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Excitons are prevalent in semiconductors and insulators, and their binding energies are critical for
optoelectronic applications. The state-of-the-art method for first-principles calculations of excitons
in extended systems is the ab initio GW -Bethe-Salpeter equation (BSE) approach, which can re-
quire a fine sampling of reciprocal space to accurately resolve solid-state exciton properties. Here
we show, for a wide range of semiconductors and insulators, that the commonly employed approach
of uniformly sampling the Brillouin zone can lead to underconverged exciton binding energies, as
impractical grid sizes are required to achieve adequate convergence. We further show that nonuni-
form sampling of the Brillouin zone, focused on the region of reciprocal space where the exciton
wavefunction resides, enables efficient rapid numerical convergence of exciton binding energies at
a given level of theory. We propose a well-defined convergence procedure, which can be carried
out at relatively low computational cost and which in some cases leads to a correction of previous
best theoretical estimates by almost a factor of two, qualitatively changing the predicted exciton
physics. These results call for the adoption of nonuniform sampling methods for ab initio GW -BSE
calculations, and for revisiting previously computed values for exciton binding energies of many
systems.

I. INTRODUCTION

Excitons are correlated two-particle electron-hole
states that predominantly form in semiconductors and
insulators. The binding energy of excitons is a critical
quantity that determines photocurrent generation in so-
lar cells [1, 2], the possibility of a material forming long-
lived excited states for quantum information [3, 4], or
the extent to which phonons can screen the attractive
Coulomb interaction between the electron and hole [5, 6].
Therefore, the accurate prediction of exciton binding en-
ergies from first principles is imperative in the quest for
novel semiconductors for diverse optoelectronic applica-
tions.

The state-of-the-art method to describe excited state
properties in extended systems from first principles is
based on many-body perturbation theory within the GW
approximation [7, 8] and the Bethe-Salpeter equation
approach [9–12](GW -BSE), where G is the one-particle
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Green’s function and W is the screened Coulomb inter-
action. Exciton binding energies computed within the
ab initio GW -BSE framework with current approxima-
tions and implementations can be extremely challenging
to converge numerically, for two main reasons. Firstly,
a very fine sampling of the Brillouin zone (BZ) can be
required to resolve essential features of the screened in-
teraction W accurately. This has been identified as an
issue in low-dimensional systems and has been addressed
elsewhere [13–15]. We therefore focus here on a second
convergence challenge, which is that the BSE needs to be
solved on ultra-dense k-point grids [12, 16, 17] due to the
fact that excitons are highly localized in reciprocal space
in many known bulk semiconductors of interest. To make
such calculations on dense grids possible, so-called “dual-
grid” interpolation schemes have been developed, which
allow for interpolation between two different uniform k-
grids across the BZ, a coarse and a fine one [18]. We will
refer to these methods as uniform dual grid interpolation
(UDGI).

The localized nature of excitons in reciprocal space is
consistent with the Wannier-Mott model [19, 20], which
describes excitons composed of holes and electrons, with
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FIG. 1. 1s exciton wavefunction in reciprocal space, for GaN
in the wurtzite phase, from the Wannier-Mott model (eq. 1).
We indicate in blue and red the regions with a cutoff around Γ
that corresponds to approximately 2% and 6% respectively of
the distance to the edge of the first Brillouin zone (BZ). Inset:
Schematic band dispersion for a two-band model, including a
parabolic valence and conduction band with effective masses
mh and me, respectively, with a gap of Eg separating the two
bands. The GaN material parameters used to compute |Ψ|2
are given in Appendix C, along with the relevant computa-
tional details.

parabolic valence and conduction bands and with effec-
tive mass mh and me respectively, as visualized in Fig. 1.
Within this limit, the reciprocal space wavefunction of
the 1s exciton can be written as

Ψ1s(k) =
(2ao)

3/2

π
· 1

(1 + a2ok
2)2

, (1)

where ao = 1/
√
2EBµ is the exciton Bohr radius, EB the

exciton binding energy and 1
µ = 1

me
+ 1

mh
the exciton

effective mass. As seen in Fig. 1, when using param-
eters for GaN, the exciton wavefunction decays rapidly
around the zone center. When performing ab initio GW -
BSE calculations using a uniform sampling of the entire
BZ, millions of k-points are required in order to suffi-
ciently sample the critical region |k| ≲ 2π

ao
, with most of

the computational effort spent on regions that are not
relevant to the exciton physics. Such a strong localiza-
tion of the exciton wavefunction in reciprocal space is
not unique to excitons that are Wannier-Mott-like, and
is present in a wide range of bulk systems and beyond, in-
cluding low-dimensional systems such as transition metal
dichalcogenides with excitons localized around the K and
K’ valleys [13]. For most materials, the ultra-dense sam-
pling of critical BZ regions required to converge exciton
properties is not feasible even when utilizing UDGI. This
has resulted in poor numerical convergence of values for
the exciton binding energy in some cases, as has been
discussed in previous work [17]. Moreover, it has been
proposed that convergence of exciton binding energies

may be accelerated with UDGI by considering an av-
erage screening W in the region near the origin of the
BZ [18, 21, 22]; but while this scheme indeed improves
the convergence of excitation energies, it has no effect on
the exciton binding energies, since it results in a rigid
shift of the onset of the exciton continuum [14].

In order to achieve true numerical convergence with
respect to k-grids, dual grids may be used to interpo-
late between a coarse uniform grid and a fine nonuni-
form grid that is designed to include exclusively a patch
of the entire BZ, which encompasses the relevant region
where the exciton resides. Such nonuniform dual-grid in-
terpolation (NUDGI) approaches allow the BSE to be
solved with greatly reduced computational effort, and
yields fast and systematic convergence for exciton bind-
ing energies [12, 14], as one can afford to effectively in-
crease the k-grid density in the critical region without
having to sample the entire BZ. Ref. [16] proposed an
alternative scheme that does not rely on interpolation
between different grids, but instead uses a hybrid k-grid
across the BZ which is dense in the region of interest and
coarse outside it, making it necessary to assign varying
weights to the points in the two regions. In Ref. [16]
this scheme was used to demonstrate convergence in the
exciton binding energies of MgO and InN.

The examples of NUDGI and related strategies when
computing exciton binding energies remain rare in the
literature, and are mostly focused on systems with very
small exciton binding energies, which are known to be
challenging to converge, such as GaAs [11], InN [16], and
halide perovskites [5, 23]. It is therefore currently un-
clear to what extent solving the BSE employing NUDGI
or alternative sampling schemes is necessary in order to
obtain numerically-converged exciton binding energies in
general semiconductors of interest, or even whether it
is generally possible to obtain accurate values for most
systems with the widely used UDGI techniques. Addi-
tionally, while convergence with traditional UDGI meth-
ods is a matter of increasing the density of the grid used
to sample reciprocal space within GW -BSE, when using
NUDGI methods the size of the patch of the BZ is also
a convergence parameter, and there is currently no well-
defined procedure for choosing this parameter.

