, many of the

conclusions may be extended to the middle atmosphere as well.

There are a number of other neglected processes that various studies sug-

gest are significant for short-wave dynamics, and they include some processes that

have never been analyzed in the context of the model of a short and long wave

interaction and that could be critical for understanding the model predictions. In-

teractions among short waves and short-wave induced mean flows have not yet been

analyzed using this model. Other important processes with limited analysis us-

ing this model include refraction by steady shear, phase-group interactions, and

ray convergence/divergence. The relative importance of steady shear versus near-
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inertial shear for short-wave propagation was first examined by Buckley, Broutman,

Rottman, and Eckermann [8], but with a quasi-2D model and for a very limited

range of conditions. Sun and Kunze [54, 55] included vertical divergence of the

background and found that it sped up the refraction of the short waves toward

small dissipating scales and hence increased the predicted dissipation rate of the

HWF model to a value closer to reality. One problem with the Sun-Kunze study,

as they say, is that the background Wz tends to be associated with internal waves

whose intrinsic frequency is higher than the short waves being refracted. This calls

into question – but does not necessarily violate – the validity of the slowly varying

approximation of ray theory.

V.A.2 Statistical Analysis

An analysis of the wave-set phenomenon first seen by Bruhwiler and Kaper

[7] led to a better understanding of the propagation of a spectrum of short waves.

These short-wave results may show a propensity to exit a long-wave interaction

with a particular final vertical wavenumber. Although short waves have a preferred

entrance and exit location within the inertial wave, because of the relationship

between the slope of the incoming ray and the slope of the locations of strong

refraction, the general outcome seen in the analysis of individual waves is still valid.

The propagation of a short wave through an inertial wave will lead to a decrease

in the short wave vertical wavenumber, if initially m∗
i > 1, which corresponds to a

third-kind encounter where cg � C corresponding to a shallower slope of short-wave

propagation in z − t space than for the long-wave phase propagation.

After extending the work of Bruhwiler and Kaper we see that their results

seem valid over the suggested range of k values for which strong refraction may occur.

Statistically the general trend in frequency space is for the short waves to propagate

to higher frequencies. The results also seem to hold as the short waves propagate

through a set of inertial waves, as they would in the ocean. The practically flat

spectrum propagating again through an inertial wave stays approximately flat. This
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is interesting, as no such flat spectra have been measured in the ocean (not including

locations near strong sources of internal waves). Observations have stayed close to

the analytic form approximating this spectrum, by Garrett and Munk [19], which

has a −2 slope. There is a possibility that short waves with larger amplitudes will

break at locations of strong refraction, and therefore no flat spectrum will result. As

we saw in the ray tracing analysis the highest frequency waves (first-kind encounters)

may break, resulting in a decrease in the number of waves left at the high frequencies,

altering the spectrum to have a negative slope again. Also, three-dimensional effects

may be important here since changes in horizontal wavenumber result in changes

in the group speed of the short-wave, which would alter the locations of strong

refraction. It would be interesting to find the types of interactions which, with an

initially realistic spectrum, after propagating through a time-dependent background

shear would result in a finally realistic spectrum as well. It may also be that the

number of short waves within this range of strong refraction are minimal. Although

there are short waves which satisfy the limits necessary for strong refraction, how

abundant are there and where are they? They may be generated by flow over

topograpy, mixed regions, or flow behind an object.

We conclude that within the region of strong refraction the short wave fre-

quency spectrum flattens, and waves are spread between the maximum and mini-

mum possible frequencies of strong refraction. Outside of this region, as expected

through theory, the short waves do not change and their final frequency and ver-

tical wavenumber spectrum do not change from the initial. The interest then is in

whether or not real spectra fall within this range or not. As further work one could

test actual short wave spectra created in the ocean or atmosphere, to see whether

or not the short wave parameters fall within the locations of strong refraction by an

inertial wave. Also, because of these results, which show a flat frequency spectrum

which is not measured in the ocean, we believe breaking of some of those waves

which can refract will occur.
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V.A.3 Observational Analysis

In the observations we mainly see breaking occuring within the inertial

wave. This breaking occurs in locations of negative background shear for posi-

tive x-propagation of the short-wave, even though the parameter deciding whether

or not the short waves can strongly refract has to do with the velocity of the back-

ground, not the shear, and thus the shear will be positive or negative at locations

of strong refraction. But this phenomenon is seen in both representative ray tracing

calculations and numerical simulations. It is found that generally short waves of

the first kind will strongly refract first at a location of negative shear because of the

dynamics of the interaction: the slope of the short wave group speed in z−t space is

greater than the slope of the phase speed of the inertial wave, cg >> C. The short

waves will reach their greatest amplitude within the first strong refraction. If the

short wave has a large enough initial amplitude to break, it will at this first strong

refraction location. We found first-kind encounters have the largest increase in wave

steepness at locations of strong refractions, and would therefore be most likely to

break. These factors result in short waves breaking in locations of negative shear.

The observations showed a net transfer of short wave energy to the back-

ground inertial wave. This corresponds to third-kind encounters which have a net

transfer of energy to the background long-wave. Although we did not analyze it

more fully, this may result in a net upward push of the inertial wave by the short

waves. It does result in short waves with less propensity to break, though, because

of their diminished amplitude.

