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A BOUNDARY ELEMENT ALGORITHM USING COMPATIBLE BOUNDARY
DISPLACEMENTS AND TRACTIONS

R. PILTNER AND R. L. TAYLOR

Departmént of Civil Engineering, University of California, Berkeley, CA 94720, U.S.A.

SUMMARY

With the aid of Muskhelishvili’s complex plane elasticity solution representation compatible dis-
placement and stress fields are comstructed. The complex functions in these formulas are
represented by Cauchy-integrals, which are discretized along the boundary with the aid of com-
plex shape functions for each boundary element. The constructed displacement and stress func-
tions satisfy the Navier-equations and the equilibrium equations, respectively. The use of fifth
order complex shape functions with continuous second complex derivatives gives numerical

results of high accuracy.

1. INTRODUCTION

In the last years the development, improvement and application of boundary element methods
and integral equation methods, respectively were increasing [1-15]. The starting point for most
boundary element methods is a weighted residual statement, containing a domain integral over
the product of a weighting function and the considered differential equation plus boundary
integrals over the product of weighting functions and boundary condition terms. In order to
get a boundary integral procedure so called fundamental solutions of the considered differential
equation are used for the weighting functions. The substitution of the fundamental solution for
a chosen point into the system of differential equations under consideration gives a vector of
Dirac-delta-functions. After integration by part of the original weighted residual statement this
property of the fundamental solution enables us to replace the remaining domain integral by an

integral free term so that a boundary integral statement is obtained.

In the common boundary integral methods for elasticity problems independent shape functions

for the boundary displacements and the boundary tractions are assumed. Normaly it is not
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possible to evaluate the boundary integrals analytically, so that numerical integration is needed.
Applying numerical integration one must take into consideration that the integrands have

singularities along the boundary curve.

A different strategy to get a boundary element algorithm for plane elasticity problems is
described in the present paper. The starting point for this boundary element algorithm is the
formulation of displacements and stresses in terms of arbitrary complex functions. This complex
formulation which was used by Muskhelishvili in his fundamental work [16] ensures that the
Navier-equations and the equilibrium equations, respectively, are automatically satisfied for

any choice of complex functions.

It should be noticed that it is possible to represent also 3-dimensional elastic stress and displace-
ment fields with the aid of complex valued functions [17-20] and that this 3-dimensional com-

plex representation of displacements and stresses is equivalent to the real representation of
Neuber/Papkovich [21-23].

The complex functions in the plane elasticity solution representation can be assumed to be com-
plex power series in curvilinear coordinates via conformal mapping techniques as it was done in
[24-26] to construct special finite elements, which are constructed via boundary integral evalua- -
tions. Here we use more general trial functions for the complex functions in Muskhelishvili’s

formulas in order to obtain a boundary integral algorithm.

For the complex functions we take Cauchy-integrals, which relate harmonic function values
inside the solution domain to function values on the boundary [27-33]. The boundary is discre-
tized into a number of straight line boundary elements, where complex shape functions are
assumed. After the substitution of the complex shape functions into the Cauchy-integrals the
integrals can be evaluated analytically. For the boundary element nodes Cauchy principle

values have to be calculated as the integrands in the Cauchy-integrals are singular.

After the evaluation of the Cauchy-integrals, the consideration of all possible limit cases and
the substitution of the integral results into the Muskhelishvili formulas we obtain displacement
and stress functions which depend on discrete function values on the boundary. The use of the
boundary conditions for chosen collocation.points gives us a set of linear equations, from which

the unknown discrete function values on the boundary can be computed.
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2. REPRESENTATION OF DISPLACEMENTS AND STRESSES

Using two complex functions @(z) and ¥ (z) we can represent the displacements and stresses for

plane elasticity in the form [16]

2uu=Re[x®(z) — z0'(z) — ¥(2)]
2uv=Im[x®(z) — z0'(z) — ¥(2)]
ox=Re[2®'(z}) — z0''(z) — ¥'(2)] @))
oy=Re[2®'(z) + ZT@''(z) + ¥'(2)]
Try=1m[z®"'(z) + ¥'(2)]

where z=x+iy , p.=E/(2(1+v)) and k= (3-4v) for plane strain and k= (3-v)/(1+v) for plane
stress. ( )’ denotes differentiation with respect to the complex variable z and (_)- denotes the

complex conjugate. Re and Im mean "real part of” and "imaginary part of", respectively.