Here we demonstrate that in most semiconductors with
Wannier-Mott-like excitons, employing nonuniform sam-
pling when computing exciton binding energies is impera-
tive in order to obtain numerically-converged values. We
show that uniformly sampling the BZ when solving the
BSE with computationally-feasible grids yields exciton
binding energies that are often greatly overestimated rel-
ative to their converged values, which can lead to qualita-
tively incorrect predictions of the physics of the exciton,
as we discuss for GaN in Section IV. We propose a well-
defined procedure for numerical convergence of the GW -
BSE exciton binding energies at low computational cost,
and we show that even when employing NUDGI, errors
can arise that, in some cases, lead to fortuitous agreement
to experiment. We find that, even for standard semicon-
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ductors such as Si and GaN, the lack of convergence of
the BZ sampling is the main cause for the discrepancies
between reported values of GW -BSE exciton binding en-
ergies, often leading to differences by more than a factor
of three [17, 24]. Our results demonstrate the need for use
of nonuniform sampling methods when computing exci-
ton binding energies, and for revisiting reported values
in the literature given the underconvergence of binding
energies obtained with UDGI. Intriguingly, we find the
changes to previously reported values of exciton bind-
ing energies through rigorous convergence obtained here
can be as significant as corrections associated with dy-
namical screening of the Coulomb interaction by carrier
plasmons [25] and phonons [6], underscoring the need for
nonuniform sampling methods for prediction of exciton
binding energies.

The structure of this paper is as follows. Section II
reviews the theoretical background of our work. Specif-
ically, Section IIA provides an overview of the first-
principles description of excitons in solids within the ab
initio GW -BSE formalism, while Section II B describes
how one can define a patch of the Brillouin zone in
which to sample the exciton properties. In Section III we
present our computational results for the exciton binding
energy of a range of semiconductors. First we perform a
systematic convergence study of the exciton binding en-
ergy of the prototypical semiconductors Si and GaN, and
demonstrate the importance of employing a nonuniform
BZ sampling strategy. Following that, we present our
results for a several semiconductors, comparing to previ-
ously reported literature values and addressing discrep-
ancies with these prior results due to lack of convergence.
Finally, in Section IV we discuss our overall results and
their implications for the prediction of exciton properties
within the ab initio GW -BSE framework.

II. THEORETICAL BACKGROUND

A. First-principles description of excitons in solids

The Bethe-Salpeter equation (BSE) within the Tamm-
Dancoff approximation for zero-momentum excitons in
reciprocal space with clamped nuclei is written as [11, 12]

(EQP
ck − EQP

vk )AS
cvk +

∑
c′v′k′

⟨cvk|Keh |c′v′k′⟩AS
c′v′k′ (2)

= ΩSAS
cvk,

where Eck and Evk are the quasiparticle energies of con-
duction and valence band states, respectively (generally
obtained at the GW level). The coefficients AS

cvk de-
scribe the corresponding excited state S with excitation
energy ΩS as a linear combination of free electron-hole
pair wavefunctions, typically obtained from a density
functional theory (DFT) calculation. The excited state

wavefunction can be written as

|S⟩ =
∑
cvk

AS
cvk |cvk⟩ . (3)

The kernel Keh in eq. 2 describes the interaction be-
tween electrons and holes and consists of direct (d) and
exchange (x) contributions, Keh = Kd + Kx. Ignor-
ing the frequency-dependence of the direct term, which
is a reasonable approximation if the exciton binding en-
ergy is much smaller than the plasma frequency, one may
write [12]

⟨vck|Kd |v′c′k′⟩ =

−
∫
drdr′ψ∗

c (r)ψc′(r)W (r, r′, ω = 0)ψ∗
v′(r′)ψv(r

′), (4)

and

⟨vck|Kx |v′c′k′⟩ =∫
drdr′ψ∗

c (r)ψv(r)v(r, r
′)ψ∗

v′(r′)ψc′(r
′), (5)

with v the bare Coulomb interaction, and

W (r, r′, ω) =

∫
dr′′ϵ−1(r, r′′, ω)v(r′′, r′) (6)

the screened Coulomb interaction. Here ϵ(r, r′′, ω) is the
frequency-dependent, non-local dielectric function. In
most applications, and within this work, ϵ is computed
within the random-phase approximation (RPA) [26].
Upon solving the BSE (eq. 2), the exciton binding en-
ergy for low-lying resonant exciton S is obtained as

Eb = mink[E
QP
ck − EQP

vk ]− ΩS , (7)

i.e. as the difference of the minimum direct quasiparticle
gap across the BZ and the exciton energy.

In standard ab initio BSE calculations of solids, the
above kernel matrices are constructed on a coarse grid
of k-points, usually the same as that used in a preced-
ing GW calculation. However, it is well known that ob-
servable quantities such as absorption spectra and exci-
ton binding energies obtained through the solution of the
BSE require a very fine grid in order to achieve conver-
gence. Since the calculation of kernel matrix elements on
very fine grids can often be computationally prohibitive,
dual-grid schemes have been proposed, which generally
involve the calculation of DFT wavefunctions on a coarse
and a fine k-grid, but only require computing the kernel
matrix elements on the coarse grid; the BSE Hamiltonian
is subsequently interpolated onto the fine grid [18, 21, 27].
Such an interpolation approach has been proposed and
implemented in, for example, the BerkeleyGW software
package [18], which we employ in this work. The basis
for this scheme is a BSE kernel interpolation through a
simple expansion of the fine-grid wavefunction in terms
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of the nearest coarse grid wavefunction as

unkfi
=

∑
n′

ckco

n,n′un′kco
, (8)

where unk is the cell periodic part of the Kohn-Sham
wavefunction, kco the closest coarse-grid point to the fine-
grid point kfi, and n the band index. The coefficients

ckco

n,n′ are obtained as the overlap between coarse- and
fine-grid wavefunctions as

ckco

n,n′ =

∫
drunkfi

(r)u∗n′kco
(r). (9)

Using these overlap coefficients, one can interpolate the
kernel matrix as

⟨vckfi|K
∣∣v′c′k′

fi

〉
=

(10)∑
n1,n2,n3,n4

ckco
c,n1

c∗kco
v,n2

c
∗k′

co

c′,n3
c
k′
co

v′,n4
⟨n2n1kco|K |n4n3k′

co⟩ .

