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United States Government or any agency thereof, or the Regents of the University of 
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reflect those of the United States Government or any agency thereof or the Regents of the 
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1. Introduction 

Solenoidal magnets have been used as the beam transport system in all the high current electron 
induction accelerators that have been built in the past several decades. They have also been 
considered for the front end transport system for heavy ion accelerators for Inertial Fusion Energy 
(IFE) drivers, but this option has received very little attention in recent years. The analysis reported 
here was stimulated mainly by the recent effort to define an affordable "Integrated Research 
Experiment" (IRE) that can meet the near term needs of the IFE program. The 1996 FESAC IFE 
review panel agreed that an integrated experiment is needed to fully resolve IFE heavy ion driver 
science and technology issues; specifically, "the basic beam dynamics issues in the accelerator, the 
final focusing and transport issues in a reactor-relevant beam parameter regime, and the target 
heating phenomenology". The development of concepts that can meet these technical objectives and 
still stay within the severe cost constraints all new fusion proposals will encounter is a formidable 
challenge. 

Solenoidal transport has a very favorable scaling as the particle mass is decreased (the main reason 
why it is preferred for electrons in the region below 50 MeV). This was recognized in a recent 
conceptual study of high intensity induction linac-based proton accelerators for Accelerator Driven 
Transmutation Technologies, where solenoidal transport was chosen for the front end [1]. 
Reducing the ion mass is an obvious scaling to exploit in an IRE design, since the output beam 
voltage will necessarily be much lower than that of a full scale driver, so solenoids should certainly 
be considered as one option for this experiment as well. A testbed using solenoidal transport could 
in principle provide a high degree of flexibility, enabling experimental studies with a range of ion 
masses, since it has no required periodicity tied to the ion mass. This flexibility could be exploited 
to study a broad parameter range in the physics of target chamber transport and target heating, for 
example. It is also worth noting that a significant industrial capability in superconducting solenoidal 
magnets exists because of applications like Magnetic Resonance Imaging (MRI); this capability 
could be a significant advantage in the effort to find a cost-effective approach to an IRE. 

The use of solenoids for an IRE would have limited appeal if the physics and technology were 
unrelated to a full scale driver. There is no question that the major fraction of a full scale heavy ion 
driver's transport system (the high energy section) would consist of superconducting magnetic 
quadrupoles. In the past it has often been argued that since the low energy front end would have 
little influence on the overall cost of a driver, optimization of this section was lower priority. A 
central contention of this paper is that a "front end" design based on solenoidal transport can form 
the basis of a significantly different overall driver architecture. With a solenoidal front end, we can 
consider drivers with a much smaller number of beam channels (even one!), and eliminate beam 
combining. The "standard architecture" based on accelerating large numbers of beams in parallel 
that are combined in groups at one or more locations as they pass through the accelerator is 
contrasted with a "few beam, no combining" architecture in Section 3. 

Historically, it was felt in the early years of the IFEprogram that a division of the driver output into 
multiple beams, on the order of 32, and particle energies of 10 GeV or more were needed for 
"vacuum" transport and focusing of the heavy ion beam energy onto the pellet in the reactor 
chamber. An implicit assumption in our thinking about alternate accelerator architectures is that one 
of the "novel" focusing and transport schemes compatible with liquid-wall reactor concepts will be 
proven viable. Within this framework, which could lead to a much more attractive overall fusion 
reactor concept, reduction of the number of beamlines, final focusing elements, and reactor port 
access holes (to 2-4) are all highly desirable features. On the other hand, if it does tum out that 
vacuum final focusing is required, acceleration of a small number of beams could still be used if 
beam splitting prior to final focus proves feasible. 
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A single solenoidal channel transporting a high line charge density does have a (relatively) higher 
risk of emittance dilution from space charge effects. The main goal of this technical note is to 
develop the concept of this alternate approach to a driver and to the IRE. More work is needed 
before it is clear that this is the best path to take, and what the baseline parameter set should be for 
IRE (or a driver). On the other hand, the near term R&D program to support construction of a 
solenoid-based IRE design would differ significantly from an electrostatic quad-based multiple 
beam IRE, so the time scale for decisions is not that far in the future. 

In Section 2, we summarize the beam transport scaling relations in the various focusing channels, 
and in Section 3 we show how the transport and beam combining limitations lead to major 
differentiations between multiple beam driver architectures with electrostatic quadrupole focused 
front ends, and solenoidal front ends. In Section 4,. a "strawman" IRE parameter set is presented, 
with rough indications on the costs of the accelerator for such a facility. Detailed presentation of the 
transport physics in solenoidal magnetic fields is covered in Section 5. 

2. Beam Transport Scaling Laws 

From Section 5, the line charge density of a space charge dominated nonrelativistic beam of radius 
"a" transported in a continuous solenoidal is given by (MKSA units) 

(1) 

. where B is the magnetic field, M is the ion mass, and qe is the ion charge. The model is that of a 
uniform density beam injected into the solenoidal field from a field-free ion source, the well known· 
Brillouin flow condition that corresponds to the maximum line charge density that can be 
transported for that magnetic field strength. A similar relation holds for a series of solenoidal lenses 
that have a periodic axial variation in B on a scale length small compared to the cyclotron 
wavelength, if we replace B2 by its average value. This situation applies, for example, to 
interruptions in the solenoids from the accelerating gaps. 

Numerically, 

(2) 

where A is the ion mass in amu, B is in Tesla, and a is in meters. From this formula, it appears that 
heavy ion beams with A ::::: 10 J.lC / m are transportable using high fields and large beam radii. 

The radial potential drop across the beam is 8<1> = ~1tCO ,and the ratio of8<1> to the beam edge 

voltage V is equal to the dimensionless perveance, Q. In Brillouin flow, the axial velocity is a 
constant across the beam, equal to 

v~ = v6 - qeA/21tEoM (3) 

for a beam· filling the tube, where MV6/2 = qe V. Since the beam current is given by 1= AV z' it is 
~asy to show that there is a maximum.value of the current that can be transported, corresponding to 

" a maximum perveance of Q = 2/3. This limiting current can be a significant factor in determining 
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the minimum gun voltage for injection into a solenoidal channel designed to carry very high line 
charge densities. 

In an electrostatic quadrupole channel, the maximum line charge that can be transported is 
independent of the ion mass and the beam voltage. For an optimized design, it depends only on the 
voltage between adjacent electrodes <P es and the longitudinal occupancy fraction of the quadrupole 
field 11 ; 

A=: 0.511 ( <Pes ) J..lC/m 
140x 103 

(4) 

Typically, the limitations of voltage holding between the electrodes limit the'transportable line 
charge density in each electrostatic quadrupole to less than 0.25 microcolombs per meter. 

