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Abstract

Alginate encapsulation reduces the risk of transplant rejection by evading immune-mediated cell

injury and rejection; however, poor vascular perfusion results in graft failure. Since existing

imaging models are incapable of quantifying the vascular response to biomaterial implants after

transplantation, in this study, we demonstrate the use of in vivo laser speckle imaging (LSI) and

wide-field functional imaging (WiFI) to monitor the microvascular environment surrounding

biomaterial implants. The vascular response to two islet-containing biomaterial encapsulation

devices, alginate microcapsules and a high-guluronate alginate sheet, was studied and compared

after implantation into the mouse dorsal window chamber (N = 4 per implant group). Images

obtained over a 14-day period using LSI and WiFI were analyzed using algorithms to quantify

blood flow, hemoglobin oxygen saturation and vascular density. Using our method, we were able

to monitor the changes in the peri-implant microvasculature non-invasively without the use of

fluorescent dyes. Significant changes in blood flow, hemoglobin oxygen saturation and vascular

density were noted as early as the first week post-transplant. The dorsal window chamber model

enables comparison of host responses to transplanted biomaterials. Future experiments will study

the effect of changes in alginate composition on the vascular and immune responses.
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1. Introduction

Insulin is secreted by β-cells, the predominant cell type within the islets of Langerhans and

is the primary hormone responsible for regulating carbohydrate and fat metabolism. The
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autoimmune destruction of insulin-secreting β cells results in a condition called type I

diabetes (T1D) where insulin secretion is deficient, resulting in elevated blood sugar levels.

T1D affects over three million children and adults in the U.S. and the incidence is on the rise

[1]. Exogenous insulin replacement involving multiple daily injections or the delivery of

exogenous insulin via a subcutaneously-implanted pump along with frequent blood glucose

monitoring [2] remains the standard of care in the management of T1D. Patients on insulin

therapy can experience fluctuating blood glucose levels and severe hypoglycemia, which in

some cases, can lead to unconsciousness, seizures, coma or death [3].

Human islet allotransplantation is a low-risk alternative to conventional insulin therapy and

can improve glycemic control in diabetic patients. However, a comprehensive review by the

CITR (Collaborative Islet Transplant Registry) has reported unsatisfactory long-term

success rates [4]. The need for life-long immunosuppression [5], a crippling scarcity of

suitable healthy organs from cadaveric donors and inconsistencies in islet yields [6]

currently restrict the application of this treatment modality to severe cases of T1D with

multiple co-morbidities [7,8]. Newly available encapsulation technologies can help

eliminate the need for immunosuppression [9], or help reduce the dose by providing

localized immunosuppression at the graft site [10]. Small and large animal studies conducted

using alginate macroencapsulation [11] and microencapsulation devices [12,13] have

demonstrated prolonged islet allograft and xenograft survival without the need for

immunosuppression. These implants provide for nutrient, oxygen, insulin, and metabolite

transport by passive diffusion and simultaneously function as an immunoisolation barrier

that safeguards islets from cytokine, complement and cell-mediated immune attack [14].

Encapsulated islets may be implanted in a variety of surgically accessible sites in a

minimally invasive manner, thereby avoiding the morbidities associated with intra-portal

transplantation [15] (see Supplementary Table 2B for a comparative analysis of various sites

commonly used in encapsulated islet transplantation).

Porcine islet xenotransplantation is being studied as an alternative to human islet

allotransplantation since this option would mitigate donor scarcity issues [16,17] by

providing a virtually limitless source of islets [18]. Also, porcine insulin being structurally

similar to human insulin [19], has been used to treat T1D patients for decades [20]. While

pigs of various strains and ages have been used as islet sources [21], we have expanded on

the work done by Korbutt et al. on neonatal pigs [22,23] and developed a simple and

effective method of isolating islets from young pigs [24]. Islets isolated using this method

were used in our noninvasive imaging studies.