The interpolated quantity K can be the exchange kernel,
or modified versions of the direct kernel that analytically
handle the sharp variations of the matrix elements with
respect to the transfer wavevector q = k− k′.

In a similar fashion, the conduction and valence GW
quasiparticle energies appearing in eq. 2 are interpolated
onto the fine grid as

EQP
nkfi

= EMF
nkfi

+

〈∑
n′

|ckco

n,n′ |2(EQP
n′kco

− EMF
n′kco

)

〉
kco

,

(11)
where the brackets indicate linear interpolation per-
formed using the tetrahedron method, and EMF

n is the
mean-field energy of band n, a Kohn-Sham eigenstate
from a DFT calculation.

Overall, by interpolating the quasiparticle energies and
kernel matrix elements on a fine grid, we may solve the
BSE (eq. 2) on this same fine grid, greatly accelerating
the convergence of exciton energies ΩS and exciton coef-
ficients AS

cvk. Importantly, it is not a requirement for the
interpolation of the quasiparticle energies and kernel that
the fine grid kfi be uniform or have any specific charac-
teristics. The fine k-grid may be any general nonuniform
grid, such as a patch of the BZ, which, as we demon-
strate in the following Section III for a set of represen-
tative materials, is particularly important for converging
the exciton binding energy. In the following Section II B
we discuss different ways of defining patches within the
relevant regions of the BZ when computing properties of
excitons.

k x
 (

A
-1

)
o

ky (A-1)
o

k

FIG. 2. Schematic of the sampling of the Brillouin zone for
monolayer MoS2, with the k-points in a patch of radius rkc =
0.30 Å−1around the K/K’ (ko = K/K’) valleys highlighted in
red.

B. Reciprocal space patches

There are several ways in which one could extract a
patch of k-points in the region of the BZ relevant to the
exciton under study when starting from a N1 ×N2 ×N3

grid that spans the entire BZ. However, the philosophy
behind the choice of a patch is always the same: first one
must identify the point ko of reciprocal space around
which the exciton is centered, and then one must decide
on the size of the patch, discarding any points outside
that region. In this manner, we are left with a truncated
fine k-grid of a single density N1 × N2 × N3, making
this approach distinct to methods employing hybrid grids
across the entire BZ [16] and removing any need to assign
different weights to points within our grid.

For example, for bulk systems with 1s Wannier-Mott-
like excitons (eq. 1), ko = Γ, since the exciton coefficients
peak at k = 0. For transition metal dichalcogenides it
has been found that ko = K/K’ [13]. Generally, if one
has no prior knowledge of the system under study, the
point ko may be determined by identifying where the
minimum direct gap occurs in the electronic band struc-
ture, or performing an initial BSE calculation on a coarse
grid across the entire BZ to identify the relevant region
of reciprocal space.

Having determined the exciton center ko, one may pro-
ceed to defining a patch centered around this point. It is
also possible to define multiple patches around more than
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δk1

δk2

ko

FIG. 3. Schematic of the sampling of the Brillouin zone
around a point of interest ko, using the scheme of eq. 14
based on crystal coordinates. If for example one starts from
a 100 × 100 × 100 regular grid and hence δk1 = δk2 = 0.01
in crystal coordinates, the region in red here corresponds to
a patch with cutoff coordinate dkc = 0.01, the region in blue
to dkc = 0.02 and so on.

one point of interest in the BZ. One way of capturing the
region around a center ko, is to define a spherical patch
of radius rkc around that point. The k-points within such
a spherical patch satisfy the condition

|k− ko| ≤ rkc , (12)

and the value of rkc functions as a convergence parame-
ter. An example of a two-dimensional circular patch is
visualized in Fig. 2, where a radius of rkc = 0.3 Å−1 has
been chosen for a MoS2 monolayer.
An alternative way of generating patches is the fol-

lowing. Let us consider k-points in crystal coordinates
(k1,k2,k3), that is, fractions of the primitive reciprocal
lattice vectors b1,b2, and b3 as follows

k = k1b1 + k2b2 + k3b3. (13)

Here the crystal coordinates (k1,k2,k3) assume values in
the range [−0.5, 0.5], and we only retain those points that
satisfy the condition

−dkc ≤ ki − ko,i ≤ dkc i = 1, 2, 3, (14)

where dkc a cutoff coordinate. Such a choice of points in
reciprocal space is visualized for a two-dimensional exam-
ple in Fig. 3. While generating a patch based on crystal
coordinates has the disadvantage of not allowing one to
define a single “cutoff radius” in units of inverse length,

it more readily clarifies the percentage of the BZ that is
included in the patch along each spatial direction. For
example, defining a cutoff coordinate dkc = 0.02 in crystal
coordinates in eq. 14 would suggest that we include 4% of
the BZ [−0.5, 0.5] around ko. Moreover, patches defined
in this way are immediately transferable between differ-
ent systems, as they do not depend on specific material
parameters.

Regardless of the method that one chooses to generate
a patch in the BZ, the exciton properties will converge
to the same answer as long as the relevant region has
been adequately sampled by the chosen method. In this
work we generate patches in crystal coordinates following
eq. 14, with the exception of MoS2, for which we employ
circular patches (eq. 12) following previous work [14], and
we provide a detailed discussion of its exciton binding
energy convergence properties in Appendix A. Moreover,
all systems studied in Section III have excitons that are
Γ-centered (i.e. ko = 0), with monolayer MoS2 in Ap-
pendix A providing an example of a case with ko ̸= 0,
reinforcing the relevance of nonuniform sampling meth-
ods for non Γ-centered excitons.

III. RESULTS

We start by presenting the convergence properties of
the exciton binding energy for two widely studied semi-
conductors, Si and GaN, in Section IIIA. The results
emphasize the necessity of using NUDGI or a different
nonuniform sampling method when solving the Bethe-
Salpeter equation in reciprocal space. In Section III B
we present numerically converged exciton binding ener-
gies with respect to the BZ sampling for a wider range of
prototypical semiconductors and we compare our results,
obtained with NUDGI, to literature values as well as to
our own calculations employing UDGI. We analyze the
convergence behavior of the exciton binding energy with
respect to the BZ sampling methods and establish sys-
tematic trends. We explain discrepancies between calcu-
lated values that have been reported previously in some
cases, and we show that these can be attributed to lack
of convergence in BZ sampling. More details on all the
parameters employed in our DFT and ab initio GW -BSE
calculations are given in AppendixC.