Every complex function f(z) ( f stands now for ® and ¥ ) in a domain () with the boundary I’
can be represented by the Cauchy integral formula [27-33]

(3]
(=5 5[ 54 (2)

where f({) represents the boundary values of f(z) along the boundary curve I'. Complex deriva-

tives can be obtained with the aid of the formula

f(n)(z)= 1}‘ £L) dt (3)

2mi T ({—2)™*!

For an elasticity problem with given boundary displacements i , V and boundary tractions
’I‘x 5 Ty the boundary values of the complex functions ®(z), ¥(z) are not known a priori. So
we assume complex trial functions for the boundary values of ® and ¥ after we have discre-

tized the boundary into N boundary elements (Figure 1).

For the sake of simplicity we model the boundary with the aid of straight line boundary ele-

ments. The boundary elements have to lie on or enclose the real boundary since
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boundary element j

with boundary portion I';

Figure 1: Boundary element discretization

e b R )

if z is in the exterior of " .

The modeling with straight line elements is no particular restriction as we can also fulfill boun-
dary conditions on selected points of curved boundary segments (see example 2).

For an approximative solution we represent the boundary values of the complex function f
(which stands for ® and ¥) with the aid of shape functions #i for the boundary elements in the

following way:

__1 (9]
(@)= 5 2 J aall )

where I‘j is the boundary portion of element j.

As the stress refationships (1) contain complex derivatives of the functions ®(z) and ¥(z) we
have to study what kind of shape functions can be used. From equation (3) it seems to be suffi-
cient to require that only function values and not derivatives have to be continuous from ele-
ment to element. A look at the relationships for the example of a linear complex shape func-

tion will show that C° continuity is not sufficient.
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3. LINEAR COMPLEX SHAPE FUNCTION

A linear complex shape function for a boundary element with end nodes (j-1) and j (Figure 2)

can be written as

o) = ZZJ_;C fiy + L7740

f; (6)
j = Zj-1 Z =2

The complex value of { within the boundary element with nodes (j-1) and j can be expressed

with the aid of a real normalized boundary coordinate s by
U(s) = zj—y + (zj — zj—1) s - where 0=s=1 (7
so that we can rewrite (6) as

Be(s)) = (1 —s) f4 + st ()

1 element j

Figure 2: Boundary element notation

With d{ = (zj - zj_l)ds we obtain the contribution fj(z) of the boundary element j in the form

as =1 a;
; 1 B 1 5. #
) = — = —
= 412 % = 2mi S'Ios—K as 2
]
Z -7 '
where K= ——— (10)
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Since the boundary element shape function i is expressible as a polynomial in s we can use the

formulas
[ 4= F —l_Kigi + Kin(s - K)
s - K icon—i
and (11)
1 st n-1 1 -z
f - LK+ rnai =
65— K o n-i zjy —2

respectively, to evaluate the integral (9) analytically.

For the example of a linear boundary element shape function we obtain the contribution

() = i (-1 + (1-K) 1n;—_—5;] (12)

211'1

)
+5 [ 1 + KIn—L——1] J
for element j . From the next boundary element we get the contribution

1 _ 1 . _ V4
fit1(z) me f {-1+ (1-L) ln—zj_z ] (13)

Z'+1—Z
+ f. + o . ot 1
f.|+1[ 1 Lin Zj"'Z ]}

Z-Zj

where L= (14)

Ga T

After the summation of all element contributions we obtain the complex trial function f(z) in

the form

f(Z) = [lel(Z) + szz(Z) + reww f,H)(Z) + e £ fNHN(Z) ] (15)
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where the f; are complex function values at the chosen boundary element nodes. Using

fi = ff + i ff (15) can be written in real form as

Ref(z)] = [ ff Re[Hy(2)] + B R[H,(2)] + * - + § Re[H@)] + - - + 1§ Re[Hn(2)]
- Im[Hy(2)] - § In[H,(z)] ~ - - - m{HD)] — - - - — £ Im[HN<z)]}
and (16)
Im[i(z)] = [f{ Im[Hy(2)] + § In[Hy(2)] + - + ff In[H(2)] + - - + £§ Im[H(2)]
+ f{ Re[Hy(2)] + f Re[Hy(z)] + - - - + £ Re[H(2)] + - - - + f Re[Hy(2)] }

respectively. To investigate the behavior of f(z) for the case that z approaches a boundary node
we write explicitly the general function term Hj(z) as well as the neighboring terms Hj-l(z)
and Hj_H(z) :