Several techniques are being studied for use in in vivo islet imaging and analysis [25] (See

Supplementary Table 2A). Most recently, the mouse and primate anterior eye chamber

models (AECM) have generated intense scientific interest in the field of islet transplantation

and rejection imaging [26]. Unfortunately, this model does not allow for the study of

macroencapsulation devices owing to their macroscopic dimensions, planar configuration or

both (See Supplementary Table 2B). Other imaging modalities used in real time implant

evaluation include radiological imaging, such as magnetic resonance imaging [27], positron

emission tomography [28], computerized tomography [29], or ultrasound imaging [29].

Although noninvasive, such tomographic imaging modalities are time-consuming and
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require repeated exposure to harmful penetrating radiation (See Supplementary Table 2A).

Radiological and bioluminescent imaging techniques [30] are unable to provide high-

resolution images of the transplanted islets. These techniques also require the injection of

several potentially harmful contrast agents if multiple vascular or biocompatibility

parameters need to be monitored simultaneously. Thus, there is an urgent need to develop an

imaging modality that can evaluate these properties in vivo to expedite the translation of in

vitro and small animal studies to large animal research and human clinical trials.

The dorsal windowchamber, first described by Algire in 1943, is an in vivo model that has

been used extensively in the study of subdermal microvasculature [31]. This versatile model

has been used extensively in the evaluation of angiogenesis [32], tumor physiology [33],

targeted biomolecular and laser-based therapies for vascular lesions [34], leukocyte–

endothelium interaction after muscle injury [35], and islet transplantation [36], and provides

a multi-modal platform where bright field microscopy, intravital fluorescence microscopy

[37], multispectral imaging, and laser speckle imaging (LSI) techniques [38] can be

efficiently used in the noninvasive evaluation of subdermal vascular hemodynamics and

implant biocompatibility.

In this study, we compare the host vascular response to xenogeneic islets encapsulated

within two alginate-derived biomaterial implants – a planar macroencapsulation device (Islet

Sheet) and a spherical microencapsulation construct (UP LVM alginate micro-capsules) –

and study their efficacy in islet transplantation using the dorsal window model.

2. Materials & methods

2.1. Islet isolation and evaluation

Pancreata harvested from young male Yorkshire pigs (14–22 days, S&S Farms) were used

for islet isolation. The islets were cultured for 8–10 days using protocols developed in our

laboratory as previously described [24] and counted under 25 ×magnification after staining

with dithizone [39]. Their viability was assessed using fluorescence microscopy with a

mixture of Newport Green DCF diacetate (Life Technologies, NY) and propidium iodide

(Life Technologies, NY) [40]. Islet function studies were performed by monitoring insulin

release in vitro, after a glucose challenge [41,42]. All animal procedures were performed

under approved Institutional Animal Care and Use Committee protocols at the University of

California, Irvine.

2.2. Islet encapsulation

Up to 200 ± 50 IEQ of viable, young porcine islets were encapsulated either in UP LVM

alginate microcapsules (Fig. 1E, F), (UP LVM, NovaMatrix, Norway) [43]or in a 500 μm

thick alginate islet sheet (Fig. 1C, D) [44]. Controls included no implant (negative control),

blank alginate sheets and blank alginate microcapsules.

2.3. Dorsal window chamber

The dorsal window chamber model is surgically fashioned out of a segment of dorsal skin

between two titanium frames as described in detail by Moy et al. [45]. The skin on one side
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of the window is excised and the window is then covered using a circular glass slide,

allowing the subdermal microvasculature of the opposing skin to be visualized (Fig. 1A, B).

2.4. Dorsal window surgery and islet implantation

After encapsulation (as detailed above), the microcapsule and sheet implants (with or

without porcine islets) were placed (N = 4 per group) into window chambers that were

mounted on male C57BL/6 albino mice. Appropriate controls (blank UP LVM alginate

microcapsules and alginate sheets), were included (N = 4 per group).

2.5. In vivo imaging

On the day of surgery (Day 0) and on days 2, 4, 7, 10 and 14 after transplantation, wide-field

functional imaging (brightfield imaging, and multi spectral imaging) and laser speckle

imaging were performed as described previously by Moy et al. [45]. The images obtained

were analyzed using MATLAB V.7.4; and the changes in subdermal vascular morphology,

vascular caliber, relative blood flow, hemoglobin oxygen saturation [46,47], and functional

vascular density [47] were computed using custom-written codes.