A. Numerical convergence of exciton binding
energies

1. Si

The first step in converging the exciton binding energy
of a material using NUDGI on a patch is to understand
the localization behavior of the exciton coefficients AS

cvk
in reciprocal space. This could be achieved for exam-
ple through an initial solution of the BSE using UDGI,
in order to gain a better understanding of the decay of
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FIG. 4. Exciton coefficients of Si from the solution of the BSE
on a patch drawn from a 100 × 100 × 100 regular grid. The
decay around Γ of the exciton coefficients is plotted along
k1, however is identical to the decay along k2, k3 given the
isotropy of this system. The values of k1, which is along the
high symmetry X direction in reciprocal space, are given in
crystal coordinates (eq. 13) and the black dashed line serves
as a guide to the eye.
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FIG. 5. Convergence of the exciton binding energy of Si with
respect to the number of k-points, Nk, used to solve the BSE,
corresponding to grids of N3 = N × N × N . Here a patch
with a cutoff of dkc = 0.09 (crystal coordinates) around Γ is
employed. The black dashed line serves as a guide to the eye.

the magnitude of the exciton wavefunction relative to its
maximum value. For most bulk semiconductors with an
exciton binding energy of the order of 10meV, a few per-
cent of the BZ in each spatial direction is a reasonable
guess for the region within which the exciton localizes,
as suggested from the Wannier-Mott model, see Fig. 1.
Indeed in Fig. 4 we visualize the behavior of the Si exci-
ton coefficients around Γ, as a function of the fractional
coordinate k1, as defined in eq. 13. Given the isotropic
character of the Si crystal, the behavior is the same along
any of the three spatial directions. We see that the exci-

ton wavefunction decays rapidly around Γ.

From Fig. 4, it is reasonable to assume that a patch
cutoff coordinate of dkc = 0.09 is a good first estimate
for capturing the relevant part of the BZ when solving
the BSE for Si. We now proceed to solve the BSE on
patches of this size, which are drawn from grids of vary-
ing density. Fig. 5 shows the convergence of the exciton
binding energy with respect to the starting k-grid for
the patch. We see that the converged value of 24meV
is only reached for extremely dense grids of size of at
least 50× 50× 50. Attempting to use UDGI to solve the
BSE on such dense grids would be unfeasible for prac-
tical applications, for which grids of 20 × 20 × 20 are
commonly considered sufficiently fine. Yet we see that a
20× 20× 20 grid for Si leads to a significant overestima-
tion of the exciton binding energy relative to the numer-
ically converged value at this level of theory by almost a
factor of 2. Moreover, it is common in the literature to
extrapolate plots of the exciton binding energy obtained
within UDGI as a function of 1/Nk to the limit Nk → ∞
in order to obtain converged Eb values. In Fig. 12 of
Appendix B we show for Si that while indeed such an
extrapolation results in exciton binding energies that are
substantially more converged, one needs grid densities of
at least 403 in order to obtain exciton binding energies
that are within 1meV of the converged value. For Si,
performing UDGI on 20× 20× 20 and 30× 30× 30 grids
would allow one to obtain an extrapolated Nk → ∞ value
of 26meV for the exciton binding energy, compared to the
numerically converged value of approximately 23meV as
shown in Fig. 5. However, our most expensive calcula-
tion in Fig. 5 using a patch of cutoff coordinate dkc = 0.09
drawn from a 100 × 100 × 100 grid, includes only 6, 859
k-points, which is less than the 8, 000 included in a full
uniform 20× 20× 20 grid. Thus, our converged calcula-
tion on a patch drawn from a 100 × 100 × 100 grid has
14% fewer k-points, resulting into a factor 1.6 reduction
in computational cost for the diagonalization of the BSE
Hamiltonian when compared to the severely undercon-
verged uniform 20× 20× 20 calculation. Considering the
cost of the 50× 50× 50 calculation on a patch, which is
converged within 1meV, we find that it requires only 1%
of the computational resources of a full 20× 20× 20 cal-
culation. Therefore, sampling a patch of the BZ through
NUDGI not only allows us to achieve convergence of the
exciton binding energy within 1meV, which is compu-
tationally impractical using UDGI, but it also greatly
reduces the computational cost of BSE calculations. No-
tably, extrapolating to Nk → ∞ with UDGI not only
leads to less converged results than NUDGI, but comes
at a much higher computational cost.

Having established that a grid of at least 50× 50× 50
k-points is required to converge the Si exciton binding
energy within 1meV, we return to the issue of choosing
a patch cutoff dkc that is sufficiently large to capture the
relevant part of the BZ. In Fig. 6 we show that increasing
the cutoff of a patch drawn from a 50×50×50 grid around
Γ generally increases the exciton binding energy, leading
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FIG. 6. Convergence of the exciton binding energy of Si
with respect to the cutoff coordinate dkc of a Γ-centered patch
drawn from a 50× 50× 50 grid of k-points, which is used for
interpolation of the BSE kernel. The black dashed line serves
as a guide to the eye.

to a converged value of 26meV for Si. It is therefore not
sufficient to converge the density of the grid from which
a patch is drawn, but also the patch size.

The convergence procedure developed here is general.
One starts from a reasonable first guess of the region
of the BZ that has to be included in a BSE calcula-
tion, either through the solution of BSE using UDGI,
from the physical expectations drawn from the Wannier-
Mott model, from the electronic band structure, prior
knowledge of the studied system, or other information.
Once this initial patch cutoff coordinate has been de-
cided, the grid density is varied within that region until
convergence. Then, a separate convergence test is per-
formed for the patch cutoff dkc , while keeping the density
of the grid equal to the one determined in the previous
step. Since this procedure is specific to individual exciton
states, it cannot be naively transferred to other excited
states. In order to obtain converged spectra involving
multiple excitons one would have to ensure that the most
localized exciton appearing in the spectrum is converged,
and that the patch size is sufficient to include the relevant
region of every excited state considered. Excitons beyond
the 1s state considered here will be even more localized
in reciprocal space. While this suggests that the patch
size that convergences the 1s exciton will be sufficient to
study higher-lying excited states, it is likely that denser
grids will be necessary for these states, making the use
of NUDGI even more imperative for their study.