1 ( Z—Ziy Ziy — Z Z; —Z Z: —Z ]
f(z):i—. +fj—l —J Dj — l— n ) -
1 zj—l Zj_z Zj_z z Zj'! Zj_1 z_]—l z
(
{ Z—Zi 4 Z: — 2 Ziy1 ¥4 VATR Bl 4 ]
+ f” l Z; —;' Z'] -2z T Z'] - ]Z'—Z j (17)
i -1 -1 i+l i i
)
z—Z Z+1—Z Z+2_Z Z+2_Z
+ fi4g [ L Jn-2 4 —d In—L +
l z]‘+1 - Zj ZJ -2z Zj+2 - Zj+1 Z]+1 —Z J |
)

From (17) we can see that f(z) contains singular terms for z= Z; 2=2; and Z=Z;y1 SO that
we have to look for the existence of limit values. These limit values exist for f(z). For the exam-

ple of z approaching the node point Z; we obtain the limit value

Z—Z. 3 1 Z, oy, —Z Z; 1 —Z Z,1— 2 ]

Zj—-2 - Zj_3 Zj_3 =Z Zj—l = Zj_z Zj—2 —Z



+ i 1[ Zj_ZJ—Z an_l—ZJ ]
= y g — . —
l 4-1T 852 42T g J
[ Z'+1 = L3 ]
+ f l In-‘— J (18)
zj—l Zj
£ ZJ+2 ZJ Zj+2 ZJ ]
T Ziyy — Z; Zipg — 2
j+2 j+1 j+1 j
Z — Zj+q Zj+2 — Z Zj+3 — Z Zj+3 — Z
+ fi4z = n- + — In— +
| Zi+2 — Zj+1 Zj+1 — Z Zi+3 — Zj+2  Zj+2 — Z |

Since the stresses contain first and second order complex derivatives we have also to check the
existence of limit values for f(z) and f (z) for the case that z approaches a node point. From

relationship (17) we can get the first derivative of f(z) :

(
Ziq1— Z Z; — Z
f'(z)=-2—1——,- +f,_1[ LA '_lz‘ In—— ]
1 Z]_l ZJ__2 Z]_z Y4 Z] -1 -1 z J
{
+ f In - In (19)
ZJ - zj—l zj-l —Zz Zj+l - Z_] ZJ 4
1]
Z; -z V4 —Z
+ fj+1{ 1 - j+1 1 j+2 + . }
| 4+1 7% Z—z Zi+2 —Z4+1 ZH1 T Z J

Unfortunately there are no limit values when z approaches zj ; zj_1 or z so that the use of

linear complex shape functions is not possible for the plane elasticity ]sj)-lzlnion representation
(1). In order to obtain expressions for f(z) and f (z) which have limit values for all boundary
nodes z= zj we have to use complex shape functions with continuous values of f, f , f at
every node point. This means that the complex shape functions have to be at least fifth order

polynomials.

Using relationship (1) we have to require ® , ® , ®" and ¥ , ¥ to be continuous at the ele-
ment nodes as @ appears with a second order derivative in (1) whereas ¥ appears with a first

order derivative. But for the numerical examples in this paper the same type of functions have

R i i it
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been used for ¥ and @ so that both ® and ¥ have continuous second order complex deriva-

tives.

4. FIFTH ORDER COMPLEX SHAPE FUNCTIONS

A fifth order complex shape function with the complex node values fj, fj' , fj” » §-1 fj'._l , fjil

can be written in the following form:

H(s)) = —;-{ [2 —208° + 30s* — 125° | £, (20)

+ [2s — 128 + 165* — 657 ] fjl_l(zj - Zj1)
+ [ 52 - 353 + 354 - 55 ] f;l(zj - Zj_l)z
+[ 205 —30s* + 126 |

+[ -8+ 14t — 65 ] £ (z — 7y
)
+ £ - 2" + 1§ (z; - -1)? 1‘

and
B(L(s)) = Ny(s) fjg + Na(s) f_1(z; — zj—1) + Na(s) fl1(z — zj-)? +
Na(s) §j + Ns(s) f(z; — zj—) + Ne(s) £ (z; — zj-1)? (21)
respectively, where