2.6. Laser speckle imaging

Laser speckle imaging [48] is a technique that allows wide-field image acquisition without

the need for complex instrumentation. The technique utilizes the speckle pattern that is

observed when moving particles, like red blood cells, are illuminated by laser light. As the

cells flow through blood vessels, they scatter the laser and produce a speckle pattern that

rapidly changes over time, especially when this pattern is recorded using a camera with

relatively long (~1000 ms) exposure times. By acquiring images of the blurred speckle

pattern with a camera at specified exposure times and processing the images using custom-

written MATLAB codes, relative blood flow information can be acquired after the

formulation of speckle flow maps as previously described [49]. Automated computation of

speckle flow maps was performed based on images obtained from medium-exposure (100

ms) LSI. These maps were then used to calculate the relative blood flow in a vessel in our

region of interest. Automated computation of Functional Vascular Density (FVD) was

performed based on images obtained from long-exposure (1000 ms) LSI. FVD is defined as

the total length of perfused vessels within a region of interest in a two-dimensional image,

divided by the area of that region [50]. It is a metric frequently used to assess changes in

blood vessel density, and its measurements are independent of changes in vessel caliber

often described as vasodilation and vasoconstriction [51]. FVD was employed to quantify

the neovascularization and vessel density. This technique described by White et al. [47],

relies on the presence of uninterrupted blood flow to create detailed maps of the subdermal

vasculature. Using this technique, FVD can be computed several times faster than

calculating the same index manually, yet with comparable accuracy. The FVD code [47] is

available online at http://choi.bli.uci.edu/software.html.

2.7. Multispectral imaging

Multi spectral imaging is a technique that involves the acquisition of absorption contrast

images at multiple wavelengths as described in detail by Moy et al. [45]. The images
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acquired differ based on the optical properties of the blood within the vessels. The

instrumentation in multi spectral imaging is also simple, consisting of a broadband light

source, camera, and filter sets for the desired wavelengths. This method is utilized to

calculate arteriolar hemoglobin oxygenation saturation [52] in a given vessel and changes in

the oxygen saturation in the same vessel are monitored over a two week period.

2.8. Histology

At the end of each experiment, the implanted biomaterial was extracted and the underlying

subcutaneous tissue was harvested for histological analysis. General tissue characteristics

and connective tissue deposition were analyzed using hematoxylin and eosin (H&E) and

Masson’s trichrome, respectively.

3. Statistics

Average values are expressed as mean ± standard error of the mean. Changes in the VD,

FVD, relative blood flow, and HbOS values were analyzed statistically using two-way

analysis of variance (ANOVA) with repeated measures; p-values < 0.05 were considered

significant.

4. Results

4.1. Connective tissue deposition

Connective tissue deposition was observed to increase steadily from the day of surgery (day

0) to day 14 in all study groups (Fig. 2A–D). This phenomenon was better observed in the

alginate microcapsule group (Fig. 2D). The blank islet sheet group was noted to have the

least connective tissue deposition and any noticeable tissue deposition was restricted to the

interstitium surrounding, but not posterior to the sheet implants. Connective tissue

deposition was greatest in the group where porcine islet-containing alginate microcapsules

were transplanted into the window (Fig. 2D); greater than that noted in the islet sheet

implant group (Fig. 2B). Histological analysis confirmed our findings; maximum collagen

deposition was noted in the porcine islet microcapsule group (Fig. 4M) compared to the

other groups (Fig. 4I, J, K, L). Window chambers implanted with alginate sheets could be

imaged for a longer duration without artifacts (13.5 ± 0.5 days) compared to the alginate

microcapsule group (10.25 ± 1.03 days), islet microcapsule group (10.11 ± 0.3 days), islet

sheet group (12.00 ± 0.82 days) or the control groups (11.00 ± 0.75 days); p = NS. We did

not experience any difficulties in imaging the negative controls for up to two weeks post

implantation.