2. GaN

Similar to the case of Si, we start the convergence pro-
cedure for the exciton binding energy of GaN with an
initial guess for a patch that captures the relevant region
in the BZ. In Fig. 7 we visualize the decay of the exciton
coefficients of this material within a region of dkc = 0.09
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FIG. 7. Exciton coefficients of GaN from the solution of the
BSE on a patch drawn from a 100 × 100 × 100 regular grid.
The decay around Γ of the exciton coefficients is plotted along
k1, k2 (k3) in red (black) crosses, with the values of ki given
in crystal coordinates (eq. 13). The dashed lines serve as a
guide to the eye.
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FIG. 8. Convergence of the exciton binding energy of GaN
with respect to the number of k-points used to solve the BSE,
corresponding to grids of N ×N ×N , starting from N = 20
and in steps of 10 up to N = 100. Here a patch with a cutoff
of dkc = 0.09 (crystal coordinates) around Γ is employed. The
black dashed line serves as a guide to the eye.

centered at Γ; unlike Si, GaN exhibits different behavior
along the b3 reciprocal lattice vector compared to that
along b1 and b2 due to its hexagonal symmetry. We see
that the exciton wavefunction decays rapidly within this
region making a patch cutoff of 0.09 a reasonable starting
point for our calculations.
We proceed in Fig. 8 to vary the density of the initial

grid with a patch of cutoff dkc = 0.09, and examine the
convergence of the exciton binding energy. Here we find
that in order to reach the converged value of 65meV, a
grid of 60×60×60 or denser is required, which is currently
computationally intractable for UDGI BSE calculations.
Even if it were possible, the vast majority of the com-
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FIG. 9. Convergence of the exciton binding energy of GaN
with respect to the cutoff coordinate dkc of a Γ-centered patch
drawn from 60×60×60 and 100×100×100 grid of k-points,
which is used for interpolation of the BSE kernel. The black
dashed line serves as a guide to the eye.

putational workload would be spent on sampling parts
of the BZ that are irrelevant to the exciton. Increasing
the patch cutoff for a grid of converged density in Fig. 9,
shows that a cutoff of 0.09 is sufficient to converge the
exciton binding energy of GaN within 1meV. Finally, we
show in Appendix B that for GaN (as with Si), Nk → ∞
extrapolation schemes result in an exciton binding en-
ergy within only 3meV of the converged value once one
solves the BSE on grids at least as dense as 40× 40× 40.
Therefore converging the exciton binding energy using
UDGI and an extrapolation is far more computationally
demanding than the procedure described above.

B. Comparison to literature values and BSE on a
regular reciprocal-space grid

We now present numerically-converged results with re-
spect to the BZ sampling for exciton binding energies
for a range of semiconductors and insulators of interest
using a standard ab initio GW -BSE approach (see Ap-
pendix C for details). The studied systems are given in
Table I, along with their relevant structural parameters
obtained from the Materials Project database [28]. Ta-
ble II summarizes the converged results for the exciton
binding energies EB,patch of these systems when employ-
ing a patch drawn from a 100 × 100 × 100 grid, with a
cutoff of 0.12 in crystal coordinates, which is sufficient
to converge all values within 1meV. We compare to the
exciton binding energy obtained from a BSE calculation
on a regular grid across the entire BZ, EB,regular, with
the grid size for each case given in the table in paren-
theses. Naturally, the latter grids are necessarily much
coarser than 100 × 100 × 100 due to the large number
of k-points to be considered in the region outside the
critical region which is included in the patched sampling
strategy. We also compare our results to exciton binding

BSE - regular grid
BSE - patch
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FIG. 10. Exciton binding energies computed with the ab ini-
tio Bethe-Salpeter equation (BSE) approach (see Section II)
on a regular grid (red circles) or a patch (black crosses), and
compared to experimental values. Perfect agreement is in-
dicated by the y = x line (black dashed line). For SrTiO3,
there is no reported experimental value to the best of our
knowledge, and we have set the value to zero. The regu-
lar grid BSE values are the literature values summarized in
Table II. For ZnO we could not find literature reports of its
exciton binding energy within GW -BSE, we therefore include
our own value on a 24 × 24 × 12 grid across the entire BZ.
For experimental values, we pick the largest of the reported
values for each system as summarized in Table II.

energies reported in the literature and obtained from a
BSE calculation using a regular grid across the entire BZ,
as well as to experimental values.

From Table II, using NUDGI and solving the BSE on
a patch results in dramatically reduced values for the
exciton binding energy in every studied system. In some
cases such as Si, the reduction is almost by a factor of two.
This level of numerical convergence is only reachable with
the finer grids obtainable with NUDGI, which shows a
tendency to substantially reduce the exciton binding en-
ergies, as seen in Figs. 5 and 8. We note in passing that
the underconverged exciton binding energies computed in
this work with UDGI are in fairly good agreement with
literature results when using similar grid sizes, which fur-
ther validates our approach. Moreover, while computed
exciton binding energies in all cases overestimate the ex-
perimental values, agreement to experiment is substan-
tially improved once rigorous convergence through the
nonuniform sampling of the BZ is ensured. This is shown
in Fig. 10 for all materials studied. We have excluded
MgO from Fig. 10, in order to improve visibility of the
data points, due to the large exciton binding energy of
this system.

We note that for some of the systems studied here, BSE
calculations have previously been computed on a patch
within the BZ. In Table III we compare our converged ex-
citon binding energies for AlN, GaN, Si and ZnO to the
values reported in Ref. [24], which employed a NUDGI
strategy. The values of Ref. [24] are much lower than our
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Material Structure a ( Å) c/a Space Group Identifier
AlN Wurtzite 3.128 1.604 P63mc mp-661
CdS Zincblende 4.200 1 F43m mp-2469
GaN Wurtzite 3.215 1.630 P63mc mp-804
MgO Halite, Rock Salt 3.010 1 Fm3m mp-1265
Si Diamond 3.849 1 Fd3m mp-149

SnO2 Rutile 4.765 0.673 P42/mnm mp-856
SrTiO3 Cubic Perovskite 3.852 1 Pm3m mp-5229
ZnO Wurtzite 3.237 1.614 P63mc mp-2133

TABLE I. Studied materials, their structure, lattice parameters, space group, and identifier in the Materials Project
database [28]. We performed geometry optimization for the atomic positions of these systems using DFT within the PBE
exchange-correlation functional, keeping their lattice parameters fixed, with the exception of SrTiO3, for which we used the
local density approximation (LDA) and optimized both the atomic positions and its lattice parameter (the LDA has been
discussed in the literature to yield more accurate results for structural properties of SrTiO3 compared to PBE [29]).

Material EB,patch EB,uniform (this work) EB,uniform (literature) EB,exp.

