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Abstract

Research in lexical acquisition has frequently focused on chil-
dren’s ability to make rapid, context-informed guesses about
the meaning of newly encountered words, known as ‘fast map-
ping’. However, there is a gap in research examining how
children and adults revise and adjust these guesses about word
meanings as they encounter words repeatedly applied to dif-
ferent referents. We propose, on computational grounds, that
learners adjust word meanings incrementally to accommodate
new evidence. To begin to test this proposal, we lay out a new
research program probing how word meanings evolve. In a pi-
lot experiment, adults learn the meaning of novel kinship terms
and we probe their beliefs by repeatedly eliciting generaliza-
tions. We manipulate the order in which participants observe
the same word used to refer to different members of a family
tree. We find a mixed pattern of order effects but our inspec-
tion of individual trajectories suggestive of a syntax-level re-
lationship between the current and previous hypothesis. This
relationship was supported by a computational model based
analysis of lexical meaning generation via a probabilistic lan-
guage of thought.
Keywords: slow mapping; word learning; hypothesis change;
pLOT; kinship

Introduction
Imagine you have gone abroad to learn a new language and a
local refers to their sister as their “dax”. It might be reason-
able to presume that “dax” means female sibling. However,
suppose that, later on, another person introduces you to their
brother as their “dax”. This new use is clearly inconsistent
with your earlier guess, and so you will now need to update
your hypothesis about what makes someone’s relation their
“dax”.

For children learning a first language, the process of grad-
ually revising and refining word meanings - known as slow
mapping - is ubiquitous (Carey & Bartlett, 1978; Clark &
MacWhinney, 1987). How this is mechanistically achieved,
however, is surprisingly unclear. In this paper, we present and
test a new model of how children and adults slow map words
by integrating new evidence while constructing meanings.

Prominent theories of cross-situational word learning hint
at answers to this question without addressing them directly.
Probabilistic accounts (Yu & Smith, 2007), suggest that the
child can enumerate and consider all possibilities, so as to
reliably adopt the maximum a posteriori hypothesis. Hypoth-
esis testing accounts (Medina, Snedeker, Trueswell, & Gleit-
man, 2011; Trueswell, Medina, Hafri, & Gleitman, 2013;
Stevens, Gleitman, Trueswell, & Yang, 2017) propose that

children maintain their hypothesis until it is proven incorrect,
at which time they sample a new hypothesis that is consistent
with the data.

However, there are limitations to these theories. Most im-
portantly, they do not naturally capture an intuitively clear
aspect of slow mapping: that new evidence causes learners
to incrementally adjust their hypotheses, rather than causing
them to choose between distinct prior hypotheses, or generate
entirely new hypotheses in short order.

A New Theoretical Framework
To address this gap, we suggest a new theory for how learn-
ers behave when they encounter evidence that their hypothe-
sis of a word meaning may not be fully correct. This theory
is based on a hypothesis testing account, but one in which
we assume that learners aim to maintain their hypotheses,
adjusting them in local, minimal ways, to account for new
evidence. In this way, we think of word learners as fol-
lowing quasi-scientific practices: Philosophers of science ob-
serve that scientists are often reluctant to discard hypothe-
ses when they encounter conflicting evidence (Hands, 1993),
and instead augment them with exceptions and auxiliary hy-
potheses, up until the point that they become impractica-
ble (Lakatos, 1970). This strategy appears to be rational,
given that the alternative would be repeatedly constructing
computationally-demanding new hypotheses from scratch.

We can see how these ideas play out in our earlier example
of the siblings both called ‘dax’. Consider a scenario where
you also hear ‘dax’ used to refer to a grandmother. At this
point, the most globally plausible meaning of a word that
refers to sisters, brothers and grandmothers would be some-
thing like relative. But we suggest that many learners, hav-
ing already generated the working hypothesis siblings, would
instead look to maintain that hypothesis through a suitable
minimal edit, such as sibling and grandmother.