4.2. Vascular changes

By Day 7, the blood vessels surrounding the implants were dilated (Fig. 2A–D) and there

was a significant increase in vessel diameter (VD) in all groups (Fig. 3A) with a

significantly greater percentage rise in arteriolar diameter compared to venous. Neo-

vascularization was also noted (Fig. 2A–D) and was greater in the microcapsule group (Fig.

2D). All the changes noted above steadily increased in magnitude up until Day 14 (Fig. 2A–

D).
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These results were corroborated by functional vascular density (FVD) measurements on Day

7 (Fig. 3B). Although the increase in FVD was greater with the blank alginate microcapsule

group (4.97 ± 0.16 mm−1) than in the blank islet sheet group (4.53 ± 0.04 mm−1), the

difference was not statistically significant (p = 0.84).

4.3. Relative blood flow

By analyzing speckle flow maps computed from data gathered using LSI [53], relative blood

flow was calculated as the ratio of the blood flow in an implant adjacent vessel (VI) to that in

a vessel not in the immediate vicinity of the implant (VC). It was possible to monitor the

changes in the subdermal vascular hemodynamics after biomaterial device implantation by

studying changes in the relative blood flow over time. By Day 14, a significantly greater

increase in the relative blood flow (Fig. 3C) was evident in the islet containing groups (1.62

± 0.2, sheet; 1.49 ± 0.9, microcapsule; p = 0.04) compared to the blank (0.96 ± 0.04, sheet;

0.97 ± 0.07, microcapsule; p = NS) and the control groups (0.97 ± 0.1).

4.4. Hemoglobin oxygen saturation

Using multispectral imaging, arteriolar hemoglobin oxygen saturation (HbOS) was

noninvasively measured. Results showed a greater increase in the porcine islet sheet (8.74 ±

0.43%; p = 0.001) and alginate capsule implant (6.53 ± 0.23%; p = 0.03) groups by Day 14

compared to the blank (3.27 ± 0.14%, sheet; 3.13 ± 0.28%, microcapsule; p = NS) and

control groups (1.11 ± 0.07%) (Fig. 3D). An increase in venous HbOS was also noted (Fig.

2J, L).

4.5. Islet function and viability

Preliminary data (Fig. 4C, D, G, H) suggest that islets encapsulated in alginate sheets and

microcapsules remain viable (65.44 ± 2.77%, sheet; 68.93 ± 5.6%, microcapsule) and

function in vivo (SI = 1.91 ± 0.08, sheet; 1.85 ± 0.06, microcapsule) within the subcutaneous

region up to Day 14 post transplantation. No significant drop in viability or function was

noted in either the islet sheet or the UP LVM microcapsule groups (Table 1).

5. Discussion

As early as 1992, Menger et al. [54] demonstrated the utility of the dorsal window chamber

model in monitoring subdermal microvascular changes after pancreatic islet transplantation

using intravital fluorescence microscopy. Subsequently, several studies by the same group of

researchers have used this model to study subcutaneous islet transplantation [36]. However,

the model has not been used extensively in the study of biomaterial biocompatibility [55]

despite several studies emphasizing the role of in vivo monitoring in the assessment of

biomaterial efficacy and transplant outcomes [56,57]. Unlike the intraperitoneal route,

transplantation under the skin is minimally invasive, is followed by a shorter recovery

period, and has few to no post-surgical complications. Several studies involving the

transplantation of encapsulated islets into a subcutaneous site (See Supplementary Table 2B)

have demonstrated good results ranging from adequate revascularization and optimal islet

function to achievement of long-term nor-moglycemia [11,58]. The surgical and imaging
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procedures described are a noninvasive, safe way of achieving access to the transplant site

without disturbing the implanted device or microvasculature [52].

From our data (Fig. 2A–L), it is evident that the host response varies depending on the

biomaterial device being studied. The significant collagen deposition observed in the

alginate microcapsule group (Fig. 4L, M) is expected; previous studies have demonstrated

antigen shedding by encapsulated islets into the transplant site [59,60] resulting in a robust

host immune response. Nevertheless, when these implants were extracted and analyzed for

function (insulin secretion in response to a glucose challenge) (Table 1) or viability (Fig.