AlN 147 184 (24× 24× 12) 181 [17] (24× 24× 12) 48 [30], 80 [31]
CdS 39 65 (28× 28× 28) 59 [17] (24× 24× 24) 28 [32], 30 [33]
GaN 65 111 (24× 24× 12) 110 [17] (24× 24× 12) 20 [34], 28 [35]
MgO 323 360 (24× 24× 24) 370 [5] (24× 24× 24) 80 [36], 145 [37]
Si 25 44 (20× 20× 20) 42 [17] (28× 28× 28) 15 [38]

SnO2 107 124 (18× 18× 27) 157 [39] (4× 4× 6) 33 [40], 35 [41]
SrTiO3 122 148 (18× 18× 18) 170 [42] (20× 20× 20) —
ZnO 78 125 (24× 24× 12) — 60 [43], 63 [44]

TABLE II. Exciton binding energies computed within nonuniform dual-grid interpolation (NUDGI) for GW -BSE using a patch
of cutoff dkc = 0.12 (in crystal coordinates) drawn from a 100×100×100 regular grid (EB,patch), uniform dual-grid interpolation
(UDGI, EB,uniform), computed within this work and also reported in the literature, with the associated grid given in parentheses
in every case, and reported experimental values (EB,exp.). All values are given in meV.

computed values and fortuitously, in much closer agree-
ment to experiment, since the BZ is undersampled, and
the studied region too small to yield convergence. As
shown in Figs. 6 and 9, using a small patch cutoff can
lead to significant underestimation of the exciton bind-
ing energy. Indeed we expect, after rigorously converging
the exciton binding energies, to find an overestimation
compared to experimental values. This is in fact consis-
tent with screening effects coming from different sources
which have not been considered here, such as for example
the screening of excitons by phonons [5, 6] and free charge
carriers [25]. These effects tend to reduce the exciton
binding energy and thus result in closer agreement to ex-
perimental values. We therefore conclude that fortuitous
agreement with experiment in past work for the exciton
binding energies can result from the cancellation of two
errors: lack of convergence of the BSE exciton binding
energy obtained within NUDGI with respect to the patch
cutoff, and not accounting for additional physics such as
temperature-dependent dynamical screening of excitons.

IV. DISCUSSION AND CONCLUSIONS

In this work we demonstrate that the calculation of
exciton binding energies within the ab initio GW -BSE
framework may only realistically be converged through

a nonuniform BZ sampling strategy, employing a patch
around the region where the exciton localizes. Converg-
ing BSE calculations with respect to the sampling of
reciprocal space using traditional uniform BZ sampling
is inefficient, requires extremely fine grids, and leads to
prohibitive computational cost even for simple materials.
We demonstrate this conclusion by studying the conver-
gence behavior of the BSE exciton binding energy over
a wide range of commonly studied semiconductors and
insulators. As a result, most values reported in the liter-
ature for bulk systems, which rely on sampling the entire
BZ using a uniform grid, are underconverged with re-
spect to the employed k-grid, leading in some cases to
a significant overestimation of exciton binding energies
compared to their converged values by up to 40%. This
calls for revisiting certain GW -BSE predictions of exci-
ton binding energies reported in the literature, and more
generally, the use of methods that rely on sampling re-
ciprocal space to obtain exciton properties.

We have presented the convergence behavior of exci-
ton binding energies when nonuniformly sampling the
BZ, establishing a scheme for converging this quantity
systematically, with the density of the k-grid from which
we draw patches, and the size of these patches, as the
main convergence parameters. Compared to previously
underconverged results, nonuniform sampling of the BZ
corrects previously reported exciton binding energies by
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Material EB,patch - this work EB,patch - Ref. [24] EB,exp.

AlN 147 70 48 [30], 80 [31]
GaN 65 30 20 [34], 28 [35]
Si 25 15 15 [38]

ZnO 78 60 60 [43], 63 [44]

TABLE III. Exciton binding energies computed within GW -BSE employing nonuniform dual-grid interpolation (NUDGI),
using a patch of cutoff dkc = 0.12 (in crystal coordinates) drawn from a 100× 100× 100 regular grid (EB,patch), values reported
in Ref. [24], and reported experimental values (EB,exp.). All values are given in meV. Values without citations are computed
within this work.

an amount that is at least as significant as corrections
associated with additional physics, such as temperature-
dependent dynamical screening through phonons [5, 6]
and free charge carriers [25]. Rigorous convergence of the
exciton binding energy with respect to the k-grid through
nonuniform sampling methods is therefore a critical pre-
requisite for any calculation that describes such effects.

Rigorous convergence of exciton binding energies can
lead to large quantitative changes to their values, and it
can also lead to qualitative differences in the predicted
physics of an exciton. For example, GaN has a longitudi-
nal optical (LO) phonon of frequency ωLO = 84meV [5].
The converged exciton binding energy of this system is
Eb = 65meV as we found in Section III, which means
that ωLO > Eb. A direct consequence of this is that ab-
sorption of a single LO phonon by the exciton can lead to
its dissociation into a free electron-hole pair, which has
been predicted to occur on ultra-fast timescales [6]. On
the other hand, as we see in Table II, employing a regular
grid that spans the entire BZ for this system yields an
exciton binding energy of roughly 110meV, which would
suggest ωLO < Eb, suggesting that absorbing a single
phonon is not sufficient to dissociate the exciton.

In contrast to the semiconducting compounds studied
in the present work, we note that there are also exam-
ples of systems where excitons are delocalized in recipro-
cal space. In those cases there is little benefit to using
NUDGI, and UDGI can already provide accurate val-
ues for exciton binding energies. Molecular crystals, for
example, host Frenkel-like excitons that are relatively lo-
calized in real space, and hence highly delocalized in re-
ciprocal space [45, 46]. Halide double perovskites are
another class of systems that can host excitons that are
delocalized in reciprocal space [47].

We also emphasize that our conclusions on the im-
portance of nonuniform sampling towards obtaining con-
verged exciton properties are not limited to excitons that
are Γ-centered. In Section II B we describe the gen-
eration of patches centered around arbitrary points in
the BZ, which we illustrate in Appendix A for the two-
dimensional MoS2 system with excitons centered around
the K and K ′ valleys of the BZ. The methodology de-
scribed in this work is distinct from the clustered sam-
pling interpolation (CSI) technique, which improves the
kernel interpolation procedure and allows to converge the
exciton properties of two-dimensional materials with re-
spect to the coarse k-grid [15], as also elaborated on in