This conceptualisation of incrementality in word learn-
ing builds on recent progress in the concept learning and
causal reasoning literature (Bramley, Dayan, Griffiths, &
Lagnado, 2017; Piantadosi, Tenenbaum, & Goodman, 2016;
Yang & Piantadosi, 2022), and the idea that learning involves
Bayesian inference over a compositional mental hypothesis
space, a “probabilistic language of thought’ (pLOT).

A language of thought (LOT) (Fodor, 1975) is a system
of conceptual primitives and the rules by which to combine
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them. We can use an LOT to imagine both simple and com-
plex concepts, with the more complex concepts being con-
structed from recursive combination of the simple concepts
(or primitives). For example, from the primitive concepts “tri-
angle” and “blue”, we can construct the concept of “blue tri-
angle”, (Fränken, Theodoropoulos, & Bramley, 2022). Even
a very small set of primitives can be highly expressive1 in the
sense of allowing for the expression of arbitrarily complex
concepts or, in our case, arbitrarily complex word meanings.

Researchers have combined the use of LOT with a proba-
bilistic context free grammar (PCFG) to form a pLOT. This
can be used to model how cognizers could generate hypothe-
ses that live within the potentially infinite hypothesis space of
grammatical expressions involving the primitives (Piantadosi
& Jacobs, 2016). A PCFG is a grammar which defines a set
of iterative productions from symbols to symbols, eventually
terminating in a complete and grammatical hypothesis. Each
production has a specific probability that it will be selected,
allowing calculation of the the overall (prior) probability of
any hypothesis being generated, as well as a mechanism for
sampling hypotheses from the prior.

Kinship as a Test Case
In order to test if this idea helps make sense of word learning,
we must set up a pLOT covering the space of plausible hy-
potheses in our chosen test domain.2 We selected the domain
of kinship, due to several desirable features: the hypotheses
are constrained, there has been a large number of typological
investigations (Fortes, 2013; Radcliffe-Brown, 1941) and the
terms are all related to each other.

Previous work in the area has in fact examined kinship
term learning using a pLOT (Kemp & Regier, 2012; Mollica
& Piantadosi, 2019). For example, Mollica and Piantadosi
(2019)’s model is able to learn multiple kinship systems us-
ing diverse inputs and has been highly successful at capturing
the specific patterns seen in kinship acquisition at a popula-
tion level. However, while these are successful models for
capturing kinship term acquisition on a general level, they
leave open the question of what processes are involved at an
individual level from exposure to exposure.

Therefore, we designed an experiment using kinship terms
in which we test the theory that word meanings are syntac-
tically anchored to the previous hypothesis due to their cre-
ation through a local search, and compare this idea to other
accounts of how a new word meaning hypothesis may be
formed.

Experiment
In our task, participants meet several different aliens who
each want to tell them about their family. Participants are told

1For instance, even a two element grammar can be used to gen-
erate any program computable by a Turing machine (Schönfinkel,
1924)

2This is a domain specific pLOT, but the idea generalizes be-
yond the domain via the universality arguments in (Piantadosi, 2021;
Bramley, Zhao, Quillien, & Lucas, 2023)

the aliens speak different languages. Each of these aliens in-
troduce a new kinship term that refers to some member(s) of
their family. At each exposure to the word, a family member
is highlighted on the family tree, indicating which member of
their family the alien is referring to. The participant is then
asked to select everyone on the family tree that they think can
be referred to using that word. This is repeated several times
for each word.

Figure 1: Experiment flow. Top panel labels indicate obser-
vations in Table 1 (Labels not shown to participants). See
online repository for a demo.

Our participants learned three test words, chosen because
the modeling framework outlined above (and described in de-
tail below) indicated that the order in which evidence was
presented should affect interpretation, akin to a lexical ’gar-
den path effect’. As an example, one group of participants
saw a word consistently used to label ’aunts’ but, having pro-
cessed this, then learned that it could also be used to label a
grandmother. The other group first saw the word used to label
a grandmother, and then afterwards consistently saw it used
to label aunts. Globally, the most plausible meaning given
this evidence would be female relative (see modeling below),
but our account predicts that participants in the garden-path
condition would be less likely to reach this meaning, and
would instead augment their initial meanings, along the lines
of aunts and grandmothers.