4A–H), they were found to be both functional and viable. We had previously demonstrated

this with human islets [61]. Although this is contrary to what would be expected, a previous

study has demonstrated that alginate encapsulated islets survive and function after

subcutaneous transplantation into immune competent primates despite no

immunosuppression [11]. Studies performed in our lab on diabetic athymic nude mice have

demonstrated a reversal of STZ (Streptozotocin) induced diabetes for a period of up to 90

days after intraperitoneal transplantation of UP LVM encapsulated porcine islets (data not

shown). Compared to planar encapsulation devices like the islet sheet, alginate

microcapsules (Fig. 1E) are mechanically more stable and have a better surface area to

volume ratio and immunologic profile [62,63]. Their wall thickness and pore size can be

manipulated according to research requirements. Consequently, they remain the most

commonly employed biomaterial in islet encapsulation [63]. They can be manufactured

using commercially developed air-jet driven droplet technology [64], have been safely used

in numerous small and large animal trials [65,66] and can be used safely in clinical trials on

human recipients [67]. The islet sheet has been used in islet research since 2001, and we

have demonstrated that human islets encapsulated within these devices remain viable and

secrete insulin in response to a glucose challenge in vitro [61]. The same study demonstrated

function after subcutaneous transplantation. Another study in a pancreatectomized dog

demonstrated fasting normoglycemia for 84 days post transplantation after sheets containing

encapsulated allogeneic islets were implanted in the omentum [44].

Using our imaging system, we were able to longitudinally and noninvasively monitor the

vascular microenvironment surrounding the implant and measure numerous key

hemodynamic parameters. The dorsal window model provides excellent real-time

visualization of the morphological changes in the subdermal vasculature. Changes in the

vascular density, blood flow, and arteriolar oxygen saturation can also be analyzed

noninvasively without having to inject fluorescent probes, currently the only method

available to image islets in vivo [68]. Changes in vessel diameter were greater in the islet

containing groups than in the controls (Fig. 3A). We hypothesize that this vasodilatation was

not a response to the environment within the window; rather, a result of the increased

metabolic demand from the islets implanted at the site. Unlike Beger and Menger [69], an

increase in FVD was noted with islet containing sheet and microcapsule implants (Fig. 3B).

We believe that this suggests that alginate sheets and microcapsules trigger

neovascularization surrounding the implant. Our data on peri-implant blood flow and

arteriolar HbOS clearly show greater flow with islet implants than the blank groups, which

would suggest that the greater nutrient and oxygen demand in the islet-containing groups is
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being met. The host vasculature is able to respond favorably to the metabolic demands of the

implanted tissue. This can also be monitored as an indirect measure of islet health – a

hypothesis that was confirmed after the implants were extracted and analyzed in vitro on

Day 14 (Table 1).

Although several studies have now demonstrated that alginate microcapsules are an effective

immunoisolation device in islet xenotransplantation, the technology has produced

inconsistent results owing to variabilities in the size of the microcapsules [70], alginate

composition [71] and purity [72]. The use of Ca2+ or Ba2+ cross-linking also affects the

results obtained using this technology. If the chemical composition of the alginate is

incorrect or if impurities are not excluded during manufacture, macrophages have been

noted to swarm around the capsules [73]. Along with antigen-shedding, these factors can

trigger fibroblast activation leading to collagen deposition, implant fibrosis and graft death.

The impact of encapsulation on islet oxygenation is also a controversial issue in the field of

islet transplantation. Alginate-encapsulated porcine islets have demonstrated oxygen

consumption rates (OCR) comparable to that measured in free islets [74] and islets

encapsulated in alginate microcapsules demonstrate pO2 levels comparable to that found in

pancreatic tissue (5% O2) post-implantation in non-diabetic recipients [57]. Some studies

claim hypoxia secondary to encapsulation adversely affects islet viability and function

[75,76]. However, in others, encapsulated islets have demonstrated the ability to cure STZ-

diabetic recipients and maintain euglycemia for several months [11,77] without the need for

immunosuppression, despite significant graft hypoxia being evident on tissue examination.