In an optimized magnetic quadrupole channel, 

~~133q A =: lO11Ba 6 -- IlC / m 
LOx 10 A 

(5) 

where "a" is the maximum beam edge radius, and B = B' a is the quadrupole field strength at the 
beam edge. This rather large transportable line charge density is constrained somewhat at low 
energy by the difficulty in packaging the quadrupoles into the available longitudinal space; for 
example, 11 ~ 0.25 is typical at 2MV. In addition, the aspect ratio Lfield / a should be kept larger 
than 3 or so to control fringe field aberrations and degradation of the effective quadrupole gradient 
B'. Here Lfield = 11L where L is the lattice half period length; 

(
V JI/4(AJI/4( a J1/2 L=:O .. 44 - - m 

1.0 x 106 q 11B 
(6) 

3. Driver Architectures 

"Standard" Multiple Beam Architectures 

The limitations on the line charge density per channel that can be transported using magnetic 
quadrupoles at low voltages have motivated multiple beam architectures with a large number (16'-
128) of electrostatically-focussed beams in the section below about 20-100 MeV, followed by a 
smaller number (4-32) of superconducting magnetic quadrupole channels. At pulse lengths longer· 
than about one microsecond, the acceleration gradient is limited by the induction core material 
"packaging" to less than one MeV per meter (the limit on the gradient with the flux swing available 
from current magnetic materials;-radially segmented core designs, etc., is generally taken to be 
around one volt-second/meter.) To accelerate the required total charge (- one millicoulomb) to 
several Ge V in a reasonable length, rapid longitudinal compression of the beam pulse is required as 
well as multiple beam channels. 

As a specific reference case, consider the 4 MJ C; ion beam driver parameters presented in the 
Elise CDR [2]. To obtain the required one millicoulomb of charge, 64 "beamlets" are drawn from 
an ion source and accelerated in a multiple beam array to 1 00 Me V in an electrostatic quadrupole 
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(ESQ) focusing channel. The line charge density limitation of the ESQ given by Eq.(4), - 0.25 
microcolombs/meter, results in a beam length of 63 meters and an initial pulse length of 37 
microseconds (at the assumed gun voltage of 2 MeV). An induction core capable of 37 
microseconds pulse length is truly massive, and it has a very low acceleration gradient « 30 
KV/meter). The beamlets are combined in groups of four at the 100 MeV point, to enter 16 
magnetic quadrupole channels. At the point of entry into the magnetic channels, the resulting line 
charge density per beam of 1.0 Il coulombs/meter is much smaller than an optimized magnetic 
quadrupole channel could handle. Therefore, the beam length beyond this point is compressed as 
rapidly as possible to reduce the beam pulse duration and make a corresponding reduction in the 
induction core volume. At the output energy of 4 GeV, the pulse length is 7.5 meters (100 ns pulse 
duration) and the line charge density is 8.3 Il coulombs/meter per beam. 

It would be nice if one could develop a more attractive architecture for the driver front end, even 
though the ultimate cost of a driver should still be dominated by the several hundred Me V to 4 Ge V 
section. In addition, the recent emphasis on liquid wall reactor chambers and "non-vacuum" beam 
transport and focusing schemes motivate one to consider smaller numbers of output beams, to fully 
benefit from savings in beam transport and focusing systems costs and from simplifications in the 
reactor with a smaller number (and size) of reactor vessel penetrations. 

As noted above, optimized quadrupole channels can carry much higher line charge densities than the 
reference design example utilized in the front end region. For example, at the 100 Me V point in the 
reference design, the line charge density in each quadrupole channel of about one microcoulomb per 
meter per beam is about lOx smaller than a 3-5 cm bore quadrupole channel with 8T pole face fields 
and 11 = 0.25 could carry. Combining a larger number of beams from the electrostatic quadrupole 
channels encounters the limitation in line charge density due to transverse emittance increases in the 
beam combining process. 

A simple estimate will indicate the general limitations in line charge density from beam combining 
because of the space charge contributions to increases in the transverse emittance. If N beams are 
brought together to inject into a quadrupole channel, the inevitable voids and nonuniforrnities in the 
beam charge density distribution relative to a matched beam distribution function will result in some 
fraction "f of the total radial potential variation across the beam, O<j) = A I 41tto being converted 

into transverse kinetic energy, M v ~ 12. The increase in normalized transverse edge emittance from 
a process like this can be expressed as 

(7) 

where "a" is the beam edge radius following beam combination. Therefore 

, -4 f¥33~ ~£N = 3.8 x 10 a f- . . (1trad - meter) 
A 1.0 IlC/m 

(8) 

is the space charge contribution to the emittance increase from beam combining. Detailed 
calculations of this process [3], with relatively optimistic assumptions about how well one can do 
with the beam combining optics, predict values for "f' of about 0.05. With this value of f, and for 
Cesium with a=3cm, 
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8eN =2.5xlO-6 ~ (1trad-meter) 

~~ 
(9) 

The transverse normalized emittance requirement from final focusing considerations is about twice 
the value obtained from Eq. (9) with A = 1.0 JlC/m. Therefore line charge densities just beyond 
the beam combining point cannot be much larger than what was assumed in the reference design 
discussed in the ILSE proposal. Indeed, beam combining at any point in the accelerator puts in a 
"choke point" that severely limits the line charge density. 

Solenoidal Front End 

As we have already indicated, the alternate architectures we would like to consider are those with a 
smaller number of beams sent to the target. The limitations in line charge density associated with 
beam combining motivate us to avoid it altogether, and keep the number of parallel beam channels 
constant. 

A broad range of parameters are possible in principle with solenoidal transport; for example, a 
Cesium beam in a 5-lOT superconducting solenoid magnet with a 30-50 cm radius can have a line 
charge density over l00Jl coullM according to Eq. (1). Avoiding excessive growth ofttansverse 
emittance in this situation, with a transverse potential drop across the beam of over 900KV, would 
be a real challenge (as would be the design of the injector and ion source). Indeed, the issue of 
maintaining the beam brightness in high current transport channels will ultimately determine the 
beam intensity limits for both the solenoidal and the magnetic quadrupole channels. For now, we 
will illustrate the solenoidal-based driver architecture possibilities with a "reference parameter set"; 
further study coupled with beam transport experiments will be needed to determine if these 
parameters are feasible, or are actually too conservative. 

As reference parameters, consider a four beam system with the same total energy and charge as the 
previous case, namely one millicoulomb of singly charged Cesium ions accelerated to 4 GeV (see 
Fig. 1). Each beam pulse transported in the front end solenoidal transport system, with a field 
strength of lOT and edge radius of 10 cm, has a line charge density of 10.0 Jl coull M and a length 
of 25 meters. With an injector voltage of 4Me V, the pulse duration is initially 10 microseconds. The 
selection of the transition point from solenoidal to magnetic quadrupole focusing is based on a 
comparison of line charge density limits in the two types of focusing channels (Eq 1 vs. Eq 5); 
30 MeV is a reasonable choice on that basis with quadrupole parameters constrained by the aspect 
ratio Lla, where L is given by Eq. (6). With 11 ~0.5, a value ofBa= 0.4 T-M insures adequate 
control of fringe field aberrations (e.g., 8T pole face field with a beam radius of 5 cm.). 