Methodology

Participants 100 UK or US based adults were recruited via
Prolific (37 female, Age (median): 38, Range: 22-73, Prolific
approval rate ≥ 99%).
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Design and Stimuli Participants learned three words:
‘dax’, ‘qirk’ and ‘zerg’. The meanings and order of examples
for these words were chosen based on our normative pLOT
model (specification in ’Modeling Framework’)3. The full
specification of these can be found in our online repository.
We selected cases which, for the forward condition, repeat-
edly showed very similar members (e.g., aunts), leading to
a fairly specific hypothesis (e.g., ‘aunt’) having the highest
posterior probability on the penultimate trial (T −1). On the
final trial (T ), the word instead referred to a new family mem-
ber (e.g., one of the grandmothers). In this case the global
evidence would support a more general (and syntactically
highly distant hypothesis such as ‘any female family mem-
ber’). However, the local adjustment hypothesis predicts that
participants will struggle to make this leap, and will rather
settle on something syntactically closer to their hypothesis at
T −1.

The family tree displayed 20 family members Y = ya . . .yt
surrounding the alien speaker, spanning three generations
(Figure 1) and coloured pink for female and blue for male.
Ellipses (. . .) stand in for family members related to the
speaker only by marriage putting these outside the implied
word meaning space.

Procedure Participants were instructed that they had ar-
rived on an alien planet and the aliens wished to introduce
their families. They were then informed that each alien would
teach them a new word via multiple examples and their task
would be to guess what the meaning of the word was.

It was highlighted to participants that each alien speaks a
different and distinct language to the others; that their lan-
guages contain meanings that need not correspond to those
in English; but that the aliens are always correct in their use
of the word. Additionally, participants were told that, if they
made enough correct selections, they would get a bonus pay-
ment. This was to ensure that participants paid attention to
the task. Since our trials do not have an unambiguous ground
truth, all participants in fact earned the same a bonus of £0.30.

Before beginning the task, participants performed a com-
prehension check and had the opportunity to learn a practice
word ‘blorg’ (corresponding to ‘parents and siblings’).

At the start of each trial, participants see the alien refer to
a family member, who was highlighted on the Figure 1. Fol-
lowing this, participants select which members of the family
tree they believe can be referred to using that word. To make
all selection choices similarly effortful, participants had to
indicate, for everyone on the family tree, if they did (single
click) or did not (double click) believe them to be a possible
referent (Figure 1).

Participants learned each word sequentially, (see 1 for de-
tails). After the final selection for each word, participants
were asked to give a written guess about what the word meant
(not analysed here). Following this, they were given the op-
portunity to change their final selection.

3The forward conditions were as follows: ‘dax’:[m,n,m,n,m,i],
‘qirk’:[s,t,s,t,c], ‘zerg’:[k,i,k,g]. See 1 for letter referents

The order in which the words were presented was random-
ized between participants, and the order of meanings pre-
sented was counterbalanced. After completing all three word
learning tasks, participants provided basic demographics.

Results

Figure 2: Participant selections on final zerg trial

Our initial analysis focused on whether the order of evidence
influenced the distribution of answers for the final hypothe-
sis, which would be consistent with incremental edits. We
re-coded each participants’ final selections in terms of mean-
ings (e.g., selecting only aunts and grandmothers would have
the meaning ”aunts and grandmothers”). For two of the
three words used, we found that participants came to dif-
ferent meanings depending on the order evidence was pre-
sented: ‘zerg’ X2(4,N = 100) = 16.6, p < .002)and ‘qirk’
X2(4,N = 100) = 9.7, p < 0.05). The final selections of par-
ticipants for ’zerg’ are shown in Figure 2. For one of the
three words, however, are prediction was not met (Item 3
’dax’ X2(4,N = 100) = 5.2, p = .26). Initial analyses sug-
gest that this null finding was driven by wide variation in the
meanings used across participants.