Zj = zj—l

and
Ny(s) = [ 2 —20s® + 30s* — 125° |2
Ny(s) = [2s — 1263 + 16s* — 657 |12
Nys) =[ s — 33+ 3s* - & |2 (23)
NyGs) = [ 20s° —30s* + 125° |2
Ns(s) = [ —8s3 + 14s* — 65° ]2
Ne(s) = [ $ -2 + 9
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After the substitution of (20) into (5) and evaluation of the Cauchy-integral we obtain the
approximation function f(z) which depends on the boundary values f T (] ,--,IN) of
the chosen N node points on the boundary. From the evaluated f(z) one can obtain the first
and second complex derivatives f(z) and f (z) , respectively. But in order to get compact
expressions for f(z) and f (2) it is not convenient to evaluate the derivatives from the expres-

sion for f(z). It is easier to use the formulas

A

F()= zf fg (24)
and
()= 5 > [ T (25)

Equation (24) is only valid if the shape functions I/ are continuous at the node points, whereas
(25) is only valid if both ¥ and # are continuous at the node points. The complex derivatives

of the fifth order shape functions are given in the appendix.

Substitution of (20) into (9) and integration gives us the element contribution fj(z) in the form

(
J 1 47 7 — 2
f] = —l £ { A o _ 74 & 3 _ 4 i ]
(2) | ,_ll 30 ~ 3K —9K* + 24K — 12K* + 2Ny(K) ]n———zj—l =3
L
* @G- - K- 6K? + 13K° — 6K* + 2N,(K) In Zjil -z JI
i
1,1 11 5 —,
+ (z; v 2f o e e 24 33 g4 In
& =70%) 95+ K- K 3 2N3(K) _—z,_1 =
It 30 Z,-1 =
J 11 s -
+ (@ =20 | —37 - 2K - 3K2 + 11K® - 6K* + INy(K) m—L_ZJ —
+ 21 1 LR LK = SR 3 B ¢ GNAR e ]
& = 2%, EREE oK) Ino " — J
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Adding neighboring element contributions we obtain for f(z) the representation

Z; 4
3K + 9K2 — 24K3 + 12K* + 2N, (K) In———o L -
-1~

o e

1
f(Z)=Z;-i-§"' +fj

Z; —Z ]
- 3L - 9L + 24L% - 12L% + 2Ny(L) ln—T"— J|
)
3 2 3 4 -z )
[(ZJ J_l)t - - K 3K* + 11K° — 6K" + 2Ns(K) ln—;—l—_'—z }}
( \]I
4 13 Ziy1 — 2
+ (g1 — zj)t e 6L% + 13L3 — 6L* + 2N,(L) 1n—’zj_—z H
|
+ 1 | (@ —z)? —+—K+le—-?’-K3+K4+2N(K)lnﬂ)}+
RCIE t 3 2 6 Ziq -2z |
2(1 1 11 2 5 3 4 Zj+1—Z]}
+ (Zj+1 —Zj) lﬁ + “ZL— 6 —L°+ '2—L —-L*+ 2N3(L)ln—ijZ‘ J}l +
|
(27)
zZ—Z Z—Z
where K=—31 and L=—3 (28)
Zj - zj—l Zj+1 - Zj

The complex derivatives f(z) and f (z) are given in the appendix.

A detailed look at the behavior of the functions f(z) , f{z) and f (z) on the boundary shows

that all limit values exist. Within the evaluation of the limit values we have to treat cases of

the form « - and 0*w .

We observe that all logarithm terms in (27) are multiplied by the complex shape functions N;
(i=1,2,...,6). Accordingly, the logarithm terms of f(z) and f (z) given in the appendix are
multiplied.by the shape function derivatives N and Nl , Tespectively. If we take for example

the limit value of the term
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Zi1—2Z Ziy1 —Z
N;(L) m%— = (2 - 20L3 + 30L* — 12L%) 21— (29)

i 4 Zj—Z

of equation (27) for z-—'»zj +1 We get after applying several times 'Hospital’s rule the limit

expression
Zipg1 —Z In(ziy; — 2 6N;N; + 2N;N;"
im NyL) n2X1 = = jim bEnm -2 _ uhl LM bt SR (30)
Z-Zy, Zj -z 222y, 1 Z~Zy, [zj+1 - Z] Nl - 3N1
Ny(L)
where
: dN;  dN; 4L dL
Nl = T Ew T Mg
im Nl(L) =0
Z-Zy, 4
lim N;(L) = 0
Z-Z, ,
lim N; (L) = 0 (31)
Z=Zy, )
lim Np'(L) = ——22— %0
T (Z+1 — 2