At 30 MeV, the pulse duration is about 3.7 microseconds. Beyond this point, the beam length (in 
meters) is decreased as lIfo according to the scaling of maximum line charge density (Eq 5). 
This strategy minimizes the pulse duration in the front end, which allows the highest possible 
gradient and minimizes the core material costs. At about 190 MeV, the pulse length has been 
reduced to 10 meters; beyond this point, the pulse length is kept constant as it is accelerated to 
4 GeV. 
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Figure 1. Solenoid-Based Four Beam Reference Design for Driver (Singly Charged Cesium) 

The design of an injector that can produce a high brightness beam from a field-free anode and match 
it into the solenoidal field in Brillouin flow has not been done, and this is a critical part of the 
concept feasibility. Operation of the injector acceleration column at as high a voltage as possible 
helps to minimize the initial pulse length in the accelerator, and it may help the beam optics. With 
our 4 MeV choice, the injector output current (per beam) is about 25 amps, reasonable with an ion 

source of 20-25 rnA / cm 2 (as achieved with smaller C; sources) and modest beam area 
compression ratios (-3-4). 

The architecture for the "baseline" reference case has four beam transport channels inside of a 
common accelerator core, the "traditional" multiple beam configuration. With a relatively small 
number of beams, an alternate approach is to accelerate the pulses sequentially in a "burst mode" 
using a single transport channel. The pulses are brought to the target through different path lengths 
to have them arrive simultaneously. This approach requires burst mode pulse power systems and 
rapid core reset systems, which cost more and require development (but have high synergism with 
the advanced hydrodynamic radiography programs in DOE). This trades off with the reduction in 
beam transport system costs (factor of four) and the elimination of physics/technology issues 
involved in handling and accelerating multiple beams. Cost reductions would also accrue from the 
smaller core sizes possible with a smaller bore. Double pulsing has in fact been invoked in the past 
in reactor plant system studies to reduce the capital cost; a key question is whether a reduced 
electrical efficiency in the pulse power system offsets these potential advantages [4]. 

4. IRE Design Concepts 

The heavy ion beam approach to Inertial Fusion Energy has always faced a very difficult 
programmatic problem: how to demonstrate key features of the concept in affordable research 
facility steps before proceeding to invest in driver-scale facilities. Lasers have basic advantages over 
high voltage accelerators in their development programmatics because the focusing of optical beams 
to high power densities can be demonstrated with "modest scale" modules that can be replicated "in 
parallel" to reach the multimegajoule pulse energies needed for ignition (exemplified by the beamlet 
module for NIF). Particle beams require relatively high voltage to be capable of focusing to a small 
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spot size, especially when they have the high peak currents and short pulses required for heating 
targets to ignition-relevant temperatures. Going to lower mass ions and lower beam voltages 
appears to be the best way to design a lower cost facility capable of meaningful scaled experiments 
on beam transport, acceleration, focusing, and target heating. In fact, this was the approach used in 
the past in conceptual designs of the so-called "High Temperature Experiment" (HTE) that had 
goals that were very similar to the IRE. 

A detailed trade study and risk assessment would be required to optimize the design parameters of 
an IRE aimed at specific performance objectives within specified cost constraints. The objective of 
our discussion of the "strawman" IRE concept presented here is more modest: we want to make a 
plausible case that a sufficiently flexible and robust experimental facility based on solenoidal 
transport can be constructed at a cost of about $1 00-150M. . 

For a near term facility, the established technology ofthemionic potassium ion sources makes this 
ion a logical choice for a lighter mass IRE. (Flexibility of the facility to accelerate a range of ion 
masses with different sources is another desirable feature for IRE, but we will not examine this in 
the present paper.) Considerations of injector design, commercial capability for production of 
superconducting solenoidal magnets, and cost constraints related to beam pulse length motivated the 
following choice of "strawman" IRE parameters (as discussed further in the following paragraphs): 

• Beam line charge density 5 microcoulombs/meter, beam radius 10 cm, solenoidal field 3.8T, 
injector voltage 4MeV, final beam energy 100 MeV, beam pulse length constant at 10 meters 
(FWHM, -12 meters total length including the ends). 

• These parameters imply an initial beam pulse duration out of the injector of 2.3 microseconds 
(FWHM), an initial beam current of 22A, a final beam pulse duration of 0.45 microseconds, a 
final beam current of 11 OA, and an output pulse energy of 5 KJ's. 

Injector 

The main issues in the injector design are the optics design capable of generating the required low 
emittance, uniform current density beam, and the maximum voltage stresses allowed on electrodes 
and insulators. 

The most relevant experience base regarding the optics design of high brightness, high current 
heavy ion beams is that of intense nonrelativistic electron beams for microwave devices and electron 
accelerators. (The radial defocusing of high current relativistic electron beams in the gun region is 
significantly reduced by the self magnetic fields, making their optics design less relevant). Electron 
guns for high power klystrons have perveances around 2 micropervs, but their current densities are 
relatively nonuniform. Electron gun design experience suggests that electron gun perveances need 
to be below about one microperv to produce adequate current density uniformity following beam 
injection into the focusing solenoidal field. One rule of thumb for generating uniform current 
densities is a ratio of less than 1/3 in the cathode radius "a" to (effective) acceleration gap distance 
"d" in a planar Child-Langmuir law; this rule of thumb corresponds to a perveance of 0.8 
micropervs. 

Our IRE parameter choice corresponds to a heavy ion (potassium) gun perveance of 2.75 
nanopervs; the equivalent nonrelativistic electron gun perveance, scaling with the square root of the 
mass, is 0.74 micropervs, which is within the experience-based gun optics criteria discussed above. 
Note that for the driver parameters discussed in the previous section, we have assumed that these 
optics criteria can be exceeded by a factor of two (or that higher voltage injectors will be feasible on 
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these longer development time scales). For IRE, a somewhat more conservative parameter goal 
seems appropriate, at least until detailed gun design studies have been completed. 

At an emission current density of 20 mA f cm 2 , at the upper end of what has been demonstrated to 
date with these sources, an ion source diameter of 37.5 cm (15 inches) is required. This is about 
twice the diameter of the ion sources currently in use in the LBNL injector test stand (and these also 
operate at much smaller current densities). The mean gun voltage stress, Vfd, is of order 60-70 
k V fcm with these source dimensions. 