Before turning to the modeling of this data, we also note
some important patterns that were qualitatively present in the
dataset. First, we observed that participants used quite clear
criteria as to when they would maintain and when they would
change their guess. In particular, participants tended to make
large changes to their selections in trials where there was an
example that wasn’t in their current selection. However, they
were unlikely to change their selection while it was still log-
ically consistent with the examples that they were receiving
(e.g., sticking with a hypothesis of cousin, even when evi-
dence would cause the normative model to favour a narrow
maternal cousin meaning).Figure 3 shows this pattern in the
‘zerg’ forward condition. This ties in with an account of
word learning, whereby people maintain their hypothesis for
as long as possible.
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Table 1: Differences between Orders for ’Zerg’. The letters correspond to the family members as shown in Figure 1

Condition Examples 1 . . .T −1 Predicted guess T −1 Example T Global best guess T Local guess T

Forward k,i,k
“aunt”

aunt(y,X)
g

“female relation”
female(y)

“aunt or grandmother”
∨(aunt(y,X),grandmother(y,X))

Reverse g,k,i
“female relation”

female(y) k
“female relation”

female(y)
“female relation”

female(y)

Figure 3: Difference in size between previous and new selec-
tions for each participant in the ’zerg’ forward condition

Our second qualitative observation was that the hypothe-
ses participants used appeared to be anchored to their initial
selections. For example, changes to selections upon the sur-
prising trials were usually super-sets of the previous selection
(e.g., 66% of final selections in the normal order conditions
contained the previous selection, lows of 52% for dax trials,
highs of 82% for zerg trials). This might indicate new selec-
tions that simply involved the examples that had been shown
previously plus the new example. However, most cases in-
volved either bringing forward generalizations from the pre-
vious selection (e.g., reusing the selection of all ’cousins’ de-
spite only seeing examples of two out of eight cousins, plus
the new example), introducing generalisations in the new se-
lection (e.g., getting an example of a female cousin and se-
lecting all cousins, as well as the previous examples), or a
combination of both. This hints at anchoring of the new hy-
pothesis to the old hypothesis, and highlights the importance
of looking more closely at the individual pathways to word
meanings. We begin to examine this in the ’Model Fitting’
section below.

Modelling Framework

Grammar For our pLOT, we assumed a convenient set of
primitives able to express gender, parenthood, generation and
combine these with elemental logical operations. We also in-
cluded a convenient primitive “chain” function which eval-

uated indirect pathways via intermediate variables.4 While
these primitives are sufficient to construct any common En-
glish kinship term, we also wanted to account for likely En-
glish kinship bias in participants. Thus we also included kin-
ship terms commonly used in English as grammatical prim-
itives (e.g.‘mother’, ‘uncle’, ‘grandmother’, ‘cousin’, etc).
For these, we weighted their selection probabilities as pro-
portional to their frequencies within the Corpus of Contem-
porary American English (COCA) (Davies, 2008-). All other
productions in the grammar equiprobable. See Table 2 for
the rules that could be expressed in our grammar, and see our
(anonymised) online repository for further detail.

Prior In order to approximate a prior over potential word
meanings, we drew a large sample from our pLOT using
standard “string rewriting” probabilistic production process
. Concretely, we generated Ĥ of 50,000 hypotheses where
P(h)≈ ∑h′∈Ĥ h = h′.

Likelihood For simplicity, we assumed a deterministic
likelihood function such that the likelihood of a word being
used by an alien to refer to a family member to whom it does
not apply is 0. We also incorporated the size principle and
accounted for suspicious coincidence effects (Xu & Tenen-
baum, 2007), by dividing the likelihood of word-meaning hy-
pothesis h by the number of family members y ∈ Y it can be
used to refer to and exponentiating by the number of samples
that the participant has seen so far

p(y|h) =
[

1
size(h)

]n

where n is the number of samples that the participant has seen
and size(h) is the number of kin that can be referred to with
a word meaning h. The size principle accounts for words
with a smaller extension being preferred over those with a
larger extension, while the suspicious coincidence effect re-
flects the common principle that referents will vary indepen-
dently making it surprising when a broadly defined word is
repeatedly used to refer to a narrow set of family members.