Appendix A.
Overall, our results suggest that a nonuniform sam-

pling of the BZ is critical to obtain numerically converged
exciton binding energies within ab initio GW -BSE and
related frameworks used to compute exciton properties
in reciprocal space. Additionally, such calculations typ-
ically come at a much lower computational cost com-
pared to traditional uniform sampling methods that sam-
ple the entire BZ. Nonuniform dual grid interpolation
for GW -BSE calculations has been implemented and is
freely available within the BerkeleyGW software pack-
age [18]. We hope that our work will raise visibility for
the need to carefully converge exciton binding energies
and contribute towards the wide adoption of nonuniform
sampling methods of the exciton properties of materials,
leading to a more comprehensive understanding of the
optoelectronic properties of complex materials.
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Appendix A: Exciton binding energy of MoS2 and
comparison to the clustered sampling interpolation

method

As discussed above for a set of semiconductors and
insulators, achieving converged exciton binding energies
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FIG. 11. For a monolayer MoS2: (a) exciton binding energies
computed within BSE using the UDGI scheme with a coarse
24 × 24 × 1 grid and a uniform fine grid (red circles) or a
0.3 Å−1 patch around K/K’ (black crosses), and compared
to the CSI method (blue triangles); and (b) associated GPU
time in seconds.

and wavefunctions often requires revisiting the UDGI
method implemented in BerkeleyGW [11, 12, 18], such
that the fine k-grid is no longer a uniform grid across the
entire BZ, but rather a dense patch around the Γ-point.
This interpolation method is effective for 3D systems as it
involves an explicit calculation of the direct and exchange
matrix elements in the BSE kernel on a relatively coarse
k-grid. In contrast, for quasi-2D systems, the sharp fea-
tures in the inverse dielectric matrix as q → 0, where
q = k − k′, the k-point difference or momentum trans-
fer, lead to strong variations with q in the kernel matrix
elements, hence requiring explicit calculation of the inter-
action matrix elements for several small q [15]. The clus-
tered sampling interpolation (CSI) method was proposed
to address the challenges in capturing small-q features,
where the BSE matrix elements are calculated explicitly
on a coarse k-grid and a cluster of nearby k points for
each k point on the coarse grid [13–15], with the k-points
in the clusters drawn from a fine grid.

Here, we investigate the performance of a nonuniform
sampling of the BZ both through the NUDGI (patched
sampling) strategy employed in the main manuscript,
and the CSI method, when converging the exciton bind-
ing energy for the quasi-2D MoS2 system. Starting
from a DFT calculation using the PBE functional [48]
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FIG. 12. Convergence of the exciton binding energy of Si
as a function of the inverse number of k-points included in
the sampling of the BZ. The dashed lines extrapolate pairs of
points on grids N3 to the Nk → ∞ limit. For example, the
line noted as 203 − 303 extrapolates to Nk → ∞ by using the
Eb values obtained through calculations on 203 and 303 grids.
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FIG. 13. Convergence of the exciton binding energy of GaN
as a function of the inverse number of k-points included in
the sampling of the BZ. The dashed lines extrapolate pairs of
points on grids N3 to the Nk → ∞ limit. For example, the
line noted as 203 − 303 extrapolates to Nk → ∞ by using the
Eb values obtained through calculations on 203 and 303 grids.

with a wavefunction cutoff energy of 140Ry, we com-
pute the self-energy correction using the Godby-Needs
plasmon pole model [49], the semiconductor screening for
the treatment of the q → 0 limit, and the slab trunca-
tion. We consider a dielectric cutoff of 20Ry, and include
2000 bands in the Coulomb-hole summation. This gives
a QP band gap of 2.81 eV, in good agreement with pre-
vious reports [14]. We do not include spin-orbit coupling
effects, which are known to split the VBM and CBM at
the K/K’ valleys. For the BSE calculation, we compute
the interaction matrix elements of the kernel on a coarse
24× 24× 1 k-grid for 4 conduction and 4 valence bands,
then interpolate on fine k-grids with various densities,
including 1 valence and 2 conduction bands.
For NUDGI, we generate two circular patches (eq. 12)

and center them around the K/K’ k-points (see Fig. 2),
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consistent with the direct gap at K/K’. For the conver-
gence with respect to the patch radius, we find that a
radius of 0.3 (0.2) Å−1 for each patch enables conver-
gence of the binding energy of the first exciton within 5
(20)meV of the value obtained on a uniform fine grid of
the same density. For a constant patch radius of 0.3 Å−1,
we consider various densities for the fine k-grid; the com-
puted exciton binding energy is shown in Figure 11(a)
as a function of the density of the fine grid. An exci-
ton binding energy of 712meV is obtained with a grid of
288 × 288 × 1 k-points. Using a grid of 192 × 192 × 1
provides a binding energy converged within 5meV with
respect to that value. As mentioned above, the coarse
24 × 24 × 1 k-grid used in the UDGI scheme (with or
without the patch) might not be sufficient to capture
the sharp features for q → 0. We verified this by using
the CSI method and show the computed exciton binding
energies in Fig. 11(a) for two fine grids. An exciton bind-
ing energy of 695meV is obtained with a 288 × 288 × 1
fine grid. This value is ∼ 17meV smaller than the ex-
citon binding energy obtained with the UDGI method
on a fine grid of the same density. Our converged value
here somewhat overestimates previously reported exciton
binding energies for MoS2 [14, 15], due to differences in
the computational approach. Specifically, we use a PBE
starting point instead of LDA; we do not account for spin-
orbit coupling effects, and we use the one-shot GoWo ap-
proach, instead of self-consistent GW . Moreover, here
we employ the Godby-Needs plasmon pole model for the
frequency dependence of the dielectric function, and a
dielectric cutoff energy of 20Ry instead of 35Ry. These
factors lead to minor variations in the quasiparticle gap,
the band curvature, and ultimately the exciton binding
energies. Nevertheless, it is clear from Fig. 11(b) that
the use of a patch to sample the BZ greatly reduces
the computational load (GPU time and memory - not
shown), while still obtaining exciton binding energies in
reasonable agreement to those computed with the CSI
method. We emphasize that for two-dimensional mate-
rials, the CSI method ensures rigorous convergence of
exciton properties with respect to the coarse k-grid, ac-
curately resolving features of the BSE matrix elements
for small q. The accuracy of exciton binding energies
based on dual-grid interpolation for 2D materials can
sensitively depend on the coarse k-grid that we inter-
polate from [15], and for underconverged cases, the in-
terpretation of the binding energy can be sensitive to the
sampling of the dielectric function around q = 0. Here,
we define the binding energy as the difference between
the quasiparticle band gap and the exciton energy, eq. 7.
However, the screened Coulomb interaction is averaged
in the region of q = 0 [18, 21, 22], leading to a shift in
the onset of the continuum in the spectrum of exciton
energies. This means that for underconverged cases, the
exciton continuum does not correspond to the quasipar-
ticle band gap, leading to a potential overestimation of
the exciton binding energy [14]. Nevertheless it is clear
that even for quasi-2D systems, NUDGI provides a sig-

nificant speed-up compared to performing UDGI across
the entire BZ, consistent with our conclusions for bulk
semiconductors.