Accordingly we obtain

. Z—zZ . zj—z L e Zj— 2
lim Niy(K) n——— = lim N{(K) h——— = lim NK)h—— =0 (32)
z-Z_, zj—l == Z z-Z,_, zj—l -Z z-z,_, Zj—l -7z

(wherei = 4, 5, 6)
ey —2Z . Zipy — Z o Zip — Z
lim N(L) n 2 = fim NL) n L E o m N 2 =0 (33)
z~Z;, Zj —Z z-z,, Zj —Zz z-Z, Zj -2

(wherei = 1, 2, 3)

The evaluation of the limit values of the function terms with the coefficients £, fj' , fj”

depends on the location of z. For the node point z=zj we obtain
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(
f(z) = _1_! P e . Y
) 41Tll ] Zj—zj—l J
(
1 | 4 -5 + G - -)H
‘ i |5 1754 Z+1 T 5
| i { J
| P N B —
| 120 ! Zipr — & j J
| . ]
+ remaining terms J
( B
' 1 5 3
(ZJ) 471 | ) Zj _Zj—l Zj+1'—Zj J
{
, zZ; — zZ;
+f | 2L ] (34)
zj_zj—-l J
o | z- Zj—1 Zj+1 — Zj
g 4 4
+ remaining terms 1
f'(z) = _1_{ f. [ 20 - ]
: 4“ii | @G-z (Ze—z)? J
{
| ]
| +5 | - 6 16
’ 57451 G T
i [ —1
| +f |23 ]
Zj—Zj_1 J
. 1
+ remaining terms }

The remaining terms can be either singular expressions with limit values or regular expressions.

For the node point z=zj_1

L(E=2).)= (7)1

we get the limit values with the aid of (32) and K(z= zj_1)=0,

) whereas for node point z= we use (33) and

Zit1
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K(z=zj+ 1)=(Zj+ l'zj-l)/(zj'zj-l) as well as L(z= Z, pP=1.

So the constructed approximation trial function f(z) is continuous and finite everywhere in the

domain (2 and on the boundary I'" .

5. THE COMPUTATION OF COMPLEX LOGARITHM TERMS

The complex logarithm
g(z) =In(z-2) = ln(rjei¢‘)= Inr+id; (35)

is a multivalued function. In order to define a single valued function in our analysis region we

need to select an appropriate branch cut starting from the branch point z; (Figure 3).

rj=\/(xj_x)2+(Yj—Y)2= }Zj"z

chosen branch cut: — 7 < d)j =7

Figure 3: Branch cut definition

There are an infinite number of possibilities to define a branch cut. Along the chosen branch
cut the logarithmic function has a jump.
Although logarithmic functions have jumps we can use these functions for general plane elasti-

city problems since the logarithm of the fraction (z;+1 — z)/(zj — 2) can be written as

lnzj+1 bl 4

72 In (zj4+1 —2) —In (z; — 2) (36)

=lnrj+1+i¢j+1—lnrj—i¢j
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Accordingly, the branch cut definition for ¢ ;4+; and ¢; can be chosen in such a way that

In[(zj4+1 — 2)/(z; - z)] has no jumps inside the solution domain of an elasticity problem.

branch cuts

a) branch cut definition: —w < ;=

0=0¢jq<2w

iy A

Z: branch cut

b) branch cut definition: 0= ¢ ;<27

—m<dj=7

Figure 4: Two branch cut definitions for In[(zj+; — z)/(z; — 2)]

The choice of branch cuts for boundary element calculations is not arbitrary. A branch cut
definition as in Figure 4a for a boundary element between node points z; and z;,; would
cause a jump of function values inside the solution domain if a branch cut line crossed the

solution domain £} as shown in Figure 5.

With the definition of the branch cut according to Figure 4b we obtain a branch cut line of
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Z; Zj+1

N ¢

\

Zisq — Z
branch cut of ln—";%—

iy[ | = %

X

boundary element

Figure 5: Branch cut crossing the solution domain Q

finite length. The definition shown in Figure 4b can be used for arbitrary solution domains for
which the boundary is discretized into straight line boundary elements. Thus the branch cut of
a boundary element must lie exactly on the element. The cut is arranged in such a way that one
surface of the cut is identical with the boundary element line and the opposite surface lies out-
side the solution domain. Using the branch cut definition of Figure 4b for the boundary ele-
ment algorithm we enclose the solution domain with a series of branch cuts of finite length
(Figure 6).