We believe these "strawman" injector parameters are plausible extrapolations of current technology, 
but it is clear that the injector design and development is the critical path item required to finalize the 
IRE parameters. More conservative parameters, like 2-3 microcoulombsfmeter, would be the 
fallback parameter choice if the "strawman" injector parameters prove too difficult to achieve on the 
required time frame. 

Superconducting Solenoids 

As mentioned in the introduction, a significant industrial capability exists in superconducting 
solenoid manufacturing for applications like NMR and MRI. Wire wound superconducting 
solenoids are much simpler to construct than the superconducting dipole and quadrupole magnets 
used extensively in conventional high energy particle physics accelerators, of course, and their 
procurement on a fixed price basis should be relatively straightforward. 

At this point, in the absence of engineering designs or detailed specs on field quality, etc., a rough 
order of magnitude cost estimate is all we are after. Discussions with several superconducting 
magnet specialists with knowledge of the relevant industrial production processes lead to the 
following "top down" cost SWAGS. 

The unit package envisioned for our strawman parameter set would consist of a 4T, 30 cm. 
diameter bore coil, about one meter long, with a radial build about 1.5 cm. and a 2-3 cm. thick heat 
shield. Note that the wire volume per meter of length, scaling as Ba, is very close to a "standard" 
MRI machine with 1.5T field and a one meter bore. Complete magnet systems for these machines, 
including power supplies, controls, etc., are in the general ballpark of $ 150-300K with a magnet 
length of 1.5 meters. On a per meter basis, using simple Ba scaling, this translates into $80-160K 
per solenoid for the stra.wman system. Of course, the cryostat would be an entirely new design, and 
many other features of the MRI machine magnets operating with persistent currents and highly 
uniform fields should be simplified in our case. For example, an independent SWAG by a small 
vendor with experience in NMR coil production put the c~sts of our one meter unit in the $50-75K 
range. 

If we take a unit magnet cost of $50-1 OOK per meter and a machine length of 200 meters, 
corresponding to an average gradient of 0.5 MeV fmeter and 100 Me V output, the total transport 
magnet cost would be in the $10-20M range. 

Accelerator 

The induction accelerator cores need to supply a voltage pulse about 2.7 microseconds long at the 

front end, decreasing at the higher energy end according to 1 f V I / 2 in the baseline acceleration 
mode with the beam pulse length (line charge density) held constant. Since the IRE facility should 
be as flexible as possible in its capability to study a wide variety of acceleration schedules and beam 
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transport physics issues, and a large number of different core designs would be costly, the machine 
would probably be built using only a few core types. For example, the first 4 MeV of accelerator (to 
8 Me V) could use the 2.7 microsecond cores, the section from 8 to 30 MeV designed for 2 
microseconds pulse length, and the final section designed for 1 microsecond pulse length. The 
pulsers will need to have waveform control "knobs" for things like compensating the axial 
expansion forces from the space charge fields of the beam, maintaining a flat energy profile, and 
studying various axial compression schedules. 

The major new feature in this IRE concept is the integration of superconducting solenoids inside the 
induction cores. Otherwise, the components are generally similar to the "long pulse" induction 
machines built in the past (NBS, Astron), or (more recently) the electron machines designed for 
applications like radiography for hydrotests in the nuclear weapons program. A recent study of a 
2.2 microsecond, 20 MeV, 4 KA electron accelerator for the second axis of DARHT [5] provides a 
very useful reference point for a ballpark estimate of the cost of our "strawman" IRE. A rough 
estimate of the "DARHT -2" machine, with no contingency or conventional facilities, is about $36M 
($23M is the cost of the hardware). The DARHT-2 design provides 8KA total current to the cell, 
half into the beam; our beam loading is negligible compared to this. On the other hand, the IRE 
pulsers will need to be much more flexible and capable in waveform control, so the pulse power 
cost (per volt-sec provided) might still end up roughly comparable. The 10 inch bore of the 
DARHT -2 beam tube design would also need to be increased somewhat to accommodate the 10 cm 
heavy ion beam radius. If we simply scale the machine costs by the volt-secs of the total voltage 
waveform provided, and use the "segmentation" into different pulselengths outlined above for the 
IRE, we have a cost for the 100 MeV IRE of 3.3 times the 20 MeV DARHT-2 or about $120M 
(without the superconducting focus magnets). Including the magnets, the overall cost on this crude 
scaling basis would be a little less than $150M. 

Incidentally, the DARHT-2 injector is a 3 MeV Marx largely modeled after the LBNL!FE injector, 
so these costs shQuld be very similar. A more refined scaling subtracting out the $4.5M injector and 
other fixed cost items before applying the volt-secs multiplier reduces the above SWAG by $20-
30M. 

More refined calculations and optimizations would undoubtedly provide a basis for lowering this 
SWAG on the accelerator construction, but the total project cost would ultimately have to include a 
number of items that we left out. We have not, for example, included anything to cover a transport 
section for beam compression, or facilities for final focus and target heating studies. The only 
conclusion we would draw from these general considerations is that one should be able to build a 
machine on the general scale of our 1 OOMe V IRE strawman for less than $150M; a more 
conservative projection would indicate a machine of 50-75MeV fitting within this cost envelope. 
Improving on this SWAG will require a clear definition of the scope of what is to be included in the 
facility construction budget, as opposed to the items that would be covered later as part of the 
experimental operations budget, and a more complete conceptual design for cost estimating. 

5. Solenoidal Transport Physics 

Since solenoidal transport at low energy is the distinctive feature of the driver and IRE concepts 
described here, a derivation of basic dynamical effects has been included. Most of this material 
does not appear to have anything really new in it, but neither has it been previously gathered in a 
form convenient for the fusion driver application. The books by Lawson [6], Davidson [7] and 
Reiser [8] are useful general resources on this subject. 

In the following subsections we derive the axisymmetric envelope equation and single particle 
equation and apply them to the case of Brillouin flow. Matched envelope solutions and oscillations 
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of the beam radius are treated, including the interesting case of a beam subject to a periodic variation 
of Bz• A brief treatment of aberrations of a cold beam, using a fluid model is also included. 