Appendix B: Extrapolation of the exciton binding
energy to the Nk → ∞ limit

Fig. 12 and 13 visualize the exciton binding energy
of Si and GaN respectively, as a function of the inverse
number of k-points included in the fine grid for the BSE
calculations. Such plots allow us to extrapolate the exci-
ton binding energy to the Nk → ∞ limit, which provides
a slightly accelerated rate of convergence compared to
performing calculations on denser grids, as discussed in
the main text. In both cases here, a patch cutoff coordi-
nate of dkc = 0.09 (crystal coordinates) has been used, in
order to accelerate calculations.

Appendix C: Computational details for DFT and
GW -BSE calculations

For all studied materials with the exception of SrTiO3,
we first optimize the atomic positions starting from struc-
tures drawn from the Materials Project database [28],
leaving the lattice parameters fixed. Structural pa-
rameters are summarized in Table I. For this we em-
ploy DFT within the Quantum Espresso software pack-
age [50], and we use the generalized gradient approxima-
tion (GGA) at the Perdew, Burke and Ernzerhof (PBE)
level [48]. For SrTiO3 we use the local density approx-
imation (LDA) [51] and optimize both the atomic posi-
tions and lattice parameters of this system.
Using the DFT-PBE Kohn-Sham wavefunctions (LDA

for SrTiO3) as a starting point, we perform GW calcula-
tions within the BerkeleyGW code [18], choosing calcu-
lation parameters in a way as to converge the quasipar-
ticle band gaps within 0.1 eV, following Refs. [5, 6, 42]
and using the Hybertsen-Louie generalized plasmon pole
model [8] to compute the dielectric function at finite
frequencies in most cases, with the exceptions of MgO,
ZnO and SnO2, for which we employ the Godby-Needs
model [49, 52]. We find that the following parameters
lead to converged GW calculations: AlN (400 bands,
32Ry polarizability cutoff, 6× 6× 6 half-shifted k-grid),
CdS (500 bands, 40Ry polarizability cutoff, 6 × 6 × 6
half-shifted k-grid), GaN (400 bands, 40Ry polarizabil-
ity cutoff, 4×4×4 half-shifted k-grid), MgO (600 bands,
50Ry polarizability cutoff, 6 × 6 × 6 Γ-centered k-grid),
Si (400 bands, 30Ry polarizability cutoff, 6× 6× 6 half-
shifted k-grid), SrTiO3 (1000 bands, 14Ry polarizability
cutoff, 6 × 6 × 6 half-shifted k-grid), SnO2 (1024 bands,
48Ry polarizability cutoff, 6× 6× 9 half-shifted k-grid),
ZnO (1026 bands, 50Ry polarizability cutoff, 8 × 8 × 5
half-shifted k-grid), where a shifted grid is used in most
cases to achieve better convergence of the dielectric func-
tion that is used in the self-energy part of the GW calcu-
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lation [53, 54], which we find to be critical for obtaining
converged exciton binding energies. The GW self-energy
is always computed on a Γ-centered k-grid.

The electronic BSE kernel is computed on the same
k-grid as the GW eigenvalues. We computed the kernel
for the following number of bands: AlN (4 valence and
4 conduction bands), CdS (4 valence and 4 conduction
bands), GaN (4 valence and 4 conduction bands), MgO
(8 valence and 8 conduction band), Si (4 valence and 10
conduction bands), SrTiO3 (9 valence and 3 conduction
bands), SnO2 (4 valence and 4 conduction bands), ZnO
(4 valence and 4 conduction bands). For all cases, we
use nonuniform dual grid interpolation to interpolate the
kernel onto a patch drawn from a range of fine grids (as
outlined in detail in the main text) and typically on 3
valence and 1 conduction bands, with the exceptions of
SrTiO3 where the interpolated kernel is computed on 9
valence and 3 conduction bands, and Si where the inter-

polated kernel is computed on 4 valence and 3 conduction
bands.

For GaN, we compute the exciton coefficients within
the Wannier-Mott model, eq. 1. To compute Ak, we use
the converged exciton binding energy of 65meV from
GW -BSE. Moreover, we compute the effective masses
for the top/bottom valence and conduction bands re-
spectively using the finite difference formula 1

m∗ =
E(δk)+E(−δk)−2E(Γ)

δk2 , taking δk to be equal to 0.01 (in
crystal coordinates) along each spatial direction, and the
energies E are computed at the GW level, using DFT-
PBE wavefunctions as a starting point. Finally, we av-
erage over the three spatial directions and for the hole
and electron effective masses we obtain mh = 1.013 and
me = 0.152 respectively.
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F. Affinito, M. Palummo, A. Molina-Sánchez, C. Hogan,

https://doi.org/10.1038/nmat3502
https://doi.org/10.1038/nmat3502
https://doi.org/10.1021/jz500858a
https://doi.org/10.1021/jz500858a
https://doi.org/10.1063/1.4897640
https://doi.org/10.1103/PhysRevA.106.L030402
https://arxiv.org/abs/2203.05748
https://doi.org/10.1103/PhysRevLett.127.067401
https://doi.org/10.1103/PhysRevLett.127.067401
https://arxiv.org/abs/2106.08697
https://doi.org/10.1103/PhysRevB.34.5390
https://doi.org/10.1103/PhysRevLett.80.4510
https://doi.org/10.1103/PhysRevLett.80.4514
https://doi.org/10.1103/PhysRevLett.80.4514
https://doi.org/10.1103/PhysRevLett.81.2312
https://doi.org/10.1103/PhysRevLett.81.2312
https://doi.org/10.1103/PhysRevB.62.4927
https://doi.org/10.1103/PhysRevB.62.4927
https://doi.org/10.1103/PhysRevB.62.4927
https://arxiv.org/abs/0406203v3
https://doi.org/10.1103/PhysRevLett.111.216805
https://arxiv.org/abs/1311.0963
https://doi.org/10.1103/PhysRevB.93.235435
https://doi.org/10.1103/PhysRevB.95.035109
https://arxiv.org/abs/1610.06641
https://doi.org/10.1103/PhysRevB.78.085103
https://doi.org/10.1103/PhysRevB.78.085103
https://doi.org/10.1103/PhysRevResearch.2.013091
https://doi.org/10.1103/PhysRevResearch.2.013091
https://doi.org/10.1016/j.cpc.2011.12.006
https://doi.org/10.1016/j.cpc.2011.12.006
https://arxiv.org/abs/1111.4429
https://doi.org/10.1103/PhysRev.52.191
https://doi.org/10.1039/TF9383400500


14
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