Not all results have been so encouraging. One in vivo study reported that islets encapsulated

and transplanted into syngeneic recipients showed large areas of central necrosis as early as

two weeks after transplantation [78]. The authors of the study concluded that encapsulation

was probably preventing rapid vascularization, resulting in chronic hypoxic stress and

affecting insulin release and function. This is plausible, as whenever encapsulated islets are

used, a greater islet mass is required to achieve cure than when non-encapsulated islets are

implanted [79]. Until further studies address this issue, hypoxia remains a concern with

alginate encapsulation.

Using LSI and WiFI we are able to monitor subdermal blood vessel flow and oxygen

saturation over larger spatial scales than is possible using optical microscopy. Other

advantages include ease of implementation, inexpensive equipment, ease in image

acquisition and a simple setup requiring uncomplicated technical equipment [80]. Thus, the

dorsal window chamber is a versatile tool to aid in the evaluation of bioartificial devices,

drugs, cell types, and even stem cells in in vivo conditions. Several imaging procedures can

be performed in quick succession in a short period of time.

Using multispectral imaging, spatial mapping of hemoglobin saturation at the microvascular

level (Fig. 2I–L), is possible. Currently, polarographic microelectrodes are the gold standard

in the measurement of tissue pO2 [33]; however, they are cumber-some, and do not provide

enough data to generate a spatial map of oxygen delivery. While phosphorescence lifetime

imaging (PLI) can help noninvasively measure tissue oxygenation, some researchers have

reported that extravascular accumulation of dye over days impedes the ability to resolve the

signal from only the microvessels [81]. Vessel visualization with LSI relies on particle
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motion; vessels with and without blood flow can be distinguished (See Supplementary Table

2A). This advantage is not afforded by conventional imaging modalities. Since long-

exposure LSI can identify functional vessels of all sizes, this technique is more widely

applicable than comparable video techniques capable of imaging only capillaries [82]. LSI

also affords superior temporal and spatial resolution when compared to MRI and micro-CT

and a much lower risk of exposure to potentially harmful ionizing radiation (unlike micro-

CT).

Using LSI and multi spectral imaging, only the superficial sub-epidermal and dermal

microvasculature can be analyzed accurately (See Supplementary Table 2A). This restricts

the imaging techniques to a few millimeters from the skin surface [83]. The ability to

quantify results using LSI is limited, as the dynamic interaction between light scattering and

the host tissue has been over-simplified, resulting in inaccuracies.

Another limitation of our study is the absence of in vivo islet function analysis (assaying C-

peptide levels in diabetic mice transplanted with islets inside the window). This would help

demonstrate that our islets and devices are able to function in vivo after transplantation into

our model. Since chronic hyperglycemia can lead to microvascular dysregulation [54] and

an alteration in the immune response, diabetic animals may not behave in the same manner

as the non-diabetic animals used in our study. Another limitation of our study is the

difficulty in continuing studies past 14 days. Studies by other researchers using the window

model [38,49] demonstrate that under optimal conditions, imaging may be performed for up

to 28 days. Studies monitoring implanted bio-engineered devices for biocompatibility

analysis have demonstrated that accurate biomaterial evaluation is possible if the device is

studied in vivo between 5 and 28 days [38]. Hence, we believe that our model can help

analyze biomaterial implants to better understand their effect on host tissues [84].

6. Conclusion

It is evident from this study that islet encapsulated alginate sheets and microcapsules trigger

a qualitatively and quantitatively robust vascular response in the host within the first two

weeks after transplantation. We were able to prove this assertion by demonstrating a greater

increase in VD, FVD, relative blood flow, and arteriolar HbOS when compared to the

control groups (Fig. 3). As encapsulated islets have been reported to be vulnerable to

hypoxic injury, we hypothesize that the robust response observed in the subcutaneous milieu

could improve islet survival by attenuating islet hypoxia during the first few weeks after

transplantation. Our data on islet viability and function post-explant (Table 1) validates this

conclusion. In the near future, we expect to conduct studies to characterize the host immune

response to subcutaneously transplanted alginate implants and compare alginate devices of

varying composition, purity, surface properties and shape to determine the optimal

characteristics required for greater success in encapsulated islet transplantation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/

j.biomaterials.2013.10.012.
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Fig. 1.
Dorsal window model and bioengineered alginate implants. Lateral view of the chamber

implanted on a mouse (A), Labeled cross-sectional schematic view of the window (B), Islet