5.1 Envelope equation for an axisymmetric beam 

A useful approximate equation governing the z-dependent beam edge radius is derived from the 
transverse equations of motion for the ions: 

d 2y = qe (E + dz B _ dx B ) 
dt 2 M y. dt x dt z 

(10a) 

(lOb) 

We follow the motion of a thin disk of ions as it moves forward at velocity Vr Either time (t) or 
longitudinal position (z) can be used as an independent variable, but z is more convenient since 
fields from electrodes and coils are specified as functions of z. We consider v z to be a known 
function of z for the disk and replace the time derivative 

~ --7 V (z)~:: V . "prime" 
dt Z dz Z 

(11) 

For the field expressions only the lowest order teqns in x and yare retained (a higher order analysis 
is given in section 5.4): 

(12a) 

B =_1. dB z r 
r 2 dz 

(12b) 

(12c) 

(12d) 

Here ACz) is the beam's line charge density and a(z) is the edge radius. The first term on the right in 
equation (12d) is clearly correct only for a flat top charge profile. However, an envelope equation 
derived directly using rms quantities yields an equivalent radial electric field in an averaged sense. 
We have from equations (10-12): 

v ~ v dx - qe [( A _! dE z Jx + v B dy + ~ dB z Y] z z - 2 zz , 
dz dz M 21tEoa 2 dz dz 2 dz 

(13a) 

v ~v dy _ qe[( A _~ dEzJy-V B dx _~ dBz x] -z z - 2 zz . 
dz, dz M 21tEoa 2 dz dz 2 dz 

(13b) 
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These transverse equations are supplemented by the longitudinal dynamical equation 

v dv z = dv z = qe E 
z dz dt M Z 

Transformation to a rotating frame is now made: 

x = X cos <I> - Y sin <I> 

y = X sin <I> + Y cos <I> 

Defining the cyclotron frequency 

The choice 
1 Z 

? <I>{z) = - - f dz'k c (z') 
20 

decouples the x-y motion, giving 

, 
'. 2 2 

y"+ly' =_ kc y _~y +~y 
vz'-- 4 4v; a2 

Here we have used the dimensionless perveance of Lawson (non-relativistic limit) 

Q = qeA 2 = A{Z) 
2m:oMv z 41tEo V{z) 

with V(z) defined to be the "cumulative voltage" felt by the beam: 
Mv 2 

V(z) == z 
2qe 

Because the system is axisymmetric, the canonical angular momentum of an ion is 
conserved; in the laboratory frame we define (in lowest order in r) 

f!. = ~ = r (v e + : B; r ) = constant 

This may be written as 

11 

(14) 

(15a) 

(I5b) 

(16) 

(17) 

(17a) 

(17b) 

(18) 

(19) 

(20) 



[ 
k r2] R = v z (xy' - yx') + T (21) 

Substitution of rotated variables from equations (15a,b) yields 

(22) 

The conservation of .e may be readily demonstrated from equations (17a,b). 

To obtain an envelope equation we define some averages over the beam slice: 

(23 a) 

(23b) 

(23c) 

Two useful moments of equations (17a,b), relating R and U are 

(24) 

(25) 

We also have from equations (22) and (23c) 

(26) 

A mean-squared emittance is defined as 

(27) 

Then equations (24)-(26) yield, after some manipulations 

(28) 
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Hence the assumed linear approximation of the dynamical equations conserves an appropriately 
defined normalized emittance, as might be expected. The emittance E, as defined in equation (27). 
contains only the thermal and aberration parts of ion transverse velocity. . 

Using equation (27) to eliminate U2 from equation (24) in favor of E2 we get 

I 2 2 
R"+ V z R/= E +L 

Vz R3 
(29) 

Noting that R and E are rms quantities, we may obtain an envelope equation for edge-defined 
quantities (a, E) by the substitutions R a/ .fi, E = E/2 

Another form of the envelope equation is obtained by the substitution 

a(z) = b(z)/.,ffi, where ~ = vz/c: 

Although b(z) differs from a(z) by the inconvenient factor ~~(z) ,the conserved quantities 

(30) 

(31) 

E~ and L~ now appear explicitly in the envelope equation and terms involving W' and b' are 
removed. Equation (31) may be applied to source and extraction problems as well as envelope 
dynamics during downstream transport, acceleration and focusing. 

5.2 Particle Orbits in a Uniform Solenoid 

Brillouin flow is the constant-radius beam equilibrium with the maximum possible charge density 
that can be transported in a uniform solenoid field with given edge radius. In the elementary model 
of this beam equilibrium, the ions (injected into the field from a field free ion source) rotate about 

the axis at a constant angular velocity of -0)/2, where 

(32) 

In this simple model, the beam density p is uniform, and the axial velocity of the ions in a 
monoenergetic beam turns out to be independent of radius position r. Ions near the axis are retarded 
from the potential depression; this reduction in axial velocity is exactly equal to the reduction at large 
radius from the increasing azimuthal velocity. 

This ideal can only be approximated in the real world, of course. While particle simulation codes are 
needed for quantitative evaluations of effects like finite beam source temperature (emittance), 
mismatches, nonuniform densities, etc., itis useful to first gain physical insight from various 
simple models. Here we look at particle orbits in a uniform density beam to see what the orbits are 
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like when the magnetic field is somewhat larger than the Brillouin value and/or the ions have a finite 
emittance. One might expect that the ions would have only a small deviation away from the 
constant-radius rotation of the elementary model, but this is only true for a limited time, as we now 
show. 

In order to make clear a connection with plasma physics and generally stimulate the reader, 
variables of time (t) and frequency (coc' cop) are used in this subsection instead of z, kc and Q as in 
5.1. Cartesian coordinates are useful·when the charge density is approximately uniform, and the 
solenoidal magnetic field can be described in the paraxial approximation. With these 
approximations, the transverse equations of motion can be written as 

= co~ x + dy co + y acoc dz 
2 dt c 2 az dt 

(33a) 

co~ dx 
= -y - -co 

2 dt c 

x acoc dz 
- ----

2 az dt 
(33b) 

. where 

(34) 

is the beam plasma frequency. 

Multiplying Eq. 33(b) by x and subtracting y times Eq.33(a), we find the conservation of canonical 
angular momentum in the form 

.e = x dy _ Y dx + COc (~2 +y2) = constant· 
dt dt 2 

(35) 

If the ions are born in a field-free region with zero transverse velocity, then R. =0. 

In a uniform magnetic field, the solutions to Equations 33a and 33b can be written as a linear 
superposition of two circular motions, 

x(t) = A cos (co 1 t + '" d + B cos (CO2 t + '" 2 ) (36a) 

y(t) = -A sin (co1t+"'d -B sin (C02t+"'2) (36b) 

where 

COl 
COc COc 

= - + co, CO2 = --co 
2 2 (37a) 

[2 ro
2 r co COc P = ---

4 2, 
(37b) 
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The Brillouin flow condition is 0) = o. From Eq.(35), we have in general 

(38) 

Setting 0) = 0 in equation (37a), we recover circular motion at the frequency -O)c/2 and a constant 
(arbitrary) radius, as predicted by the elementary model. If the field is reduced below the Brillouin 

limit, equation (37b) clearly shows that there is no stable orbit unless p is also decreased. 