'-1\

Figure 6: Solution domain £ enclosed by branch cuts along the boundary elements

As there is a jump of function values from z, to z_ (where z, lies on the boundary of I' of the
domain () and z_ lies a little outside () ) caused by the branch cut of the logarithmic function
one has to take special care in programming the evaluation of the angles of the complex loga-

rithms to avoid wrong values due to roundoff errors.



=T =

2 =5y = @ = ggpeTry

—l!lj...l_j

Z=x+iy =(z- zj)e

iy j
l S boundary element j

X

Figure 7: Representation of domain point z in local coordinates x ,y and x ,y with ori-

gin in the boundary element nodes z; and zj,, , respectively.

With the notations explained in Figure 7 we can compute the complex value of

In[(z;+1 — 2)/(z; — 2)] in the following way:

—lay,

Zipy1 —Z Z — Zipp)e Zip1 —Z
ln_ti-l__ - ln( ]+1).iu = ln! j+1 + i'y (37)
Zj -z (Z - zj)e I+ 1. | Zj - Z
where Qjp1j = arctan&tl----—_—-)-li (38)
| Xj+1 ~ Xj
Y= B - «a | (39)

arg ([Z & Zj.,_l]e—ia“ "’} — arg ([z - zj]e_i“:+ u]
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Figure 8: Notations for the evaluation of In[(zj — zj+1)/(zj — zj—1)]

For the computation of In[(z; — 2j+1)/(z; — zj-1)] appearing in the expressions (34) for the limit

case z = z; we can use the rotated local coordinates x ,y and x ,y shown in Figure 8 to

obtain
—ia
ke — Z; —Zipp)e Y Zi — %
Bk G Bk )L L (40)
5741 (g -ze %4 A
where 3= T - ¢ (41)
= r "i(! +1, ] -i(! +1,
= arg \[zj = Zjpile ! ‘J — arg ([zj —Zjqle ‘}

6. BOUNDARY ELEMENTS AND COLLOCATION POINTS

For the complex functions ®(z) , ¥(z) in (1) we use the fifth order complex shape functions
described above. Since both ® and ¥ can represent rigid body translations we need to elim-
inate the linear dependent function terms. This can be done by omitting one complex function
term of W(z) using the complex coefficient ¥; of node i , which can be easily realized by

choosing i=1.
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The boundary of a problem domain under consideration is discretized into N boundary ele-
ments with N node points. For every node point j we have the six complex unknowns
(Dj R CI>j' " d)j” , ‘Ifj 5 ‘I’j' . ‘I'j" except for node 1 where we have only @, , (IDI' , d>1” , ‘I'l , ‘Ifl .
Accordingly, we have 6(N - 1) + 5 = 6N -1 complex unknowns and 12N - 2 real unk-

nowns, respectively.

In order to obtain a system of equations for the evaluation of the unknown parameteré we
satisfy the given boundary conditions at selected collocation points. The collocation points are
chosen to be the node points and equidistant additional points between the node points (Figure
9a).

/node collocation point

N

collocation points between

boundary element nodes

collocation points on curved boundary

NS

node collocation point

™~

boundary element j

-1
b)

Figure 9: Choice of collocation points

For every boundary element we choose 5 internal collocation points except for the first element,
where we have 4 internal collocation points to satisfy the rigid body requirement described
above.

If the real boundary is curved (as in example 2) we can even choose collocation points on the

given curved boundary (Figure 9b).
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7. NUMERICAL EXAMPLES

In order to illustrate the accuracy of the proposed boundary element algorithm examples have

been chosen for which exact solutions are known.

Example 1 (Figure 10}

M\
I
c
r—>
c X
I
¥ v
A L A

Boundary conditions: u(0,0) = v(0,0) = 0
u(0,xc) = 0
Tx(x,%c) = Ty(x,=c) = 0
To(L,y) = 0

TLy) = o (@ - 1)

Tx(0,y) =

~[E

T,0) = =5 (@ = ¥)
where I = 26773 .

data for calculations: P= ~1 , L=16 ,c=2 , E=1

(
v = 183

lo.s

Figure 10: Plane strain elasticity problem



221 -

Figure 11: Boundary element discretization for example 1

The plane strain elasticity problem defined in Figure 10 is taken from the book of Hughes
([34], page 220) in which also the exact solution is given on page 255. With 5 boundary ele-
ments according to Figure 11 we obtain the exact solution: for the maximum displacement
v(16,0) we obtain the values v(16,0) = 264.0 forv = 0, v(16,0) = 244.14 forv = 0.3, and
v(16,0) = 205.5 for v = 0.5 . The nonvanishing stresses o5 and T, are plotted along the
boundary of the domain (Figure 12). The four edges 5-1, 1-2, 2-3,3 -5 appear with
the unit length "1" in these plots. ‘