Sheet implant (C), UP LVM alginate microcapsules (E), Young porcine islets encapsulated

within an islet sheet (D), Young porcine islets encapsulated within an alginate microcapsule

(F).
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Fig. 2.
Using LSI & multispectral imaging, the host vascular response is monitored over a 14-day

period after transplantation of alginate encapsulated porcine islets. Bright field images (A–

D), speckle flow maps (E–H) and hemoglobin oxygen saturation maps (I–L) of the window

chamber obtained on the day of surgery (day 0); islet sheet (A, E, I), or UP LVM alginate

microcapsules (C, G, K). Corresponding images taken 14 days post transplantation (B, F, J

& D, H, L respectively). Black arrows denote islets encapsulated within the alginate

implants. White arrows indicate an increase in blood flow and hemoglobin oxygen

saturation in the peri-implant microvasculature.
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Fig. 3.
Graphs comparing changes in various hemodynamic parameters noted with alginate

microcapsule and sheet implants over a 14 day period. Vessel diameter (A), functional

vascular density (B), relative blood flow (C) and arteriolar hemoglobin oxygen saturation

(D). Four different implant groups were tested – porcine islets encapsulated within an

alginate sheet, a blank alginate sheet, porcine islets encapsulated within alginate

microcapsules, blank alginate microcapsules, and no implant (negative control).
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Fig. 4.
Islet viability and histological analysis. Islet viability analysis using Newport Green/

Propidium Iodide staining is performed on islets before alginate encapsulation (A, E) and

shortly after encapsulation within alginate microcapsules (B) and alginate sheets (E) on the

day of surgery (Day 0). Viability analysis is also carried out on days 7 (C – microcapsule, G

– sheet) and 14 (D – microcapsule, H – sheet). The images represent a projection of 60

optical sections acquired at 4 μm intervals by confocal laser-scanning microscopy. The

green-fluorescent Newport Green™DCF indicator identifies viable insulin-producing β-cells

via binding to intracellular zinc. Histological analysis of the subcutaneous tissue

surrounding the implant, performed after day 14 while staining with Masson’s trichrome No

implant (I), Blank alginate sheet (J), alginate sheet containing porcine islets (K), blank

alginate capsules (L) and alginate capsules containing porcine islets (M). 4× Magnification.

The white arrows denote collagen deposits that are stained blue. The black arrow denotes the

location of the alginate capsule implants.
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Table 1
Islet viability and function analysis

Time points In vitro glucose stimulated insulin secretion test (function assay)

Stimulation index (insulin secreted at high glucose concentration/insulin
secreted at low glucose concentration)

Viability (% NG+ve, PI− ve cells)

Alginate sheet Alginate microcapsule Alginate sheet Alginate microcapsule

Day 0 2.16 ± 0.09 2.25 ± 0.07 69.08 ± 3.28 72.19 ± 1.34

Day 7 1.98 ± 0.05 2.09 ± 0.11 69.35 ± 0.84 71.58 ± 3.11

Day 14 1.91 ± 0.08 1.85 ± 0.06 65.44 ± 2.77 68.93 ± 5.6

The quantity of insulin (μg/L) secreted by encapsulated porcine islets shortly before implantation (Day 0, n = 3) and post-explant (day 7, n = 3) in
response to an in vitro glucose stimulated insulin secretion assay (GSIS) is tabulated above. Stimulation indices for encapsulated islets before
implantation and post-explant can be compared with those for unencapsulated islets cultured in vitro. In vitro viability assays of the encapsulated
porcine islets were performed on Day 0 (before implantation, n = 3) and Day 7 (post-explant, n = 3) using laser-scanning confocal microscopy after
staining with Newport Green (a fluorophore that selectively stains viable beta cells) and Propidium Iodide (an intercalating agent that only stains
dead cells; see Fig. 2C–H).

Biomaterials. Author manuscript; available in PMC 2015 January 01.