Posterior By weighting the prior sample by the product of
the likelihood terms for trials 1 . . . t, we arrive at a weighted

4For example, in order to express y as the maternal grandparent
of x, we need to represent it as x1 being the mother of x and y being
the parent of x1, with x1 being the intermediate variable. Theoret-
ically, we would need an unbounded number of bindable variables
to express arbitrary path relations which would make the grammar
unwieldy. The chain function allows us to do this.
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Table 2: Concept Grammar

Description Rule Example
y is relation r to X r(y,X) parent(y,X)
y has the feature f f (y) female(y)
There is a chain of relations such
that r0 is X to x1 ... y is rn to xn

chain([rn, ...r0],y,X), chain([parent,mother],y,X)

Booleans ∧( , ),∨( , ),¬( ) ∧(male(x),parent(x,y)),¬(female(y))

sample that approximates the posterior distribution over pos-
sible word meanings conditional on the evidence the learner
has seen at that point. Notably many hypotheses have zero
prior probability because they are inconsistent with at least
one of the uses of the word but within the remainder those
that pick out a smaller set of family members and those that
have high prior probability are relatively favored.

Model Fitting
In order to reflect the individual patterns of our data, we cal-
culated the likelihood of participants’ selections under 5 mod-
els. Given that we are most interested cases where partici-
pants have a previous hypothesis, we evaluated all models to
predict trials t ∈ 2 . . .T .

Random Baseline As a baseline, we calculated the likeli-
hood of participants’ selections as resulting from independent
random 50% chance of selecting each member. The likeli-
hood of each selection under this model is simply:

P(selectedy) = 0.5

NormativeIG (Independent Generalizations) This model
assume participants choose whether to generalize the word
meaning to each member of the tree independently, select-
ing each by sampling from the marginal posterior probabil-
ity. This is straightforward to calculate since it is just the
weighted sum of posterior hypotheses that predict each kin-
ship member as rule following:

P(selectedy|d) = ∑
h∈H

cy(h)P(d|h)P(H)

cx(h) =
{

1, if x ∈ members(h).
0, otherwise.

We also wrap the member selection probabilities in a soft-
max parameter (τ), in order to control for certainty in the
model predictions.

NormativeCG (Consistent Generalizations) The above
model assumes participants decide independently to select
each member, without ensuring the complete collection of
generalizations is consistent with any one hypothesis. How-
ever, a better match to our proposed account of word mean-
ing is that participants make all their selections with some
hypothesis in mind. We thus test a model that first samples a

meaning hypothesis from the posterior and uses this to gen-
eralize to all cases.

In practice, this approach is quite sensitive to participants’
occasional errors and limitations in our analysis pipeline. We
do not expect participants to generalize perfectly even if hold-
ing a consistent hypothesis and some participants may enter-
tain hypotheses that we failed to generate in our prior sam-
ple, either of which could result assigning zero likelihood to
a participant selection. To roughly accommodate this, we in-
troduce an error term in the predictive mapping from a partic-
ipant’s latent hypothesis to their generalizations, able to ac-
count for occasional misclicks:

P(selectedy|h) ∝ exp(−Nmisclicks/α) (1)

and

P(selectedy|d) = ∑
h∈Ĥ

P(selectedy|h)P(h|d)P(h) (2)

While in future work we plan to fit temperature parame-
ter α for now we simply leave it fixed to 1, reflecting a ge-
ometrically declining probability for increasing numbers of
misclicks relative to a hypothesis (e.g. 0 : 0.63,1 : 0.23,2 :
0.09, . . . ,20 : 3e−9).

Anchored Baseline and Normative models As a first pass
to model the hypothesized anchoring between participants’
word meanings, we also considered variants of Baseline and
NormativeIGthat blend their predictions with the participant’s
previous generalization judgment. To achieve this we sim-
ply mix an indicator vector capturing the kin selected by the
participant at trial t −1 with the requisite model prediction m
controlled by mixture weight λ ∈ [0,1]:

P(selectedt |d) = (1−λ)I[selectedt−1]+λ P(selected|d,m)
(3)

We optimize λ separately for each of these model via a grid
search in 0.05 increments. As above, we wrap the selection
probabilities in a softmax parameter (τ).