If the field is increased above the Brillouin limit, the particle motion is no longer at a 
constant radius. In this case we find 

r2 = x2 +y2 = A2 + B2 + 2AB cos (20)t+ "') (39) 

and the particles move between 

rmax = A + B (40) 

and 

rmin = IA -BI (41) 

with period rc/O). Note that the cannonical angular momentum can be written 

(42) 

If the ions are injected cold from a field-free region, then .e = 0 and rmin = 0, and this simple 
constant density model predicts they will (eventually) pass through the axis when 0) ::1= o. 

It is interesting to estimate from these orbit solutions how much the magnetic field must be 
increased above the Brillouin value to contain a set of particles of finite emittance. A finite emittance 
beam will have particles with a distribution of .e values, of order 

(43) 

where EN is the normalized transverse edge emittance (without a 1t). From Eq. (42), if rmaxrminis 
of order a2

, we have 

(44) 

This requirement is consistent with the envelope equation, Eq (30) of 5.1. 

As an example, consider B = 3.8T, a = IOcm, A = 39, and EN = 5 x 10-6 m - r (the 
IRE point design); Eq. (44) yields 

~ "'" 3.2 X 10-2 (45) 
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and an increase in the solenoidal field above the Brillouin value by only 

(46) 

is needed to maintain equilibrium at the same p and a. 

5.3 Applications of the Envelope Equation 

Here we examine, in a rudimentary fashion, the dynamics of a beam transported in a solenoid 
without acceleration and having zero average canonical angular momentum. The envelope equation 
is then: 

and the single particle equation of motion in a reference frame rotating at the rate 
d<l> / dz = - kc /2 is: 

= 
k 2 
_c X + 
4 

Case 1: Matched Beam, Cons tan t kc (z) 

Setting kc = k
cO

' the matched beam radius has constant value aO, satisfying 

This is quadratic in a 6, so we get 

(47) 

(48) 

(49) 

(50) 

It is useful to define the particle trajectory "tunes": 0"0 = "undepressed tune", and 0" = 
"depressed tune", corresponding respectively to Q = 0 and Q finite. Let P denote a periodicity 
length of the solenoid, which is arbitrary for the case of constant kc . Then cr 0 is the particle 
oscillation phase advance per period with Q = 0: 

(51) 
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and a is the phase advance reduced by the space charge force represented by finite Q: 

a= 

From equations (49) - (52) we are able to relate emittance and perveance to the tunes: 

( 
2 _ (2) a0

2

2 
Q = aO 

p-

In the limit a - E = 0, equation (49) gives the Brilloiun flow limit 

'Q = 
4 

from which we obtain the transportable line charge density 

( 
Mv2 J ( Mv

2 J (qe B J2 aO 2 A. == 41tEO ,--, Q = 41tEO __ z_ 
'2qe 2qe Mv 4 

= 1tE0 qe B 2 a 2 
2 M z 0 

= (10.0 JlC)' (133q
) (~J2 (~J2 

m A lOT 10cm 

Case 2: Small Amplitude Oscillation' For Constant kc 

(52) 

(53) 

(54) 

(55) 

(56) 

We set a(z) = ao + oa(z) with Oa « ao. Then equation (47) may be linearized: 

= (57) 

= k 2 ( 2 J ~l+~oa 
2 aO 

where we have used the equilibrium relations to eliminate E, <10, and Q. 
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The natural oscillation frequency is therefore: 

kc ~2 n= ~ 1+-2 -v 2 aO 
(58) 

For a --7 0 (Brillouin flow) the natural oscillation frequency is denoted nO = kco /.J2 , which 

is larger than the Lannour frequency by fi. 

Case 3: Sinusoidal Variation of kc (z) - Matched Envelope, Brillouin Flow 

For periodic kc (z) there exists, in general, a solution of the envelope equation with the same 
period. This solution is "ideal" in the sense that it is as close to constant radius as can be arranged. 
We set: 

kc (z) = kco (1 + £ cos Kz) (59) 

where E is a small dimensionless parameter (not the emittance, which is now equal to zero) and the 
period length P now has the definite value P = 21t/K.. The matched envelope radius a(z) is the 
solution of the envelope equation with period P: -

= 
k 2 
~ (1 + £ cos Kz)2 a + Q 

4 a 
(60) 

a (z + P) = a(z) 

It is convenient to write eqn. (60) in the following form: 

a = ao (1 + fez)) (61) 

d
2

f n 2 [ 1 ] - = - _0_ (1 + E cos Kz)2 (1 + f) - --
dz2 2 1 + f 

(62) 

where nO = kco /.J2 is the natural small amplitude oscillation frequency in the limit E --7 0 

and Q = n5a5/2. The form of the matched funct~on f = fm (z) can be written as an expansion in 
powers of E. 

(63) 
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Inserting this form into equation (62) and equating the coefficients of terms of the form 

En cos mKz, we get: 

A 
1 

a-I 
(64) 

B ( :2 A -~J = 
2 

(65) 

C 
B 

= 
(4a - 1) 

(66) 

where a == (Klno)2. The assumed expansion in En cos (m Kz) is seen to blow up when a = 1, 
114, 119, etc, i.e., when the smooth limit wave frequency no is an integer multiple of the solenoid 

frequency K. Generally a transport channel would be designed to operate with a well above unity 

for this reason: This condition means that the cyclotron period (2TC/keQ) should be greater than -

PI J2. In fact a condition for stability (to be derived below), suggests that the cyclotron period 
should be greater than ~ P to avoid unstable growth near a "half integer resonance". Maximum 

and minimum values of fm for E = 0.2 are given in a table at the end of this section. 

Case 4: Stability of the Matched Envelope 

Equation (62) may be linearized to treat a small amplitude axisYI1lIlletric perturbation away from the 
matched function fm : 

, - (67) 

where of « fm . Then the equation for of is: 

d2 . n 2 [ . 
-2 of = - _0_ (1 + E cos Kz)2 Bf + 
dz 2 

(68) 

(68a) 

Equation (68) is readily solved by a simple numerical technique. It is also analytically solvable in 
its approximate form (68a). We do both. The analytical approach is presented in_moderate detail 
here to bring out the physics of the stop band associated with a half integer resonance. . 

19 



Just as for fm (z), we solve for of through order £2, so terms of order £3 or higher are 

consistently dropped. The term on the rhs of equation (68a) proportional to £2 cos (2 Kz) cannot 

affect the mode frequency or growth rate through order £2, so it may be dropped. However, the 

term proportional to £2(t - B + ~ A2) does shift the basic wave frequency in order £2. We 

therefore define: . 