SIGXX ’ TAUXY
6.000 0.000
4,800 | -0.037
3.600 | -0.075
2.400 | -0.112
1,200 | -0.150
0.000 -0.187
-1.200 | -0.225
-2.400 L -0.262
-3.600 | -0.300
-4.800 | -0.337
-6.000 . . . -0.375
0.000 1.000 2.000 3.000 4,000 0.000 1.000 2.000 3.000 4.000

Figure 12: Stresses of example 1 along the domain boundary (starting from node 5 in direction

of node 1)
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Example 2 (Figure 13)
For a plate strip with a circular hole under normal tension several numerical computations have

been made using different ratios between hole radius ry and width 2b of the strip (Figure 13).

The comparison solution is taken from a paper by Howland [35].

A=

P P
PARAYYE PrAAttt
2

|
|
|
| E=1
B |
|
2h = 40 OA I 20 v=03
|
|
I p=1
|

*

Ydd LY

AI/ /l‘, /IV "l,
2b =20 10
a) b)

Figure 13: a) Plate strip with circuiar hole. b) Quarter system

detail of circular arc discretization

Figure 14: Boundary element discretization with 20 elements
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Table I: Stress tip results for a Howland strip for different ratios of ry/b

case 10 boundary | 20 boundary | Howland
elements elements [35]

=2 Ope at A 3.562 3.141 3.14
ryb=02 | g4y atB -1.405 -1.115 -1.11
rp = 3 Top AL A 3.524 3.365 3.36
ryb =03 | o4y atB -1.429 -1.257 -1.26
rp = 4 Top AL A 3.825 3.749 3.74
ryb= 04 | o4y atB -1.566 -1.449 -1.44

It should be mentioned that although we used straight line boundary elements for the hole sur-

face (Figure 14) all collocation points for the boundary conditions were chosen on the real

boundary.

The stress tip results for a coarse mesh with 10 elements and another mesh with 20 elements are

given in Table I . For the case ryp = 3 the displacements and tractions along the boundary of

the system obtained with a discretization according to Figure 14 are plotted in the Figures 15

and 16, respectively. Instead of real distances between the nodes 5 -1, 1-2, 2-3, 3-4, 4-
5 unit lengths have been used in the plots.

5.726

u

22.611

4.560
3.435
2.290
1,145
0.000

18.088
13.566
9.044
4.522
0.000

-1.145
-2.290
-3.435
-4,580
-5.726

I~

I

-4.522
-9.044
-13.566
-18.088

-22.611

0.000

1.000 2.000

3.000 4,000

5.000 0.000

1,000

2.000

Figure 15: Displacements along the boundary between nodes 5-1-2-3-4-5

3.000

4.000

5.000



1.256
1.004
0.753
0.502
0.251
0.000
-0.251
-0.502
-0.753
-1.004
-1.256
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0.000

1,000

2.000

3.000 4.000

5.000

3.365
2,692
2.019
1.346
0.673
0.000
-0.673
-1.346
-2.019
-2.692
-3.365

TY

0.000

1.000

Figure 16: Tractions along the boundary between nodes 5-1-2-3-4-5

Example 3: Model for an infinite plate with hole under tension

2.000

3.000

4.000

5.000

As in the finite element method we need small boundary elements in areas, were great changes

in stresses are expected, whereas in other areas larger elements are sufficient. As an example

for this the
(tg = 0.5, b
results.
numerical | exact®
<
)
U¢¢ at B '1.018 '1.0
L
[
* (infinite plate)
]
[
[
[
&
B“\
A' S >
7]!., 'r“ul‘uqu1u 41: 4u Au "l/
05\\’/ 1.7 2.0 2.3 2:3

Figure 17: Boundary element discretization for plate with ryb = 0.5/10 and stress tip results

2.9

2.5

boundary element discretization for a plate with a relative small

hole

= 10, according to Figure 13 ) is given in Figure 17 as well as the stress tip
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8. CONCLUSIONS

A plane elasticity boundary element concept with compatible displacements and stresses has
been derived. The boundary integrals could be integrated analytically. The case of straight line
boundary elements is no particular restriction as it is possible within the presented concept to
choose collocation points also on curved boundaries. High accuracy could be achieved with
simple discretizations. |

In a following paper we will discuss the possibility to obtain a symmetric coefficient matrix in
the presented boundary element algorithm as well as the evaluation of finite element stiffness

matrices via boundary integral techniques.