A future step would be to investigate this anchoring with
the NormativeCG model. We note that this is a placeholder
for a more complete process model since, ideally, the revised
generalizations would result from a local search originating
at the learner’s previous hypothesis, rather than anchored to
the generalizations they have made previously.
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Figure 4: Left: NormativeIG model likelihood of selecting
each member on the final zerg trial. Right: Proportion of
participants selecting each family member on same trial, split
by condition.

Table 3: Model Fitting Results
Model λ τ BIC
Baseline - - 48,000
NormativeIG - 0.83 42,136
NormativeCG - - 9,696
Baseline (anchored) 0.20 - 23,978
NormativeIG (anchored) 0.30 0.32 21,166

Model Comparison The fit for each model is shown in Ta-
ble 3. NormativeCG had the best overall fit by far to the par-
ticipant data, indicating that people make their selections ac-
cording to a consistent hypothesis. It was also the best fit for
every participant individually. However, both models includ-
ing anchoring to the previous trial improved dramatically on
the Baseline and NormativeIG account. Figure 4 shows that
the poor fit for NormativeIG stems from its making far broader
generalizations on average than participants, often leading to
very poor overall results when participants made a single se-
lection that included one unlikely datapoint.

Discussion
In this paper we laid out a paradigm for examining how peo-
ple change their word meanings over time. In particular,
we were interested in how people recover from an incorrect
guess. To our knowledge, this is the first study to investigate
word learning at this level of granularity. At a group level,
the picture is complex, with the distributions of final guesses
differing between our three test evidence sequences, diverg-
ing from our normative model predictions in several ways.
However, when examining individual level data, there are
clear consistencies with our theory of a relationship between
the previous and the current hypotheses (e.g., reluctance to
change selection in less informative trials, likely reuse of the
penultimate selection in the final selection).5.

5See our online repository for a complete set of participant re-
sponse visualizations

Whilst the current results and modeling are preliminary,
our setup taps into word learning at a finer grain than has been
explored previously, allowing us to begin the process of con-
trasting existing theories and process level accounts directly.
A future direction using our pLOT representation is to model
data-informed local search over meaning space as a form of
Markov Chain Monte Carlo (MCMC) (Bramley et al., 2017;
Dasgupta, Schulz, & Gershman, 2017; Hogarth & Einhorn,
1992) capturing how word meanings might evolve through
small tractable changes, and potentially explaining both the
striking anchoring and heterogeneity of final products we ob-
served in our pilot. Of particular relevance are tree-regrowth
(TR) methods (Fränken et al., 2022). TR works through ran-
domly deleting and regrowing branches of a compound hy-
pothesis with regrowth that improves the fit with the evidence
more likely to be selected. When repeated multiple times, TR
allows for a process by which a hypothesis generated from a
pLOT can be anchored to a previous hypothesis but also be
locally adjusted to better fit the evidence.

In examining how people adapt and shape their hypothe-
sis over repeated exposures, we hope to contribute to under-
standing the often overlooked phenomena of slow mapping,
whereby our word meanings can be enriched and shaped
throughout our lifetime. Of course, a complete account will
need to also consider the role of the structures within which
users place these words over time (i.e. languages and systems
of concepts). Slow mapping was first brought to the fore by
the famous Carey and Bartlett (1978) study, which showed
children were able to form a hypothesis about the meaning of
‘chromium’ after a single exposure. As such, it is often cited
in relation to work on ‘fast mapping’. However, as Carey
herself points out in Carey (2010), a rather more interesting
point was how children developed an increased understand-
ing of ‘chromium’ over subsequent exposures. The problem
of how people change and refine their hypotheses over time
is an area which is ripe for investigation, with the right theo-
retical and computational tools.
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