(69) 

and replace equation (68a) with the simpler form: 

d2 of 
-2- + Q2 Of = - Q6 £ (1- A) (cos Kz) Of 
dz 

(70) 

The stability of the mode is determined from the eigenvalues ( A ) of the transfer matrix for period 
P = 21t/K associated with equation (70): 

[
Of (P)] _ [ M 11 
Of' (P) - M21 

M12] [Of (0) ] 
M22 Of' (0) 

(71) 

Due to the symmetry of kc (z) around z = 0, it can be shown that M22 = MIl' Exploiting the 

symplectic condition II M II = 1, the eigenvalues ( A ) are found to satisfy: 

o = II M - I A II = 1 - 2 M 11 A + A2 (72) 

This is solved by: 

(73) 

For I Mll I < 1, we set: 

M11 == cos <1> (74) 

A = cos <1> ± i sin <1> = e ± i<1> (75) 

i.e., we get stable oscillations with phase advance per period ( <1». For I MIl I > 1 the phase 

advance locks at a multiple of 1800 and A has two real values, one of which has magnitude greater 
than unity. This is the growth factor per period of an unstable mode. 

The problem of finding <1> or A is therefore reduced to that of evaluating M 11 with sufficient 

accuracy, in this case through terms of order E 2. This is readily done by noting that MIl is 
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identical with the-solution of(P) for initial conditions of (0) = 1.0, of (0) = O. In lowest order in 

£ we have of = cos Qz; this may be inserted on the rhs of equation -(70) and an improved solution 

obtained by integration. This procedure is repeated, keeping terms through order £2 and observing 

the initial condition of (0) = o. Then we calculate M 11' and A is determined from equation (72). 
Sparing the reader the details of this iterative calculation, the final result is: 

£2Q04 P (1- A)2 [Ill ' 
M 11 - cos Q P -I- 2 sin QP 

= - ,8Q (K+Q)2 _Q2 . (K_Q)2 _Q 

( 2xQ ) == cos -J(i Q
O 

-
,2 (,X-2f 2x 
8 a-I -J(i 

Qo Sin( 2x ~) 
Q .J(i Q o 

• 

(76) 
1 

• 
(~+~J -(~J + (~-~J ( Q \2 

- QoJ 

with 

[1 + £2 f2 Q 0.2 -0.+1 
(77) = -

Qo 2 (0.-1)2 

Values of phase advance <I> or growth factor A are tabulated below along with the values of 1 + fm 

at 0 and PI2 for £ = 0.2 and various values of a.. The expected stable behavior for large a is 
evident, with the value <I> = 1800 approached at a. == 4.4. An unstable stop band occupies the range 

a. == 4.4 - 3.85, i.e., close to the half integer resonance Qo == K/2. Decreasing a. below 3.85 again 

yields stable oscillations with <I> > 1800
• Note the relatively low maximum growth factor == 1.11 in 

the stop band and the excellent agreement between analytical and numerical results. 

An interesting behavior of the matched envelope a = ao[l + fm (z)] emerges in the band 
1 < a. < 2. Very large maximum amplitu,des appear, with the minimum of a(z) approaching close 
to zero, making computations difficult. This unexpected behavior appears to be associated with the 
existence of a finite amplitude oscillation of the beam radius with frequency in the range 
(1.0 to ~) Q o when £ = O. -
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STUDY c - 0.2 

Numerical Analytical 

~ a(P/2} 
<I> ~ a(PI2} 

<I> a ao ao A. ao ao A. 
16.00 1.00228 .97587 91.02v 1.00222 .97556 91.02 

8.00 1.01631 .95965 128.99 u 1.01633 .95918 128.99 u 

6.00 1.02695 .94754 149.27 u 1.02699 .94699 149.27 

4.40 1.04471 .92767 178.40 u 1.04471 .92706 178.90, v 

4.35 1.04554 .92674 -1.0535 1.04554 .92614 -1.0567 

4.25 1.04730 .92481 -1.0909 1.04728 .92420 -1.0941 

4.15 1.04916 .92275 -1.1055 1.04913 .92214 -1.1082 

4.10 1.05014 .92167 -1.1062 1.05011 .92107 -1.1090 

4.00 1.05220 .91940 -1.0940 1.05215 .91881 -1.0977 

3.90 1.05441 .91698 -1.0519 1.05433 .91640 -1.0586 

3.85 1.05557 .91571 182.31 u 1.05549 .91513 181.71 u 

3.00 1.08470 .88432 211.16 u 1.08409 .88409 211.00 u 

2.00 1.19125 .77679 262.84 u 1.18286 .78286 262.08 u 

1.50 1.59683 .44930 334.38 u 1.3920 .59200 312.95 u 

No useful solution found near <I> = 360 0 

1.00 .11369 2.49777 423.99 u Divergent 

.75 .37848 1.80152 435.41 u .31500 1.91500 445.70 u 

.50 .60955 1.38640 512.72 u .60000 1.40000 514.88 u 

Table 1. For various values of a and e = 0.2 we compute a/ao at z = 0 and Pj2, phase 

advance (<I» per period (P), or unstable growth factor A. per period. Numerical results were 
obtained by a second order accurate leap frog solution of the envelope equation using 80 steps per 

lattice period. To check accuracy several runs with 160 steps per period were made; at a = 4 the 
-6 -4 

computed values of a/ao changed by -5 x 10 and A. by 1.0 x 10 . Note that a maximum 
growth rate of only 11 % per period appears in the first stop band (<I> = 1800

). 
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5.4 Cold Fluid Model For Aberrations 

The envelope equation derived in Section 5.1 essentially assumes that transverse forces are linear in 
the coordinate r and longitudinal forces are independent of L, The conservation of transverse 
emittance is a consequence of these approximations. It is clear, however, that non-linear 
components of force are present, especially in the fringe fields of the solenoids and in locations 
where strong accelerating fields are applied. Even the transverse oscillations of a mismatched beam 
envelope in a uniform field are subject to some non-linearity from space change fields and non­
paraxial effects. The magnitude of these aberrations can be estimated from a cold fluid model of the 
beam dynamics which is presented in this subsection. 

We consider "an axisymmetric, time-independent system; the cold beam variables and fields depend 
only on coordinates rand z, and total current I is a constant. Each· ion's canonical angular 
momentum re is conserved and is assumed to vanish: 

, 

where Ae (r, z) is the e component of vector potential and satisfies 

a 1 a 
- rAe 

ar r ar 
= 0 

inside the transport channel. The beam is a negligible source for· AS .- and the longitudinal 
component Az may be neglected for the non-relativistic heavy ion application. The radial 
component Ar is eliminated as a gauge condition. . 

Particle energy (kinetic + potential) is also conserved and assumed to vanish: 

where the scaler potential <I> is related to beam charge density p in the channel by . 

p 

(78) 

(79) 

(80) 

(81) 

The conservation of W follows from the independence from time, as does the conservation of 

total current I. The continuity equation for current dt?nsity j = pv can therefore be written: 

1 a a 
r p vr + - p v 

r ar az z 
(82) 

So far we have five equations for the six functions vr ' ve, Vz. p, Ae, <1>. The necessary sixth 
independent equation could be either the r or z component of the force: 

- qe (- -) v·Vv = M E+~xB (83) 
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with 

E = -V<1> 

B = V x Ae ee 

(84) 

(85) 

However, an equivalent, and simpler sixth equation is: . 

which results from the conservation of fluid vorticity 

which is also assumed to vanish at the beam source. This property is a consequence of the 
assumptions that the beam is a cold fluid with laminar flow. 