APPENDIX

The fifth order complex shape functions P and their complex derivatives can be written in the

following form:

B(L(s)) = Nu(s) fi= + No(s) fia(zj — zj-1) + Na(s) fila(z) — zj—) +

I‘-14(5) f; + Ns(s) £(z; — ) + Ng(s) fj (g — z-1)? (A1)
H(£(s)) = Ny(s) fi1/(z; — 2jq) + No(s) -1 + Ny(s) £i14(z — i) +
Nis) /g —z-) + Ns(®) §j + No(s) (2 — z0) (A2)
7' (1()) = Ny(s) f-1/(z; — 7—1)* + No(s) f_1/(zj — zj—1) + Na(s) f21 +
Ny(s) f(z — zi1)* + Ns(s) iz —z-1) + Ne(s) (A3)

where
Ni(s) = [ 2 — 208 + 30s* — 126° |2
Ny(s) = [ 2s — 125° + 16s* — 65° )2
Nys) = 82 — 32+ 3s* - S |2 ‘ (A4)
Nys) =[ 208 —30s* + 125 ]2
Ns(s) = [ —8s3 + 145 — 65 |2

Ng(s) = [ $ -2 + P2



-26 -

and
Nl(s) =[ - 60s*+ 120s° — 60s* ]2
Ny(s) = [2 — 3657 + 64s° — 30s* |2
Ni(s) = [2s — 92 + 12§ — 5542 (AS)
Nys) = [  60s® — 120s% + 60s* }2
Ns(s) = [  —24s2 + 565 — 30s* |2
Ne(s) = [ 32 - 8% + 5542
and

Ny(s) = [ — 120s + 360s? — 240s> /2
No(s) = [ —72s + 19282 — 1208° /2
Nj(s) = [2 — 18s + 3682 — 20s3 )2 | (A6)
Nys) = [  120s — 360s* + 240s° ]2
Ns(s) = [  —48s + 16882 — 120s3 |2

Ne(s) = [ 6s — 24s* + 20s% )2

The complex derivatives of the approximation function f(z) given by equation (27) can be
obtained with (A2) and (A3) from equations (24) and (25} as follows:

(
1 l 1 ! 2 " Zj —=Z 1
flz)= —{--- + ] ——— { 5+ 20K — 90K? + 60K> + 2N,(K) In
4mri "W oz, —z Zi—z
| i~ -1 j—1 )

) z: —z\]
IR W ! —5 — 20L + 90L? — 60L3 + 2N;(L) m—’ziL— b

Zi41 = | j =z )J

Zj—Z

+ ff I —5 — 6K — 41K2 — 30X3 +2N4(K) In
l zj--l =Z

d Z; s X
— 14L + 49L2 + 30L3 +2N,(L) 1n—’;_il——;— } (A7)
=

[

{ 1 2 11 .2 3 : G~z 1
e e e K e + s +
(z; = zj-1) | 12 3 ) K 5K + 2Ng(K) lnzj_1 z |

+f]

|
l
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!1 14 9.5 o# o ol zjﬂ—z\],
+ (Zj+1 — Z]) | Z - ?L + TL —5L° + 2N3(L) lﬂ—zj — J}J +
’ se Zi = Z -
f(z)=i. "'+f3{—————l———2-;[20——240K+24OK2+2N4(K)111 ) 1
4 | @-z0" Zi1-2 )
| . for — 7 ]
| y —L [ —20 + 240L — 240L2 + 2Ny(L) ln = 1
| (Zj+1 = Z)) L Z;—zZ J J
[
vt | —L ] 4 s 108K - 12002 + 2R 5=z |
j - - 5(K) In
Zj = Zj | Zi1—2 |
V|
. Z: —Z
> —1——{ ~16 + 132L — 1202 + 2N,(L) n2—= L | (A8)
Zjt1 ~ 7 | z—z |
J ¥
'Il [ 2 (X3 ZJ W 4
+ 1 —6 — 14K + 20K? + 2N4(K) In———
l Zi-1— 2
2 e Zj+1 —Z ] ]
+26L —20L? + 2N3(L) ln—— | + -+ '}
=
)
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