The results of the observational analysis match fairly well with results of the

ray tracing and fully nonlinear numerical simulations. This gives us faith in the

methods which we have used to calculate short wave behavior, and since thousands

of short waves can be traced through a number of inertial waves in a matter of hours,

confidence in these methods means a decrease in computational time and power and

an increase in knowledge.
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V.B Future Work

There is still work to be done within this specific field. Ideally a parame-

terization of short wave activity and breaking would be created. Then one could

represent the short-wave evolution to breaking in terms of large-scale features that

are dealt with explicitly in the models. Just as an extension of the work presented

here, one could further analyze the observational data and do more comparisons to

verify the ray tracing and numerical simulations and their ability to recreate critical

data from the observations. Also it would be of interest to terminate the short waves

in the ray tracing if they were to reach a breaking point and then calculate the triple

product, as it would be closer to reality. This would entail calculating each specific

amplitude correction to find whether the steepness of the wave is greater than unity.

To coincide with a specific location, ideally one could create the range of

short waves created by flow over topography (even the Hawaiian Ridge specifically)

numerically and test these coherent short waves as they travel through the inertial

wave environments tested in this work. This would give further insight on what

outcome to expect when following short waves purely created by flow over topogra-

phy, and not the Garrett-Munk spectrum of short waves. These short-waves would

correspond to certain types of encounters which have been studied here or would not

be interacting with the inertial wave. Then using the methods of ray tracing and

numericals simulations we could calculate a good estimate of what should happen

after the short waves were created by over particular topography.

It would be of interest to do a statistical study, somewhat like that already

completed, yet keep the amplitudes of each of the rays, and have a final and initial

frequency spectrum not based solely on the number of waves at each frequency, but

their energy. Then conclusions could be drawn about the energy in each frequency

after interacting with an inertial wave. This may match observations slightly better.

The analysis would not be difficult, but would be interesting and take some time.

It would also be interesting to do a statistical study within the numerical
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simulations. This would provide more information on the total wavefield as an

array of waves propagate through an inertial wave.

The work done here can also be easily applied to the atmosphere. The

ray tracing and numerical techniques may be used to test locations of breaking in

the atmosphere, for example as wind blows over topography resulting in gravity-

wave breaking and turbulence production. A three dimensional study has been

done by Fritts and Garten [16], but the evolution of short waves to breaking has

not yet been fully parameterized. These results would aid in the understanding of

phenomenon such as clear air turbulence and how pollutants propagate up through

the atmosphere.

V.B.1 Three-dimensional Ray Tracing

Experiments exist of a three-dimensional ray tracing of short waves propagat-

ing through a pancake dipole. Thus it would be of interest to use three-dimensional

ray theory to compare with these results. Three-dimensional effects may alter the

locations of strong refraction as refraction in the horizontal dimension will affect the

frequency of the short-wave and therefore the group speed.

We would extend the ray tracing we have been doing to three dimensions.

This means the velocity of the long wave will no longer be purely horizontal, and

the short wave may refract in the horizontal direction, resulting in changes in the

horizontal wavenumber. Godoy-Diana, Chomaz, and Donnadieu [20] have done ex-

periments which test the interaction between downward propagating internal waves

created by an oscillating cylinder and a pancake dipole created by closing two flaps

and letting a piece of the vortex through a hole into the tank. In the vertical plane

along the centerline the horizontal velocity profile of the pancake dipole can be de-

scribed by a gaussian. Along this line they found that internal waves propagating in

the same direction as the dipole (co-propagating) reached a critical layer and were

absorbed by the dipole. Internal waves propagating opposite of the dipole (counter-

propagating), though, reached turning points along the centerline and were refracted
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back upward through the tank. The horizontal structure of the dipole causes the co-

propagating internal wave field to diverge, resulting in defocusing of the wave field.

The opposite occurs when the internal waves are counter-propagating, the internal

wave field converges, resulting in focusing of the wave field. Their experimental

results support this. In the co-propagating case no waves are in the vertical center-

line plane after the dipole passes, even when no critical layer is reached. The wave

field has diverged. In the counter-propagating case they see waves, with amplified

wave amplitude, below the dipole on the centerline where the wave should have been

refracted upward. The wave field has converged. These three-dimensional effects

result in a limiting of the horizontal extent of the critical layer in the co-propagating

case, negatively effecting the momentum transfer, and an increase in wave activity

along the centerline of the dipole in the counter-propagating case.

Godoy-Diana, Chomaz, and Donnadieu [20] were able to use two-dimensional

ray tracing calculations to compare with the plane of vertical symmetry in the

experiments. They found critical layers and turning points occuring at the same

locations as seen in the experiments. These simulations did not account for the three-

dimensional refraction and focusing of the waves and so these phenomenon were not

tested. We can extend the ray tracing calculations to include these three-dimensional

effects and find if ray theory can predict the results seen in the experiments. Then

we will better understand the propagation of short waves through three-dimensional

shears and the whether there will be an increase or decrease in probability of short

wave breaking leading to mixing as a result.

This work could also be accomplished in a three-dimensional numerical sim-

ulation of the problem. This would further complement the experiments and ray

theory.
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