It is convenient to absorb the constant factor qe / M into the definitions: 

(86) 

(87) 

qe Ae == A (r, z) (88a) 
M 

qe <1> == <I> (r, z) (88b) 
M 

qe ..£... == R (r, z) (88c) 
M EO 

vr == u (r, z) (88d) 

V z == v (r, z) (88e) 

Then we have after eliminating ve = - A: 

a 1 a a 2 A 
- - - r A + - = 0 (89) 
ar r ar . az2 

1 a a <I> a2 <I> 
- -r- + -- =-R 
r ar ar az2 

(91) 
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I a 
r Ru '+ 

-a 
Rv 0 = 

r ar az 
(92) 

av au 
0 - - - = 

ar az 
(93) 

In order to distinguish aberrations from the primary (linear theory) quantities, we expanded (A, <1>, 

R, u, v) in powers of r: 

A = Al r + A r3 
3 + (94a) 

4> = 4>0 + 4>2 r2 + (94b) 

R = Ro + R2 r2 + (94c) 

u = ul r + u3 r3 + (94d) 

v = Vo + v r2 
2 + (94e) 

The coefficients AI, A 3, 4>0, etc, are functions only of z, and the associated powers of r are 
readily identified by an examination of eqns (89) - (93). Plugging the expansions 94(a - f) into 
these equations and equating coefficients of each power of r, we first obtain a low order set of five 
coupled equations relating the seven functions (Alo 4>0,4>2, Ro, uI, YO' V2): I 

v 0 2 + 24>0 = 0 (95) 

(UI2 + AI2 + 2vO v2) + 2<1>2 = 0 (96) 

4 <1>2 + 4>0" = - RO (97) 

I 

2RO ul + (RO yO) = 0 (98) 

2v2 - uI ' = 0 (99) 

. ( 

Two of the low-order functions can be specified arbitrarily; it is convenient to let these be 

Al (z) and vo(z). Note that the solenoidal on-axis field (Bzo ) is related to Al by: 

Al (z) = qe Bz (z) 
.' 2M 0 

(100) 

1.e., A I is the on-axis value of the Larnior frequency. 
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Equations (95) - (99) are essentially solved by determining the beam envelope radius a (z). To see 
this we define a (z) by the relation: 

vo a' 
-- == u1 

a 
(101) 

This looks reasonable and defines a (z) to within a multiplicative constant. Equation (98) can then 
be integrated, yielding 

2 _qe I 
RO vo a = constant = 

MEO 1t 
(102) 

This value of the integration constant fixes a (z) to be close to the actual beam edge (but they are not 
exactly equal-- duetohigherordercontributionstoJz fromR2, v2, R4, v4, ... ). From 
equation (99) we find that the second order longitudinal velocity coefficient: 

_ u 1 ' _ (v 0 a' ) v2 - - - --
2 2a 

, 

(103) 

vanishes for constant a. This proves (in second order) the assertion that Vz is independent of r in 
Brillouin flow. Note that v2 is an aberration coefficient that is obtainable directly from the 
envelope solution a(z) and is always present when the envelope oscillates. Fortunately, it 
disappears when oscillations are stopped by the application of matching elements in the beam line. 

Eliminating v2 and <1>2 from equation (96), we have 

(104) 

Substituting from equations (95), (100) and (102) gives: 

(
qeBzo J2 (vo' a' Vo all) 1 qeI 1 + Vo + -- - - --=-- ----:=-

2M a a 2 MEo 1t V 0 a 2 

" 

= o. (105) 

Multiplication by a / v 0 2 and arranging terms yields an envelope equation: 

( 
B J2 ( J 2" , , v 0 " qe Zo 2qe I 1 v 0 

a+-a=- a+ ----a 
Vo 2Mvo 41t EO Mv03 a . 4v02 . 

(106) 

This is identical with equation (30) of Section 5.1 when emittance and canonical angular momentum 

are set equal to zero. 
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A set of five equations for the five next higher order expansion coefficients (A3, <1>4, 

R 2, u 3 ,v 4) is obtained in similar fashion to the lower order quantities: 

8 A3 + AI" = 0 (107) 

(108) 

(109) 

(110) 

(111) 

These aberration coefficients are "excited" by various lower order disturbances such as acceleration 
and changes in B Zo. As an example of the application of equations (107) - (111) we return to the 

periodic solenoidal field treated in 5.3, but assuming vOand Q are constant. We have 

where 

qe kc Vo 
Al = -Bzo (z) = 0 (1 + EcosKz) 

2M 2 

a == aO (1 + _E_CO_S_Kz_) 
a-I 

Working to lowest order in E, it follows that 

~_(Kao{e:~~)[(:J+ (K~)2 (aJ] 
( /z 2 ( (

1tME
O J(Ro + R2r2 + .... )( Vo + V2 r2 + .. )a

2 
I 1ta qeI 
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(112) 

(113) 

(114) 

(U5) 



qe<1> 2 (2 4) 2/ = 1--2 <P2 r +<P4r + .. 
-Mvo 2 Vo 

(116) 

These are the matched (periodic) aberrations that necessarily accompany the matched oscillations of 

the beam; they do not grow. Note that the non-linear parts are small by factors of (KaO)2 as well 

as E. However, all coefficients blow up as a ~ 1, as might be expected from the discussion in 
Section 5.3. Assuming typical values E = 0.2, KaO = 0.5, kco ao = 0.25, corresponding to 

a = 8.0, the nonlinear portions of expressions for v r' J z' <1> are relatively of magnitude 

(2) _ 9x 10-4 
Vo NL 

( 
J z 2) - 7 x 10-3 

I/rca NL . 

( 
qe<1» 3 x 10-5 

- Mv6/2 NL-

6. Concluding Remarks 

Based on this preliminary study, the solenoidal transport option for the IRE seems worthy of 
further serious consideration. Analysis of the elementary, axisymmetric dynamics indicates that 
high ion currents might be transported with relatively minor envelope oscillations. A conceptual 
design of the high voltage injector is required before selecting a final set of beam parameters, but the 
engineering maturity of the superconducing solenoids and the acceleration subsystems should allow 
realistic cost estimates to be prepared when this is done. The critical judgement will ultimately be 
the relative risks of meeting the emittance and brightness goals with the single high current beam 
channel, compared with confining beams from multiple channels. Further physics study would 
help make this a more informed decision. 
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